
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2021

Proxy-free privacy-preserving task matching with efficient Proxy-free privacy-preserving task matching with efficient

revocation in crowdsourcing revocation in crowdsourcing

Jiangang SHU

Kan YANG

Xiaohua JIA

Ximeng LIU

Cong WANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
SHU, Jiangang; YANG, Kan; JIA, Xiaohua; LIU, Ximeng; WANG, Cong; and DENG, Robert H.. Proxy-free
privacy-preserving task matching with efficient revocation in crowdsourcing. (2021). IEEE Transactions on
Dependable and Secure Computing. 18, (1), 117-130.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6587

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6587&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6587&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Jiangang SHU, Kan YANG, Xiaohua JIA, Ximeng LIU, Cong WANG, and Robert H. DENG

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6587

https://ink.library.smu.edu.sg/sis_research/6587

Proxy-Free Privacy-Preserving Task Matching
with Efficient Revocation in Crowdsourcing

Jiangang Shu , Graduate Student Member, IEEE, Kan Yang,Member, IEEE, Xiaohua Jia , Fellow, IEEE,

Ximeng Liu ,Member, IEEE, Cong Wang ,Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract—Task matching in crowdsourcing has been extensively explored with the increasing popularity of crowdsourcing. However,

privacy of tasks and workers is usually ignored in most of exiting solutions. In this paper, we study the problem of privacy-preserving

task matching for crowdsourcing with multiple requesters and multiple workers. Instead of utilizing proxy re-encryption, we propose a

proxy-free task matching scheme for multi-requester/multi-worker crowdsourcing, which achieves task-worker matching over

encrypted data with scalability and non-interaction. We further design two different mechanisms for worker revocation including Server-

Local Revocation (SLR) and Global Revocation (GR), which realize efficient worker revocation with minimal overhead on the whole

system. The proposed scheme is provably secure in the random oracle model under the Decisional q-Combined Bilinear Diffie-Hellman

(q-DCDBH) assumption. Comprehensive theoretical analysis and detailed simulation results show that the proposed scheme

outperforms the state-of-the-art work.

Index Terms—Crowdsourcing, multi-requester/multi-worker, task matching, privacy, proxy-free, revocation

Ç

1 INTRODUCTION

CROWDSOURCING [1] is a distributed paradigm that col-
lets human knowledge and intelligence of crowds to

solve complex and burdensome tasks. With the rapid rise of
crowdsourcing over the past decade since this term was
coined, many individuals, organizations and business have
implemented this concept into their work. Meanwhile,
many crowdsourcing platforms have been established all
over the world, such as MTurk1 in America, Zhubajie2 in
China, and Kaggle3 in Australia. With utilizing the crowd-
sourcing service in such a platform (crowd-server), requesters
can publish their tasks with rewards to the platforms and
workers can complete these tasks to earn money.

Task retrieval, as an indispensable service for crowd-
sourcing platforms, enables the workers to select the tasks
of their interests from a vast number of tasks quickly and
effectively. During the task retrieval, the crowd-server
needs to match the queries given by the workers with the

task requirements specified by the requesters. The task
requirements and queries usually contain the private
information of requesters and workers, such as geo-
graphic locations, professions and interests. These private
information is usually sensitive and can be used to iden-
tify an individual or infer his/her daily activity. For
example, if a driver Bob accepts a ride-task: picking up a
rider Helena at a particular location X at time Y, it reveals
that both Bob and Helena will be at location X at time Y.
Since the crowd-server is not fully trusted, it may extract
the private information from the requirements and
queries, and sell it to the for-profit organizations. There-
fore, it is important to protect both task privacy and
worker privacy against the crowd-server during the task-
worker matching.

To protect the privacy, both task requirements and
queries may have to be encrypted before outsourcing to the
crowd-server. To enable the crowd-server match over the
encrypted data from different requesters andworkers, a sim-
ple solution is that all the requesters and workers share the
same secret key for encryption. However, user accountability
cannot be achieved in a provable manner. Moreover, every
user revocation4 would require the renewal of secret key and
the update of encrypted data. Therefore, this solution is not
feasible for the crowdsourcing systemwhere there aremulti-
ple requesters and a large number of unknownworkers, and
requesters andworkers are free to join and leave. An alterna-
tive way is that every requester encrypts its task require-
ments with a distinct key, and shares its key to all the
workers. In order to match multiple encrypted requirements

1. https://www.mturk.com/mturk/welcome
2. http://www.zbj.com/
3. https://www.kaggle.com/

� J. Shu, X. Jia, and C. Wang are with the Department of Computer Science,
City University of Hong Kong, Kowloon Tong, Hong Kong, China.
E-mail: jgshu2-c@my.cityu.edu.hk, {csjia, congwang}@cityu.edu.hk.

� K. Yang is with the Department of Computer Science, University of
Memphis, Memphis, TN 38152 USA. E-mail: kan.yang@memphis.edu.

� X. Liu is with the School of Information Systems, Singapore Management
University, Singapore 188065, and also with the College of Mathematics
and Computer Science, Fuzhou University, Fuzhou, Fujian 350108,
China. E-mail: snbnix@gmail.com.

� R.H. Deng is with the School of Information Systems, SingaporeManagement
University, Singapore 188065. E-mail: robertdeng@smu.edu.sg.

Manuscript received 2 Apr. 2018; revised 22 Sept. 2018; accepted 9 Oct. 2018.
Date of publication 12 Oct. 2018; date of current version 15 Jan. 2021.
(Corresponding author: Xiaohua Jia.)
Digital Object Identifier no. 10.1109/TDSC.2018.2875682

4. If without revocation mechanism, revoked workers may mali-
ciously retrieve and accept a large number of tasks but don’t complete
them, which will affect the system serviceability.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021 117

1545-5971� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-0547-315X
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://www.mturk.com/mturk/welcome
http://www.zbj.com/
https://www.kaggle.com/
mailto:
mailto:
mailto:
mailto:
mailto:

from different requesters, a worker needs to encrypt its
query for each requester with the requester’s key. This will
result in as many copies of encrypted queries as the number
of requesters to be submitted to the crowd-server, which is
also not scalable for crowdsourcing. Therefore, it is a chal-
lenging problem to design a scalable scheme applicable to
themulti-requester/multi-worker crowdsourcing.

Proxy re-encryption might be a promising technique to
deal with the above problem and it has been widely adopted
to realize multi-owner/multi-user searchable encryption
[21], [22]. In the proxy-based solutions, every authenticated
user (owner) is allocated a distinct key pair by an trusted
authority, including a secret key sent to the user (owner)
and a corresponding re-key stored on the server. Ciphertexts
and trapdoors, which are generated by the owners and users
using the secret keys, need to be re-encrypted by the server
using the corresponding re-keys before the mutual match-
ing. Once the server is compromised by malicious adversar-
ies, resulting the leakage of re-keys, the master secret key
can be easily recovered by malicious users, which will break
the security of the whole scheme. Kiayias et al. [27] proposed
a proxy-free5 scheme for multi-user encrypted keyword
search. Since the users’ secret keys are all derived from a
commonmaster secret key, user revocation will incur a huge
communication and computation cost for the re-initializa-
tion of the whole system. Therefore, it is more desirable to
have a proxy-free privacy-preserving task matching scheme
while supporting efficient revocation.

In this paper, we study the problem of task matching for
crowdsourcing with focusing on privacy, and propose a
proxy-free privacy-preserving task matching scheme, called
pMatch, which can achieve the task-worker matching while
protecting both task privacy and worker privacy. We prove
its security in the random oracle model under the Decisional
q-Combined Bilinear Diffie-Hellman (q-DCBDH) assump-
tion. We also implement the pMatch scheme and evaluate
its performance in comparison with the state-of-the-art
proxy-free scheme [27]. Detailed evaluation results show
that pMatch far outperforms [27] in terms of computation,
transmission and storage costs. The main contributions of
this paper can be summarized as follows:

� Instead of utilizing proxy re-encryption, we propose
an efficient non-interactive and proxy-free encrypted
matching method which is scalable in the general
multi-owner (requester)/multi-user (worker) model
while removing hidden dangers of the leakage of re-
keys in the proxy-based schemes.

� We design a light-weight Server-Local Revocation
(SLR) mechanism, which achieves the efficient worker
revocation without updating the encrypted data
stored on the crowd-server and the secret keys for
non-revokedworkers.

� We further design a secure Global Revocation (GR)
mechanism to periodically update the system with
minimal overhead, which makes the proposed
pMatch scheme more complete.

The rest of the paper is organized as follows. We present
the related works in comparison with our proposed scheme

in Section 2. Section 3 presents the system model, threat
model, design goals and preliminaries. In Section 4, we
describe the detailed constructions and propose two different
mechanisms for worker revocation including Server-Local
Revocation (SLR) and Global Revocation (GR), followed by
the security analysis in Section 5. The performance evaluation
is shown in Section 6. Finally, we conclude the paper in
Section 7.

