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Abstract—Large scale software development ecosystems rep-
resent one of the most complex human enterprises. In such
settings, developers are embedded in a web of shared concerns,
responsibilities, and objectives at individual and collective levels.
A deep understanding of the factors that influence developers
to connect with one another is crucial in appreciating the
challenges of such ecosystems as well as formulating strategies
to overcome those challenges. We use real world data from
multiple software development ecosystems to construct developer
interaction networks and examine the mechanisms of such
network formation using statistical models to identify developer
attributes that have maximal influence on whether and how
developers connect with one another. Our results challenge the
conventional wisdom on the importance of particular developer
attributes in their interaction practices, and offer useful insights
for individual developers, project managers, and organizational
decision-makers.

Index Terms—software development ecosystems, ERGM, de-
gree, closeness, pagerank

I. INTRODUCTION

Successful functioning of large scale software development
ecosystems are underpinned by effective interaction between
developers. Interactions between developers can offer vital
conduits for the flow of information and experience in a project
team. Naturally, facilitating the setting up and sustenance
of such helpful connections is a key concern for project
managers. Thus understanding the drivers of “who connects
to whom” has strong implications for individual developer
contributions as well team assembly and governance.

As with many other collective human enterprise [1], a
software development ecosystem can be modelled as a network
whose nodes represent developers, and two developers are
connected by a directed or undirected link on the basis
of some conjoint interest or activity [2]. The growth and
evolution of such networks have been studied in depth across
different domains and models have been established to explain
their key dynamics [3]. We may apply such models in the
context of large scale software development. For example,
a software development ecosystem can be thought of as a
growing random network where a new node is born over time
and attaches itself to an existing node; when the incoming

new node randomly selects a node for connection, this can be
abstracted as the growing variation of the Erdos Renyi model
[4]. As another example, the preferential attachment model
[5] when applied to the software development context will
mandate nodes who already have many connections (higher
degree), to attract more incoming nodes.

While these and other existing models have wide relevance
in varied scenarios, we believe that they ignore a vital char-
acteristic of large scale software development. Predominantly,
existing models assume that single attribute of a node such as
its degree is the only property that influences how it will be
connected to other nodes. This can be a valid assumption when
nodes represent something like a page on the World Wide
Web, with degree denoting the number of hyperlinks to other
Web pages. However in a complex enterprise such as software
development with its involved needs of knowledge, experience,
and expertise, a developer’s degree can only capture one
of his/her multiple facets in the network representing the
development ecosystem. Accordingly, we posit that a deep
understanding of what drives developer connections can only
be understood if the influences of multiple attributes are con-
sidered in the link formation process. With this background,
we examine the following research question in this paper: In
large scale software development ecosystems, which developer
attribute(s) maximally influence developer interaction?

Addressing this question enables our study to make the
following research contributions:

• We present a methodology for identifying factors that
influence developer interaction in large scale software
development ecosystems.

• We underscore the need to look at the multi-faceted as-
pects of developer interaction vis-a-vis considering such
interaction to be influenced by any single factor.

• We identify the key drivers of developer interaction and
establish that our results hold across multiple interaction
networks and software development ecosystems.

In the next section, we present an outline of related work,
followed by a description of our study setting. Subsequently,



we explain our methodology, discuss our results and identify
threats to their validity. The paper ends with a summary, and
conclusions from the study.

II. RELATED WORK

A. Network models

Real world networks have heavy tailed degree distributions,
small diameters, and high levels of clustering. Additionally,
many such networks in nature and society are scale-free
along with high clustering. Ravasz and Barabasi [6] show
that these two features are the consequence of a hierarchical
organization, implying that small groups of nodes organize
in a hierarchical manner into increasingly large groups, while
maintaining a scale-free topology. Dorogovtsev et al. [7] pro-
pose a deterministic network model which obeys the scaling
law between the node degree and clustering coefficient, in
addition to the power-law degree distribution. Comellas et
al. [8] discuss a category of graphs – recursive clique trees
– which have small-world and scale-free properties and allow
a fine tuning of the clustering and the power-law exponent
of their discrete degree distribution. Chen et al. [9] have
introduced a family of planar, modular and self-similar graphs
which have small-world and scale-free properties but all nodes
have zero clustering coefficient. This model with a null clus-
tering coefficient can be used to represent networks with small
clustering coefficient and can be used to study other properties
without the influence of clustering. Song et al. [10] show that
complex networks have self similar structures. Golnari and
Zhang [11] propose a multivariate analysis perspective to study
complex structures in networks.

