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Privacy-Preserving Proof of Storage for the
Pay-As-You-Go Business Model

Tong Wu, Guomin Yang†, Yi Mu, Fuchun Guo, Robert H. Deng

Abstract—Proof of Storage (PoS) enables a cloud storage
provider to prove that a client’s data is intact. However, existing
PoS protocols are not designed for the pay-as-you-go business
model in which payment is made based on both storage volume
and duration. In this paper, we propose two PoS protocols
suitable for the pay-as-you-go storage business model. The first
is a time encapsulated Proof of Retrievability (PoR) protocol that
ensures retrievability of the original file upon successful auditing
by a client. Considering the large size of outsourced data, we
then extend the protocol to a privacy-preserving public auditing
protocol which allows a third party auditor to audit outsourced
data on behalf of its clients without sacrificing the privacy of
the data or the timestamp (i.e., time of storage). We formalize
the definition, system model and security model of the proposed
PoS system and prove the security of the proposed protocols
by a sequence of games in the algebraic group model with a
random oracle. We analyze the performance of the protocols both
theoretically and experimentally and show that the protocols are
practical.

Index Terms—Remote integrity checking, proof of storage, data
security and privacy, pay-as-you-go, third party auditor

I. INTRODUCTION

CLoud computing deals with massive volume of data
via powerful computation resources and elastic storage

capability and brings significant benefits to cloud clients
[18], such as allowing on-demand access to the outsourced
data and relieving clients from the burden of local storage
management and maintenance. However, it is also facing a
range of internal/external attackers who illegally access, delete
or corrupt the outsourced data; thus, it entails the security
risks in terms of confidentiality, integrity and availability of
the outsourced data and service. Among these security issues,
the integrity of outsourced data is of great importance, since
the clients do not possess their outsourced data locally. On the
other hand, a cloud service provider (CSP) may be dishonest
and attempts to hide data loss or corruption. For examples, the
CSP might reclaim storage by discarding data that have not
been or are rarely accessed, or even hide data loss incidents
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to maintain a reputation [17]. Thus it is crucial for clients
to implement an effective mechanism to perform periodical
integrity checking over the outsourced data to ensure that it is
intact in the cloud [14].

Proof of Storage (PoS) is a generic primitive that allows a
party to verify that the prover actually stores a file intact [3].
There are two popular PoS models, provable data possession
(PDP) [2], [4], [6], [15], [16], [23], [30], [33], [35] and proof
of retrievability (PoR) [9], [21], [27], [28], each has its pros
and cons. PDP allows a client that has stored data at an
untrusted server to verify that the server possesses the original
data without retrieving it. The model generates probabilistic
proofs of possession by sampling random sets of blocks.
PoR ensures that a client can recover the entire file when an
auditing is successful and is consider to be more robust than
PDP model for remote integrity checking in cloud. On the
other hand, considering the large size of outsourced data and
clients’ constraint on local storage capability, it is desirable
to implement a public auditing protocol in which integrity
checking is performed by a third party auditor (TPA) while
without revealing the clients’ data during the auditing process.

To impel cloud services like public utilities such as water,
gas and electricity, it is ideal to run the pay-as-you-go business
model in which a client pays CSP based on the storage volume
and storage duration, as illustrated in Figure 1. It means a
cloud client can update his/her files stored in the cloud on
different dates and the CSP will calculate the cloud storage
fee for each day according to the total volume occupied by
the client on that day.

The new payment model can be integrated with a proof of
storage system to handle file damage or corruption situations.
The CSP has the responsibility to ensure the integrity of the
files stored in the cloud. If a file corruption is detected in a
periodical integrity checking, then the CSP should only charge
the storage fee for that file until the last valid checking. More
specifically, there are three possible situations: the first case
is that no damage is detected in periodical integrity checking,
then the client pay the bill in a regular way; the second case is
that an outsourced file is damaged and detected in the integrity
checking, then the storage charge will be counted by the date
of the last successful checking; the third case is the client
removes a file from cloud storage, then the CSP calculates
the storage fee by this date. The above possible situations are
shown in Figure 2.

However, to our knowledge, the existing PoS protocols only
allow content integrity checking. To cater the pay-as-you-
go model, PoS protocols need to support integrity checking
of both content and timestamp (i.e., time of storage) of the
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Fig. 1: Illustration of the difference between the traditional
payment and the ideal payment: the financial cost is computed
by the size of the shaded area.

outsourced data. A trivial solution is to append a timestamp
at the end of the outsourced data or using special data blocks
to store the timestamp. However, it has a loose relationship
between the timestamp and individual data blocks and the
timestamp may be lost or corrupted. Another solution is
that the file name and the timestamp can be incorporated to
generate an authentication tag for each block. This approach
ensures a strong binding between the timestamp and individual
blocks but the timestamp has to be known by the verifier
which may be a privacy concern in the TPA setting. We should
note that the timestamp may leak some information related to
the data via inference. For example, if the TPA knows the
date of a particular meeting, then from the timestamp the
TPA is able to locate the set of documents that contain the
meeting minutes. This work presents new PoS solutions that
allow content and timestamp integrity checking without the
aforementioned limitations. Our proposed PoS schemes also
have other potential applications such as version control for
outsourced data where the integrity of different versions of a
file and their corresponding timestamps can be guaranteed.

A. Contributions

In this paper we propose two PoS protocols designed for
the pay-as-you-go business model.
• We first present a PoR protocol which allows a client to

verify the integrity of data and its timestamp and ensures
retrievability of the data upon successful auditing.

• We then propose a privacy-preserving public auditing
protocol in which integrity of outsourced data and the
timestamp can be efficiently verified by a TPA while no
information on the content or the timestamp is leaked to
the TPA.

• We show that both protocols are sound, i.e., they can
detect any modification or absence of the outsourced data
with overwhelming probability. We prove their security

properties formally against the algebraic adversaries [20],
[22] with a random oracle.

• We compare our protocols with several related protocols
in functionality and efficiency, and conduct experiments
to measure their performances. Both the theoretical com-
parison and the experimental results confirm that our
protocols are efficient for practical applications.