2 RELATED WORK

2.1 Task Matching and Privacy in Crowdsourcing

Task matching in crowdsourcing has attracted a lot atten-
tion with the rise of crowdsourcing [1]. A variety of task
matching works were put forward based on different
worker models, such as worker skill and interest [2], worker
performance and search history [3], or worker social profile
[4]. In the meantime, security and privacy issues in crowd-
sourcing were also investigated by [5], [6], [7], [8], including
worker privacy, participant authentication, data trustiness.
Among them, worker location privacy in the task assign-
ment was first considered and addressed in spatial crowd-
sourcing with utilizing differential privacy [9] or additive
homomorphic encryption [10]. Considering the worker con-
text privacy in mobile crowdsourcing, Gong et al. [11] pro-
posed a flexible framework to optimize the tradeoffs among
privacy, efficiency and utility with relying on a trusted
proxy and utilizing differential privacy. As a matter of fact,
worker privacy cannot be fully protected if ignoring task
privacy, as the crowdsourcing platform can infer the work-
ers’ information by combining the information of tasks with
the task-worker matching result. To the best of our knowl-
edge, our prior works [12], [13], [14] were the first ones to
consider both task privacy and worker privacy during the
task matching. They respectively realize the single-keyword
matching, multi-keyword matching and worker anonymity
in the multi-requester/multi-worker crowdsourcing. How-
ever, due to the adopted technique of proxy re-encryption,
they cannot resist the leakage of re-keys.

2.2 Multi-Owner/Multi-User Searchable Encryption

Searchable encryption (SE) can be generally classified into 4
categories: single-owner/single-user (S/S) [15], [16], multi-
owner/single-user (M/S) [17], single-owner/multi-user (S/
M) [18], [19], [20] and multi-owner/multi-user (M/M) [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32]. Since
the crowdsourcing system should allow task publications
from multiple requesters and task retrieval from multiple
workers, single-user SE where the search operation can only
be executed by a single secret key holder, and single-owner
SE where the encrypted data can only be published by a sin-
gle owner, both don’t apply to our problem. Multi-owner/
multi-user searchable encryption (M/M SE) is most similar
to our study. In the M/Mmodel, every authenticated user is
able to search over encrypted data published by all data
owners. However, in consideration of security and feasibil-
ity, all the following M/M SE schemes are not applicable to
crowdsourcing. The differences between our pMatch and
the existingM/MSE schemes are summarized in Table 1.

Dong et al. [21], Bao et al. [22] and Yang et al. [23] pro-
posed M/M SE schemes with utilizing proxy re-encryption.5. Without relying on proxy re-encryption.

118 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

In their schemes, upon receiving a searchable ciphertext (or
trapdoor) from a data owner (or user), the server needs to
re-encrypt it with the corresponding re-key before match-
ing. As mentioned above, they are vulnerable to the leakage
of re-keys. Moreover, the owner-server interaction cost dur-
ing the keyword encryption [22] also makes the proxy-
based solutions not applicable to the task matching for
crowdsourcing. Zhang et al. [24] proposed a multi-keyword
matching scheme in the M/M model. However, indexes
and trapdoors generated by owners and users need to be
transformed by an extra middleware before being out-
sourced to the server, which is infeasible in the real crowd-
sourcing environment.

Popa et al. [25], [26] proposed the concept of Multi-key
Searchable Encryption (MKSE) where users can search over
the documents encrypted with different keys, and imple-
mented amulti-user data sharingplatform calledMylar based
on MKSE. In MKSE, when encrypting a document, a data
owner first authorizes a set of users who have access to this
document, and then generates a re-key for each authorized
user and finally submits the re-keys to the server. Receiving
the trapdoor from a user, the server re-encrypts the trapdoor
with the user’s each re-key to search over different docu-
ments. The computation and transmission costs of re-keys for
each document on the owner side are linear with the number
of authorized users, and the extra compuation cost of trap-
door re-encryption on the server side is linear with number of
the documents that the user has access to, which both make
MKSE not applicable to crowdsourcing.

Besides the above conventional M/M SE schemes, other
cryptographic primitives have also been introduced to the
field of SE, such as Broadcast-Based Keyword Search
(BBKS) [27], Attribute-Based Keyword Search (ABKS) [28],
[29], [30], [31] and Identity-Based Keyword Search (IBKS)
[32]. In these schemes, a user’s search authorization to a file
depends on whether the user’s attributes or identity satisfy
the file’s access policy specified by the data owner. Such an
approach based on owner-enforced search authorization
doesn’t apply to the free-search crowdsourcing scenario.
Moreover, they don’t consider the issue of user revocation
which is especially important in dynamic crowdsourcing.

2.3 Other Cryptographic Primitives

Secure Multi-Party Computation. Secure multi-party compu-
tation (SMC) primitives enable multiple parties to jointly

compute a function over their inputs while keeping those
inputs private, such as set intersection [34], distance com-
parison [35]. Since there is a crowd-server as the broker, the
interactive SMC protocols among multiple parties (as end-
users) cannot be directly applied in crowdsourcing for pri-
vate task matching.

Privacy-Preserving Broker-Based Publish/Subscribe. Many
privacy-preserving publish/subscribe schemes have been
proposed to enable the broker disseminate the contents from
publishers to subscribers according to some matching crite-
ria. Shikfa et al. [36] proposed a broker-based private match-
ing protocol based on searchable encryption, in which,
however, the broker needs to interact with the publisher for
each query. Moreover, this protocol only considers the sin-
gle-subscriber and single-publisher scenario, which will lack
scalability if applied in crowdsourcing with multiple reques-
ters and workers. Choi et al. [37] designed a content-based
publish/subscribe system using scalar product preserving
transformations. Since all the publishers and subscribers
share the same secret key, user revocation cannot be achieved
unless the system re-initializes. Nabeel et al. [38] modified
Paillier encryption to derive a distinct secret key for each pub-
lisher and subscriber, but user revocation was ignored.
Therefore, due to the lack of scalability and user revocation,
the existing privacy-preserving publish/subscribe schemes
cannot be applied in crowdsourcing for taskmatching.

3 MODELS AND PRELIMINARIES

3.1 System Model

In our work, we consider a privacy-preserving task-worker
matching service for crowdsourcing. It consists of a trusted
authority, a crowdsourcing service provider called crowd-
server, multiple requesters and multiple workers, as shown in
Fig. 1. Their roles are defined as follows:

Authority. The authority is mainly responsible for system
initialization and user registration. It outputs a public key to
all the requesters for requirement encryption and assigns a
distinct secret key to each authenticated worker for trapdoor
generation.

Requesters. When publishing a task, a requester first speci-
fies the task requirement as a set of keywords, and then
encrypts the task requirement with the public key while
encrypting the task content. Finally, it publishes the require-
ment ciphertext to the crowd-server, together with the task
content in encrypted form.

TABLE 1
Comparison with Existing M/M SE

Scheme Free Searcha No Re-key Revocation No Middleware Non-interaction

[12], [13], [21] @ � @ @ @
MuED [22], [23] @ � @ @ �
PRMSM [24] @ @ � � @
MKSE [25], [26] � � � @ @
BBKS [27] � @ � @ @
[28] � � @ @ �
[29], [30], [31] � @ � @ @
IBKS [32] � @ � @ @
our pMatch @ @ @ @ @

aDifferent from the owner-forced search authorization, it means that any authenticated user is free to search over all the encrypted data
published by owners.

SHU ET AL.: PROXY-FREE PRIVACY-PRESERVING TASK MATCHINGWITH EFFICIENT REVOCATION IN CROWDSOURCING 119

Workers.When querying the tasks of its interest, a worker
generates the trapdoor on the query with its own secret key
and submits the trapdoor to the crowd-server.

Crowd-Server. The crowd-server is mainly responsible for
the task-worker matching. It acts as a broker to conduct the
matching process between the received trapdoors and the
stored requirement ciphertexts, and send the matched tasks
in ciphertext to the workers according to some scoring crite-
ria (e.g., top-K, threshold).

In the system model, any requester can publish its tasks
to the crowd-server (yet we can deploy an external mecha-
nism to manage requesters, e.g., payment guarantee) while
only authenticated workers are allowed to query the tasks
from the crowd-server. The encryption and decryption of
task content are orthogonal to this paper.

3.2 Threat Model

In the system, we consider a honest-but-curious crowd-server
that honestly executes the designated protocol but may try
to infer the sensitive information from the received require-
ment ciphertexts and trapdoors. Moreover, as the previous
works [13], [21], [22], [23], we assume that the crowd-server
will not collude with the users. In practice, the crowd-server
is usually a large service provider (e.g., Amazon, Google,
Alibaba) which understands the importance of reputation.
Active attacks like collusion are easy to detect and will seri-
ously damage its reputation once caught.

The authority is fully trusted. All the users participating
in the crowdsourcing system are honest, namely, requesters
publish valid tasks with rewards, and worker generate cor-
rect trapdoors and complete the received tasks. We assume
that no external adversary can truncate or tamper the com-
munications among various entities.

3.3 Design Goals

To enable the privacy-preserving task matching service
under the aforementioned system model and threat model,
the proposed scheme aims to simultaneously achieve the
following utility and security goals:

� Scalability. In the multi-requester/multi-worker envi-
ronment, the public key, secret key, requirement
ciphertext and trapdoor should be constant-size
such that they are all independent with number of
users (requesters and workers) participating in the
system.

� Proxy-free. The trapdoors can be directly tested with
the requirement ciphertexts by the crowd-server

without any transformations, where the trapdoors
and the requirement ciphertexts should be indepen-
dently generated by authenticated workers and
requesters without any interactions with the author-
ity or the crowd-server.

� Efficient revocation. Worker revocation shall be effi-
cient with minimal overhead on the whole system,
including the update of stored requirement cipher-
texts and the renewal of secret keys for non-revoked
workers.

� Privacy-preserving. Requirement privacy and query
privacy shall be protected from the crowd-server
during the task-worker matching.