Jackson introduced a special class of models – hybrid
models – where newly born nodes are linked to some nodes
uniformly at random and to some other nodes by navigating
through the network [4] . Even in his meeting based network
formation model, each new node “meets” some number of
nodes uniformly at random forming direct links to them, and
then chooses some of the out links from the first group of
nodes and follows them to meet new nodes and form additional
links [12].

B. Link formation

Nguyen et al. [13] propose a general framework to de-
fine link formation behaviours using well studied local link
structures (i.e. triads and dyads) in a dynamic social network
where links are formed at different timestamps. They find that
these behaviours become more stable as the users establish
more links. Leskovec et al. [14] studied the individual node
arrival and link creation processes that collectively lead to
macroscopic properties of networks. Their findings suggest
that link locality play a critical role in evolution of networks.
Leskovec et al. [15] also observed some surprising phenomena:
real world networks become more dense over time with the
number of links growing super linearly with the number
of nodes; and the average distance between nodes in such
networks often shrinks over time. Link formation (LF) has
been studied from different perspectives in the analysis of

social networks. Leung et al. [16] propose the approach of
mining interesting LF rules containing link structures known
as LF-patterns. LF-rules capture the formation of new link
from a focal node to another node as a post-condition of
existing connections between the two nodes. Bahulkar and
Szymanski [17] use statistical analysis and machine learning
to find node traits and activities that correlate well with the for-
mation and persistence of links and can predict social network
evolution. Nowell and Kleinberg [18] develop approaches to
link prediction based on measures of proximity of nodes in a
network. Experiments on large co-authorship networks suggest
that information about future interactions can be extracted
from network topology alone [18]. Influential nodes when
seeded (activated intentionally) may activate a large portion
of the network through a viral contagion process. Goldenberg
and Sela [19] suggested and analyzed a scheduled seeding
approach for influence maximization.

C. Social network analysis in software development

Toral et al [20] analysed the networks of open source
software projects using social network analysis methodologies.
They developed macro structural and micro structural analy-
ses. The macro structural analysis identified the communities
responsible for the efficient development of the project. The
micro structural analysis identified brokerage as the key role
to be performed by the communities. Sowe et al [21] show
that knowledge brokers are important people in open source
software projects and are expert human resources. Teixeira
et al [22] applied social network analysis to explore the
role of groups, sub communities and business models in the
Openstack ecosystem 1.

D. Exponential random graph models

Jackson has elaborated the concept of Exponential Random
Graph Models (ERGMs) in his book Social and Economic
Networks [4]. Pol et al. [23] mentions the increasing use
of ERGMs in the social networks because of their ability
to explain the global structure of a network while allowing
inference on tie prediction on a micro level.

In this study we considered two different software devel-
opment ecosystems and examined four different networks.
Existing network models such as the Erdos Renyi model and
preferential attachment model provide frameworks to anal-
yse random graphs and networks [24]. However, their main
limitation is that they do not fully represent the complexities
of real world networks where nodes represent human being.
Hence, we used an ERGM based approach which can capture a
wide range of network tendencies by using structural elements
from the network. The formulation and application of the
ERGMs for social networks have been elaborated by Robins
et al. [25] and the techniques for approximating a maximum
likelihood estimator for an ERGM given a network data have
been presented in [26] and [27].

1https://www.openstack.org/

https://www.openstack.org/


E. Applications of ERGM

Ghafouri and Khasteh [28] show a number of applications
of ERGM and also review its applications in the study of
scientific collaboration networks. Liang et al. [29] applied
ERGMs to the generation of social networks in the artificial
society, and a general process of generating social networks is
proposed. ERGMs have also been used to understand longitu-
dinal engagement, performance and social connectivity [30].