B. Related Work

The traditional data integrity checking techniques require a
client to download an entire data file or store some meta-
data locally [14] and hence are not suitable for the cloud
storage setting. Considerable research under various security
models have been carried out to address integrity checking of
outsourced data without requiring the client to have a local
copy or keep meta-data. Among them the most significant
work are the PoR protocols and the PDP protocols. In 2007,
Juels and Kaliski [21] proposed the notion of PoR which
enables a (semi-trusted) storage server to produce a proof
that the client can retrieve the entire file. However, PoR is a
position-care scheme in that the number of queries is restricted
by the number of sentinel blocks. Position-care means the
integrity checking is conducted by checking positions of the
special blocks in the file. In the same year, Ateniese et al.
[2] introduced the notion of PDP model and constructed
two integrity checking protocols which are based on RSA
cyptosystem and homomorphic linear authenticators (HLA).
The two protocols can detect data corruption with high proba-
bilities by checking some random sampling blocks. Since then,
HLA has been widely applied in the design of many integrity
checking protocols to achieve the blockless verification which
dramatically reduces the protocol overhead in computation
and communication. Blockless verification enables integrity
checking over the outsourced data to be conducted without
giving the data itself to the verifier. Inspired by [2], Shacham
and Waters [27] proposed the compact PoR protocols and
proved their security of the PoRs by a sequence of games
in the random oracle model based on the intractability of
Computational Diffie-Hellman (CDH) problem. For the pur-
pose of achieving shortest query and response, they adopted
the linear homomorphic property of BLS signatures [8] to
construct the HLA. Later, Ateniese et al. [3] introduced a
formal transformation from homomorphic identification pro-
tocols to the PoS protocols. In [3], the transformation requires
the homomorphic identification protocols equipped with three
combination functions. However, the generic construction is
restricted by the combination algorithms, slightly differing
from our construction. In [12], the authors construct the PoS
by combining the message-locked encryption scheme and the
Merkle Hash Tree. Their approach does not improve the
efficiency or the security of PoS.

In fact, the aforementioned protocols may potentially leak
information to auditors during the audit phase [30]. To ad-
dress the privacy issue, Wang et al. [31] proposed the first
privacy-preserving public auditing protocol based on the work
in [27] and the random masking technique that the linear
combination of sampled blocks in the response is masked
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Fig. 2: Cloud data integrity checking integrated into the Pay-As-You-Go business model.

with randomness [31]. The TPA performs the public auditing
tasks on behalf of the clients. Furthermore, it cannot extract
the original data during the audit phase, since the data is
hidden by a zero-knowledge proof. To improved the efficiency,
Worku et al. proposed a scheme [36]. Both [31] and [36]
are vulnerable to existential forgeries using known message
attacks from the malicious CSP [13], [24]. To improved the
privacy, a privacy-enhanced protocol was introduced in [16]
which achieves the indistinguishable privacy but at the cost
of significantly increased computational overhead. Recently,
Liu et al. [25] proposed a privacy-preserving public auditing
protocol completely releases data owners from online bur-
den by regenerating code [10], [11]. A proxy is introduced
to generate authenticators. The audit is conducted by TPA.
However, all the aforementioned privacy-preserving auditing
mechanisms are content-only and cannot support the validation
of timestamp.

Recently, there are some works aiming to improve the
efficiency of the integrity checking service or offering a
more user-friendly service, such as the lightweight privacy-
preserving public auditing via online/offline strategy [23], [35]
and identity-based remote integrity checking [32], [34], [40].
Additionally, some researchers became concerned to the key-
exposure problem. To address this problem, they proposed
the key-exposure resilience auditing scheme and key update
strategy [37], [38], [39]. Unfortunately, the aforementioned
works are also content-only integrity checking schemes and
not yet offer any effective and practical approach to support
the validation of timestamp.

C. Organization

The rest of the paper is organized as follows: In Section II,
we introduce the system architecture and security models.
In Section III, we provide some preliminaries. Then, we
give concrete description of our protocols with/without TPA
in Section IV and Section V, respectively. The theoretical
comparison with related works and the experimental evaluation
are shown in Section VI. Finally, we conclude our work in
Section VII.

II. SYSTEM MODEL AND SECURITY DEFINITION

In this section, we give the system architecture, algorithm
definition and security model of our protocols.

A. System Model

We consider two types of PoS protocols. In the first type
of protocols, a cloud client verifies integrity of the outsourced
data and validity of the timestamp, while in the second type,
verification is performed by a TPA but without leaking any
information to the TPA.

There are two parties in our PoS systems, namely the
cloud client and the CSP. In the second setting, the PoS
system additionally involves a TPA. Each entity has its own
obligations and benefits. The CSP, for its own benefit, such
as to maintain a good reputation, might decide to hide data
corruption incidents to cloud clients. However, we assume
that the CSP has no incentive to reveal the outsourced data
to TPA. The cloud client in the PoR protocol is to perform
the auditing. While in public auditing, the TPA performs the
auditing on behalf cloud clients, but it is also curious on the
content of outsourced data. The system models with/without
TPA are illustrated in Figure 3.

The significant difference between our PoS protocols and
the related works is that our PoS protocols support the
verification of timestamp in addition to the outsourced data,
which allows our protocols to be integrated with the pay-as-
you-go payment model.
System Components. Based on the work of
Ateniese et al.’s [3], a proof of storage system
Σ = (Setup,KeyGen,TagGen,GenProof,VerifyProof) is
an interactive protocol that allows a verifier to verify that a
prover is faithfully storing a file.

Setup: This probabilistic algorithm takes the security param-
eter and generates system parameters.

KeyGen: This probabilistic algorithm takes security parameter
and public parameters and generates a key-pair for a client.

TagGen: This probabilistic algorithm takes a secret key, a file
and timestamp as input. It processes the file to produce the
encoded file and the auxiliary information including the file
tag and handles for data blocks.

GenProof,VerifyProof: The probabilistic algorithms executed
by the prover P and verifier V define a protocol for proving the
integrity of stored data and the timestamp. During the protocol
execution, both P and V take the public key pk and a file tag τ
generated by TagGen as the input. P also takes the processed
file and timestamp F ∗, t̂, and the handles {σ} as input. At the
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Fig. 3: System Model of PoS with/without TPA

end of the protocol, V outputs 0 or 1, where 1 means that the
file is intact on the server. The protocol can be denoted as:

{0, 1}←(V(pk, τ) 
 P(pk, τ, F ∗, {σ}, t̂)).

B. Design Goals

Our protocols are designed to achieve the following goals:
• Verifiability. The verifier is able to verify the integrity

of the content and the validation of the timestamp simul-
taneously, by the proof from the CSP, without storing a
local copy.
Definition 1 (Verifiability). If the prover’s response is
generated from the intact file and timestamp, then the
verification algorithm accepts the proof made by such
prover with overwhelming probability.

• Soundness. The CSP should not be able to produce a
proof accepted by VerifyProof without possession of the
original outsourced data or timestamp.
We define the soundness of our protocol formally. The
soundness is defined using the following game between
adversary A and challenger C.
Setup: C runs Setup and KeyGen to initial the environ-

ment. It gives public key to A, keeping the private key
to itself.
Tag Query: A adaptively issues queries. When receiving
each query for a file and a timestamp, C runs TagGen to
get the output, and forwards the result to A.
Proof-Verify Query: For any file on which it previously
made a tag query, the adversary can undertake executions
of the proof of storage protocol. In these protocol execu-
tions, C plays the part of the verifier and the adversary
plays the part of the prover.
Challenge: A finally outputs the description of a cheating
prover P ′ for a new/modified file-timestamp pair different
from those appeared in Tag Queries. C generates a
challenge chal and requests P ′ to respond a proof.
Definition 2 (Soundness). A publicly verifiable PoS has
soundness if the verification algorithm accepts the proof
produced by P ′ only with negligible probability.

