
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2021

Looking back! Using early versions of Android apps as attack Looking back! Using early versions of Android apps as attack

vectors vectors

Yue ZHANG

Jian WENG

Jia-Si WNEG

Lin HOU

Anjia YANG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
ZHANG, Yue; WENG, Jian; WNEG, Jia-Si; HOU, Lin; YANG, Anjia; LI, Ming; XIANG, Yang; and DENG, Robert
H.. Looking back! Using early versions of Android apps as attack vectors. (2021). IEEE Transactions on
Dependable and Secure Computing. 18, (2), 652-666.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6586

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yue ZHANG; Jian WENG; Jia-Si WNEG; Lin HOU; Anjia YANG; Ming LI; Yang XIANG; and DENG, Robert H.

This journal article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/6586

https://ink.library.smu.edu.sg/sis_research/6586

Looking Back! Using Early Versions
of Android Apps as Attack Vectors

Yue Zhang , Jian Weng ,Member, IEEE, Jiasi Weng , Lin Hou, Anjia Yang ,Member, IEEE,

Ming Li , Yang Xiang , Senior Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract—Android platform is gaining explosive popularity. This leads developers to invest resources to maintain the upward trajectory

of the demand. Unfortunately, as the profit potential grows higher, the chances of these Apps getting attacked also get higher.

Therefore, developers improved the security of their Apps, which limits attackers ability to compromise upgraded versions of the Apps.

However, developers cannot enhance the security of earlier versions that have been released on the Play Store. The earlier versions

of the App can be subject to reverse engineering and other attacks. In this paper, we find that attackers can use these earlier versions

as attack vectors, which threatens well protected upgraded versions. We show how to attack the upgraded versions of some popular

Apps, including Facebook, Sina Weibo and Qihoo360-Cloud-Driven by analyzing the vulnerabilities existing in their earlier versions.

We design and implement a tool named DroidSkynet to analyze and find out vulnerable apps from the Play Store. Among 1,500

mainstream Apps collected from the real world, our DroidSkynet indicates the success rate of attacking an App using an earlier version

is 34 percent. We also explore possible mitigation solutions to achieve a balance between utility and security of the App update

process.

Index Terms—Android, early version, attack vector, reverse engineering, code protection

Ç

1 INTRODUCTION

WITH the burgeoning popularity of smartphones, the
Android operating system has captured an important

part of the total market-share [1]. This is owing to Android’s
easy-to-join application development community for devel-
opers and vendors. Now, the developers extend their ser-
vice to the mobile domain by creating a lot of applications
(Apps). As of now, there have been more than 2.6 million
Apps on GooglePlay [2], and total download count has
crossed 197 billion [3].

However, the popularity of Android Apps makes them
the prime attack targets [4], [5], which may severely under-
mine users’ information security and privacy. For example,
the Man-in-the-Middle attack (MITM) can be launched on a
network enabled apps, which can give access to the user’s
information in the cloud [6] to the attacker without user’s
awareness. Reverse Engineering [7] allows an attacker to
explore the source code and extract the security-related
algorithms, which helps them design the attack vectors

easier. For example, an attacker can launch the repackage
attack based on the source codes. The repackage attack can
put apps under grave threats. In this attack, attackers inject
a payload into an App to repack a trojanized version, mak-
ing a benign App malicious.

To enhance security in Android Apps, developers and
vendors have adopted a variety of approaches over recent
years. To prevent the MITM attack, developers/vendors
protected their Apps’ network communications by using
technologies such as TLS/SSL or Access Control [8], [9]. To
defend their apps to be reverse engineered, developers
guarded their Apps’ source code with code protection
methods, such as Java-Native-Interface (JNI) [10] and layout
obfuscation [11].

Honestly, these countermeasures make Apps difficult to
compromise. But as all these countermeasures are applied
only to the “upgraded versions”, the older versions of these
apps remains vulnerable. For example, the famous social
media App facebook has more than 200 versions [12], some
of them might not be as secure as we want them to be.

The earlier versions and the upgraded versions may
share similar or exactly the same functionalities. For exam-
ple, despite some Game Apps (e.g., Angry birds, 2,048 etc.)
may constantly get updated with new features, including
addition of new roles or new scenes to make it more inter-
esting, but the basic idea or the rule of how to play the game
might not change that much. Meanwhile, to ensure develop-
ment efficiency, the newer versions of the App might not be
that “new” at all. They may build on the top of the earlier
ones. Therefore, their source code may also be similar.

Based on this observation, we ask a different questions in
this paper: instead of analyzing an upgraded App which is

� Y. Zhang, J. Weng, J. Weng, L. Hou, A. Yang, and M. Li are with the
College of Informatin Science and Technology / College of Cyber security,
National Joint Engineering Research Center of Network Security Detection
and Protection Technology, and Guangdong Key Laboratory of Data Security
and Privacy Preserving, JinanUniversity, Guangzhou 510632, China.
E-mail: {zyueinfosec, cryptjweng, Wengjiasi, linhou19, anjiayang, limjnu}
@gmail.com.

� Y. Xiang is with the School of Software and Electrical Engineering,
Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
E-mail: yxiang@swin.edu.au.

� R.H.Deng iswith the School of Information Systems, SingaporeManagement
University, Singapore188065. E-mail: robertdeng@smu.edu.sg.

Manuscript received 15 Nov. 2017; revised 23 Feb. 2019; accepted 8 Apr.
2019. Date of publication 30 Apr. 2019; date of current version 12 Mar. 2021.
(Corresponding author: Jian Weng.)
Digital Object Identifier no. 10.1109/TDSC.2019.2914202

652 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

1545-5971 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0003-4067-8230
https://orcid.org/0000-0002-5876-7875
https://orcid.org/0000-0002-5876-7875
https://orcid.org/0000-0002-5876-7875
https://orcid.org/0000-0002-5876-7875
https://orcid.org/0000-0002-5876-7875
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0002-7958-6571
https://orcid.org/0000-0002-0874-5010
https://orcid.org/0000-0002-0874-5010
https://orcid.org/0000-0002-0874-5010
https://orcid.org/0000-0002-0874-5010
https://orcid.org/0000-0002-0874-5010
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0001-5252-0831
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0003-3491-8146
mailto:
mailto:
mailto:
mailto:

ultimately secure, what can an attacker still do by analyzing
its previous vulnerable versions? Is there any vulnerabilities
that exists in earlier versions that will also work on these
upgrade versions? If so, how to explore it? In fact, in the
case of Games, it is easy to visualize the threat caused by
the leakage of the source code, even of an earlier version. If
the Game company’s competitor can obtain the source code
and algorithm by reverse engineering an earlier version of
the Game App, they may pirate a new App, which threatens
the intellectual property of original Game company. In the
following sections, we will show that attackers could launch
more serious attacks through exploiting vulnerabilities
existing inside earlier versions.

Our study inspects how such attacks could be launched.
In our motivation example, two types of attack vectors are
involved. They are, weak interface analysis and security
related algorithm (or keys) analysis. In weak interface anal-
ysis, we explore some insecure interfaces that exists in both
earlier version and upgraded version. We demonstrate this
type of attack based on 360 Cloud Drive. By analyzing the
network request, we found an insecure Restful API [13]
existing in earlier version on which we could launch the
MITM and delete the files on the Cloud Drive, which could
severely threaten security of the newer versions. In the secu-
rity related algorithm (or keys) analysis, we get the HMAC
key and algorithm that are used in App authentication on
the poorly protected Apps. Using this, an attacker may
build a trojanized version.

To better understand this problem, we introduce our tool
DroidSkynet, which can determine whether an App is suf-
fering from the threats brought by earlier versions. Our tool
accepts multiple versions of a given App, and if possible
extracts the source code from them. The runnable analysis
determines if an earlier version is still running properly,
while the similarity analysis returns whether an earlier App
is similar to its corresponding upgraded one. If both are yes,
vulnerability analysis returns the possibility that an early
version can be used as the attack vector.

The main contributions of our work are as follows:

1) We demonstrate that the poorly protected early ver-
sions of Apps could be used as attack vectors to
attack the corresponding upgraded versions. Three
attack instances are presented including Facebook,
Sina Weibo, and Qihoo 360 Cloud Driven.

2) We design a detection strategy and implement a detec-
tion tool DroidSkynet based on this strategy, which
analyses the risk brought by the earlier versions.

3) We run DroidSkynet on 1,500 Android Apps col-
lected from the Internet, then find that most of the
earlier versions of the apps have poor protection,
and the success rate of attacking an App using an
earlier version is 34 percent. To address this prob-
lem, we propose defense remedies to mitigate the
threats imposed by the earlier versions.

2 BACKGROUND AND THREAT MODEL

In this section, we describe the necessary concepts and ter-
minologies related to Android App protection, and we out-
line the threat model that our work is based on.

2.1 Reverse Engineering and Program Code
Protection

The following concepts of reverse engineering and program
code protection on the Android platform are important in
the context of our work.