Jiao, Wang et al. [31] have used ERGM to analyze the
character of peer relationship networks and their effects on
the subjective well-being of adolescents. Yon et al. [32] have
shown how ERGMs can be applied to small networks also.

Hunter, Goodreau and Handcock [33] evaluate new proce-
dures to find how well the model fits the observed graph. Mor-
ris, Handcock and Hunter [34] describe the means for control-
ling the Markov Chain Monte Carlo (MCMC) algorithm used
for estimation. ERGMs have been applied in recommender
systems as discussed in [35]. Degree only models did a poor
job of capturing an observed network structure [36]. ERGMs
have also been used to examine the structures in large social
networks [36], [37].

Belkhiria et al. [38] show an interesting application of
ERGMs in determining nomadic herders’ movement. In mul-
tilevel network contexts, ERGMs offer a statistical framework
that captures complicated multilevel structure through some
simple structural signatures or network configurations based
on tie dependence assumptions. Wang et al. [39] review
the multilevel network data structure and multilevel ERGM
specifications and show that within level nodal attributes can
affect multilevel network structures.

III. STUDY SETTING

A. Overview

We examined data from the Openstack and Eclipse de-
velopment ecosystems as shared by Gonzalez-Barahona et
al. [40]. Openstack is an open source cloud computing plat-
form that is available as infrastructure-as-a-service (IaaS) 2.
Eclipse is a plug-in based integrated development environment
that is extensively used for software development in many
languages 3. The data shared by Gonzalez-Barahona et al.
have information on developer interactions across multiple
different but related development activities – source code
change, problem ticket resolution, code reviews, and devel-
oper communication via mailing lists [40]. The Openstack
dataset has four databases: source code (135 repositories;
183,413 commits; 3,836 authors), problem tickets (55,044
tickets; 635,895 updates; 7,582 identities), mailing list (15
lists; 88,842 messages; 4,399 posters), and reviews (119,989
code reviews; 3,533 submitters). The Eclipse dataset also
has four databases: source code (492 repositories; 987,671
commits; 3,753 authors), problem tickets (470,397 tickets;
3,380,817 updates; 51,629 identities), mailing list (253 lists;

2https://en.wikipedia.org/wiki/OpenStack
3https://en.wikipedia.org/wiki/Eclipse (software)

TABLE I
CHARACTERISTICS OF THE NETWORKS

Network Nodes Links Density Diameter
Openstack Comments 826 9390 0.02749223 6
Openstack Changes 853 17019 0.04672584 5
Eclipse Comments 412 4808 0.05678785 7
Eclipse Changes 420 6467 0.07349699 7

386,034 messages; 19,642 posters), and reviews (37,460 code
reviews; 1,033 submitters).

B. Pre-processing and filtering data

Developers are involved in various activities in a large
scale software development ecosystem. The most engaged
developers are the ones who contribute to multiple such
activities. For each dataset we identified common developers
who participated in all four activities: resolving problem
tickets, reviewing code, committing code changes, and posting
messages in the mailing lists with a view to identifying the
most active developers. This filtering strategy enables us to
identify those developers who are most deeply embedded in
the ecosystem and are thus likely to display diverse inter-
action characteristics. Having identified such developers, we
constructed co-comment networks and co-change networks for
both Openstack and Eclipse using the construction protocols
we describe next.

C. Construction of networks

For each of the following network types, nodes represent the
common developers who participated in all four development
activities (as discussed above) and two nodes are connected
by a link if the developers corresponding to the nodes at
either end of the link have both participated in some common
unit of development activity. In a co-comment network, two
developers are connected by a link if both of them have co-
commented on a particular problem ticket. In a co-change
network, two developers are connected by a link if both of
them have co-changed a particular unit of code. For both
these types of networks, the weight of a link signifies the
number of co-commenting or co-changing instances between
the developers connected by that link. For each networks we
removed the singleton nodes as they do not have links incident
on them.