• Retrievability. Informally, retrievability means the veri-
fier is able to recover the file when the prover can general
proofs that can pass verification. We say a prover P ′ is

ε-admissible if it convincingly answers the verification
challenges with ε probability, i.e., if Pr[(V(pk, τ) �
P ′) = 1] ≥ ε.

Definition 3 (Retrievability). [27] A PoS protocol with
retrievability is ε-sound, if there exists a polynomial-
time extraction algorithm denoted Extr, such that for any
adversary that outputs an ε-admissible prover P ′ for a
file M , Extr recovers M from P ′ except with negligible
probability.

• Content and Timestamp Privacy. The TPA should not
be able to deduce data or timestamp of the outsourced
data from the response given by CSP. We define the
privacy of our PDP protocol formally. The content privacy
agains TPA is defined using the following game between
adversary A and challenger C.
Setup: C runs Setup, KeyGen and TagGen to initial
the environment. It gives the public key to A, keeping
the private key to itself. It also sends to A a list of public
information over the outsourced files, including file tags
and timestamps.
Proof-Verify: C and A perform the proof-verify protocol.
C acts as the prover to generate the proof over the
outsourced file after receiving the challenge from A.
At the end of the game,A outputs the content of a file. We
say A wins the game if A outputs the content correctly.

Definition 4 (Content Privacy). A publicly verifiable PoS has
the content privacy if receiving the response, the verifier can
recover the file content with negligible probability.

We also define the time privacy agains TPA formally. Setup
and Proof-Verify are the same as the defined game for the
content privacy except that A is given the file contents instead
of timestamps. It finally outputs the timestamp of a file. We
say A wins the game if A outputs the correct timestamp.

Definition 5 (Time Privacy). A publicly verifiable PoS has the
time privacy if receiving the response, the verifier can recover
the timestamp with the probability no more than 1

#T +negl(k)
where negl(·) denotes a negligible function and #T denotes
the size of the timestamp space.
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III. PRELIMINARY

In this section, we review some preliminaries, including
the bilinear map, the computational hardness assumptions and
some security primitives.

Definition 6 (Bilinear Group). G1, G2 and GT constitute a
bilinear group if there exists a bilinear map e : G1 × G2 →
GT , where |G1| = |G2| = |GT | = p.

The bilinear map is an operation conducted on bilinear groups.
Informally, two elements in such group are linearly related to
the pairing result. The formal description of the bilinear map
is given as follows.

Definition 7 (Bilinear Map). Suppose that G1, G2 and GT
are three cyclic groups with the same prime order p. Suppose
that g and h are generators of G1 and G2, respectively. A
bilinear map e : G1 ×G2 → GT holds properties as follows:

1) Bilinearity: For any x ∈ G1, y ∈ G2 and a, b ∈ Z∗p,
e(xa, yb) = e(x, y)ab.

2) Non-degeneration: e(g, h) 6= 1GT , where 1GT is the
generator of GT .

3) Computability: There exists an efficient algorithm to
compute e(x, y), for any x ∈ G1 and y ∈ G2.

We say that a pairing is symmetric if G1 = G2. Otherwise,
it is asymmetric. In asymmetric pairing, there are two types
depending on whether there is an isomorphism from G2 to
G1.

The security of our schemes will rely on the following
computational assumptions.

Definition 8 (q-Strong Diffie-Hellman (q-SDH) Assumption).
Given (g1, g

x
1 , g

x2

1 , · · · , gxq1 , g2, g
x
2 ) ∈ Gq+1

1 × G2
2 it is hard

to compute (c, g
1
x+c

1 ) ∈ Zp ×G1.

Definition 9 (Double Pairing (DP) Assumption [19]). Given
(gR, gT ) ∈ G2

1 it is hard to find non-trivial (R, T ) ∈ G2
2

satisfying e(gR, R)e(gT , T ) = 1.

Definition 10 (A Variant of Computational Diffie-Hellman
(VoCDH) Assumption). [29] Given (g, ga, g

1
a , gb) ∈ G4

1 it
is hard to compute gab.

Definition 11 (Extended Discrete-Logarithm (Extended-DL)
Assumption). Given (g1, g

x
1 , g2, g

1
x
2 ) ∈ G2

1 × G2
2 it is hard to

compute x.

The VoCDH assumption is reducible to the extended-DL
assumption. The VoCDH solver sets gx1 = ga, g2 = gc and
g

1
x
2 = g

c
a , where c is chosen from Zp. If the extended-DL

solver can compute x that is equal to the value of a, the
VoCDH solver can compute gab.

Definition 12 (Difference Lemma). Let A, B, F be events
defined in some probability distribution, and suppose that
A ∧ ¬F ⇐⇒ B ∧ ¬F. Then |Pr[A]− Pr[B]| ≤ Pr[F].

Digital Signature. A digital signature scheme consists of four
algorithms (Setup,KeyGen,Sign,Verify).
• Setup(1λ): it takes security parameter λ and outputs

system parameters pp.

• KeyGen(pp): it takes system parameters pp and outputs
public/private key pairs (spk, ssk).

• Sign(ssk,m): it takes private key ssk and message m.
Then, it produces a signature σ = Sigssk(m).

• Verify(spk,m, σ): it takes the public key spk, message
m and a signature σ and returns 1 for accept, 0 for
reject.

IV. OUR PROPOSED POR PROTOCOL

Our PoR protocol follows the linear homomorphic authen-
ticator structure used by the previous constructions. However,
one challenging issue we need to address is to embed the
timestamp in the authenticator such that it can prevent unau-
thorized modification of the timestamp while maintaining the
aggregation property.

Our PoS protocol under PoR model Ω = (Setup,KeyGen,
TagGen,GenProof,VerifyProof) consists of five algorithms
which are as follows:

Setup(1λ). It takes the security parameter λ and outputs the
public parameters including bilinear groups (G1,G2,GT ) with
prime order p and bilinear map e : G1 × G2 → GT . It sets
g1 ∈ G1, g2 ∈ G2 as generators of G1 and G2, respec-
tively. It chooses collision-resistant hash functions (CRHFs)
H : {0, 1}∗ → G1 and H0 : {0, 1}∗ → Zp. It also chooses
an existentially unforgeable signature scheme Sig. Then it
publishes the public parameters

pp = (G1,G2,GT , e, p, g1, g2, H,H0,Sig).

KeyGen(1λ, pp). It takes the security parameter λ and public
parameters pp. Then it outputs a pair of public/private key
pk = (U, spk), sk = (α, ssk), where U = gα2 . (spk, ssk) is
the key pair of the signature scheme.