3.4 Preliminaries

Bilinear Map. Let G1 and G2 be two multiplicative cyclic
groups of same prime order p. Let g be a generator of G1. A
bilinear map e : G1 � G1 ! G2 has the following properties:

� Bilinearity: 8a; b 2 Z�p, we have eðga; gbÞ ¼ eðg; gÞab.
� Non-degeneracy: eðg; gÞ 6¼ 1.
� Computability: it is efficient to compute e for any

input.
Shamir Secret Sharing. Shamir secret sharing [39] is a

ðtþ 1Þ-out-of-n threshold secret distribution mechanism.
That is, a master secret s is divided among n parties and no
t or fewer parties can reconstruct the secret s by using their
shares. It includes the following two phases:

Distribution. Suppose a trusted dealer wants to share the
secret s 2 Z�p among n parties X ¼ f1; 2; . . . ; ng � Z�p. It ran-
domly chooses t numbers f1; . . . ; ft 2 Z�p, and sets up a
secret polynomial function fðxÞ of degree t as:

fðxÞ ¼ sþ f1xþ � � � þ ftx
t:

Then for each party i 2 X, it assigns the share fðiÞ.
Reconstruction. Given a set G � X, for each i 2 G, we

define the Lagrange interpolation polynomial Di;G as:

Di;GðxÞ ¼ Pj2G;j6¼i
x� j

i� j
:

If jGj � tþ 1 and we get all the shares in G, the secret s can
be reconstructed from the following equation:

s ¼ fð0Þ ¼ Si2GfðiÞ � Di;Gð0Þ:

4 THE PMATCH SCHEME

In this section, we describe the detailed constructions of
pMatch, together with two different mechanisms for worker
revocation: Server-Local Revocation (SLR) and Global Revo-
cation (GR). For the sake of brevity, we consider a single
keyword in both task requirement and query. As illustrated
in Fig. 2, the framework of pMatch among various entities
proceeds as follows:

� System Initialization. The authority setups the system
and assigns secret keys to workers.

� Task Publication and Trapdoor Generation. Requesters
and workers respectively send requirement cipher-
texts and trapdoors to the crowd-server.

Fig. 1. System model.

120 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

� Task-Worker Matching. The crowd-server conducts
the matching process between the received trap-
doors and the stored requirement ciphertexts.

� Server-Local Revocation.With a revocation list contrib-
uted by revoked workers, the crowd-server can
detect the validity of the coming trapdoors.

� Global Revocation. When the size of revocation list
reaches a threshold, the crowd-server updates the
system with minimum overhead.

4.1 Proxy-Free Task Matching

System Initialization. Initially, the authority sets up the sys-
tem by calling the Setup algorithm, and outputs a public
key PK and a master secret key MSK. PK is publicized to a
public board such that all the entities (including the crowd-
server, requesters and workers) participating in the system
have access to it, and MSK is kept secret by the authority.
In the meantime, for each authenticated worker ui, the
authority assigns it a distinct secret key SKi by running the
SKeyGen algorithm.

Setupð1�Þ ! ðPK;MSKÞ. It generates two multiplicative
cyclic groups G1, G2 of same prime order pwith g as a gener-
ator of G1, and defines a bilinear map e : G1 � G1 ! G2 and
a resistant hash function H : f0; 1g� ! G1. Then, it selects
random numbers x1; x2; f1; t 2 Z�p and generates a secret
polynomial function of degree 1 as:

fðxÞ ¼ x1 þ f1x:

The public key is generated as:

PK ¼ ðG1;G2; e; p; g; g1; g2; H;EKÞ;

where g1 ¼ gx1 , g2 ¼ gx2 , and EK ¼ g
fðtÞ
x1 . The master secret

key is set as:

MSK ¼ ðx1; x2; f1; tÞ:

SKeyGenðPK;MSK; uiÞ ! SKi. Given a worker identity
ui, it randomly chooses ti 2 Z�p, and sets Gi ¼ t [ti. Then it
computes the secret key SKi ¼ ðDi;EiÞ for the worker ui

with the Lagrange interpolation polynomial as:

Di ¼ g
fðtiÞ�Dti;Gi

ð0Þ
2 ;

Ei ¼ g
x1Dt;Gi

ð0Þ
2 :

The authority transmits SKi to the worker ui, and mean-
while stores the worker-key set K ¼ K [ðui; ti; SKiÞ.

Task Publication and Trapdoor Generation.When publishing
a task, a requester encrypts a requirement keyword w by
running the Enc algorithm with the public key PK, and sub-
mits the ciphertext C of w to the crowd-server. To retrieve
the tasks matching with a query keyword q, a worker ui gen-
erates the trapdoor T of q by calling the Trap algorithm with
its secret key SKi, and sends T to the crowd-server.

EncðPK;wÞ ! C. It randomly chooses r1; r2 2 Z�p, and
computes the ciphertext C ¼ ðC1; C2; C3; C4Þ of the require-
ment keyword w as:

C1 ¼ g
r2
2 HðwÞr1 ; C2 ¼ g

r1
1 ; C3 ¼ EKr2 ; C4 ¼ gr2 :

TrapðPK; SKi; qÞ ! T . It chooses a randomness s 2 Z�p
and computes the trapdoor T ¼ ðT1; T2; T3; T4Þ of the query
keyword q as:

T1 ¼ gs1; T2 ¼ HðqÞs; T3 ¼ Es
i ; T4 ¼ Ds

i :

Task-Worker Matching. The crowd-server builds an index
to store all the requirement ciphertexts submitted by the
requesters. Upon receiving a trapdoor T from a worker, the
crowd-server conducts the task-worker matching process
by runningMatchðC; T Þ with each ciphertext C in the index.

Fig. 2. The framework of pMatch.

SHU ET AL.: PROXY-FREE PRIVACY-PRESERVING TASK MATCHINGWITH EFFICIENT REVOCATION IN CROWDSOURCING 121

If MatchðC; T Þ ¼ 1 for some ciphertext C, the crowd-server
sends the corresponding task to the worker.

MatchðC; T Þ ! 1=0. Given a requirement ciphertext C ¼
ðC1; C2; C3; C4Þ and a trapdoor T ¼ ðT1; T2; T3; T4Þ, it checks if

eðC1; T1Þ ¼? eðC2; T2Þ � eðC3; T3Þ � eðC4; T4Þ:
If the equality holds, it outputs 1; otherwise, it outputs 0.

Theorem 1. The pMatch scheme is correct. That is, 8ðPK;
MSKÞ Setupð1�Þ, 8ui 2 f0; 1glog p, 8SKi SKeyGenðPK;

MSK; uiÞ, 8w 2 f0; 1g�, we have MatchðEncðPK;wÞ;
TrapðPK; SKi; wÞÞ ¼ 1.

Proof. In the Match algorithm, if both the ciphertext
C ¼ ðC1; C2; C3; c4Þ and the trapdoor T ¼ ðT1; T2; T3; T4Þ
are generated from the same keyword w, we have:

eðC1; T1Þ ¼ eðgr22 HðwÞr1 ; gs1Þ
¼ eðgr22 ; gs1ÞeðHðwÞr1 ; gs1Þ;

eðC2; T2Þ ¼ eðgr11 ; HðwÞsÞ;
eðC3; T3Þ ¼ eðg

fðtÞ�r2
x1 ; g

x1�s�Dt;Gi
ð0Þ

2 Þ
¼ eðg; g2Þr2sfðtÞ�Dt;Gi

ð0Þ;

eðC4; T4Þ ¼ eðgr2 ; gsfðtiÞ�Dti;Gi
ð0Þ

2 Þ
¼ eðg; g2Þr2sfðtiÞ�Dti ;Gi

ð0Þ;

eðC3; T3Þ � eðC4; T4Þ ¼ eðg; g2Þr2s fðtÞ�Dt;Gi
ð0ÞþfðtiÞ�Dti ;Gi ð0Þð Þ

¼ eðg; g2Þr2sfð0Þ
¼ eðg1; g2Þr2s:

Thus, eðC1; T1Þ ¼ eðC2; T2Þ � eðC3; T3Þ � eðC4; T4Þ. tu
Remark. The proposed pMatch scheme also supports the

query traceability that the authority can trace back the
identities from the workers’ trapdoors. Given a trapdoor
T ¼ ðT1; T2; T3; T4Þ, the authority checks if

eðT3; DiÞ ¼? eðEi; T4Þ:

with each secret key SKi ¼ ðDi; EiÞ in the worker-key set
K. If the equality holds for some SKi, it indicates that ui

is the worker identity of T . Query traceability is impor-
tant in the multi-user crowdsourcing, especially when
some workers are dishonest and leak their secret keys to
other outside unauthenticated workers. tu

4.2 Server-Local Revocation

To adapt the above pMatch scheme to the dynamic crowd-
sourcing where workers are free to leave, we design a light-
weight mechanism for worker revocation, called Server-
Local Revocation (SLR). The SLR mechanism gives the
crowd-server an additional public argument called Revoca-
tion List (RL), which contains a token for each revoked
worker. When a worker uj leaves the system, the authority
derives the revocation token6 as RTj ¼ ðSKjÞr ¼ ðDr

j; E
r
j Þ,

where r 2 Z�p is randomly chosen, and then publishes RTj

into RL. Upon receiving the trapdoor T , the crowd-server

will execute the following RevCheck algorithm with the lat-
est RL to check whether the trapdoor T is from a revoked
worker. Only when RevCheckðT;RLÞ ¼ 0, the crowd-server
will continue to conduct the task-worker matching process.

RevCheckðT;RLÞ ! 1=0. Given the trapdoor T ¼ ðT1; T2;
T3; T4Þ, it checks if

eðT3; D
r
jÞ ¼? eðEr

j ; T4Þ;

with each revocation token RTj ¼ ðDr
j; E

r
j Þ in the revocation

list RL. If true, it outputs 1; if false for all the revocation
tokens in RL, it outputs 0.