The structural parameters of our networks (which we will
refer to as Openstack Comments, Openstack Changes, Eclipse
Comments, Eclipse Changes) are presented in Table I For
each network, we calculated the following six metrics for
each node: degree centrality, closeness centrality, betweenness
centrality, eigenvector centrality, pagerank and clustering coef-
ficient. We next discuss why we chose these particular metrics
in this study.

D. Choice of network metrics

Degree centrality has always been a highly effective mea-
sure of the influence or importance of a node. We generally
see that in social settings, people with more connections tend

https://en.wikipedia.org/wiki/OpenStack
https://en.wikipedia.org/wiki/Eclipse_(software)


to have more power and are more visible. However, we posit
that this might not be the case in every situation. Given the
richness and variety of interactions in a software development
ecosystem, other characteristics of a node can be important
indicators of developer interaction.

Betweenness centrality measures the number of times a
node lies on the shortest path between other nodes. By the
definition of betweenness, it is an important identifier for
individuals with notable influence; high betweenness of a node
signifies it is in a position of brokerage between other nodes.

Closeness centrality scores each node based on their close-
ness to all other nodes in the network. This measure calculates
the shortest paths between all nodes, then assigns each node
a score based on the sum of its shortest paths. This means
that individuals with high closeness are the ones who are best
placed to influence the entire network quickly. Closeness can
be regarded as a measure of how long it will take to spread
information from a node to all other nodes.

Similar to degree centrality, eigenvector centrality measures
a node’s influence based on the number of links it has to
other nodes in the network. Eigenvector centrality also takes
into account factors such as how well connected a node is,
and how many links their connections have. By calculating
the extended connections of a node, eigenvector centrality can
identify nodes with influence over the whole network, and not
just those directly connected to it.

Pagerank is a variant of eigenvector centrality, also as-
signing nodes a score based on their connections, and their
connections’ connections. The difference is that pagerank also
takes link direction and weight into account so links can only
pass influence in one direction, and pass different amounts of
influence. Since it takes into account direction and connection
weight, pagerank can be helpful for understanding citation
dynamics and authority.

Clustering coefficient is a measure of the degree to which
nodes in a network tend to cluster together. Evidence suggests
that in most real-world networks, and in particular social
networks, nodes tend to create tightly knit groups characterized
by a relatively high density of ties; this likelihood tends to
be greater than the average probability of a tie randomly
established between two nodes. In Table II we summarize the
specification and formulation of the metrics, and outline their
relevance in our study setting.

The distributions of these metrics for each of our networks
are presented in Figures 1 and 2 and their descriptive statistics
are shown in the Tables III, IV, V, VI.

IV. METHODOLOGY

An overview of the research methodology is presented in
Figure 3. We motivate our approach using a simple example.

A. Calculating network metrics
Figure 4 shows a simple network with five nodes (labelled

as “1”, “2”, “3”, “4”, and “5”) and six links. Using the
formulations presented in Table II, the metrics for each of the
five nodes node of this network are calculated and presented
in Table VII:

(a) Metrics for Openstack Comments Network

(b) Metrics for Openstack Changes Network

Fig. 1. Openstack Distributions

B. Application of ERGMs

As indicated earlier, Exponential Random Graph Models
take into consideration the local features and dependencies of
nodes. With this, we can estimate the statistics of the network
and understand the parameters that drive network formation.
As we have emphasized before, every node has its own
attributes which need to be considered. Our observed network
is one instance of a large number of alternative networks which
may or may not have similar features. An ERGM is a statistical
model that considers all the alternative networks and then
provides inference on the factors influencing the formation of
a particular network’s structure. Additionally, ERGM predicts
the probability that a pair of nodes in a network will have a



TABLE II
AN OVERVIEW OF THE METRICS

Metric Specification Formulation Relevance for this study
Degree centrality The number of links inci-

dent upon a node.
Count the number of links a node has [3]. Degree indicates the total number of con-

nections a developer has with his/her peers
and signifies how many communication
channels the developer participates in.