2.1.1 Android Reverse Engineering

Android reverse engineering is a process to extract and
reconstruct the original Java source code out of Android
Apps [14]. The information about the functionalities and
implementation details of an App can be obtained by
Android reverse engineering, which needs some specific
tools such as APKTool [15], dex2jar [16] and AXMLPrinter2.
jar [7] to help obtain source codes and resource files from an
App or a binary executable file.

2.1.2 Android Program Code Protection

The opposite of Android reverse engineering is the Android
program code protection. Android program protection is an
efficient technique which prevents attackers from parsing
source codes. It protects the source code by making it diffi-
cult to extract the source codes and resource files.

There are many methods to implement the Android pro-
gram code protection. For example, Java native interface is a
standard used code protectionmethod. It provides interfaces
between Java codes and native codes [10] and allows an
Android App to execute C/C++ codes in the Java codes
layer. By JNI technologies, developers package the core busi-
ness logic in the C/C++ library and then call it in the Java
code layer. JNI makes the reverse engineering difficult since
C/C++ code is much harder to be reverse engineered than
the Java codes. As another famous code protection method,
layout obfuscation [11] can effectively obstruct the reverse
engineering process. In detail, source codes are replaced by a
series of meaningless characters, which makes source codes
unreadable for human but readable for machines.

2.2 Threat Model

Without loss of generality, we assume the following threat
model. To launch attacks, an attacker needs to find an early
version which could be utilized by attackers to carry a mali-
cious payload. The attacks extract specific code lines or other
useful information from the poor protected early versions,
which then can be used as building blocks of other attacks.

In our paper, we mainly focus on two types of vulnerabil-
ities, which correspond to two kinds of attacks. (i) Weak
interfaces that are existing both in earlier versions and
upgraded versions. By using theweak interfaces, the attacker
can explore the design fault of Apps and launch attacks. Par-
ticularly, we focus on MITM attacks. (ii) Revealing Security
Related Algorithms or Keys from early versions. As an
attacker, he can use these security-related algorithms or keys
to analyze and break the authenticate protocol between an
App and its server. He also can obtain an essential part of
source codes to build trojanized versions.

3 MOTIVATING EXAMPLES

In this section, we introduce attack instances on three
widely used Apps, in which the attackers can compromise
the upgraded version of these Apps through early ones.

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 653

3.1 Weak Interfaces

Upgraded releases use encryption to protect network traffic
from replay attack and eavesdropping attack, while its ear-
lier versions may be vulnerable to various attacks. More-
over, a weak Restful APIs [13] used in the early versions
may also be available, which may poses threats to the
updated versions. In Web security, if a poorly designed
interface has been explored, a hacker can compromise the
entire website utilizing this interface.

QIhoo360 [17] has been devoted to providing high-
quality security services for Chinese Internet users. Facing
threats coming from trojan horse, virus and rogue software,
QIhoo360 constructs a security ecosystem to identify and
eliminate malicious behavior. And with the development of
the QIhoo360, its service has covered almost all aspects of
security. For example, 360 Cloud Drive which provides a
secure storage service to a user, is one of the successful
products.

Although 360 Cloud Drive enforces the security of the
upgraded versions, the early ones are still exposed to
threats. We now demonstrate the workflow of our attack.
The goal of our attack is to find an insecure Restful API
existing in an early version and still works, then use it as an
attack vector to launch a MITM attack. In our experiment,
we use “Fiddler”, a client-side proxy-based tool, to analyze
the network traffic and replay user’s operation sessions.
The tool with an out-of-the-box functionality of replaying a
specific request, helping us to process our experiment
smoothly. We apply the tool to many versions of 360 Cloud
Drive and trigger each operation manually, including
downloading files, deleting files, renaming files. With the
help of such an experimental comparison, an insecure Rest-
ful API is exposed. This Restful API is designed to delete
unnecessary files in the user’s cloud storage initially. It can
be found in the version 1.2.2 but has been removed from the
version 7.1.0. By using this insecure Restful API, the attacker
can delete files. Individually, when a user attempts to delete
one file, we act as a man in the middle and block the
request. After we obtain a request, we tamper it by using
the insecure Restful API, which can lead the user to delete
another file. More seriously, by editing and replaying the
package, attackers are trivial to carry out such attacks, even
without the user’s awareness.

3.2 Revealing the Security Related Algorithms
or Keys

One motivation for using the Code Protection is to avoid the
security-related algorithms or keys being leaked. Once
attackers have obtained such algorithms or keys, attackers
may use them to launch various attacks. Although the ear-
lier versions may be different from the newer ones, attackers
still can extract some design idea of the protocols from the
earlier ones. No companies would like to restart their Apps
from zero every-time they release a new version. If the
attackers are lucky enough, they may even get a key from
the earlier versions, and this key is still being used in the
upgraded versions.

User authentication is significantly crucial to Apps,
while we found that there are vulnerabilities of authen-
tication code fragments in our targeted Apps. Generally,
the codes implementing user authentication use salted

password hashing to enhance security. Salted password
hashing is a preferable way to prevent passwords guessing
attacks [18]. The implementation process of salted password
hashing is described as follows: when a user inputs its pass-
word and presses the login button, a salt is retrieved from
hard-coded source code file and appended with user’s input
password to create a new hashed password used to protect
the original input password. The salt acts as the HMAC key
[19], which avoids the modification of the hashed password.
Besides, salted password hashing is also a way to authenti-
cate a client’s identity. For example, suppose that this
mechanism is not guaranteed; an attacker could extract all
features of authentication just through the network flow.
The extracted features then can be used to forge a fake cli-
ent. Our goal is to obtain the secret salt hard-coded in the
early version, which could be used to launch attacks above.

Sina Weibo is a Twitter-like platform for information
share and exchange. It is one of the most popular social net-
works in the world, which makes its users enjoy the conve-
nience heartily brought by the Internet. Worldwide, Weibo
has 222 million monthly active users, while the daily active
users is up to 100 million [20].

Through our observation, we found that when a client of
Sina Weibo App attempts to connect its server, the server
will receive authentication parameters from the client.
There are three authentication parameters required, incl-
uding username, password and a string of letters and
numbers. Through our analysis, we found that the third
parameter plays an essential role in authentication. Without
it or replacing it with another one during the authentication,
the login request will be refused by server. For a specific
user, this parameter will not change as long as the user does
not change his password. We want to find out how this
parameter can be generated.

For these upgraded versions of Weibo, the reverse engi-
neering process becomes powerless due to the usage of
heavy code protection. It motivates us to examine its early
versions. We choose early versions which are running prop-
erly. Running properly indicates that the authentication
mechanism used in the upgraded versions is the same as
the one in the early versions.

After manual efforts, we found the early version of Sina
Weibo (V2.4.0_1) has poor code protection. Note that, the
login request will be sent only after user inputs the identity
credentials and presses the login button. Thus, we take the
login button-pressed action as a breakthrough point. To cap-
ture such an action, we need to find the relationship between
the source code and user interaction. To this end, we first
search the layout files to find out where the intended login
button is. The layout file offers a human-readable structure
for describing UI screens. Each layout file corresponds to a
Activity. The Activity contains a set of functions which can be
executed when a particular event occurs on the UI described
by the corresponding layout file. After we found the function
triggered by the action of pressing the login button, we make
this function as an entry point. Start from this entry point, we
trace other functions called by this function. We split each
function by its function name and return value. The function
names expose their functionality, which could help us lock
our target function more quickly. For example, the function
“getLoginResponseContent” is to get the response from the

654 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

server. After several failed attempts, we found the algorithm
used to generate the third parameter mentioned above. The
algorithm takes a username, a password, and a regular salt
as inputs, then feeds these inputs to anMD5 function. Listing
1 illustrates the detailed implementation of the algorithm. It
can be observed that a static string named “KEY” is used as
the salt of MD5 hash function. This string can be extracted by
reverse engineering from the class “Constants”.

Listing 1. Detailed Implementation of the Generated-
Algorithm

Facebook. Facebook constitutes one of the largest social
networks in the world that owns a large user group. World-
wide, Facebook has about 1.79 billion monthly active users
(MAUs) [21]. With so many users, the security of its client
becomes particularly important, which attracts the attention
of researchers.

Authentication mechanism of Facebook is similar to
Weibo, which requires several parameters to build a valid
URL. Failed to reverse engineer the upgraded version (the
version 9.2), we attempt to reverse engineer its early release
to extract the core engine. Unfortunately, the reverse engi-
neering process is not as easy as that of Weibo, since part of
the source codes of Facebook’s earlier versions has also
been obfuscated.

To overcome this limitation, we use App repackage tech-
nique to build a malicious App. Attackers often use the
repackage technique to inject a malicious payload into a
normal App. We program a log-record payload, named
“Logger”, and inject it into the Facebook (version 1.9.2).
Logger registers the listener in the original methods of Face-
book (version 1.9.2), by which it can record the values of
interested, including inputs, outputs and temp values gen-
erated of a specific function.

The executing process of Logger is shown in Fig. 1. By
injecting the “Logger” into several early versions (three ver-
sions have been tested, including “V1.91”, “V1.6” and
“V2.2”), we restructure an algorithm of interested. The algo-
rithm used in Facebook takes a username and a password

as the dynamic inputs, a static string named “signatureKey”
as the salt of MD5 hash function, and finally returns the
hash value of MD5 hash algorithm.