Through the SLR mechanism, worker revocation can be
efficiently achieved without the renewal of secret keys for
the remaining non-revoked workers and the update of the
stored ciphertexts on the crowd-server.

Theorem 2. The SLR mechanism is correct. That is, given a trap-
door T ¼ ðT1; T2; T3; T4Þ of worker ui and a revocation token
RTj ¼ ðDr

j;E
r
j Þ of revoked worker uj, we have eðT3;D

r
jÞ ¼

eðEr
j ; T4Þ iff ui ¼ uj.

Proof. Suppose the equation eðT3; D
r
jÞ ¼ eðEr

j ; T4Þ holds, we
have

eðgx1�
�ti
t�ti�s

2 ; g
rðx1þf1tjÞ� �ttj�t
2 Þ ¼ eðgrx1�

�tj
t�tj

2 ; g
ðx1þf1tiÞ� �tti�t�s
2 Þ

, rx1 � t � ti � s � ðx1 þ f1tjÞ
ðt� tiÞðtj � tÞ ¼ rx1 � tj � t � s � ðx1 þ f1tiÞ

ðt� tjÞðti � tÞ
, tiðx1 þ f1tjÞ ¼ tjðx1 þ f1tiÞ

, ti ¼ tj

, ui ¼ uj:

That completes the proof. tu

4.3 Global Revocation

Although the above SLR mechanism is light-weight, when
the size of RL is big enough, revocation checking will inevi-
tably affect the efficiency of task matching, as the time cost of
revocation checking is linear with the number of revoked
workers in the revocation list RL. For this reason, we further
design a supplementary revocation mechanism, called
Global Revocation (GR), which can be periodically executed
to update the secret keys for the remaining non-revoked
workers and the stored ciphertexts on the crowd-server with
minimal overhead. Through the GR mechanism, the revoca-
tion list RL can be periodically cleaned up when the size of
RL reaches some threshold.

In the pMatch scheme with the GR mechanism, all the
keys, ciphertexts, and trapdoors are tagged with a version
number v as follows, which indicates the evolution of the
system. Initially, v is set as 0. Whenever the system is
updated with the GR mechanism, v increases by 1.

PK ¼ ðv;G1;G2; e; p; g; g1; g2; H;EKÞ;
MSK ¼ ðv; x1; x2; f1; tÞ; SKi ¼ ðv;Di; EiÞ;
C ¼ ðv; C1; C2; C3; C4Þ; T ¼ ðv; T1; T2; T3; T4Þ:

In the GR mechanism, after executing the ReKeyGen
algorithm, the authority outputs a new public key PK0,
a new master secret key MSK0 and a ciphertext-update
key CK where CK is only sent to the crowd-server. At the

6. The crowd-server cannot generate the correct trapdoors with the
revocation token.

122 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

same time, the authority updates the secret keys for the
remaining non-revoked workers through the SKeyUpdate
algorithm. Then the requesters can use the new public key
to encrypt their requirements and the non-revoked work-
ers can generate their trapdoors using the updated secret
keys.

ReKeyGenðPK;MSKÞ ! ðPK0;MSK0; CKÞ. It randomly
chooses f 01 2 Z�p and re-defines the secret polynomial func-
tion as:

f 0ðxÞ ¼ x1 þ f 01x:

Then it computes EK0 ¼ g
f 0ðtÞ
x1 . The new public key PK0, the

new master secret key MSK0 and the ciphertext-update key
CK are respectively set as:

PK0 ¼ ðvþ 1;G1;G2; e; p; g; g1; g2; H;EK0Þ;
MSK0 ¼ ðvþ 1; x1; x2; f

0
1; tÞ;

CK ¼
�
vþ 1;

f 0ðtÞ
fðtÞ

�
;

where vþ 1 is the current version number.
SKeyUpdateðMSK0; ui;KÞ ! SK0i. It first checks whether

MSK0 and SKi have the latest version number. If yes, it
outputs SKi directly; otherwise, it re-computes D0i with
the new f 0ðxÞ. The new secret key is output as SK0i ¼
ðvþ 1; D0i; EiÞ. Meanwhile, the authority updates the
worker-key set K.

To enable the stored ciphertexts searchable by the updated
secret keys, the crowd-server needs to update the stored
ciphertexts by CipherUpdate with the received ciphertext-
update keyCK andmeanwhile delete all the old ciphertexts.

CipherUpdateðCK;CÞ ! C0. It first checks whether CK
and C have the latest version number. If yes, it directly
outputs C; otherwise, it computes C03 ¼ CCK

3 . The ciphertext
is updated as C0 ¼ ðvþ 1; C1; C2; C

0
3; C4Þ.

Remark In practice, the secret key of a worker may not
need to be updated immediately every system update by
GR. To reduce the overhead on the authority, this can be
done only when the worker logs in the system or wants
to query the tasks. tu

Theorem 3. The pMatch scheme with the GR mechanism is cor-
rect if it satisfies the conditions in Fig. 3.

Note that the superscript (v) of algorithm denotes that the
algorithm runs v times iteratively; the superscript ðvÞ of key,
ciphertext or trapdoor denotes its form in the vth version.

Proof. Suppose f ðvÞ1 is selected to re-generate the secret poly-

nomial function f ðvÞðxÞ ¼ x1 þ f
ðvÞ
1 x in the vth version,

we have the public key PKðvÞ with EKðvÞ and secret key

SK
ðvÞ
i ¼ ðDðvÞi ; E

ðvÞ
i Þ as follows:

EKðvÞ ¼ g
fðvÞðtÞ
x1 ;

D
ðvÞ
i ¼ g

fðvÞðtiÞ�Dti;Gi
ð0Þ

2 ;

E
ðvÞ
i ¼ Ei ¼ g

x1Dt;Gi
ð0Þ

2 :

Then, given the ciphertext C based on PKðvÞ and the trap-

door T based on SK
ðvÞ
i , we have

eðC3; T3Þ � eðC4; T4Þ ¼ eðg; g2Þr2s fðvÞðtÞ�Dt;Gi
ð0ÞþfðvÞðtiÞ�Dti ;Gi

ð0Þð Þ
¼ eðg1; g2Þr2s:

Thus, the condition 1 can be easily proved.

Given the ciphertext C
ðv�1Þ
3 based on EKðv�1Þ of ver-

sion ðv� 1Þ and CKðvÞ ¼ fðvÞðtÞ
fðv�1ÞðtÞ of version v, we have the

updated ciphertext CðvÞ ¼ ðvþ 1; C1; C2; C
ðvÞ
3 ; C4Þwhere

C
ðvÞ
3 ¼ ðCðv�1Þ3 Þ

fðvÞðtÞ
fðv�1ÞðtÞ ¼ ðg

r2 �fðv�1ÞðtÞ
x1 Þ

fðvÞðtÞ
fðv�1ÞðtÞ

¼ ðg
fðvÞðtÞ
x1 Þr2 ¼ ðEKðvÞÞr2 :

Since C
ðvÞ
3 is a valid ciphertext with respect to the public

parameter EKðvÞ of version v. Likewise, the condition 2
can be easily proved. tu

5 SECURITY ANALYSIS

In this section, we show that the privacy of requirement
and query are protected against the honest-but-curious
crowd-server by proving that the keyword ciphertext is
selective IND-CKA secure. Focusing on ciphertext privacy,
we first give the hardness assumptions and then define the
security model of pMatch, and finally prove its security via
reduction.

5.1 Assumptions

Decisional Bilinear Diffie-Hellman (BDBH) Assumption. Let a,
b, c be uniformly and independently chosen from Z�p and g
be a generator of G. The BDBH [33] problem in G and GT is
stated as follows: given ~x ¼ ðg; ga; gb; gcÞ 2 G4, distinguish
Z ¼ eðg; gÞabc 2 GT from a random element R 2 GT . We say
that the BDBH assumption holds if the advantage of solving
the DBDH problem

AdvDBDH
A ¼ jPr½Að~x;ZÞ ¼ 1	 � Pr½Að~x;RÞ ¼ 1	j;

is negligible for any PPT algorithm A.
Decisional q-Combined Bilinear Diffie-Hellman (q-DCBDH)

Assumption. Let a; b; c; d; e; s1; . . . ; sq be uniformly and inde-
pendently chosen from Z�p, and g be a generator of G. The
q-DCBDH problem [31] in G is stated as follows: given
~y ¼ ðg; ga; gb; h; hc; hd; fhsj ; hasjgj2½1;q	Þ 2 G2qþ6 where h ¼ ge,
distinguish Z ¼ gabhcd 2 G from a random element R 2 G.

Fig. 3. Conditions for Theorem 3.

SHU ET AL.: PROXY-FREE PRIVACY-PRESERVING TASK MATCHINGWITH EFFICIENT REVOCATION IN CROWDSOURCING 123

We say that the q-DCBDHassumption holds if the advantage
of solving the q-DCBDHproblem

Advq-DCBDH
A ¼ jPr½Að~y; ZÞ ¼ 1	 � Pr½Að~y;RÞ ¼ 1	j;

is negligible for any PPT algorithm A.
Lemma 1. The q-DCBDH problem is intractable if the DBDH

problem is intractable.

Proof. Suppose there is a probabilistic polynomial time
adversary A that can solve the q-DCBDH problem with a
non-negligible advantage, we show that it can also solve
the DBDH problem with a non-negligible advantage as
follows.