TagGen(F, t, sk). It takes the file F with timestamp t to be
stored in the cloud and client’s sk, and outputs the encoded file
and timestamp (F ∗, t̂), where t̂ = H0(t, Sigssk(t)). Then, it
breaks F ∗ into blocks, where mi denotes the i-th block of F ∗.
Each block contains s sectors that mij denotes the j-th sector
of i-th block . It chooses a random file name fname from
a sufficiently large domain and chooses s random elements
u1, u2, · · · , us ∈R Gs1. Then compute the file tag denoted as
τ = τ0||Sigssk(τ0), where τ0 = fname||n||u1|| · · · ||us. Also,
it generates σi as the handle to check that the CSP retains the
corresponding block later

σi = (H(fname||i) ·
s∏
j=1

u
mij
j )

1
α+t̂ .

The CSP stores (F ∗, t̂, τ, {σi}).

GenProof(Q, pk, t̂, {mij}, {σi}). The prover receives the c-
element set {θi, νi} to be challenged, denoted as Q, where
θi ∈R I , I is the indices set of blocks in file F ∗ and νi is a
random number in Zp.
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Using the stored information, it computes a proof π =
(ζ, {µj}, R,RI, d). Let N denote

∏c
k=1 νk and Ni denote∏c

k=1,k 6=i νk.

R = gr2, RI = g
1
r
1 , r ∈R Zp,

d = r + t̂N ,

µj =

c∑
i=1

mθijNi, 1 ≤ j ≤ s,

ζ =

c∏
i=1

σ
1
νi

θi
, 1 ≤ i ≤ c.

VerifyProof(Q, pk, π, τ). The verifier checks the validity of τ
by spk and

e(RI,R) = e(g1, g2).

Then it verifies if

e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µj
j , g2) = e(ζ,

gd2
R
· UN ).

It outputs 1 if the above equations are held. Otherwise, output
0.

A. Verifiability

The correctness of the above verification equation is clear.

e(ζ,
gd2
R
· UN ) = e(

c∏
i=1

σ
1
νi
i , gt̂N2 · gαN2 )

= e(

c∏
i=1

(H(fname||θi)
s∏
j=1

u
mθij
j )

1
νi , gN2 )

= e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µj
j , g2)

Note: There is an attack if the proof is without RI .
Specifically, the CSP randomly chooses d, {µj} and lets

R = gd−12 ·UN and ζ =
∏c
i=1H(fname||θi)Ni

∏s
j=1 u

µj
j . By

this way, CSP can generate a proof (R, d, {µj}, ζ) accepted by
the verification algorithm without the knowledge of the stored
data since

e(ζ,
gd2
R
· UN ) = e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µj
j , g2).

This attack is caused by the CSP who does not need to
prove the knowledge of the discrete logarithm of R. Hence,
we provide RI = g

1
r
1 to prove the knowledge of the discrete

logarithm of R [7].

B. Soundness against CSP

Theorem 1. If the signature scheme in our PoS is existentially
unforgeable and the q-SDH, DP assumptions hold in bilinear
groups, then there is not any PPT adversary against the
soundness of our verification algorithm in the algebraic group
model with a random oracle, that causes VerifyProof to accept
a PoS instance, except that it is computed correctly.

Following the security proof provided by Shacham and Waters
in [27], we define a sequence of games Game 0, Game 1,
Game 2 and Game 3, played between the simulator B and
the adversary A. Before playing games, B initializes the
environment by running Setup.
Game 0. A interacts with B in the originally challenged game
as defined in section II-B.
Game 1. It is the same as Game 0 expect that if A submits a
file tag that is valid but not generated by B. B then declares
failure and aborts. It implies that A can break the underlying
signature scheme.
Game 2. It is the same as Game 1, except that B keeps
a list of its responses to A’s Tag Queries. B observes A’s
responses over prove-verify or in the test made of P ′. If the
adversary makes VerifyProof outputs 1 in any instance but the

aggregated value ζ is not equal to
∏

(θi,νi)∈Q σ
1
νi
i , where Q

is the challenge issued by B, B declares failure and aborts.
Game 3. As in Game 2, the challenger tracks Tag Queries
and observes proof of storage protocol instances. This time, if
in any of these instances the adversary is successful to make
VerifyProof accept but at least one µj is not equal to the
expected

∏
(θi,νi)∈QmθijNi, B declares failure and aborts.

Lemma 1. The difference in success probabilities between
Game 0 and Game 1 is negligible if the signature scheme is
existentially unforgeable.

Proof. If A submits a file tag on a file that is not generated by
B, A successfully breaks the existential unforgeability of the
underlying signature scheme Sig. According to the difference
lemma, we have that |AdvGame0

A −AdvGame1
A | ≤ εSig.

Lemma 2. The difference in success probabilities between
Game 1 and Game 2 is negligible, if the q-SDH assumption
holds in bilinear groups.

Proof. The proof of lemma 2 is given in APPENDIX A.

Lemma 3. The difference in success probabilities between
Game 2 and Game 3 is negligible, if the DP assumption holds
in bilinear groups.

Proof. The proof of lemma 3 is given in APPENDIX B.

Wrapping up. From lemma 1, lemma 2 and lemma 3, by
adopting difference lemma, assuming the signature scheme is
secure and the q-SDH and the DP assumptions hold in bilinear
groups, there is only a negligible difference in the success
probabilities between Game 3 and Game 0. This completes
the proof of theorem 1.

C. Extractability

The extractability holds in our PoS under PoR model. It is to
prove that the extraction procedure can efficiently reconstruct
a ρ fraction of the outsourced data when interacting with a
prover that provides correctly-computed {µj} responses for a
non-negligible fraction of the query space. The above proofs
guarantee that all adversaries that win the soundness game
with non-negligible probability output cheating provers that
are well-behaved. We say that a cheating prover is well-
behaved if it never causes verification algorithm to accept in
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a prove-verify protocol instance except that is computed cor-
rectly. The proof of the extractability of {µj} over polynomial
time queries is following the proof of Theorem 4.3 in [27].

D. Retrievability

To retrieve the checking file, the verifier follows the method
used in SW PoR [27]. Let n be the number of blocks in the
file. Suppose we use a ρ-rate erasure code, i.e., one in which
any ρ-fraction of the blocks success for decoding. Our proofs
guarantee that extraction will succeed from any adversary that
convincingly answers an κ-fraction of queries, provided that
κ− ρl− 1/#{ν} is non-negligible in λ. It is this requirement
that guides the choice of parameters. A conservative choice is
ρ = 1/2, l = λ and #{ν} = 2λ. This guarantees extraction
against any adversary. For applications that can tolerate a
larger error rate these parameters can be reduced.

Erasure codes provide the property [1] that the verifier is
able to recover the entire file with ρ fraction. Before storing
it on the server, we would therefore like to encode an n-
block file into a 2n-block file or more when ρ is less than
1
2 . The traditional Reed-Solomon style erasure codes can be
constructed for arbitrary rates allowing recovery of the original
file [26].