Closeness centrality Reciprocal of the sum of
the length of the short-
est paths between the node
and all other nodes in the
network.

C(x) = 1∑
y d(y,x)

[3] Closeness is a measure of how effectively
information spreads from a node; a devel-
oper who is close to many other developers
will be favourably positioned to exchange
information.

Betweenness centrality Number of times a node
lies in the shortest path
between two other nodes
in the network.

Take every pair of nodes in the network
and count how many times a particular node
lies in the shortest paths (geodesic distance)
between the two nodes of the pair [3].

Betweenness is an indicator of the extent
to which a node can broker communica-
tion between other nodes; a developer with
high betweenness can act as bridge between
diverse groups of peers who are otherwise
unconnected.

Eigen centrality This is calculated by scor-
ing the relative importance
of all nodes in the net-
work by weighting con-
nections to highly impor-
tant nodes more than con-
nections to nodes of lower
importance.

xv = 1
λ

∑
tεM(v) xt where xv is the eigen

centrality of node v, M(v) is the set of
neighbours of v and λ is a constant [3].

Eigen centrality identifies nodes with influ-
ence over the whole network; developers
with high eigen centrality are members of
the project team who are strongly positioned
to influence their peers.

Pagerank Computed by counting the
number and quality of
links to a Web page
to determine how impor-
tant the page is, in a
network representing the
World Wide Web. The
underlying assumption is
that more important Web
pages are more likely to
receive more links from
other pages.

PR(u) =
∑
vεBu

PR(v)
L(v)

the pagerank
value for a page u is dependent on the
pagerank values for each page v contained
in the set Bu (the set containing all pages
linking to page u), divided by L(v), which
the number of links from page v [3].

Pagerank is an indicator of importance and
authority of a node in a network; develop-
ers with high pagerank are in positions of
enhanced expertise and experience relative
to their peers.

Clustering coefficient Measure of the extent to
which a node is clustered
together with other nodes
in the network.

Ci = nt
nr

where nt is the number of
triangles connected to node i and nr is the
number of triples centred around node i. A
triple centred around node i is a set of two
links connected to node i [3].

Clustering coefficient measures the extent
to which a node belongs to clusters; a de-
veloper with high clustering coefficient par-
ticipates to a larger extent in collaborative
activities with his/her peers.

TABLE III
STATISTICS FOR OPENSTACK COMMENTS NETWORK METRICS

Metrics Mean Median Std Dev
Closeness 1.586558× 10−4 1.608105× 10−4 1.430113× 10−5

Betwenness 6.604104× 102 27.36651 3.595547× 103

Degree 22.73608 10 33.1497
Pagerank 1.210654× 10−3 7.230619× 10−4 1.596366× 10−03

Eigen Centrality 0.1090396 0.05177937 0.1456735
Clustering Coefficient 0.4224369 0.3900663 0.2959932

TABLE IV
STATISTICS FOR OPENSTACK CHANGES NETWORK METRICS

Metrics Mean Median Std Dev
Closeness 5.05001× 10−4 5.09165× 10−4 6.107212× 10−5

Betwenness 5.792251× 102 30.99205 3.204844× 103

Degree 39.90387 20 53.22984
Pagerank 1.172333× 10−3 7.141349× 10−4 1.40447× 10−03

Eigen Centrality 0.09949386 0.04495683 0.1313177
Clustering Coefficient 0.4274744 0.4065041 0.252135

link between them on the basis of node attributes [23]. Thus in
our context ERGM allows us to identify developer attributes
that influence interactions between developers.