Given hc; hd; hs, the simulator can compute

eðh; hÞcds ¼ eðZ; hsÞ
eðgb; hasÞ ¼

eðgabhcd; hsÞ
eðg; hÞabs :

If the adversary A can distinguish Z ¼ gabhcd from a ran-
dom element in G with a non-negligible advantage.
Then, it can also distinguish the tuple eðh; hÞcds from a
random element in GT with a non-negligible advantage
when the adversary A is given hc; hd; hs. tu

5.2 Security Model

Considering the system update incurred by worker revoca-
tion in the GR mechanism, we define a security game for
pMatch in the sense of selective Computationally Indistin-
guishable Secure against Adaptive Chosen Keyword Attack
(selective IND-CKA). In this game, we need to ensure that
an adversary A cannot distinguish the ciphertexts of two
arbitrary keywords unless the corresponding trapdoors are
available.

Selective IND-CKA Security Game. Given a security param-
eter �, the Selective IND-CKA security game between an
adversary A and a challenger B proceeds as follows:

� Init. The adversary A chooses a version number v�

and submits it to B.
� Setup. B first runs Setupð1�Þ to generate a public key

PK and a master secret key MSK. Then, it executes
ReKeyGenðPKðvÞ;MSKðvÞÞ iteratively v� times from
v ¼ 0 to v� � 1 to obtain ciphertext-update keys
fCKðvÞg1
v
v� . Finally, it sends ðPK; fCKðvÞg1
v
v�Þ
to A which can derive the public keys for all the
versions.

� Trapdoor phase 1. A can ask B the trapdoor T for any
keyword w 2 f0; 1g� for any version within ½0; v�	.

� Challenge. A provides two keywords w0, w1 on which
it wishes to be challenged. The only restriction is that
A didn’t previously ask the trapdoors for these two
keywords. B randomly selects a bit b 2 f0; 1g and
sends A a ciphertext C EncðPKðv�Þ; wbÞ where
PKðv

�Þ is the public key for the v�th version.
� Trapdoor phase 2. A can continue to query B the trap-

door T for any keyword w as before as long as
w 6¼ w0; w1.

� Output. A outputs b0 2 f0; 1g and wins the game if
b0 ¼ b.

The advantage of A in breaking the above selective
IND-CKA game is defined as AdvAð�Þ ¼ jPr½b ¼ b0	 � 1=2j.
Definition 1 (Selective IND-CKA Security). A pMatch

scheme with the GR mechanism is selective IND-CKA secure if
AdvAð�Þ is negligible for any probabilistic polynomial time
adversary A.

5.3 Security Proof

Theorem 4. The pMatch scheme with the GR mechanism is
selective IND-CKA secure in the random oracle model under
the q-DCBDH assumption. If a PPT adversary A, making at
most qT trapdoor queries, wins the selective IND-CKA security
game with advantage �, we can construct a PPT algorithm B,
which solves the q-DCBDH problem with advantage �0.

Proof. In the q-DCBDH game, the simulator B flips a coin
m 2 f0; 1g. If m ¼ 0, set Z ¼ gabhcd 2 G; if m ¼ 1, set Z as a
random element R in G. Given a q-DCBDH instance s ¼
ðg; ga; gb; h; hc; hd; fhsj ; hasjgj2½1;q	; ZÞ 2 G2qþ7 where h ¼ ge,
B is asked to output m. To answer this challenge, B simu-
lates the selective IND-CKA security game with A as
follows:

Init.A chooses a version number v� and submits it to B.
Setup. B generates two groups G1, G2 and a bilinear

map ê from the q-DCBDH instance s, and implicitly sets
x1 ¼ e by setting g1 ¼ h and g2 ¼ ga. Then, B randomly
selects f1 2 Z�p and constructs a polynomial function
f̂ðxÞ ¼ 1þ f1x. Due to the linearity, fðxÞ can be implicitly
simulated as fðxÞ ¼ f̂ðxÞ � e. After that, B randomly
selects a distinct number t 2 Z�p and simulates EK as

g
fðtÞ
x1 ¼ gf̂ðtÞ. At this point, the public key for the version 0

is set as PK ¼ ð0;G1;G2; ê; p; g; g1; g2; EKÞ. Subsequently,
for each version v 2 ½1; v�	, B randomly chooses f

ðvÞ
1 2 Z�p

and computesCKðvÞ. Finally, B sends ðPK; fCKðvÞg1
v
v� Þ
to the adversaryA.

H-queries. The hash function H is viewed as a random
oracle. To respond to the H-queries, B maintains a hash
list H ¼<wk; ck; ak; hk> that is empty initially. When A
queries a keyword wk 2 f0; 1g�, B proceeds as follows:

1) If the keyword wk already exists in the hash listH,
B responds with the corresponding hk directly.

2) Otherwise, B randomly chooses a coin ck 2 f0; 1g
such that Pr½ck ¼ 0	 ¼ 1=ðqT þ 1Þ and ak 2 Z�p.
Then B computes the value hk as follows.

hk ¼ hchak ; if ck ¼ 0
hak ; if ck ¼ 1:

�

Due to the randomness of ak, hk is uniform in G1

and indistinguishable from a random element in
G1. Finally, B responds with hk and meanwhile
adds the tuple <wk; ck; ak; hk> to the listH.

Trapdoor phase 1.WhenA issues the jth trapdoor query
of a keyword wk for the version v 2 ½0; v�	, B invokes the
random oracleH withwk and responds as follows:

1) If ck ¼ 0, B aborts.
2) Otherwise, B reports hk ¼ hak . Then B randomly

chooses ti 2 Z�p, sets Gi ¼ t [ti, and provides A
with the trapdoor T ¼ ðv; T1; T2; T3; T4Þ as follows:

124 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

T1 ¼ hsj ; T2 ¼ ðhÞaksj ¼ ðhsjÞak ;
T3 ¼ ðhasjÞDt;Gi

ð0Þ; T4 ¼ ðhasjÞf̂ðvÞðtiÞ�Dti;Gi ð0Þ:

where f̂ðvÞðtiÞ ¼ 1þ f
ðvÞ
1 ðtiÞ is the polynomial function for

the version v.
Challenge. A sends two equal-length distinct keywords

w0, w1 to B. B invokes the random oracle H twice to
obtain the hash value h0 ¼ Hðw0Þ and h1 ¼ Hðw1Þ. If c0
and c1 are both 1, B aborts. Otherwise, B randomly choo-

ses a coin b 2 f0; 1g such that cb ¼ 0. That means, B
always gets hk ¼ hchak . After that, B provides A with the

ciphertext C ¼ ðv�; C1; C2; C3; C4Þ for the keyword wb by

implicitly setting r1 ¼ d and r2 ¼ b:

C1 ¼ Z � ðhdÞak ; C2 ¼ hd;

C3 ¼ ðgbÞf̂ðtÞ�CK
ð1Þ�CKð2Þ���CKðv�Þ ; C4 ¼ gb:

If Z ¼ gabhcd, all parts in the ciphertext are well formed

and hence the ciphertext C is a valid encryption of wb.

Otherwise, C is random.
Trapdoor Phase 2. A continues to issue the trapdoor

query for any keyword wk as before with the only restric-
tion wk 6¼ w0; w1.

Output. A outputs a bit b0 2 f0; 1g. If b0 ¼ b, B outputs
m0 ¼ 0, which indicates the instance s is a valid q-DCBDH
tuple; otherwise, B outputs m0 ¼ 1, which means the
instance s is a random tuple. tu
Theorem 4 completes the description of the algorithm B.

The following Lemma 2 and Lemma 3 show that B solves

the q-DCDBH problem with advantage at least �0 � �
2e�qT .

Lemma 2. The probability u that B doesn’t abort in the selective
IND-CKA security game is at least 1=ðe � qT Þ.

Proof.We define the following events:

� �a: B doesn’t abort in the selective IND-CKA
security game

� �1: B doesn’t abort during the trapdoor phase.
� �2: B doesn’t abort during the challenge phase.
During the trapdoor phase, if ck ¼ 0, then B aborts.

Thus, we have Pr½�1	 ¼ 1� 1=ðqT þ 1Þð ÞqT� 1=e.
During the challenge phase, if c0 ¼ c1 ¼ 1, then B

aborts. Thus, we have Pr½�2	 ¼ 1� 1� 1=ðqT þ 1Þð Þ2 �
1=qT .

Since �1 and �2 are independent, we have u ¼ Pr½�a	 ¼
Pr½�1	 � Pr½�2	 � 1=ðe � qT Þ. tu

Lemma 3. The advantage �0 of B in solving the q-DCBDH
problem is at least �

2e�qT .

Proof. In the case of m ¼ 1, A gets no information about b,

thus we have Pr½b0 6¼ bju ¼ 1	 ¼ 1
2. When b0 6¼ b, B outputs

a random guess m0, thus we have Pr½m0 ¼ mjm ¼ 1	 ¼ 1
2. In

the case of m ¼ 0, A gets a valid ciphertext. In this case,

A’s advantage is � and thus we have Pr½b0 ¼ bjm ¼ 0	 ¼
�þ 1

2 . Let �r be the event that B solves the q-DCBDH prob-

lem with the random guess Pr½�r	 ¼ 1
2. The advantage of B

in solving the q-DCBDH problem is

�0 ¼ 1

2
Pr½m0 ¼ mjm ¼ 0	 þ 1

2
Pr½m0 ¼ mjm ¼ 1	 � 1

2

� 1

2
ðPr½b0 ¼ bjm ¼ 0	Pr½�a	 þ Pr½�r	Pr½:�a	Þ þ 1

4
� 1

2

¼ 1

2

��
�þ 1

2

�
u þ 1

2
ð1� uÞ

�
� 1

4

¼ 1

2
u�:

Combining with Lemma 2, we have that B solves the
q-DCBDH problem with advantage �0 � 1

2 u� � �
2e�qT . tu

5.4 Discussion

The proposed pMatch scheme doesn’t focus on protecting
the following aspects:

Query-Revealed Occurrence Pattern. Since the proposed
pMatch scheme is built upon the single-keyword based
multi-user searchable encryption, when there are multiple
keywords in the task requirement, the crowd-server can see
the position where the keyword trapdoormatches in the task
requirement and then discover some similarities among the
matched tasks after each query. This leakage is defined as
query-revealed occurrence pattern, which reveals the least infor-
mation among all the leakage levels defined in [40]. First of
all, this kind of access pattern leakage is inevitable for any
single-keyword based searchable encryption if without extra
techniques such as private information retrieval or oblivious
transfer. Moreover, on the assumption of non-collusion
between the crowd-server and the workers or requesters, the
crowd-server cannot obtain any prior knowledge by launch-
ing leakage-abuse attacks as [41] and thereby cannot recover
the queries or requirement keywords from this leakage.