V. OUR PROPOSED PROTOCOL WITH TPA

In some scenarios, the cloud clients may employ a third
party to do the audit on behalf of them in order to relieve the
burden of doing periodical integrity checking. Meanwhile, the
third party should be blind to what it is checking. Therefore,
proof of retrievability is not suitable in this scenario. To satisfy
the aforementioned requirement, we propose another PoS
protocol without retrievability. Our PoS protocol under PDP
model Ω = (Setup,KeyGen, TagGen,GenProof,VerifyProof)
consists of five algorithms. The Setup and KeyGen are the
same as defined before in section IV.

TagGen(F, t, sk). It takes the file F with timestamp t to be
stored in the cloud and client’s sk, and outputs the encoded
file and timestamp (F ∗, t̂), where t̂ = H0(t, Sigssk(t)). Then,
it breaks F ∗ into blocks, where mi denotes the i-th block
of F ∗. Each block contains s sectors that mij denotes the
j-th sector of the i-th block. For simplicity, in this scheme
we assume s = 1. We then compute the file tag and block
handles as follows. It chooses a random file name fname
from a sufficiently large domain and chooses a random element
u ∈R G1. Then compute the tag denoted as τ = τ0||Sigssk(τ0),
where τ0 = fname||n||u. Also, it computes σi as the handle
for mi as follows

σi = (H(fname||i) · umi)
1
α+t̂ .

The CSP stores (F ∗, t̂, τ, {σi}).

GenProof(Q, pk, t̂, {mi}, {σi}). The prover receives the c-
element set {θi, νi} to be challenged, denoted as Q, where
θi ∈R I , where I is the indices set of blocks in file F ∗ and
νi is the prime chosen randomly in Zp. It computes a proof

π = (ζ,A,AI, µ,R,RI, d). Let N denote
∏c
k=1 νk and Ni

denote
∏c
k=1,k 6=i νk.

A = ga2 , AI = g
1
a
1 , a ∈R Zp,

µ = a+

c∑
i=1

mθiNi,

R = gr2, RI = g
1
r
1 , r ∈R Zp,

d = r + t̂N ,

ζ =

c∏
i=1

σ
1
νi

θi
, 1 ≤ i ≤ c.

VerifyProof(Q, pk, π, τ). The verifier checks the validity of τ
by spk and verifies if

e(AI,A) = e(g1, g2) ∧ e(RI,R) = e(g1, g2).

Then it verifies whether

e(

c∏
i=1

H(fname||θi)Niuµ, g2) = PA · e(ζ, g
d
2

R
· UN )

when PA = e(u,A). It outputs 1 if the above equations are
held. Otherwise, output 0.

The correctness of the above verification equation is clear.

PA · e(ζ, g
d
2

R
· UN ) = e(

c∏
i=1

σ
1
νi

θi
, gt̂N2 · gαN2 )

= e(ua ·
c∏
i=1

umθiNi , g2)·

e(

c∏
i=1

H(fname||θi)Ni , g2)

= e(

c∏
i=1

H(fname||θi)Niuµ, g2)

A. Soundness against CSP

We prove that the CSP is unable to generate a valid response
to the TPA without storing the file and timestamp as it should
be.

Theorem 2. If the signature scheme in our protocol is exis-
tentially unforgeable and the q-SDH, DP assumption hold in
bilinear groups, then, there is not any PPT adversary against
the soundness of our verification algorithm in the algebraic
group model with a random oracle, that causes VerifyProof
to accept a PoS instance, except that it is computed correctly.

The proof of theorem 2 is given in APPENDIX C.

B. Content/Time Privacy against TPA

Theorem 3. There is not any adversary against the con-
tent/time privacy in our PDP protocol if the extended-DL
problem is intractable and the signature scheme Sig is secure.

The proof of theorem 3 is given in APPENDIX D.
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VI. PERFORMANCE

A. Theoretical Comparison
We summarize the computation cost of our protocols in

Table II, which also shows a comparison among our protocols,
Wang et al. scheme [30] and the SW PoR scheme [27] over
efficiency and functionality.
Computation.

The bilinear pairings P , exponentiation E 1 and multiplica-
tion M1 on G1, and exponentiation E2 and multiplication M2

on G2 contribute most computation cost. The other operations
are much faster, such as hash function and the operations on
finite fields.

Thus, we only consider bilinear pairings on bilinear groups,
exponentiation, and multiplication on G1 and G2.

In audit phase of our PoR protocol, to generate a response
on a challenge given by verifier, GenProof needs c+ 1 expo-
nentiation and c−1 multiplication on G1, and 1 exponentiation
on G2, respectively. VerifyProof needs c + s exponentiation
and c + s − 2 multiplication on G1, 1 exponentiation and
1 multiplication on G2, and 3 bilinear pairings on bilinear
groups. In audit phase of our PDP protocol, GenProof needs
c + 2 exponentiation and c − 1 multiplication on G1, and 2
exponentiation on G2, respectively. VerifyProof needs c + 1
exponentiation and c + 1 multiplication on G1, 2 exponenti-
ation and 2 multiplication on G2, and 5 bilinear pairings on
bilinear groups.
Communication. In PoR, we use the aggregated tags as
the response in our protocol, such that CSP returns π =
(ζ, {µj}, d, R,RI). The communication cost is of bit length
|G2|+ 2 ∗ |G1|+ (s+ 1) ∗ |Zp|. We adopted the type f elliptic
curve to generate our system. The group element in G1 is of
160-bit and the group element in G2 is of 320-bit. Zp contains
elements of 160-bit. In our experiments, we set the number of
sector s in each block as 128. Thus the communication cost of
the response is of bit length 21280 = 320+2∗160+160∗129
for the PoR protocol. In PDP, the communication cost of the
response is of bit length 2 ∗ |G2| + 3 ∗ |G1| + 2 ∗ |Zp| when
s is set to 1. Thus the communication cost of the response is
of bit length 1440 = 2 ∗ 320 + 3 ∗ 160 + 2 ∗ 160.
Storage. In both PoR and PDP, for each file CSP stores the
file tag τ and handles {σi}n1 for the data blocks, making the
storage overhead to be roughly (n + s) ∗ |G1|. During the
experiments, we used files containing 500 blocks, 1000 blocks
and 5000 blocks, which gives the storage overhead of 12KB,
22KB and 100KB, respectively.

B. Experimental Result
We implement the prototype of our protocol and evaluate the

time cost in audit phase. The implementation was conducted
on a notebook with 2.7 GHz Intel Core i5 processor and 8
GB 1867 MHz DDR3 RAM. We use Java 1.8 and JPBC to
implement the cryptographic algorithm. The implementation
is done using type f elliptic curve. For more details about the
curve, please refer to [5]. For 80-bits security, only 160 bits
are needed to represent elements of G1, and 320 bits for G2.