As discussed, ERGM is a generative model that takes
into consideration local properties and dependencies of the

TABLE V
STATISTICS FOR ECLIPSE COMMENTS NETWORK METRICS

Metrics Mean Median Std Dev
Closeness 9.82674× 10−4 9.775171× 10−4 1.649528× 10−4

Betwenness 3.185558× 102 20.15124 7.511532× 102

Degree 23.33981 11 29.18822
Pagerank 2.427184× 10−3 1.443223× 10−3 2.442064× 10−03

Eigen Centrality 0.180408 0.08444197 0.2231443
Clustering Coefficient 0.5658584 0.5509039 0.2708142

TABLE VI
STATISTICS FOR ECLIPSE CHANGES NETWORK METRICS

Metrics Mean Median Std Dev
Closeness 1.028976× 10−3 1.040583× 10−3 1.695752× 10−4

Betwenness 2.906714× 102 18.28643 6.749869× 102

Degree 30.79524 17 37.60238
Pagerank 2.380952× 10−3 1.556057× 10−3 2.398271× 10−03

Eigen Centrality 0.2091423 0.118087 0.2378225
Clustering Coefficient 0.6085609 0.6088854 0.2642028

nodes. The probability of a network formation is given by the
following equation:

Pr(g) =
exp(βS(g))∑
g′ exp(βS(g′))

(1)



(a) Metrics for Eclipse Comments Network

(b) Metrics for Eclipse Changes Network

Fig. 2. Eclipse Distributions

TABLE VII
METRICS OF THE SIMPLE NETWORK’ VERTICES

Metrics Vertex 1 Vertex 2 Vertex 3 Vertex 4 Vertex 5
Degree 3 2 3 2 2

Closeness 0.083 0.071 0.083 0.058 0.058
Betweenness 2 0 2 0 0

Eigen centrality 1.000 0.650 1.000 , 0.951 0.951
Pagerank 0.230 0.142 0.230 0.198 0.198

Clustering coefficient 0.333 1.000 0.333 0.000 0.000

The network that we feed to the ERGM is denoted by g.
S(g) is the statistic of the network g. We can use different
statistics such as the number of links, number of triangles
etc.; β is the coefficient that determines how important the
statistic would be for g. g′ denotes all possible networks with
the given number of nodes. Here, Pr(g) determines how likely
a network is formed due to situations that are influential in a
particular context, and not merely due to happenstance.

We now return to our simple illustrative example (see
Figure 4) for the network with five nodes (n = 5) and six links
(e = 6) to demonstrate how ERGMs function. Let us consider
one network statistic: the number of links. Now, the maximum
number of links possible in a network with n nodes is nC2,
which in this case is 5C2 = 10. The number of networks
possible with 5 nodes is 2

nC2 which is 210 = 1024 in this case.
However, we actually have 6 links in our network. Hence, the
frequency of link formation will be 6/10 = 0.6 = pr (say).

As explained by Jackson [4] β = log( pr
1−pr ) = log( 0.60.4 ) =

0.176. An ERGM estimates the parameter that best suits the
network using Markov Chain Monte Carlo (MCMC) estima-
tion. When we fit the ERGM to this network 4, the estimate
is computed as 0.4055. While interpreting this estimate, we
find out the log odds of a link occurring which is equal to
0.4055∗ change in the number of links = 0.4055 ∗ 1, as the
addition of any link to a network changes the number of
links in the network by 1. The corresponding probability is
exp(0.4055)/(1+ exp(0.4055)) = 0.6 4. This is exactly what
we calculated above as 6/10 = 0.6 = pr, since there are 6/10
links in our network. In the context of this example, a simple
illustration of how ERGM functions is shown in the Figure 5.

In this study we take each of the four empirical networks
– Openstack Comments, Openstack Changes, Eclipse Com-
ments, Eclipse Changes – and use ERGMs to estimate the
influence of the specific network metrics identified in Table II
in the formation of links in these networks. We next discuss
our results.

V. RESULTS AND DISCUSSION

A. Model parameters

The results from fitting the ERGMs to the respective net-
works are presented in Tables VIII, IX, X, XI. In these
tables, the significance levels indicated in superscripts of the
parameter estimates, as determined by the respective p-values
are as follows: 0 is denoted by ∗ ∗ ∗ ; 0.001 is denoted by ∗∗
; 0.01 is denoted by ∗ ; 0.05 is denoted by . ; 0.1 is denoted
by blank space. The parameter estimates of the model give
the log odds of a tie occurring. They give us the probability
of the network with respect to our assumed predictors. This
helps us understand whether the network occurs due to the
influence of the predictors or just by chance5. The higher the
magnitude of the estimate, the more influence the predictor
has on the response. A positive value implies that there is