Trapdoor Privacy Against Keyword Guessing Attacks. In the
proposed public-key based pMatch scheme, we don’t
address keyword guessing attacks (KGA) as most of PEKS
schemes [17], on the default assumption that the number of
possible keywords is innumerable in practice and not
bounded by some polynomial. To address KGA in the sce-
narios with the polynomial-bounded number of keywords
[42], existing works [27], [43] offer two potential approaches.
Kiayias et al. [27] adopted a non-collusion dual-servermodel
where two servers (a main server and an aid server) need to
collaborate with each other for each query. However, the
dual-server architecture is not common in practice. More-
over, the aid server needs to compute some results for each
ciphertext in each query, and the computation and transmis-
sion cost is linear with the number of stored ciphertexts,
which will place a huge burden on the aid server. Huang
et al. [43] proposed a public-key authenticated encryption
with keyword search where the owner encrypts a keyword
with its private key and the user’s public key, and the
user generates the trapdoorwith its private key and the own-
er’s public key, such that the ciphertext can only be con-
structed by the valid owner. However, this approach cannot
be applied to themulti-requester/multi-worker crowdsourc-
ing scenario due to the lack of scalabiltiy: (1) the requester
cannot know all the workers in advance in dynamic crowd-
sourcing, and vice versa; (2) a requester needs to construct as
many copies of ciphertexts as the number of workers for a
keyword, and a worker needs to generate as many copies of
trapdoors as the number of requesters for a query. Therefore,

SHU ET AL.: PROXY-FREE PRIVACY-PRESERVING TASK MATCHINGWITH EFFICIENT REVOCATION IN CROWDSOURCING 125

considering the efficiency, we don’t focus to address KGA
on the above default assumption. Nonetheless, how to
address KGA in the multi-requester/multi-worker sce-
nario in the single-server model while preserving scalabil-
ity is still a challenge.

Compromise of Trusted Authority. In the threat model, the
authority is assumed as fully trusted, which is a very com-
mon practice as most security schemes. Since the master
secret key and the workers’ secret keys are stored on the
authority, the whole security of system will be damaged
once the authority is compromised. One way to reduce the
risks of being compromised is to let the authority offline
after the system initialization or online only when the system
needs update. Another potential way is to design a multi-
authority or distributed-authority solution, which is our
future work and out of the scope of this paper.

6 PERFORMANCE ANALYSIS

In this section, we evaluate the performance of pMatch for
each entity in terms of computation, communication and
storage costs, and meanwhile compare it with the state-of-
the-art proxy-free scheme: SEMEKS7 [27]. All the notations
used in the following evaluation are defined in Table 2.

6.1 Evaluation Setting and Dataset

We implement the schemes of pMatch and SEMEKS in
Python with PBC library [44] in version 0.5.14 and Charm
[45] framework in version 0.42. In the implementations,8 we
choose a symmetric elliptic curve SS512 with a 160-bit prime
p where the base field size is 512-bit and the embedding
degree is 2. To evaluate the practical performance, we adopt
two different test platforms for different entities:

� Authority, requester and worker: PC with a Ubuntu
12.04 operating system and an Intel Core i5 CPU at
3.20 GHz and 4 GB RAM.

� Crowd-server: High Throughput Computing Cluster
(HTCC) composed of six job execution nodes run-
ning Ubuntu 16.04 operating system, where each
node has two 6-core Intel(R) Xeon(R) CPU E5-2620
at 2.00 GHz and 256 GB RAM.

Due to the lack of public real-world dataset of crowd-
sourcing tasks, we further develop a java program9 to crawl
the real crowdsourcing task data, Human Intelligence Tasks
(HITs), from MTurk with the help of a third tool called
MTurk Tracker [46]. We collect 1,000,000 HITs as the task
dataset, where the number of keywords in a task require-
ment varies from 1 to 10. Fig. 4 depicts the distribution of
number of keywords in each task in the dataset.

6.2 Evaluation Results

Tables 3, 4, and 5 theoretically analyze the computation,
communication and storage overheads for each entity in
pMatch in comparison with the counterparts in SEMEKS,
respectively. Next, we carry out a detailed performance
analysis for each entity including the authority, each
requester, each worker and the crowd-server.

Authority. The overhead on the authority mainly includes
the computation, transmission and storage costs in the
phases of system initialization and worker revocation (SLR
and GR).

Computation Cost. As analyzed in Table 3, the computa-
tion cost on the authority mainly comes from the following
two acpects:

� Secret worker key generation in the system initialization.
In the system initialization, the authority needs to
run the Setup algorithm once to set up the system
and the SKeyGen algorithm to generate a secret key

TABLE 2
Notations

Notation Description

n number of workers
r number of revoked workers
m number of requirements
li number of keywords in requirement i
k number of keywords in query
E group exponentiation operation on G
P group pairing operation on G
H hash operation f0; 1g� ! G
jGj element size in G
jZ�pj element size in Z�p
jvj size of version number v

Fig. 4. Keyword distribution in the dataset.

TABLE 3
Computation Overhead

Entity Algorithm SEMEKS pMatch

Authority Setup 8E 3E
SKeyGen n � 16E n � 2E
ReKeyGen - E
SKeyUpdate - ðn� rÞ � E

Requester Enc li � 9E li � ð5EþHÞ
Worker Trap k � 12E k � ð4EþHÞ
Crowd-server Match

Pm
i¼1 li � k � 5P

Pm
i¼1 li � k � 4P

RevCheck - r � 2P
CipherUpdate -

Pm
i¼1 li � E

7. SEMEKS contains two parts: keyword search and broadcast
encryption, we only extract the part of keyword search for comparison.

8. https://github.com/billion01/pMatch 9. https://github.com/billion01/MTurkTrackerData

126 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

for each registered worker. As analyzed in Table 3,
the overall time cost of system initialization in
pMatch is linear with the number of workers and the
computation complexity of secret key generation is
2E for each worker, which is much less than 16E in
SEMEKS. We vary different number of workers (n)
from 1,000 to 10,000 to measure the computation cost
of secret key generation for both schemes, as shown
in Fig. 5a, and observe that pMatch far outperforms
SEMEKS in terms of key generation. For example,
when n ¼ 10;000, it takes about 61s for pMatch while
SEMEKS requires 500s. The time cost to generate
each secret key in pMatch is about 6 ms, which is
quite efficient for the authority.

� Secret worker key update in the worker revocation GR.
In the SKeyUpdate algorithm in the GR mechanism,
the authority performs an exponential operation (E)
to update the secret key for each non-revokedworker.
Obviously, the overall time cost of GR on the author-
ity is linear with the number of non-revoked workers
(n� r). Fig. 5a shows the performance of key update
in GR under different number of non-revoked
workers.

Transmission Cost. As analyzed in Table 4, the transmis-
sion cost generated from the authority in pMatch mainly
includes four parts in three phases:

� Secret worker keys to the workers in the system initia-
lization. The size of secret key for each worker in
pMatch is jvj þ 2jGj, which is much less than 12jGj in
SEMEKS. Fig. 5b shows that pMatch far outperforms
SEMEKS in terms of transmission cost of secret keys.
For example, the total transmission cost of 10,000
secret keys is about 1.60 MB in pMatch while it is
8.24 MB in SEMEKS.

� Revocation tokens to the public in SLR. Their transmis-
sion cost is linear with the number of revoked work-
ers (r), and the size of each revocation token is
jvj þ 2jGj.

� Updated secret worker keys to the non-revoked workers in
GR. Their transmission cost is linear with the num-
ber of non-revoked workers (n� r). It’s noteworthy
that the authority transmits the updated part of
secret key (i.e., vþ 1 and D0i), rather than the whole
secret key, to each non-revoked worker, and thus the
size of updated secret worker key is jvj þ jGj.

� Ciphertext-update key to the crowd-server in GR. It is
used to update the stored ciphertexts on the crowd-
server and its size is jvj þ jZ�pj.

Storage Cost. As analyzed in Table 5, the authority stores
the master secret key and the secret keys for all the workers.
Their total storage cost jvj þ 4jZ�pj þ n � ðjvj þ 2jZ�pj þ 2jGjÞ
is much less than that in SEMEKS, as depicted in Fig. 5c.