4 ANALYSIS STRATEGY

By observing the aforementioned attack examples, we sum-
marize the analysis and attack steps as follows:

1) Early versions discovery. For a given upgraded App,
the attacker needs to find its early versions. Based on
these, the attacker can perform his analysis.

2) Runnable analysis. When the attacker explores an
insecure interface, the attacker needs to select
early versions that run properly from all early
ones he found. An earlier version running prop-
erly indicates that a weak interface is still being
used.

3) Similarity analysis. The attacker needs to ensure the
early version he finds are similar to the correspond-
ing upgrade one. A high similarity between an ear-
lier version and an upgrade one indicates that the
developer does not change the functions of this App
too much, by which an attacker may still extract use-
ful information from the earlier version (i.e., security
related functions or keys).

4) Vulnerability analysis. The attacker needs to further
narrow down the selected early versions to only
those that are vulnerable.

5) Attack. Attackers analyze the common functionalities
between a vulnerable earlier version and an upgraded
version. The vulnerabilities can be explored in this
process.

Algorithm 1. Analysis the Success Rate of Attacking an
App

Input: S (an Apps’ different versions)
Output: compromisableRate (the success rate of attacking

an App)
1 ScprðÞ=;;
2 for i ¼ 1; i � m; do

3 Si
sorted ¼ sortByReleasedTimeðSÞ;

4 n ¼ sizeofðSi
sortedÞ;

5 for j ¼ 1; j � n; do

6 anewS
i
sorted:popðn� 1Þ;

7 aj ¼ Si
sorted:popðjÞ;

8 if isRunnableðajÞ then
9 rraj=getSimilarityðaj; anewÞ;
10 praj=getVunRateðajÞ;
11 cpraj= rraj * praj;
12 ScprðÞ:addðcprajÞ;
13:
14 end
15 j=j+1;
16 end
17 i=i+1;
18 end
19 return getMaxðScprÞ;

There have been a lot of related works exploring vulner-
abilities from poorly protected Apps, and thus the last

Fig. 1. The executing process of “Logger”.

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 655

phase is out of the scope of this paper. We concentrate on
the first four phases to identify early versions that are poten-
tial to be candidates.

We give the basic algorithm as shown in Algorithm 1.
Before we start to describe our algorithm, Table 1 lists some
functions which are used. We will detail each phase in the
following sections.

4.1 Early Versions Discovery

To identify whether an App is an early one, we should
know the right time when this App was released. In general,
the creation time of an App is the time users download it,
which does not include the information about when the
App’s developer releases it. However, some downloaded
page has recorded the published time. On the other hand,
Through experiments, we find that APK files can be
unpacked by using unpacking software and the unpacked
files indicate creation time of the App.

4.2 Runnable Analysis

Recall that attackers need to know the early versions he
found are running properly. Our idea based on a simple
observation, which enables us to know an App is running
properly or not. Apps can be classified into two categories:
those use the internet connection, and those do not. For an
App does not use the internet, it will always work whenever
a user installs it since Android System is downward com-
patible. For an App uses the internet, if the server-side stops

providing the service to the App, the App would stop work-
ing. For these Apps, we also need to take the server-side
into consideration. Based on this observation, we propose
our algorithm in Algorithm 2 (isRunnableðaÞ).

Algorithm 2. Judge Whether an Early Version Runs
Properly (isRunnable (a))

Input: aearly
Output: Boolean value: ISRUNNABLE

1 ISRUNNABLE= FALSE;
2 if reqNetðaearlyÞ then
3 if

(ðgetNumAvaURLðaearlyÞ=getNumURLðaearlyÞ �
THRESHOLD) OR (containSAURLðaearlyÞ) then

4 ISRUNNABLE= TRUE;
5 return ISRUNNABLE;
6 end
7 ISRUNNABLE= FALSE;
8 return ISRUNNABLE;
9 end
10 else
11 ISRUNNABLE=TRUE;
12 return ISRUNNABLE;
13 end

In Algorithm 2, we define the threshold to be 50 percent,
which represents the ratio of available URLs in total URLs
found in an App’s source codes. We regard the App is run-
ning properly if the ratio of its available URLs in total URLs
is larger than the threshold.

The function containSAURLðaÞ will return the value
TRUE if source codes of an App a contain sensitive URLs.
Specifically, a URL is sensitive if it contains the following
information:

� User action. During the process users requesting service
from a server, user action represents the command
which a user requests the server to execute. Such action
falls into two classes: operation request and authentica-
tion request. Operation request means users want to
operate their resource on the server, such as deleting
files or viewing files. Authentication request includes
the login request and registration request.

� Action sink. Similarly, the sink of the action is consid-
ered sensitive. We want to know which resources
users want to operate.

� Identity. Users’ identity information exists in the sys-
tem, such as phone number, account, email address,
and password.

� Hash value. As discussed earlier, password hashing
with salt is a preferable way to protect the integrity
of a password. A hash value of the password and
username can be attached in the URL.

For example, suppose that there is a URL in such a for-
mat: http://a.com?un=a&pwd=b&key=c&op=delete&fn=1.
txt. In this example, a user with a username “a” and a pass-
word “b” wants to delete (op=delete) a file named “1.txt”
on his cloudDrive. The parameter key is a generated hash.
In this case, deleting the file is the user action, while the file
name is the Action sink. Username and password is his
identity information.

TABLE 1
Function List

Function Name Description

reqNetðaÞ returns TRUEwhen an App a
requires a network connection.

getNumURLðaÞ returns the total URL numbers
existing in source codes of an App
a.

getNumAvaURLðaÞ returns the available URL
numbers existing in source codes
of an App a.

containSAURLðaÞ returns TRUEwhen the source
code of an App contains sensitive
(S) URLs which are also available
(A).

getCreateTimeðaÞ returns the creation time of an
App a.

S:pushðaÞ pushes an element a into a set S.
S:popðiÞ returns an element’s index i from

a set S.
sizeofðSÞ returns the number of elements of

a set S.
getMaxðSÞ returns the Max value of a set S.
sortByReleasedTimeðSÞ returns a sorted set Ss of a set of

App S. in Ss, an App’s index will
be lower if its released time is
earlier.

getSimilarityða; bÞ returns the similarity between
App a and b.

isRunableðaÞ returns TRUEwhen an App a is
running properly.

getVunRateðaÞ returns a value that indicates the
possibility of attacking an App a.

656 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

http://a.com?un=a&pwd=b&key=c&op=delete&fn=1.txt
http://a.com?un=a&pwd=b&key=c&op=delete&fn=1.txt

4.3 Similarity Analysis

To know the similarity between an early version and a new
one, we introduce SimiDroid to analyze Apps. SimiDroid
[22] is a framework for comparing Android Apps. It can
identify and explain the similarity and changes between dif-
ferent Apps. It comes with three out-of-box plugins, which
allows researchers to compare with two Apps on diffe-
rent levels. These plugins are method-based comparison,
resource-based comparison, and component-based compar-
ison. We focus on the method-based comparison since it
will give us the information about whether the developer
has changed its functionality of Apps or not. The method-
based comparison can extract all the method signatures and
abstract representations of statements from two different
Apps, then calculate the similarity between the two Apps.
These signatures and descriptions are not only based on
constant values (names of method or parameters) but also
based on its structures. Therefore, even if the developer
uses the layout obfuscation technology to protect its source
code, the result will not be impacted.

4.4 Vulnerability Analysis

We should ensure that attackers can compromise an alter-
nate early version. What makes an App vulnerable? First,
the source code is not heavily protected. Otherwise, the
attacker can not obtain enough information from it. Second,
it does not use cryptographic algorithms to preserve its
essential parameters.

4.4.1 Source Code Protection Analysis

To address the first problem, we need to know how well an
App protects its source code. We first classify Android pro-
gram code protection techniques into two types: Logic pro-
tection (LP) and File protection (FP). LP protects logic
functionalities of source code files by reducing the readabil-
ity of source code. The most frequent methods of LP is lay-
out obfuscation. FP prevents source code files from being
leaked in an App file. It is a method to prevent attackers
from extracting all source code files. The most common
technique of FP is JNI. Therefore, we concentrated on JNI
technology in this research.

Logic Protection Handling. The vulnerability of an App is
closely related to the readability of its source code. We
define that when the layout obfuscation (LP) is applied, the
layout obfuscation rate is one of the important factors which
determines if an App can be compromised. The layout
obfuscation rate RLP can be calculated using the formula

below: RLP ¼ ClassNumLP
ClassNumLPþClassNumNOLP

. The ClassNumLP is

the number of classes is obfuscated by developers in source
code while ClassNumNOLP is the number of classes without
obfuscation.