4http://cran.nexr.com/web/packages/ergm/vignettes/ergm.pdf
5https://cran.r-project.org/web/packages/ergm/vignettes/ergm.pdf

http://cran.nexr.com/web/packages/ergm/vignettes/ergm.pdf
https://cran.r-project.org/web/packages/ergm/vignettes/ergm.pdf


Fig. 3. Research methodology

Fig. 4. A simple example

TABLE VIII
PARAMETER ESTIMATES FOR OPENSTACK COMMENTS NETWORK

Metrics Estimate
Closeness 8.47× 104 (1.939× 103) ***

Clustering Coefficient 0.1292 (4.388× 10−2) **
Degree 0.05163 (2.623× 10−3) ***

Betweenness −2.679× 10−5 (2.658× 10−6) ***
Eigen Centrality -1.129 (2.563× 10−1) ***

Pagerank −6.428× 102 (3.663× 101) ***

positive predictor effect on link formation, while a negative
value changes direction of the effect [26].

B. Evaluating model fit

In order to check how well our model fits the data, we anal-
ysed the goodness of fit of the ERGMs for all four networks.
As mentioned earlier, ERGMs are generative models; that is,
they seek to abstract the processes that govern link formation
at a local level. These local processes aggregate to produce
global network properties, even though the global properties
are not explicit terms in the model. Whether a model fits the
data can thus be checked by examining how well the model

TABLE IX
PARAMETER ESTIMATES FOR OPENSTACK CHANGES NETWORK

Metrics Estimate
Closeness 1.04900× 104 (1.803× 1002) ***
Pagerank 1.28× 103 (6.487× 1001) ***

Eigen Centrality 8.532 (2.987× 10−1) ***
Clustering Coefficient 0.3139 (4.108× 10−2) ***

Betweenness −6.26× 10−5 (2.388× 10−6) ***
Degree -0.03977 (2.177× 10−3) ***

TABLE X
PARAMETER ESTIMATES FOR ECLIPSE COMMENTS NETWORK

Metrics Estimate
Closeness 7.217× 103 (2.854× 102) ***
Pagerank 7.888× 102 (6.731× 101) ***

Clustering coefficient 0.1505 (9.924× 10−2)
Betweenness −5.319× 10−4 (3.864× 10−5) ***

Degree -0.03977 (5.722× 10−3) ***
Eigen Centrality -0.7373 (3.843× 10−1) .

TABLE XI
PARAMETER ESTIMATES FOR ECLIPSE CHANGES NETWORK

Metrics Estimate
Closeness 8.051× 103 (3.068× 102) ***
Pagerank 9.218× 102 (8.553× 101) ***

Eigen centrality 0.591 (3.871× 10−1)
Betweenness −5.701× 10−4 (5.141× 10−5) ***

Degree -0.04757 (4.846× 10−3) ***
Clustering coefficient -0.2 (1.008× 10−1) *



Fig. 5. ERGM Illustration

reproduces the global properties of the network 4. We can do
this by choosing a network statistic that is not in the model,
and comparing the value of this statistic as observed in the
empirical networks, to the distribution of the statistic’s values
from networks simulated by our model. For this purpose, we
chose the minimum geodesic distance as this is an important
global characteristic of a network; but is not one of the metrics
included in our model. The smallest number of links that
connect two nodes is the geodesic distance between them and
the path is called the geodesic path 6.

Figure 6 shows how the empirical value of the minimum
geodesic distance for each network compares with the value
from the corresponding model. The black line in the figures
represent the observed statistic of the empirical networks and
the box plots show the mean statistics from the corresponding
models. The closer the observed statistics are to the mean
statistics from the models, the better the model fits the cor-
responding data. We observe from Figure 6 that for higher
values of the minimum geodesic distance, the empirical and
model generated values are notably close for all four networks,
indicating a reasonably good model fit.