In our experiments, we evaluated the performance of our
protocols in audit phase by setting the number of the sampling

blocks from 0 to 500. As expected, the computation time
grows linearly as the verifier requests more sampling blocks.
The comparisons between our protocols, the SW PoR [27] and
the privacy-preserving PDP of Wang et al. [30] are given in
fig. 4 and fig. 5.
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Fig. 4: Time Cost of GenProof
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Fig. 5: Time Cost of VerifyProof

Detection Rate. Assume the CSP hosts a n-block file, out of
which x blocks are corrupted. The verifier checks the integrity
of the entire file containing n blocks by randomly sampling
c different blocks. In the experiment, we show detection
probabilities for 1%, 5%, 10% and 20% corruption rates,
respectively. Let Px denote the detection rate

Px = 1− (n− x)(n− 1− x) · · · (n− c+ 1− x)

n(n− 1) · · · (n− c+ 1)
.

When the corruption rate is of 1%, generating a proof with 400
blocks from a file with 500 blocks can detect such corruption
with 99.9% probability. The probability will be declined to
99.4% when such file contains 5000 blocks.

When the corruption rate is of 5%, generating a proof with
380 blocks from a 500-block file provides the detection rate
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TABLE I: COMPARISON OF COMPUTATION AND PROPERTIES

Scheme GenProof VerifyProof Retrievable Privacy-Preserving Timestamp
[27] cE1 + (c+ 1)M1 2P + (c+ s)E1 + (c+ s− 1)M1

√
N/A ×

[30] P + cE1 + (c− 1)M1 2P + (c+ 3)E1 + (c+ 1)M1 ×
√

×
Our PoR (c+ 1)E1 + (c− 1)M1 + E2 3P + (c+ s)E1 + (c+ s− 2)M1 + 2E2 + 2M2

√
N/A

√

Our PDP (c+ 2)E1 + (c− 1)M1 + 2E2 5P + (c+ 1)E1 + (c+ 1)M1 + 2E2 + 2M2 ×
√ √

close to 1. When the file contains 1000 blocks, the detection
rate of sampling 100 blocks is close to 99.4%. When sampling
80 blocks from a 5000-block file, the detection rate is 98.4%.

When the corruption rate is of 10%, to achieve the detection
rate close to 1, the proof should contain 260 blocks, 300 blocks
and 360 blocks on the 500-block file, 1000-block file and
5000-block file, respectively.

When the corruption rate is of 20%, to achieve the detection
rate close to 1, the proof should contain 140 blocks, 160 blocks
and 180 blocks on the 500-block file, 1000-block file and
5000-block file, respectively.
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Fig. 6: Detection Rate on 500-block File
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Fig. 7: Detection Rate on 1000-block File
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Fig. 8: Detection Rate on 5000-block File

VII. CONCLUSION

In this paper, we introduced a new Proof of Storage
paradigm that supports the pay-as-you-go business model. We
proposed two protocols, one allows data retrievability by the
owner while the other supports public auditing by a third party
auditor. Both protocols allow a verifier to check the integrity of

the data content and the associated timestamp simultaneously.
We proved that the two protocols are both sound and the
protocol supporting third party auditing is privacy-preserving
with regards to the data content and the timestamp. The
performance analysis and experiment also demonstrate that
our proposed protocols are efficient and practical.
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APPENDIX A
PROOF OF LEMMA 2

Before analyzing the difference in success probabilities
between Game 1 and Game 2, we clarify some notation in
order to present a summary. Supposed that A provides a proof

π′ = (ζ ′, {µ′j}, d, R,RI) of which ζ ′ 6= ζ =
∏

(θi,νi)∈Q σ
1
νi

θi
that {(θi, νi)} are the challenge with c elements. By the
correctness of the verification, we gain an equation that

e(ζ ′,
gd2
R
· UN ) = e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µ′j
j , g2),

where N denotes
∏c
k=1 νk and Ni denotes

∏c
k=1,k 6=i νk.

We show the security of our protocol can be reduced to
the q-SDH problem in the AGM with random oracle. In the

AGM, a forgery comes with a representation in the basis of
all responses to queries.

Proof. We show that if there is a non-negligible difference in
success probabilities between Game 1 and Game 2, we can
construct a simulator B that can solve the q-SDH problem
with non-negligible probability.
B is given a q-SDH problem instance (g1, g

x
1 , g

x2

1 ,
· · · , gxq1 , g2, g

x
2 ) ∈ Gq+1

1 × G2
2. Its goal is to compute

(c, g
1
x+c

1 ) ∈ Zp×G1. There is an algebraic adversary A plays
the game with B when A is allowed to query hash values and
group elements via oracles. B plays a trick on H(·) to ensure
that it can respond tag queries from adversary A successfully.

Setup. B sets g1, g2 as generators of G1 and G2. It sets U =
gx2 , then sends the public key to A.

Tag query. A is allowed to query for q1, · · · , qm. For each
query qi, it runs as follows.
A sends a file F with the timestamp t as the input. B

receives (F, t) and separates the encoded file F ∗ into n blocks.
Then, for each block, it separates the block into s sectors,
that the mij denotes the j-th sector of the block mi. It sets
uj = g

γj
1 (1 ≤ j ≤ s, γj ∈ Zp) and randomly chooses ri ∈ Zp

to compute the hash value for i-th block

H(fname||i) =
g
ri(f(x)+f(t̂))
1

g
∑s
j=1 γjmij

1

.

Here f(·) is a q-degree polynomial. fname is a random string
to identify files. When choosing a fname for a given file, it
must be queried for the first time.
B gains the hash value of each block, then computes the

corresponding tag and handles. For each block mi, B computes

σi = (H(fname||i)
s∏
j=1

u
mij
j )

1
x+t̂ = g

riF (x)
1 ,

where F (x) = f(x)+f(t̂)

x+t̂
is a (q-1)-degree polynomial.

Proof-Verify. B interacts with A, if A submits a proof
π′ = (ζ ′, {µ′j}, d, R,RI) which is accepted by the verification
algorithm that is different from the expected proof. B declares
failure and aborts.

Game 1 guarantees that the parameters associated with this
protocol instance (fname, n, {uj}, {mij}, {σi}) is generated
by B; otherwise, execution would have already aborted. A gets
the group elements for a response

R = gr2g
xl
2 ∧RI = g

1
r+xl

1 ,

ζ ′ =
∏qG
k=0 g

xkrk
1

∏qh
p=0H

ap
p
∏qt
e=0 σ

be
e

where qh, qG and qt are the number of responses that A gains
from the hash oracle, group oracle and tags. Let Hp denote
the p-th response from the hash oracle. r, l, {ap} and {be}
compose representations of R,RI and ζ ′. If l 6= 0, (r/l, RI

1
l )

is the answer to the q-SDH problem. Otherwise, as we argued
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before, by the correctness of the verification, any response of
A satisfies the equation that

e(ζ ′,
gd2
R
· UN ) = e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µ′j
j , g2)

= e(

c∏
i=1

g
Nirθi (f(x)+f(t̂))
1

g
Ni

∑s
j=1 γjmθij

1

s∏
j=1

u
µ′j
j , g2).