File Protection Handling. The JNI functions exposed to the
upper layer is often elementary, which covers the underly-
ing logic in its native layer. When the JNI (LP) is applied, an
attacker can use the JNI-libs directly without understanding
its logic. For some attackers, they do not care about whether
the FP is used or not. For example, in the case of Facebook,
we use the source code of the original App, including all the
JNI-libs, to repackage a malicious App. During the whole

process, we use the JNI-libs as building blocks of our mali-
cious App without understanding them. However, for some
other attackers, they may also care about the implementa-
tion of the application’s JNI-libs. To cover these two cases,
we introduce the impact factor of FP IFFP ðIFFP � 1). The
IFFP will be a part of the result, but its value can be custom-
ized. In other word, we can detect whether there is File Pro-
tection, but we will let the attackers or developers decide if
it matters or not.

4.4.2 Cryptographyic Algorithms Analysis

As discussed earlier, the attacker can extract insecure inter-
faces from an earlier version. What makes an interface not
secure? Insecure interfaces usually accept plain-text as their
inputs and submit it directly without any cryptographic
process. Based on this observation, we introduce taint-
analysis technology to trace how the parameters pass
through from one function to another. For Android applica-
tions, taint analysis enables us to build a path from a specific
entry point, known as the source, to a particular exit point,
known as the sink. To determine whether cryptographic
algorithms are used, we taint return values of encryption
APIs as the source and taint inputs of network APIs as the
sink. Taint technology can identify if there are crypto-
graphic algorithms applied to secure the interfaces in a
given App, but it can not decide how many parameters sub-
mitted by this interface are. Therefore, we introduce the
impact factor of IFcrypto to address this problem. A devel-
oper or an attacker can custom this value.

We now can decide whether an App is a vulnerable
one. Specifically, we present the definition of the VunRate,
which indicates the possibility of attacking an App a.
The VunRate can be described as following: VunRate ¼
ð1�RLP Þðð1� IFFP Þ � ð1� IFcryptoÞÞ.

5 IMPLEMENTATION EXPERIENCE: DROIDSKYNET

Based on Algorithm 1, we implement a tool that can identify
whether an App is suffering the potential security risks. We
name the tool DroidSkynet.1 With the assistance of Droid-
Skynet, we are trying to ring the alarm to developers that
attackers could launch an attack with the help of the early
versions. Furthermore, DroidSkynet can also distinguish
which kind of code protection technique is used on a given
App and give us an idea of trends about App protection
techniques.

5.1 Overview Design

In this section, we give an overview of “DroidSkynet” and
describe the key techniques employed in our framework.
Fig. 2 shows the entire workflow of “DroidSkynet”.

DroidSkynet consists of five major components: funda-
mental information analysis, source code extractor, runn-
able analysis, similarity analysis, vulnerability analysis.

1. The word “Skynet” comes from the famous movie “Terminator”.
In this movie, an artificial intelligence named “Skynet” comes back
from the future by using a time machine. Its mission is to kill the young
leader of the resistance and halt humanity. Although our DroidSkynet
cannot go back in time, it can find attack payloads exiting in the early
version and use it to launch attacks for updated versions.

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 657

DroidSkynet accepts multiple versions of an App and
returns the possibility of attacking this App. To perform an
analysis, the DroidSkynet needs to compare the latest
version with each early versions one by one. Specifically,
The basic information analysis component parses the
“AndroidMainfest.xml” files inside the latest version and
an earlier version, then extracts the basic information from
them. The information includes the package name, version
code, and version name. The basic information of the latest
one will be cached in the memory and kept for the later
usage. This part enables us to know which App and which
version we are testing on, as well as the release time of each
App. Source code extractor extracts source codes from an
APK file. The runnable analysis determines whether the
given App is a runnable one using Algorithm 2. These two
components only work with the early versions. After that, if
the early version of the application is runnable, we use the
tool of similarity analysis to analyze the similarity between
the lasted one and the earlier one. At the same time, vulner-
ability analysis component analyzes whether the earlier ver-
sion is being protected. It returns a value that indicates the
possibility of attacking the previous version of the App.
Finally, after analyzing all the versions, the tool will com-
bine the analyzed results above, and give the conclusion on
whether the App is suffering from the threat from earlier
versions.

5.2 Core Engine Implementation

Among all the components, basic information analysis,
source code extractor does not contain too many challeng-
ing issues, while the similarity analysis is based on the Simi-
Droid. Thus, in this section, we will give more details about
how we implement runnable analysis and vulnerability
analysis.

5.2.1 Runnable Analysis

For an App that does not use the internet, it will always
work whenever a user installs it, while Apps that use
the internet, we need to test whether the URLs used in the
Apps are available. To identify whether an App uses
the internet or not, we parse the “AndroidMainfest.xml” file
of an Android App. This file records run-time permissions
of an App. If an App uses the internet, it must register
on the permission tree in this file. In other word, if the str-
ing “uses-permission android:name="android.permission.
INTERNET"” can be found in the file “AndroidMainfest.
xml”, the App may use the network connection. On the
other hand, since Apps often require excessive permission,

an App with the INTERNET permission does not mean that
the App needs network connection undoubtedly [23]. To
address this problem, we introduce the static analysis
framework Soot to search the Internet-related APIs [24].
Soot is a Java optimization framework that can process
Android source code from a given App. It can convert the
Android source code to a Java instance. The functions
getApplicationClassesðÞ and getMethodsðÞ can extract the
classes and the functions. We search each class to find
whether the internet related APIs has been used, such as
getInputStreamðÞ and openConnectionðÞ.

On the other hand, DroidSkynet goes through the source
code files and returns the number of available links. To
identify whether these found URLs are available, DroidSky-
net follows the semantics of the HTTP status codes for com-
municating status information in HTTP. We link each URL
found in the source codes, which represents the outcome of
the connection action. According to the status codes, we can
determine whether the connection is available. For example,
the status code 200 is a response to a successful request,
while the status code 404 indicates that the server has not
found anything matching the Request-URL. Actually,
although some URL requests may depend on the other pre-
vious requests, the status code also is still an acceptable
solution. For example, the data downloading request can
only be sent when the authentication request has success-
fully passed through. When the authentication fails, the sta-
tus code would be 401. The similar status codes include 403
and 407. In other words, if we obtain the status codes above,
we can know that the request URL is in protection but still
available. On the other hand, according to our previous dis-
cussion, running properly cannot be easily determined by
analyzing the number of available links. The privacy-related
URLs should also be taken into account. Each URL repre-
sents a potential sensitive source.

5.2.2 Vulnerability Analysis

Protection Method Analysis. Protection method analysis iden-
tifies which protection types it used. One essential module
of the component protection method analysis is APKTool,
which is also the critical factor in designing the source code
extractor. APKTool is a tool to reverse engineer Android
Apps. It decodes resources into the almost original form,
such as AndroidMainfest.xml and layout files. At the same
time, it parses the “classex.dex” inside the APK file, and
changes the DEX file into SMALI files.

After the source code extracting, we start our analysis to
identify the LP and FP. To determine whether source code
protected by LP, we highlight identification methods of lay-
out obfuscation. Our basic idea is checking whether the
names of extracted source code files satisfy the principle we
predefined. We take filenames as identification information
since filenames can fully retain characters of source codes
from original programs. After the process of reverse engi-
neering, source code files are located in the folder “smali”.
Names of original classes are transformed into filenames in
this folder, and package names have turned to the directory
names. In our experiment, we only consider the class name
as the identifying indication to check the layout obfuscation,
since it rarely happens that an App obfuscates its valuable
name in classes but leaves the class names as the plain-text.

Fig. 2. Work flow of DroidSkynet.

658 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

uses-permission android:name='android.permission.INTERNET'
uses-permission android:name='android.permission.INTERNET'

Layout obfuscation often uses meaningless or non-
understandable valuable names instead of meaningful ones.
For example, after being obfuscated by tools, the code’s
valuable name is made up of lower-case letters which
counted from one to three (taking “abc” as an instance). The
regular expression [25] will match a word in a specific for-
mat, and the technology used to search for and substitute
words satisfies the predefined rules. There are ready-made
algorithms provided by the Java library to find these obfus-
cated words. The regular expression of such words can be
expressed as “½̂a� z�{1,2,3}$”.

On the other hand, there are some obfuscated code lines,
such as some function names, which do not satisfy such a
regular expression in Apps. These obfuscated function
names use some special characters to replace original varia-
bles, which makes the first regular expression failed to
match. There exists a generic naming rule called camel-case
naming to name a Java class [26]. Practically, most of the
class names that do use the camel-case naming rule are
authored by developers, not by the machine. Based on such
a fact, we construct a function to identify class names that
satisfy the camel-case pattern. We use this function only
after the first regular expression fails to match, to improve
the performance on the running time. If the program source
codes match the first type of regular expression, the codes
are protected by obfuscated methods which imply that it is
unnecessary for us to go on the second type of regular
expression match. If changing the order of this two func-
tions and putting the second type ahead, we need to loop
over each class name and check if it satisfies the camel-case
naming rule and only after all the looping is done can we
get the result.

For these Apps that use the FP to protect their source
code, we focus on these using the JNI technology. If the JNI
technology is used, we can find C/C++ libraries for the
native interface called in reverse engineered source code.
And those libraries often appear at the same location in the
App (in the folder “lib” at the directory root) and use the “.
so” ending with their filenames.