TABLE 4
Transmission Overhead

Flow Information SEMEKS pMatch

Authority!Workers Secret worker keys n � 12jGj n � ðjvj þ 2jGjÞ
Updated secret worker keys - ðn� rÞ � ðjvj þ jGjÞ

Authority! Public Revocation tokens - r � ðjvj þ 2jGjÞ
Authority! Crowd-server Ciphertext-update key - jvj þ jZ�pj
Requester! Crowd-server Ciphertexts li � 5jGj jvj þ li � 4jGj
Worker! Crowd-server Trapdoors k � 5jGj jvj þ k � 4jGj

TABLE 5
Storage Overhead

Entity Storage SEMEKS pMatch

Authority Master secret key 4jZ�pj jvj þ 4jZ�pj
Secret worker keys n � 12jGj n � ðjvj þ 2jZ�pj þ 2jGjÞ

Requester - - -
Worker Secret key 12jGj jvj þ 2jGj
Crowd-server Ciphertexts

Pm
i¼1 li � 5jGj m � jvj þPm

i¼1 li � 4jGj

Fig. 5. Cost on the authority. (a) computation cost; (b) transmission cost of secret worker keys; (c) storage cost.

SHU ET AL.: PROXY-FREE PRIVACY-PRESERVING TASK MATCHINGWITH EFFICIENT REVOCATION IN CROWDSOURCING 127

When n ¼ 10;000, the storage cost on the authority in pMatch
is 2.97MB,which is nearly one third of that in SEMEKS.

Requester. The overhead on each requester mainly includes
the computation and transmission costs in the phase of task
publication.

Computation Cost. The computation complexity of keyword
encryption in pMatch is 5EþH, which is less than 9E for
SEMEKS, as shown in Table 3. In Fig. 6a, we vary different
number of keywords (li) in the task requirement to compare
the efficiency between both schemes and find that pMatch is
indeedmore efficient than SEMEKS.

Transmission Cost. The size of keyword ciphertext in
pMatch is jvj þ 4jGj, which is less than 5jGj for SEMEKS. To
reduce the transmission cost of ciphertexts for multiple key-
words, the requester submits only one copy of version num-
ber, and the total transmission cost of li keyword ciphertexts
is jvj þ li � 4jGj, as illustrated in Fig. 6b.

Worker. The overhead on each worker mainly includes
the computation and transmission costs in the phase of trap-
door generation, and the storage cost of secret key.

Computation Cost. In the trapdoor generation for k key-
words, the computation complexity is k � ð4EþHÞ, which is
less than that in SEMEKS. Fig. 7a shows that the trapdoor
generation for different number of keywords in pMatch is
much more efficient than that in SEMEKS. For example,
it only takes about 0.2 s to generate the trapdoors for 10 key-
words in pMatch while it takes almost 0.4 s in SEMEKS.

Transmission Cost. The total transmission cost of trap-
doors for k keywords from the worker to the crowd-server
is jvj þ k � 4jGj, which is less than k � 5jGj in SEMEKS. Fig. 7b
measures the practical transmission cost of trapdoors under
different number of keywords for both schemes.

Storage Cost. The size of secret key stored on the worker
side is jvj þ 2jGj, which is much less than 12jGj in SEMEKS.

Crowd-Server. The overhead on the crowd-server mainly
includes the computation cost in the phase of task-worker
matching and worker revocation (SLR and GR), and the
storage cost of index of requirement ciphertexts.

Computation Cost. As analyzed in Table 3, the compu-
tation cost on the crowd-server mainly includes three
parts:

� Task-worker matching. The computation complexity of
Match in pMatch is 4P, which is slightly more efficient
than 5P for SEMEKS. The computation complexity
of matching k keyword trapdoors with li keyword
ciphertexts in each requirement in pMatch is li � k � 4P.
Since the matching cost over the index is linear with
the size of index, we adopt the parallelism technique
(e.g., multithreading) on the crowd-server to speed up
the matching execution. Fig. 8a depicts the matching
time under different size of index and different num-
ber of threads for both schemes.When 144 threads run
in parallel for task-worker matching, it takes 180 s for
pMatch to complete the matching process over the
whole index of size 1 million, which shortens almost
60 percent of the time cost in SEMEKS. Although it
seems to be a little time-consuming so far, the time
cost would be further reduced if the system is deplo-
yed on a large cloud computing platform consisting
of thousands of powerfulworking nodes.

� Revocation checking. In the SLR mechanism, we vary
different number of revoked workers (r) in the revo-
cation list RL to test the time cost of RevCheck in
Fig. 8b and observe that the revocation checking
time is linear with the value of r, which is validated
by the computation complexity (r � 2P) in Table 3.

Fig. 6. Cost on the requester. (a) Computation cost; (b) transmission
cost of ciphertexts.

Fig. 7. Cost on the worker. (a) Computation cost; (b) transmission cost of
trapdoors.

Fig. 8. Computation cost on the crowd-server. (a) Task matching over index when k ¼ 1; (b) revocation checking in SLR; (c) index update in GR.

128 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

When the size of revocation list is big to affect the
efficiency of task matching, the GR mechanism can
be initiated to clear the revocation list.

� Index update. In the CipherUpdate, the computation
complexity is E for each keyword ciphertext. Fig. 8c
shows the time cost of index update within different
size of index. when 144 threads run in parallel for
index update, it takes about 110 s to update the
whole index of size 1 million, which will not put a
heavy burden on the powerful crowd-server consid-
ering its periodical execution.

Storage Cost. As analyzed in Table 5, the storage cost on the
crowd-server mainly comes from the index storing require-
ment ciphertexts. Wemeasure the storage cost of index under
different size of index in Fig. 9 and observe that the pMatch
scheme achieves the lower storage cost than SEMSKS.
For example, when the size of index is 1 million, its storage
cost in pMatch is about 1347 MB, which saves 20 percent of
the cost in SEMEKS.

7 CONCLUSION

In the paper, we studied the privacy issue in the task match-
ing for crowdsourcing and proposed an efficient proxy-
free privacy-preserving task matching scheme, called
pMatch. Moreover, we designed two different mechanisms
for worker revocation, through which worker revocation
can be efficiently achieved with minimal overhead on the
whole system. We proved the security of pMatch in the ran-
dom oracle model under the q-DCBDH assumption. Finally,
we implemented each algorithm in pMatch and analyzed
its performance in comparison with the state-of-the-art
work. Through theoretical analysis and simulation study,
we showed that the pMatch scheme is more efficient in
terms of computation, transmission and storage costs.

ACKNOWLEDGMENTS

This work was supported by grants from Research Grants
Council of Hong Kong [GRF CityU 11208917, CRF CityU
C1008-16G] and NSF China Grant [No. 61732022 and
No. 61702105].

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired Mag., vol. 14, no. 6,
pp. 1–4, 2006.

[2] V. Ambati, S. Vogel, and J. G. Carbonell, “Towards task recom-
mendation in micro-task markets,” in Proc. 11th AAAI Conf. Hum.
Comput., 2011, pp. 1–4.

[3] M. C. Yuen, I. King, and K. S. Leung, “Task recommendation in
crowdsourcing systems,” in Proc. 1st Int. Workshop Crowdsourcing
Data Mining, 2012, pp. 22–26.

[4] D. E. Difallah, G. Demartini, and P. Cudr-Mauroux, “Pick-A-
crowd: Tell me what you like, and i’ll tell you what to do,” in
Proc. Int. World Wide Web Conf., 2013, pp. 367–374.

[5] H. Kajino, H. Arai, and H. Kashima, “Preserving worker privacy
in crowdsourcing,” Data Mining Knowl. Discovery, vol. 28, no. 5–6,
pp. 1314–1335, 2014.

[6] D. He, S. Chan, and M. Guizani, “User privacy and data trustwor-
thiness in mobile crowd sensing,” IEEE Wireless Commun., vol. 22,
no. 1, pp. 28–34, Feb. 2015.

[7] J. Ren, Y. Zhang, K. Zhang, and X. Shen, “Exploiting mobile
crowdsourcing for pervasive cloud services: Challenges and
solutions,” IEEE Commun. Mag., vol. 53, no. 3, pp. 98–105,
Mar. 2015.

[8] K. Yang, K. Zhang, J. Ren, and X. Shen, “Security and privacy in
mobile crowdsourcing networks: Challenges and opportunities,”
IEEE Commun. Mag., vol. 53, no. 8, pp. 75–81, Aug. 2015.

[9] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting
worker location privacy in spatial crowdsourcing,” Proc. VLDB
Endowment, vol. 7, no. 10, pp. 919–930, 2014.

[10] Y. Shen, L. Huang, L. Li, X. Lu, S. Wang, and W. Yang, “Towards
preserving worker location privacy in spatial crowdsourcing,” in
Proc. IEEE Global Commun. Conf., 2015, pp. 1–6.

[11] Y. Gong, L. Wei, Y. Guo, C. Zhang, and Y. Fang, “Optimal task
recommendation for mobile crowdsourcing with privacy control,”
IEEE Internet Things J., vol. 3, no. 5, pp. 745–756, Oct. 2016.

[12] J. Shu and X. Jia, “Secure Task Recommendation in
Crowdsourcing,” in Proc. IEEEGlobal Commun. Conf., 2016, pp. 1–6.

[13] J. Shu, X. Jia, K. Yang, and H. Wang, “Privacy-preserving task
recommendation services for crowdsourcing,” IEEE Trans. Serv.
Comput., to be published, doi: 10.1109/TSC.2018.2791601.

[14] J. Shu, X. Liu, X. Jia, K. Yang, and R. H. Deng, “Anonymous
privacy-preserving task matching in crowdsourcing,” IEEE
Internet Things J., vol. 5, no. 4, pp. 3068–3078, 2018.

[15] D. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Security Privacy,
2000, pp. 588–593.

[16] C. Wang, N. Cao, J. Li, K. Ren, and W. J. Lou, “Secure ranked
keyword search over encrypted cloud data,” in Proc. IEEE 30th
Int. Conf. Distrib. Comput. Syst., 2010, pp. 253–262.