Therefore, we obtain that

e(ζ ′N , g2)

= e(g

∑c
i=1 Nirθi (f(x)+f(t̂))+

∑s
j=1 γj(µ

′
j−

∑c
i=1 Nimθij)

x+ d−rN
1 , g2).

Let
∑s
j=1 γj(µ

′
j −

∑c
i=1Nimθij) be A.

ζ ′N = g

∑c
i=1 Nirθi (f(x)+f(t̂))+A

x+ d−rN
1

= g

∑c
i=1NirθiF (x)+

∑c
i=1 Nirθi (f(t̂)−f(

d−r
N )+A

x+ d−rN
1 .

It is concluded that

g

1

x+ d−rN
1 =

(
ζ ′N

g
∑c
i=1NirθiF (x)

1

) 1∑c
i=1
Nirθi (f(t̂)−f(

d−r
N )+A

.

Therefore, B obtains the answer to the given q-SDH problem
that

(
d− r
N

, (
ζ ′N

g
∑c
i=1NirθiF (x)

1

)

1∑c
i=1
Nirθi (f(t̂)−f(

d−r
N )+A

).

Let E2 denote the event that the adversary queries a proof
on the file which ζ ′ 6= ζ. Hence, we have that |AdvGame2

A −
AdvGame1

A | ≤ Pr[E2] = εq−SDH.

APPENDIX B
PROOF OF LEMMA 3

Game 2 guarantees that we have ζ ′ is equal to the expected
result ζ. The only difference in success probabilities is caused
by {µ′j}. A submits a proof π′ = (ζ, {µ′j}, d, R,RI) which is
accepted by the verification algorithm. By the correctness of
the verification algorithm, the equation is as follows

e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µ′j
j , g2) = e(ζ ′,

gd2
R
· UN ),

where N denotes
∏c
k=1 νk and Ni denotes

∏c
k=1,k 6=i νk.

{(θi, νi)} are the challenge with c elements from the verifier.
We prove the difference in success probabilities between

Game 2 and Game 3 is negligible if the DP assumption holds
in bilinear groups.

Proof. B is given a DP problem instance (gr, gt) ∈ G2
1. Its

goal is to find (R, T ) that e(gr, R)e(gt, T ) = 1 The only
difference between Game 2 and Game 3 is to replace g1 with
gr and uj with g

γj
r g

ιj
t . It randomly chooses x ∈ Zp as the

part of private key and U = gx2 as a part of the public key.

Then, it sends U to A. By the correctness of our verification
algorithm, B obtains that

e(ζ,
gd2
R
· UN ) = e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µ′j
j , g2).

It follows that

1 =e(

c∏
i=1

H(fname||θi)Ni
s∏
j=1

u
µ′j
j , g2)

e(ζ−1,
gd2
R
· UN )

=e(g
∑c
i=1Nirθi−

∑s
j=1 γj(

∑c
i=1mθij−µ

′
j)

r , g2)

e(g
∑s
j=1 ιj(

∑c
i=1mθij−µ

′
j)

t , g2)

e(g
−

∑c
i=1

rθi
νi(x+t̂)

r ,
gd2
R
· UN )

=e(gt, g
∑s
j=1 ιj(

∑c
i=1mθij−µ

′
j)

2 )

e(gr, (
gd2
R
· UN )

−
∑c
i=1

rθi
νi(x+t̂) )

e(gr, g
∑c
i=1Nirθi−

∑s
j=1 γj(

∑c
i=1mθij−µ

′
j)

2 ).

Let

R1 = (
gd2
R
· UN )

−
∑c
i=1

rθi
νi(x+t̂) ,

R2 = g
∑c
i=1Nirθi−

∑s
j=1 γj(

∑c
i=1mθij−µ

′
j)

2 ,

hence, the answer to the given DP problem instance is

(R1 ·R2, g
∑s
j=1 ιj(

∑c
i=1mθij−µ

′
j)

2 ).

Let E3 denote the event that the adversary queries a proof
on the file which at least one µ′j 6= µj . Hence, we have that
|AdvGame3

A −AdvGame2
A | ≤ Pr[E3] = εdp.

APPENDIX C
SOUNDNESS AGAINST CSP

We define Game 0, Game 1 and Game 2 played between the
simulator B and the adversary A to prove that our PoS under
PDP model is sound against malicious CSP. Before playing
games, B initial the environment by running Setup.
Game 0. A interacts with B in the challenged game as defined
in the soundness game.
Game 1. It is the same as Game 0 expect that If A submits a
file tag that is valid but not generated by B, B declares failure
and aborts.

The difference in success probabilities between Game 0 and
Game 1 is negligible if the signature scheme is existentially
unforgeable.
Game 2. It is the same as Game 1, except that if A makes
VerifyProof outputs 1 in any proof instance but the aggregated

value ζ ′ is not equal to
∏

(θi,νi)∈Q σ
1
νi

θi
, where Q is the

challenge issued by B, B declares failure and aborts.
Game 3. As in Game 2, the challenger tracks Tag Queries
and observes proof of storage protocol instances. This time, if
in any of these instances the adversary is successful to make



12

VerifyProof accept but at least one µ is not generated honestly,
B declares failure and aborts.

Lemma 4. The difference in success probabilities between
Game 1 and Game 2 is negligible, if the q-SDH assumption
holds in bilinear groups in AGM with a random oracle.

Proof. Supposed that A provides a proof π′ = (ζ ′, A,AI,

µ,R,RI, d) of which ζ ′ 6=
∏

(θi,νi)∈Q σ
1
νi

θi
. By the correctness

of the verification, we have the following equations

e(AI,A) = e(g1, g2) ∧ e(RI,R) = e(g1, g2)∧

e(u,A) · e(ζ ′, g
d
2

R
· UN ) = e(

c∏
i=1

H(fname||θi)Niuµ, g2),

where N denotes
∏c
k=1 νk and Ni denotes

∏c
k=1,k 6=i νk.

{(θi, νi)} are the challenge with c elements from the verifier.
We show that if there is a non-negligible difference in

success probabilities between Game 1 and Game 2, we can
construct a simulator B that can solve the q-SDH problem
with non-negligible probability.
B is given a q-SDH problem instance (g1, g

x
1 , g

x2

1 , · · · ,
gx

q

1 , g2, g
x
2 ). Its goal is to compute (c, g

1
x+c

1 ) ∈ Zp × G1.
An algebraic adversary A plays the game with B when A is
allowed to query hash values and group elements via oracles.
B plays a trick on H(·) to ensure that it can respond tag queries
from adversary A successfully.