It is noteworthy that there are also many Apps using
some third-party libraries for service (e.g., for LBS service)
or profits (e.g., show the AD views). In this case, the App
itself is not protected by the protection method, but its
libraries use some program code protection. We think that
an App like this should not be considered as protected since
the libraries are not used to build their core logic or publicly
accessible. These libraries are excluded when we determine
whether an App is protected by protection methods. To
achieve our goal, we collecte the names of commonly used
third-party libraries in a database. All libraries found will
be abandoned if it is also in the database.

Finally, we introduce the feedback component into our
analysis to decrease the false rate. According to the results
from vulnerability analysis, there exists a rule that the
upgraded Apps released are more likely with less vulnera-
bility rather than the early ones. For example, if we found
an App that was published in 2011 is secure, but its
upgraded version that released in 2018 is not secure, there
may be something wrong with our analysis. In this case, we
will mark these samples, and will perform a manual effort
thereafter to confirm the result.

Cryptographic Algorithms Analysis. Taint-analysis enables us
to determine whether cryptographic algorithms are used,
we taint return values of encryption APIs as the source and
taint inputs of network APIs as the sink. Our tool extends
the Amandroid framework [27], which provides prerequi-
sites for a taint analysis. We now introduce how we extend
Amandroid for our purpose. Particularly, by customizing
the profile “TaintSourcesAndSinks”, we can trace the taint
paths of interest. We care about the following sources
and sinks. For the sources, we care about the functions
that can process the encryption or decryption, such as
cipher:doFinalðÞ. The taint sinks involve network APIs
and functions with the capabilities to post data to the
server. For example, we taint the system network function
urlConnection:getOutputStreamðÞ:writeðÞ.

6 EXPERIMENTS AND EVALUATION

6.1 Experimental Samples Collection

Principles to select appropriate Apps are required. The time
span is a filter condition. However, the time partition where
the branches are located cannot be easily determined by the
year of an App released. For example, when some Apps are
born, another App has already been released for several ver-
sions, even if they are in the same category. At the same
time, for Apps released recently, samples for experiments
may be not enough, which leads to the lack of intensive
comparative analysis. Thus, we collect three versions of
each app. The latest version, the earliest version we can
found and the version that released in the middle time.

Based on this principle, we collect 1500 Apps from the
top 10 categories with 150 in each category, across the three
branches (50 in each branch). The 10 categories are: Games,
Players, Browsers, Download-managers, Finance, Fitness,
Message, Tools, Personal, Social. We collected samples from
the Google Play and some third-party markets, such as
UptoDown [28]. Fig. 3 shows the released time of each
branch. It can be observed that most early versions were
released in 2013 and middle versions were released at 2015,
while the upgraded version was released at 2018.

6.2 Runnable Analysis Evaluation

We first perform the runnable analysis. To this end, Droid-
Skynet needs to check an App’s network usage and how

Fig. 3. Released time of each branch.

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 659

many URLs are still available. Table 2 shows the number of
distribution of the URLs in different categories. It can be
observed that, for most apps that use the internet, the num-
ber of URLs existing in one App is around 200 on average.
The Message Apps contain more URLs than any other cate-
gories. The number of URLs existing in one App is around
330 on average. One app named “Email TypeApp” even
contains 711 URLs. The numbers of URLs are gradually
increasing by versions, which indicates that Apps becoming
more and more complicated.

Fig. 4 provides a detailed picture of the Apps’ network
usage. From the figure, we can learn that most Apps need a
network connection. Specifically, among 500 early versions,
there are only 64 Apps that do not need the network connec-
tion. According to the previous discussion, these Apps are
considered as runnable ones.

In Figs. 5 and 6,we show the average ratio of availableURLs
and sensitiveURLs. From the figures,we can see that each cate-
gory has more than 50 percent of URLs that are still available
now. The middle categories have much higher radios. In the
cases of Personal, Fitness Downloader-managers and Players
are even exceeds 70 percent. This indicates that most function-
alities of theseApps are running properly. Among all the avail-
able URLs, there are almost 30 percent considered as sensitive
ones. All these URLs that may contain sensitive operations,
such as log in the server and delete users’ files.

6.3 Similarity Analysis Evaluation

We then perform the similarity analysis. To this end, Droid-
Skynet combines all three branches, and compares the

similarity between different versions. We first check meth-
ods shared by three different versions. We considered two
cases here: (i) these methods are existing in all the three ver-
sions with no change. (ii) these methods are existing in all
three versions that are similar to each other. The latter one
is used to describe methods shared the similar method sig-
nature and execution logic. These comparison methods are
provided by SimiDroid. Fig. 7 shows the result. On average,
for each app in each category, there are more than 23,000
methods existing in all the three versions without change.
Compared with it, similar methods are much less. This indi-
cates that developers tend to use the methods with no
change than re-implement it. Among all the Apps, Games

TABLE 2
The Number Distribution of the URLs in Different Categories

Categories
Early

Version
Middle
Version

New
Version Average

Game 154 195 222 190
Player 170 205 254 209
Browser 196 191 196 194
Download-
Managers

145 141 151 145

Finance 180 184 187 183
Fitness 150 200 209 186
Message 161 378 446 328
Tools 156 149 158 154
Personal 111 115 115 113
Social 157 263 329 249
Average 158 202.1 226.7 195

Fig. 4. The distribution of network usage in each category.

Fig. 5. The average ratio of sensitive URLs and available URLs in each
category (early branch).

Fig. 6. The average ratio of sensitive URLs and available URLs in each
category (middle branch).

Fig. 7. The distribution of methods shared by three different versions.

660 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

have more identical and similar methods than any other
categories, since Games usually are more complicated than
other Apps.

We then check the similarity between the early version
and the upgrade version, and that between the middle ver-
sion and the upgrade version. Fig. 8 shows the result. On
average, for each app in each category, the similarity
between an early version and an upgrade version is
around 30 percent (29.7 percent), while that between a mid-
dle version and an upgrade version is around 50 percent
(47.3 percent). Among all the Apps, Games have the larger
similarities between each version, when compared with
other Apps. This confirms our statement in the introduction
section. Games may add new roles or new scenes to make it
more interesting. The basic idea of how to play may not
change that much. On the other hand, Message Apps, such
as Wechat and Whatsapp, are less similar to their corre-
sponding upgraded versions. For these Apps, users have
higher requirements on the communication speed and user
experience, even security. Therefore, the developers of these
Apps would like to improve these features to fulfill the
user’s requirements.

6.4 Vulnerability Analysis Evaluation

To demonstrate that DroidSkynet provides high-quality
intelligence about potential attack detection, we use a man-
ual method to evaluate it. The samples for evaluation are
across the Fitness category, which includes 150 Apps in
total. In our manual method, we concerned the accuracy of
the protection method analysis. In our experiment, the
DroidSkynet can detect all LP and FP without error rate.
The reason because we only care about layout protection
and JNI protection, which are relatively easy to be identi-
fied. In our future work, our tool will support more complex
LP and FP features.

We first show the protection methods used in all three
branches in Figs. 9, 10 and 11. It can be observed in Fig. 9
that Apps without any protections are gradually declining.
As time passes, the numbers without any protection are
even falling down to zero in some categories, which indi-
cates that today’s developers value the code protection
more than before. Thus, compromising an upgraded App is
much harder than compromising an early one. The most
rapidly declining category is Finance, and we infer that
these Apps involve payment functions, which makes devel-
opers have to strengthen code protection to keep attackers
away. However, for others such as Games and Messages,

their slopes are more smooth, and they have a low position
at the beginning. These indicate that their codes are well
protected at the beginning of development. The reasons for
those Apps in such categories often are developed by enter-
prises rather than individual developers. The enterprises
think highly of the security of their products and possess
plenty of available software development assets, which
makes the creation of individual developers show no
advantage in such areas. In contrast, creativity and innova-
tion characteristics make more sense than security in Per-
sonal apps which leads the slope of such categories to
decrease more slowly while their start points are higher,
compared with other categories.

From Figs. 10 and 11, we can see that LP is generally a
preferred protection method in the early stage. The reason
for this is that, as a commonly used LP method, layout
obfuscation has been applied widely in other program code
protection fields. Thus, it is trivial to apply LP into Android
code protection. All three figures indicate that although
Apps are protected very well nowadays, it is possible to
have an early version with poor protection.

Fig. 12 shows the cryptographic Protection methods used
by Apps. It can be observed that Apps with cryptographic
Protection are gradually increasing by versions, which indi-
cates that compromising an upgraded App is much harder
than compromising an early one. Among all Apps, the devel-
opers of Games would like to strengthen their Apps using the
cryptographic methods. There are many cheating tools used

Fig. 8. The average similarity between early version and upgrade version
and that between middle version and upgrade version.

Fig. 9. Apps without any protection.

Fig. 10. Apps with FP protection.

Fig. 11. Apps with LP protection.

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 661

in mobile games and dozens of them for the popular ones,
which breakS the balance of Games. Thus, involving the cryp-
tographicmethods is a way to dealwith the balance issue.