[17] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Int. Conf. Theory
Appl. Cryptographic Techn., 2004, pp. 506–522.

[18] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient con-
structions,” J. Comput. Security, vol. 19, no. 5, pp. 895–934, 2011.

[19] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Outsourced symmetric private information retrieval,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2013,
pp. 875–888.

[20] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and
M. Steiner, “Rich queries on encrypted data: Beyond exactmatches,”
in Proc. 20th Eur. Symp. Res. Comput. Security, 2015, pp. 123–145.

[21] C. Dong, G. Russello, and N. Dulay, “Shared and searchable
encrypted data for untrusted servers,” J. Comput. Security, vol. 19,
no. 3, pp. 367–397, 2011.

[22] F. Bao, R. H. Deng, X. Ding, and Y. Yang, “Private query on
encrypted data in multi-user settings,” in Proc. Int. Conf. Inf.
Security Practice Exp., 2008, pp. 71–85.

[23] Y. Yang, H. Lu, and J. Weng, “Multi-user private keyword search
for cloud computing,” in Proc. IEEE 3rd Int. Conf. Cloud Comput.
Technol. Sci., 2011, pp. 264–271.

[24] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, “Privacy preserving
ranked multi-keyword search for multiple data owners in cloud
computing,” IEEE Trans. Comput., vol. 65, no. 5, pp. 1566–1577,
May 2016.

[25] R. A. Popa and N. Zeldovich, “Multi-Key Searchable Encryption,”
IACR Cryptology ePrint Archive, MIT Comput. Sci. Artif. Intell.
Laboratory, Cambridge, MA, Report 2013/508, 2013.

[26] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich, M. F.
Kaashoek, and H. Balakrishnan, “Building web applications on
top of encrypted data using mylar,” in Proc. 11th USENIX Conf.
Netw. Syst. Des. Implementation, 2014, pp. 157–172.

Fig. 9. Storage cost on the crowd-server.

SHU ET AL.: PROXY-FREE PRIVACY-PRESERVING TASK MATCHINGWITH EFFICIENT REVOCATION IN CROWDSOURCING 129

http://dx.doi.org/10.1109/TSC.2018.2791601

[27] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Efficient
encrypted keyword search for multi-user data sharing,” in Proc.
Eur. Symp. Res. Comput. Security, 2016, pp. 173–195.

[28] F. Zhao, T. Nishide, and K. Sakurai, “Multi-user keyword search
scheme for secure data sharing with fine-grained access control,”
in Proc. Int. Conf. Inf. Security Cryptology, 2011, pp. 406–418.

[29] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Attribute-based keyword search with fine-grained owner-
enforced search authorization in the cloud,” in Proc. IEEE Conf.
Comput. Commun., 2014, pp. 226–234.

[30] Y. Miao, J. Ma, X. Liu, F. Wei, Z. Liu, and X. A. Wang, “m2-ABKS:
Attribute-based multi-keyword search over encrypted personal
health records in multi-owner setting,” J. Med. Syst., vol. 40,
no. 11, 2016, Art. no. 246.

[31] S. Zhang, G. Yang, and Y. Mu, “Linear encryption with keyword
search,” in Proc. Australasian Conf. Inf. Security Privacy, 2016,
pp. 187–203.

[32] K. Liang, C. Su, J. Chen, and J. K. Liu, “Efficient multi-function
data sharing and searching mechanism for cloud-based encrypted
data,” in Proc. 11th ACM Asia Conf. Comput. Commun. Security,
2016, pp. 83–94.

[33] D. Boneh and M. Franklin, “Identity-based encryption from
the Weil pairing,” in Proc. Annu. Int. Cryptology Conf., 2011,
pp. 213–229.

[34] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private
matching and set intersection,” in Proc. Int. Conf. Theory Appl.
Cryptographic Techn., 2004, pp. 1–19.

[35] X. Y. Li and T. Jung, “Search me if you can: Privacy-preserving
location query service,” in Proc. IEEE INFOCOM, 2013, pp. 2760–
2768.

[36] A. Shikfa, M. €Onen, and R. Molva, “Broker-based private
matching,” in Proc. Int. Symp. Privacy Enhancing Technol. Symp.,
2011, pp. 264–284.

[37] S. Choi, G. Ghinita, and E. Bertino, “A privacy-enhancing content-
based publish/subscribe system using scalar product preserving
transformations,” in Proc. Int. Conf. Database Expert Syst. Appl.,
2010, pp. 368–384.

[38] M. Nabeel, S. Appel, E. Bertino, and A. Buchmann, “Privacy
preserving context aware publish subscribe systems,” in Proc. Int.
Conf. Netw. Syst. Security, 2013, pp. 465–478.

[39] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[40] D. Cash, P. Grubbs, J. Perry and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Security, 2015, pp. 668–679.

[41] C. Van Rompay, R. Molva, and M. €Onen, “A leakage-abuse attack
against multi-user searchable encryption,” Proc. Privacy Enhancing
Technol., vol. 2017, no. 3, pp. 168–178, 2017.

[42] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee, “Constructing
PEKS schemes secure against keyword guessing attacks is possi-
ble?,” Comput. Commun., vol. 32, no. 2, pp. 394–396, 2009.

[43] Q. Huang and H. Li, “An efficient public-key searchable encryp-
tion scheme secure against inside keyword guessing attacks,” Inf.
Sci., vol. 403, pp. 1–14, 2017.

[44] A. De Caro and V. Iovino, “jPBC: Java pairing based cryptography,”
inProc. IEEE Symp. Comput. Commun., 2011, pp. 850–855.

[45] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: A framework for rapidly
prototyping cryptosystems,” J. Cryptographic Eng., vol. 3, no. 2,
pp. 111–128, 2013.

[46] D. E. Difallah, M. Catasta, G. Demartini, P. G. Ipeirotis, and
P. Cudr�e-Mauroux, “The dynamics of micro-task crowdsourcing:
The case of amazon mturk,” in Proc. 24th Int. Conf. World Wide
Web, 2015, pp. 238–247.

Jiangang Shu (GS’16) received the BE and MS
degrees from the Nanjing University of Informa-
tion Science and Technology, Nanjing, China, in
2012 and in 2015, respectively. He is working
toward the PhD degree in computer science in the
Department of Computer Science, City University
of Hong Kong, Hong Kong. His research interests
include security and privacy in crowdsourcing,
cloud computing security, and steganography. He
is a graduate student member of the IEEE.

Kan Yang (M’13) received the BEng degree
in information security from the University of
Science and Technology of China, Hefei, China,
in 2008, and the PhD degree in computer scie-
nce from the City University of Hong Kong,
Hong Kong, China, in August 2013. He is currently
a tenure-track assistant professor with the Depart-
ment of Computer Science at the University of
Memphis, Memphis, TN. His research interests
include security and privacy issues in cloud com-
puting, big data, crowdsourcing, and internet of

things, applied cryptography, wireless communication and networks, and
distributed systems. He is a member of the IEEE.

Xiaohua Jia (F’13) received the BSc and MEng
degrees from the University of Science and Tech-
nology of China, in 1984 and 1987, respectively,
and DSc degree in information science from the
University of Tokyo, in 1991. He is currently chair
professor with the Department of Computer Sci-
ence, City University of Hong Kong. His research
interests include cloud computing and distributed
systems, computer networks and mobile comput-
ing. He is an editor of IEEE Internet of Things,
IEEE Transactions on Parallel and Distributed

Systems (2006-2009), Wireless Networks, Journal of World Wide Web,
Journal of Combinatorial Optimization, etc. He is the general chair of
ACM MobiHoc 2008, TPC co chair of IEEE GlobeCom 2010 Ad Hoc and
Sensor Networking Symposium, area-chair of IEEE INFOCOM 2010
and 2015. He is fellow of the IEEE.

Ximeng Liu (S’13-M’16) received the BSc degree
in electronic engineering from Xidian University,
Xi’an, China, in 2010, and the PhD degree in Cryp-
tography from Xidian University, China, in 2015.
Now, he is a research fellow with the School of
Information System, Singapore Management Uni-
versity, Singapore, and Qishan Scholar in the col-
lege of mathematics and computer science,
Fuzhou University. His research interests include
cloud security, applied cryptography, and big data
security. He is a member of the IEEE.

Cong Wang (M’11) received the BE and ME
degrees in electrical and computer engineering
from Wuhan University, Wuhan, China, in 2004
and 2007, respectively, and the PhD degree in
electrical and computer engineering from the Illi-
nois Institute of Technology, Chicago, IL, in 2012.
He is currently an assistant professor with the
Department of Computer Science, City University
of Hong Kong, Hong Kong, China. He worked at
the Palo Alto Research Center, Palo Alto, CA, in
the summer of 2011. His research interests
include cloud computing security. He is a mem-
ber of the IEEE.

Robert H. Deng (F’16) is AXA chair professor of
Cybersecurity and director of the Secure Mobile
Centre, School of Information Systems, Singapore
Management University. His research interests
include the areas of data security and privacy,
cloud security and Internet of Things security. His
professional contributions include an extensive list
of positions in several industry and public services
advisory boards, editorial boards and conference
committees. These include the editorial boards of
IEEE Security & Privacy Magazine, the IEEE

Transactions on Dependable and Secure Computing, the IEEE Transac-
tions on Information Forensics and Securit, and Steering Committee chair
of the ACMAsia Conference on Computer and Communications Security.
He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

130 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

	Proxy-free privacy-preserving task matching with efficient revocation in crowdsourcing
	Citation
	Author

	Proxy-Free Privacy-Preserving Task Matching with Efficient Revocation in Crowdsourcing