Setup. B sets g1, g2 as the generators in this game and public
key U = gx2 . Then it returns the public key to A.
Tag query. A is allowed to query for q1, · · · , qm. For each
query qi, it runs as follows.
A sends the file with the timestamp (F, t) as the input. B
receives (F, t) and separates the encoded file F ∗ into n blocks.
Then, for each block mi, it randomly chooses ri ∈ Zp to
computes the hash value for the i-th block

H(fname||i) =
g
ri(f(x)+f(t̂))
1

gγmi1

.

where u = gγ1 , γ ∈ Zp, f(·) is a q-degree polynomial. fname
is a random string to identify a file.
B gains the hash value of each block, then computes the

corresponding tag and handles. For each block mi, B computes

σi = (H(fname||i)umi)
1
x+t̂ = g

riF (x)
1 ,

where F (x) = f(x)+f(t̂)

x+t̂
is a (q-1)-degree polynomial.

Proof-Verify. Game 1 guarantees that the parameters asso-
ciated with this protocol instance (fname, n, u,mi, {σi}) is
generated by B; otherwise, execution would have already
aborted. A responds a proof that,

A = ga2g
xl1
2 , AI = g

1
a+xl1
1 ,

R = gr2g
xl2
2 , RI = g

1
r+xl2
1 ,

ζ ′ =

qG∏
k=0

gx
krk

1

qh∏
p=0

Hap
p

qt∏
e=0

σbee .

qh, qG and qt are the number of responses that A gains from
the hash oracle, group oracle and tag query. Let Hp denote
the p-th response from the hash oracle. a, l1, r, l2, {ap} and
{be} compose representations of A,AI,R,RI and ζ ′. Either
l1 or l2 is not equal to 0, (a/l1, AI

1
l1 ) or (r/l2, RI

1
l2 ) is an

answers to the given q-SDH problem instance. Otherwise, as
we argued before, by the correctness of the verification, any
response of A satisfy the equation that

e(u,A) · e(ζ ′, g
d
2

R
· UN ) = e(

c∏
i=1

H(fname||θi)Niuµ, g2).

Then B is able to compute

e(ζ ′, gd−r+xN2 )

= e(g
∑c
i=1Ni(rθi (f(x)+f(t̂))−γmθi )+γ(µ

′−a)
1 , g2).

Hence, the equation shows that e(ζ ′N , g2) is equal to

e(g

∑c
i=1 Ni(rθi (f(x)+f(t̂))−γmθi )+γ(µ

′−a)
x+(d−r)/N

1 , g2).

Let γ(µ′ − a
∑c
i=1Nimθi) be A.

ζ ′N = g

∑c
i=1 Nirθi (f(x)+f(t̂))+A

x+ d−rN
1

= g

∑c
i=1 Nirθi (f(x)+f(

d−r
N ))+

∑c
i=1 Nirθi (f(t̂)−f(

d−r
N ))+A

x+ d−rN
1

= g

∑c
i=1NirθiF (x)+

∑c
i=1 Nirθi (f(t̂)−f(

d−r
N ))+A

x+ d−rN
1 .

Hence, we obtain that

g

1

x+ d−rN
1 = (

ζ ′N

g
∑c
i=1NirθiF (x)

1

)

1∑c
i=1
Nirθi (f(t̂)−f(

d−r
N ))+A

.

Therefore, B obtains the answer to the given q-SDH problem

(
d− r
N

, (
ζ ′N

g
∑c
i=1NirθiF (x)

1

)

1∑c
i=1
Nirθi (f(t̂)−f(

d−r
N ))+A

).

Hence, we have that |AdvGame2
A −AdvGame1

A | ≤ εq−SDH.

Lemma 5. The difference in success probabilities between
Game 2 and Game 3 is negligible, if the DP assumption holds
in bilinear groups.

Game 2 guarantees that we have ζ ′ is equal to the expected
result ζ. The only difference in success probabilities is caused
by µ′. A submits a proof π′ = (ζ, µ′, d, R,RI) which is
accepted by the verification algorithm. By the verification
equation

e(u,A) · e(ζ, g
d
2

R
· UN ) = e(

c∏
i=1

H(fname||θi)Niuµ
′
, g2),

we can obtain an equation that is

1 = e(ζ−1,
gd2
R
· UN )e(

c∏
i=1

H(fname||θi)Ni , g2)e(u,
gµ
′

2

A
).

The proof for lemma 5 is similar to the proof for lemma 3.
Hence, we have that |AdvGame3

A − AdvGame2
A | ≤ Pr[E3] =

εdp.
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APPENDIX D
CONTENT/TIME PRIVACY AGAINST TPA

Proof. We prove that the TPA cannot learn any information
of the content or timestamp from the CSP’s response.

In our proof, we show that there does not exist any PPT
adversary who can recovery the content or timestamp if
the signature scheme Sig is secure and the extended-DL
assumption holds.

Let ψ : G2 → G1 denote an isomorphism. The aggregated
value of the content

∑i=1
c Nimθi is represented as M , where

Ni denotes
∏c
k=1,k 6=i νk. {(θi, νi)} are the challenge with c

elements from the verifier.
Case 1. A has the knowledge of timestamp t̂′. We prove that
our protocol will not reveal the content under the extended-DL
assumption.

In this case, we show the simulator can produce a valid
response even without the knowledge of the content in random
oracle model. Now, A is treated as a verifier. Given a challenge
from A, S sets that A = gzx2 and AI = g

1
zx
1 , z ∈ Zp. Then,

it randomly picks µ, r from Zp. d is computed with t̂ and
r that d = r + N t̂. It sets u = gru1 and U = gxsk2 , where
ru, xsk ∈ Zp. S sets the value of ζ via the correctness equation

e(u,A) · e(ζ, gd−r+xskN2 ) = e(

c∏
i=1

H(fname||θi)Niuµ, g2)

which gives

e(ζ, gd−r+xskN2 ) = e(

c∏
i=1

H(fname||θi)Niuµψ(A)−ru , g2)

where N =
∏c
k=1 νk.

Hence, ζ = (
∏c
i=1H(fname||θi)Niuµψ(A)−ru)

1
d−r+xskN .

Therefore, if A can recover the content, S can compute
x = µ−M

z in this condition.
Case 2. A has the knowledge of the content. We prove that
the protocol will not reveal the timestamp due to the security
of the signature scheme Sig.

In this case, we prove that the TPA cannot recover the
timestamp with the probability more than 1

#T +εSig. We prove
the time privacy via the following games.
Game 0. The game is the challenged game.
Game 1. The difference between Game 1 and Game 0 is that if
A sends any hash query to H0 where the hash input Sigssk(t)
is not generated by S before, the game will be terminated. It
means A can break the unforgeability of the signature scheme
Sig. Thus, |Pr[Game 1]− Pr[Game 0]| = εSig.
Game 2. S choose t̂ from Zp. The probability is the same
for Game 1 and Game 2 (when H0 is modeled as a random
oracle). The probability of adversary in Game 2 is 1

#T since
the simulation is not related to the timestamp t, so the chance
the adversary can obtain t is 1

#T . The probability overall is
no more than 1

#T + εSig. This completes the proof.
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