Finally, based on all the above factors and Algorithm 1,
we can calculate the success rate of attacking an App by
using the early versions as attack vectors. In our case, The
value of IFcrypto and IFFP both are set to 0.5. Table 3 shows
the result of our final result. DroidSkynet identifies that the
success rates of attacking an App using an “middle” version
and an early version are 21 and 13 percent, respectively. The
success rate of attacking an App using an earlier version is
34 percent in total. All these affected Apps also can be
exploited to passively either disclose various types of in-
App data, such as hash salt, or poor APIs which may subse-
quently cause security problems. Although some categories
in our experiment are not affected much, such as Message
category, it does not mean that these Apps are secure
enough. One reason for that is the detection results are rele-
vant to the size of the sample set.

7 DISCUSSIONS

7.1 Potential Threats

We have already known that early versions of Apps can be
used as attack vectors. When an early version is reverse
engineered successfully, attackers could also know the fol-
lowing information:

1) Core Engine. The obvious examples are Games and
Tools applications we mentioned in the previous

part. Getting the program code of early versions will
help attackers to rebuild a pirated App, which
threatens the intellectual property of the original
developers.

2) User Interface Design. Some software’s UI has
changed a little from the very beginning. Layout
descriptions are texts showed in layout files located
in the folder /res/layout/. By using reverse engi-
neering, attackers could rip off the UI design of
Apps.

3) Programming Style. The programming style is also the
privacy of companies [29] which can be extracted
from Apps. Few companies often change the pro-
gramming style, while a good programming style
cloud optimizes the efficiency of coding.

4) Potential Vulnerabilities. As we discussed before,
access authentication and some weak interfaces can
be used to launch attacks. What’s more, some attack-
ers may get elicited through the early versions, using
it to crack the App, and bypassing the registration of
a chargeable App.

7.2 The Root Cause of the Problem

The competition among enterprises becomes more intensive
nowadays. An App without good maintainability and
extendibility would not exist for a long time. Unfortunately,
version upgrading is a complex process, which would cost
a lot of financial cost and resources. To update the version
more smoothly, developers should not only achieve func-
tionality but also take the high cohesion and low coupling
into consideration during the design process. Thus, when
the vulnerability occurs, developers patch it by adjusting
modules instead of rewriting the entire App, which makes
the majority of old modules are reused as parts of the
upgraded ones. Therefore, vulnerabilities existing in early
versions still be kept in upgraded versions.

In terms of Users, old users may refuse to upgrade Apps
because they cannot afford the high cost of computation
and storage brought by upgraded versions providing more
services. Some former users may not want to update their
Apps since upgraded versions often require better devices,
more computing power, and more storage space. Thus,
early APIs used in old versions cannot be shut down
directly, despite that they may be not secure enough.

7.3 Mitigation

It is difficult to prevent Apps suffering from such attacks
since developers can not abandon users who don’t want to
upgrade their Apps. In our real life, some Apps would like
to update their client side for every few weeks, while the
server will still support early versions until several months
later. This is the right balance spot between security and
convenience.

Although some Apps cannot be compromised today, this
does not mean that it will never be reverse engineered in
the future. With the advancement of reverse engineering
technology, Apps are thought to be secure at present, may
be compromised some day. Thus, continuously keeping the
developing process of program code protection and regu-
larly making early APIs be shut down, are mitigation of
such problems.

Fig. 12. The apps with cryptographyic protection.

TABLE 3
The Success Rate of Attacking an App Using an Early

Version or a Middle Version

Categories Middle version Early version

Game 24.6% 18.7%
Player 21.5% 10.6%
Browser 25.3% 20.3%
Download-managers 21.4% 14.2%
Finance 23.4% 14.5%
Fitness 20.3% 11.3%
Message 10.7% 5.1%
Tools 21.4% 15%
Personal 21.9% 11.5%
Social 19.9% 10.6%
Average 21% 13.1%

662 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

8 RELATED WORK

Android has become a popular platform in the smartphone
area and has attracted considerable attention of researchers.
The tools and the technologies we used in our work are also
widely used in other works.

8.1 Obfuscation Detection

We now review the obfuscation detection technologies,
since, in our paper, we designed our own obfuscation tech-
nology. Omid Mirzaei et al. [30] proposed AndrODet to
detect identifier renaming, string encryption, and control
flow of android applications. The online learning techniques
have been applied, which enables the resource-limited envi-
ronments can run it properly. Shuaike Dong et al. [31]
designed efficient and lightweight detection models for
identifier renaming, string encryption, Java reflection, and
packing. After a large-scale investigation, they depict a
holistic view of the usage of obfuscation. For example, mal-
ware authors prefer to use the string encryption. Yan Wang
et al. [32] developed techniques to analyze obfuscator Iden-
tification for a given Android App. The method is based on
machine learning and could determine whether the App
was obfuscated and which obfuscator was used. They also
explain how the obfuscator was configured. All these works
are well addressed their own goals. However, their technol-
ogies cannot be applied to our scenario directly. A critical
goal of our work is to evaluate how much source codes has
been obfuscated in a single App, none of these tools can ful-
fill our requirement.

8.2 Reverse Engineering

Several researchers have considered reverse engineering as
an essential tool in Android Apps analysis. In Android mal-
ware detection, reverse engineering plays an indispensable
role, especially in Android static malware detection. To
smoothly carry out the static analysis, analysts use reverse
engineering to extract source codes in the start stage. For
example, RiskRanker [33] tried to detect zero-day malware
by analyzing the dangerous behaviors of Apps based on
static analysis. The risky behaviors are defined based on
the source codes extracted by reverse engineering. Droid-
Analytics [34] proposed a solution to obtain signatures that
can be used to develop an anti-virus software [35]. Work
[36] focused on the UI design, which may make contribu-
tions to the repacking detection of malware. Only by reverse
engineering, researches could get the layout files in Apps.
There is one highlight of that reverse engineering is the base
of machine learning-based malware detection [37], [38],
[39], [40]. Apart from malware detection, the second area of
related work includes information leakage on a mobile
device. CHEX [41] and DroidSafe [42] focused on the inter-
component communication in an App and utilize the
reverse engineering as a building block to analyze whether
Apps leak the privacy or suffer from the attack of compo-
nent hi-jack. LeakMiner [43] and FlowDroid [44] considered
the callback and CFG generated by the reverse engineering
tools, by using the static taint analysis to target the informa-
tion leaks. To detect which App leaks information, reverse
engineering also provides an Android-supplied life cycle
models, as the Dexteroid [45] did in their work.

8.3 Vulnerabilities and Attacks on Android Apps

Vulnerabilities and attacks on Apps are essential issues to
research on Android Security. Many works emphasized on
the attacks which are brought by the third-party compo-
nents. For instance, LayerCake [46] tried to separate the
untrusted third-party advertising components from App,
which brings threats to users’ privacy. Other works, value
the security problems existing in Apps. Specifically, the vul-
nerable Apps may leak sensitive information or compro-
mise the data integrity on Android devices. For example,
AppSealer [47] and CHEX [41] focused on the component
hi-jacking attacks in Android Apps, which are caused by
unauthorized component interactions. SUPOR [48] used UI
patterns to identify sensitive user input, which may be vul-
nerable to attack. Randroid [49] and Roee Hay’ work [50]
identified the architecture and communication patterns
which pose potential threats for Apps. And Cao’work [51]
focused on vulnerabilities and attacks associated with
Android system services. All these attacks cared about a
part or several parts of Android System or Apps but seldom
took the early versions into consideration.

Chen’s work [52] used different approaches but equally sat-
isfactory resultswith that of ourwork’s in analyzing the vulner-
abilities and attack vectors in smartphones. We know that
many iOS libraries have Android versions which are freely
available, while IOS libraries are often closed source. Chen’s
work was based on an idea that analyzed Android libraries to
understand relations between the libraries on both Android
and IOS, in which way the attackers could learn behaviors of
IOS librarieswithout getting its source code.

Finally, there are lots of works using runtime information
or URLs of programs to analyze vulnerabilities in program
[53], [54], [55]. Unlike these prior studies, employing those
invariable features to analyze vulnerabilities on Android
platform, is a kind of task that few people research on. How-
ever, Android is a widely used platform with new charac-
teristics, which encourages us to carry on our research. For
example, it is trivial to extract the source code of early
Android Apps, while it is hard to process reverse engineer-
ing on upgraded versions. An executable program on Win-
dows platform may not have such a factor since most of
them are programmed by C/C++ language, which is very
difficult to analyze. At the same time, Android platform
appears just a few years, the short intervals between the
released times of early versions and that of the upgraded
versions make contributions to analyze vulnerabilities and
launch attacks, which leads the core engines of them are
similar.

9 CONCLUSION

In this paper, we define and study a problem, that is, early
versions of an App can put its upgraded one at risk of
attacks. Since early versions are trivial to be compromised
by reverse engineering technology, vulnerabilities existing
in early versions could be used as building blocks for
launching more severe attacks on upgraded versions. In our
motivation examples, we launch a MITM attack on 360
Cloud Driven and cracked the HMAC key from Facebook
and Sina Weibo. Furthermore, by using reverse engineering
technology, we design a static analyzer, DroidSkynet, to

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 663

detect such potential problems in a large number of Apps.
DroidSkynet is evaluated with 1500 Apps collected from the
real world. The experiment results show that most of these
Apps are suffering from such problems. The success rate of
attacking an App using an earlier version is 34 percent. We
also put forward some suggestions to bridge the gap
between utility and security of App update.

ACKNOWLEDGMENTS

JianWengwas partially supported byNational Key R&DPlan
of China (Grant Nos. 2017YFB0802203, 2018YFB1003701),
National Natural Science Foundation of China (Grant Nos.
61825203, U1736203, 61732021), Guangdong Provincial Spe-
cial Funds for Applied Technology Research and Deve-
lopment and Transformation of Important Scientific and
Technological Achieve (Grant Nos. 2016B010124009 and
2017B010124002). Yue Zhang was partially supported by
National Natural Science Foundation of China (Grant Nos.
61877029). Jiasi Weng was partially supported by National
Natural Science Foundation of China (Grant Nos. 61802145,
61872153). Lin Hou was partially supported by National Nat-
ural Science Foundation of China (Grant Nos. 61872153).
Ming Li was partially supported by National Natural Science
Foundation of China (Grant Nos. 11871248, U1636209). Anjia
Yang was partially supported by National Natural Science
Foundation of China (Grant No. 61702222), China Postdoc-
toral Science Foundation (Grant No. 2017M612842), Postdoc-
toral Foundation of Jinan University, Science and Technology
Programof Guangzhou of China (GrantNo. 201802010061).

REFERENCES

[1] M. Butler, “Android: Changing the mobile landscape,” IEEE Per-
vasive Comput., vol. 10, no. 1, pp. 4–7, 2011. [Online]. Available:
http://dx.doi.org/10.1109/MPRV.2011.1

[2] Statistics, “Number of available applications in the Google Play
store from december 2009 to december 2018,” 2018. [Online].
Available: https://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/, Accessed on:
Feb. 15, 2019.

[3] T. S. Portal, “App download and usage statistics (2018).” [Online].
Available: http://www.businessofapps.com/data/app-
statistics/, Accessed on: Dec. 24, 2018

[4] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in tun-
nelled authentication protocols,” in Proc. 11th Int. Workshop Secur.
Protocols, 2003, pp. 28–41.

[5] A. Yang, J. Weng, N. Cheng, J. Ni, X. Lin, and X. Shen, “DeQoS
attack: Degrading quality of service in VANETs and its miti-
gation,” IEEE Trans. Veh. Technol., 2019.

[6] A. Yang, J. Xu, J. Weng, J. Zhou, and D. S. Wong, “Lightweight
and privacy-preserving delegatable proofs of storage with data
dynamics in cloud storage,” IEEE Trans. Cloud Comput., 2018.

[7] P. O. Fora, “Beginners guide to reverse engineering android
apps,” in Proc. RSA Conf., 2014, pp. 21–22.

[8] E. Rescorla, SSL and TLS: Designing and Building Secure Systems,
vol. 1. Reading, MA, USA: Addison-Wesley, 2001.

[9] J.Weng, J.Weng, Y. Zhang,W. Luo, andW. Lan, “BENBI: Scalable and
dynamic access control on the northbound interface of SDN-based
VANET,” IEEETrans.Veh. Technol., vol. 68, no. 1, pp. 822–831, Jan. 2019.

[10] R. Gordon, Essential JNI: Java Native Interface. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1998.

[11] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang,
“Plagiarizing smartphone applications: Attack strategies and
defense techniques,” in Proc. 4th Int. Symp. Eng. Secure Softw. Syst.,
2012, pp. 106–120.

[12] UPtodown, “The early versions of Facebook,” 2018. [Online]. Avail-
able: https://facebook.en.uptodown.com/android/old, Accessed
on: Feb. 15, 2018.

[13] RESTfulAPI net, “RESTful API tutorial,” 2018. [Online]. Available:
https://restfulapi.net/, Accessed on: Dec. 25, 2018.

[14] T. Cannon, “Android reverse engineering,” Thomas Cannon, 2010.
[Online]. Available: https://thomascannon.net/android-
reversing/, Accessed on: Aug. 5, 2019.

[15] A. Apvrille, “Android reverse engineering tools,” 2012. [Online].
Available: https://ibotpeaches.github.io/Apktool/, Accessed on:
Dec. 15, 2016.

[16] B. Alll and C. Tumbleson, “Dex2Jar: Tools to work with android .
Dex and Java .Class files.” 2010. [Online]. Available: https://
www.kitploit.com/2018/10/dex2jar-tools-to-work-with-android-
dex.html, Accessed on: Aug. 5, 2019.

[17] D. Evans, V. Y. Zhang, H. Chang, et al., “Analyzing competition
among internet players: Qihoo 360 v. tencent,” Antitrust Chronicle,
vol. 12, p. 2, 2013, https://EconPapers.repec.org/RePEc:cpi:
atchrn:12.2.2013:i=13033.

[18] T. Kwon and J. Song, “Secure agreement scheme for gxy via pass-
word authentication,” Electron. Lett., vol. 35, no. 11, pp. 892–893,
1999.

[19] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing
for message authentication,” Network Working Group RFC, 1997,
pp. 1–6.

[20] eMarketer, “Weibo reaches 100 million daily users.” [Online].
Available: https://www.emarketer.com/Article/Weibo-Reaches-
100-Million-Daily-Users/1013449

[21] T. S. Portal, “Number of Facebook users worldwide 2008–2016.”
[Online]. Available: https://www.statista.com/statistics/264810/
number-of-monthly-active-facebook-users-worldwide/

[22] L. Li, T. F. Bissyand�e, and J. Klein, “SimiDroid: Identifying and
explaining similarities in android apps,” in Proc. IEEE Trustcom/
BigDataSE/ICESS, 2017, pp. 136–143.

[23] S. Mansfield-Devine, “Android malware and mitigations,” Netw.
Secur., vol. 2012, no. 11, pp. 12–20, 2012.

[24] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler: Con-
verting android Dalvik bytecode to Jimple for static analysis with
Soot,” in Proc. ACM SIGPLAN Int. Workshop State Art Java Program
Anal., 2012, pp. 27–38.

[25] K. Thompson, “Programming techniques: Regular expression
search algorithm,”Commun. ACM, vol. 11, no. 6, pp. 419–422, 1968.

[26] G. L. Williams, “The camel case,” Law Quart. Rev., vol. 56, 1940,
Art. no. 254.

[27] F. Wei, S. Roy, X. Ou, et al., “Amandroid: A precise and general
inter-component data flow analysis framework for security vet-
ting of android apps,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., 2014, pp. 1329–1341.

[28] UPtodown, “The UptoDown market,” 2018. [Online]. Available:
https://en.uptodown.com/android, Accessed on: Dec. 15, 2018.

[29] L. Church, J. Anderson, J. Bonneau, and F. Stajano, “Privacy stories:
Confidence in privacy behaviors through end user programming,”
in Proc. 5th Symp. Usable Privacy Secur., 2009, Art. no. 20.

[30] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 356–367.

[31] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X.Wang, andK. Zhang, “Understanding android obfuscation tech-
niques: A large-scale investigation in the wild,” Int. Conf. Secur. and
Privacy in Communication Systems, pp. 172–192, 2018.

[32] Y. Wang and A. Rountev, “Who changed you?: Obfuscator identi-
fication for android,” in Proc. 4th Int. Conf. Mobile Softw. Eng. Syst.,
2017, pp. 154–164.

[33] M. C. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“RiskRanker: Scalable and accurate zero-day android malware
detection,” in Proc. 10th Int. Conf. Mobile Syst. Appl. Services, 2012,
pp. 281–294.

[34] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature
based analytic system to collect, extract, analyze and associate
android malware,” in Proc. 12th IEEE Int. Conf. Trust Secur. Privacy
Comput. Commun./ 11th IEEE Int. Symp. Parallel Distrib. Process.
Appl./ 12th IEEE Int. Conf. Ubiquitous Comput. Commun., 2013,
pp. 163–171.

[35] A. Jain, H. Gonzalez, and N. Stakhanova, “Enriching reverse engi-
neering through visual exploration of android binaries,” in Proc.
5th Program Protection Reverse Eng. Workshop, 2015, pp. 9:1–9:9.

[36] C. Yang, C. Zuo, S. Guo, C. Hu, and L. Cui, “UI ripping in
android: Reverse engineering of graphical user interfaces and its
application,” in Proc. IEEE Conf. Collaboration Internet Comput.,
2015, pp. 160–167.

664 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

http://dx.doi.org/10.1109/MPRV.2011.1
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.businessofapps.com/data/app-statistics/
http://www.businessofapps.com/data/app-statistics/
https://facebook.en.uptodown.com/android/old
https://restfulapi.net/
https://thomascannon.net/android-reversing/
https://thomascannon.net/android-reversing/
https://ibotpeaches.github.io/Apktool/
https://www.kitploit.com/2018/10/dex2jar-tools-to-work-with-android-dex.html
https://www.kitploit.com/2018/10/dex2jar-tools-to-work-with-android-dex.html
https://www.kitploit.com/2018/10/dex2jar-tools-to-work-with-android-dex.html
https://EconPapers.repec.org/RePEc:cpi:atchrn:12.2.2013:i=13033
https://EconPapers.repec.org/RePEc:cpi:atchrn:12.2.2013:i=13033
https://www.emarketer.com/Article/Weibo-Reaches-100-Million-Daily-Users/1013449
https://www.emarketer.com/Article/Weibo-Reaches-100-Million-Daily-Users/1013449
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://en.uptodown.com/android

[37] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of android mal-
ware in your pocket,” in Proc. 21st Annu. Netw. Distrib. Syst. Secur.
Symp., 2018, pp. 35–40.

[38] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “Semantics-aware
android malware classification using weighted contextual API
dependency graphs,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Nov. 2014, pp. 1105–1116.

[39] R. K. Shahzad and N. Lavesson, “Veto-based malware detection,”
in Proc. 7th Int. Conf. Availability Rel. Secur., Aug. 2012, pp. 47–54.

[40] J. Wen, K. Wu, and C. Tellambura, “A closed-form symbol error
rate analysis for successive interference cancellation decoders,” in
Proc. IEEE Int. Conf. Commun., 2017, pp. 1–6.

[41] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically vetting
Android apps for component hijacking vulnerabilities,” in Proc.
ACM Conf. Comput. Commun. Secur., 2012, pp. 229–240.

[42] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of android applications
in DroidSafe,” in Proc. 22nd Annu. Netw. Distrib. Syst. Secur. Symp.,
vol.15, p. 110, 2015.

[43] Z. Yang and M. Yang, “LeakMiner: Detect information leakage on
android with static taint analysis,” in Proc. 3rd World Congr. Softw.
Eng., 2012, pp. 101–104.

[44] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. L. Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” in Proc. ACM SIGPLAN Conf. Program. Lan-
guage Des. Implementation, 2014, Art. no. 29.

[45] M. Junaid, D. Liu, and D. C. Kung, “Dexteroid: Detecting mali-
cious behaviors in android apps using reverse-engineered life
cycle models,” Comput. Secur., vol. 59, pp. 92–117, 2016.

[46] F. Roesner and T. Kohno, “Securing embedded user interfaces:
Android and beyond,” in Proc. 22th USENIX Secur. Symp., 2013,
pp. 97–112.

[47] M. Zhang and H. Yin, “AppSealer: Automatic generation of vul-
nerability-specific patches for preventing component hijacking
attacks in android applications,” in Proc. 21st Annu. Netw. Distrib.
Syst. Secur. Symp., pp. 45–61, 2016.

[48] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“SUPOR: Precise and scalable sensitive user input detection for
android apps,” in Proc. 24thUSENIX Secur. Symp., 2015, pp. 977–992.

[49] B. R. Schmerl, J. Gennari, J. C�amara, and D. Garlan, “Raindroid: A
system for run-time mitigation of android intent vulnerabilities
[poster],” in Proc. Symp. Bootcamp Sci. Secur., 2016, pp. 115–117.

[50] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-
application communication vulnerabilities in android,” in Proc.
Int. Symp. Softw. Testing Anal., 2015, pp. 118–128.

[51] C. Cao, N. Gao, P. Liu, and J. Xiang, “Towards analyzing the input
validation vulnerabilities associated with android system services,”
inProc. 31st Annu. Comput. Secur. Appl. Conf., 2015, pp. 361–370.

[52] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma,
A. Wang, Y. Zhang, and W. Zou, “Following Devil’s footprints:
Cross-platform analysis of potentially harmful libraries on
android and IoS,” in Proc. IEEE Symp. Secur. Privacy, May 2016,
pp. 357–376.

[53] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold,
“Automated support for program refactoring using invariants,”
in Proc. IEEE Int. Conf. Softw. Maintenance, 2001, Art. no. 736.

[54] D. R. Engler, D. Y. Chen, and A. Chou, “Bugs as inconsistent
behavior: A general approach to inferring errors in systems code,”
in Proc. 18th ACM Symp. Operating Syst. Principles, 2001, pp. 57–72.

[55] S. Hangal and M. S. Lam, “Tracking down software bugs using
automatic anomaly detection,” in Proc. 24th Int. Conf. Softw. Eng.,
2002, pp. 291–301.

Yue Zhang received the BS and MS degrees in
information security from the Xi’an University of
Posts & Telecommunications, in 2013 and 2016,
respectively. From 2016, he is working toward
the PhD degree at Jinan University. His research
interests include bluetooth, system security, and
android security.

Jian Weng received the BS and MS degrees
from the South China University of Technology,
in 2001 and 2004, respectively, and the PhD
degree from Shanghai Jiao Tong University, in
2008. He is a professor and the executive dean
with the College of Information Science and
Technology, Jinan University. His research areas
include public key cryptography, cloud security,
blockchain, etc. He has published 80 papers in
international conferences and journals such as
CRYPTO, EUROCRYPT, ASIACRYPT, the IEEE

Transactions on Cloud Computing, PKC, CT-RSA, the IEEE Transac-
tions on Dependable and Secure Computing, etc. He also serves as
associate editor of the IEEE Transactions on Vehicular Technology. He
is a member of the IEEE.

Jiasi Weng received the BS degree in software
engineering from South China Agriculture Univer-
sity, in June 2016, and the graduate degree in
technology of computer application from Jinan
University, in September 2016. Her research
interests include cryptography and information
security, blockchain, and security in software
defined network.

Lin Hou received the bachelor’s degree from the
Wuhan University of Technology, and the dual
degree from the Huazhong University of Science
and Technology. She is working toward the PhD
degree at Jinan University. Her research mainly
focuses on asymmetric cryptography and privacy.

Anjia Yang received the BS degree from Jilin Uni-
versity, in 2011, and the PhD degree from the City
University of Hong Kong, in 2015. He is currently a
postdoctoral researcher with Jinan University,
Guangzhou. His research interests include block-
chain security, RFID security and privacy, applied
cryptography, and cloud computing. He is a mem-
ber of the IEEE.

Ming Li received the BS degree in electronic
information engineering from the University of
South China, in 2009, and the MS degree in infor-
mation processing from Northwestern Polytechni-
cal University, in 2012. From 2016, he is working
toward the PhD degree at Jinan University. His
research interests include crowdsourcing, block-
chain and its privacy and security.

ZHANG ET AL.: LOOKING BACK! USING EARLY VERSIONS OF ANDROID APPS AS ATTACK VECTORS 665

YangXiang received the PhD degree in computer
science from Deakin University, Australia. He is
currently a full professor with the School of
Software and Electrical Engineering, Swinburne
University of Technology, Australia. His research
interests include cyber security, which covers net-
work and system security, data analytics, distrib-
uted systems, and networking. In particular, he is
currently leading his team developing active
defense systems against large-scale distributed
network attacks. He is the chief investigator of

several projects in network and system security, funded by the Australian
Research Council (ARC). He has published more than 200 research
papers in many international journals and conferences. He served as the
associate editor of the IEEETransactions onComputers, the IEEETrans-
actions on Parallel and Distributed Systems, the Security and Communi-
cation Networks (Wiley), and the editor of the Journal of Network and
Computer Applications. He is the coordinator, Asia for IEEE Computer
Society Technical Committee on Distributed Processing (TCDP). He is a
senior member of the IEEE.

Robert H. Deng received the MS degree from the
National University of Defense Technology, China,
in 1981, and the BS and PhD degrees from the
Illinois Institute of Technology, in 1983 and 1985,
respectively. He has been a professor with the
School of Information Systems, Singapore Man-
agement University, since 2004. Prior to this, he
was the principal scientist and manager with the
Infocomm Security Department, Institute for Info-
commResearch, Singapore.His research interests
include data security and privacy, multimedia secu-

rity, network and system security. He was an associate editor of the IEEE
Transactions on Information Forensics and Security from 2009 to 2012. He
is currently an associate editor of the IEEE Transactions on Dependable
and Secure Computing, and member of editorial board of the Journal of
Computer Science and Technology (the Chinese Academy of Sciences),
and the International Journal of Information Security (Springer), respec-
tively. He is the chair in the Steering Committee of the ACMSymposiumon
Information, Computer and Communications Security (ASIACCS). He
received the University Outstanding Researcher Award from the National
University of Singapore in 1999 and the Lee Kuan Yew fellow for Research
Excellence from the Singapore Management University in 2006. He was
namedCommunity Service Star and Showcased Senior Information Secu-
rity Professional by (ISC)2 under its Asia-Pacific InformationSecurity Lead-
ership Achievements program in 2010. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

666 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

	Looking back! Using early versions of Android apps as attack vectors
	Citation
	Author

	Looking Back! Using Early Versions of Android Apps as Attack Vectors