C. Observations

In conventional wisdom, degree of a node in a network
is considered to be a pre-eminent indicator of the node’s
position in the ecosystem that the network represents [41],
[42]. Thus it is natural that degree is expected to be influential
in the formation of connections between the entities that
the nodes represent. As is evident from Tables VIII, IX,
X, XI, magnitudes of the parameter estimates for closeness
centrality are the highest among across all four networks, and
all such estimates are statistically significant. Thus among all
the metrics we have considered, closeness has the maximum
influence on interconnection between developers. Contrary to
expectations, we do not find evidence that degree is the key
driver of link formation in the networks we studied. After
closeness, pagerank has the next highest influence on link

6https://www.sci.unich.it/∼francesc/teaching/network/geodesic.html

formation in three out of our four networks. Evidently, there
is a clear indication that closeness and pagerank are the most
important factors in determining developer interactions in our
study setting.

D. Implications

As outlined in Section III, closeness of a node indicates
how close it is to other nodes in the network, as mea-
sured in terms of the shortest paths between the nodes. In
a software development ecosystem, developers with higher
closeness are positioned to connect with other developers
with minimal communication overheads. Thus the interaction
cost for such developers is relatively low in comparison with
other developers. The impact of such costs in large scale
software development have long been recognized [43]. Our
results underscore the need to focus on closeness rather than
degree when assessing developers’ interaction needs such that
communication costs can be optimized.

We find evidence that after closeness, pagerank is a notable
determinant of interactions between developers. Pagerank is
a widely recognized measure of importance of a node in a
network. Thus our results indicate that it is more likely for
important developers to connect to one another. In a software
development ecosystem, importance of a developer can be
indicative of enhanced experience, expertise, and concomi-
tant organizational seniority. The pre-eminence of developer
importance as indicated by pagerank – vis-a-vis developer
connectivity as indicated by degree – in influencing link forma-
tion highlights that channels of information flow in a software
development ecosystem are predominantly between those who
are more strongly positioned to share such information.

Our findings have notable utility at individual, team, and
organizational levels, which we will discuss next.

E. Utility

The evidence that closeness followed by pagerank are the
most important determinants of interactions in large scale
software development ecosystems, can inform individual de-
velopers on the most effective ways to collaborate. Instead of

https://www.sci.unich.it/~francesc/teaching/network/geodesic.html
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indiscriminately connecting with many of their peers – thus
leading to high degree – developers will be better served if
they cultivate higher levels of closeness with other important
developers in the project. This practice will enable individual
developers to effectively leverage the “tribal memory” of a
project ecosystem – the combined collection of skills, know-
how, and techniques that accumulates in the developer com-
munity over time [44].

Our results challenge some of the existing mores of project
management. The reliance on degree as the primary param-
eter reflecting on developers’ extent of interconnectedness,
is questioned by the evidence we see of the importance of
closeness, followed by pagerank. For a particular developer,
being merely connected to many other developers is found to
be less consequential than being close to those who occupy
a position of importance in the project milieu. This insight
can help project managers enable each developer to cultivate
a close circle of peers, as well as culture skills and expertise
in focussed areas of interest.

For organizations engaged in the delivery of software solu-
tions via geographically distributed teams of developers, team
assembly and governance present enduring challenges [45].
Interaction patterns that are organic in co-located teams are
difficult to replicate in distributed teams. Such teams whose
members are spatially and temporally segregated face distinct
challenges in their outcomes [46]. Connection, separation,
association, and clustering among developers have contrasting
effects on the quality of teams’ work products [47]. Our
results illuminate the nuanced nature of developer interaction

in large and distributed teams. Among all the network met-
rics we considered that reflect on the nature and extent of
developer communication, closeness and pagerank are found
to be dominant drivers of how developers connect with one
another. These findings can contribute to key decision making
processes in organizations when development work for par-
ticular software modules need to be allocated to teams with
developers separated by distance and time-zones. The evidence
that for a particular developer, closeness to other developers
and importance amongst his/her peers plays a critical role in
how the developer will connect to other developers, can be
a valuable input into the mechanisms by which organizations
assign individuals to teams.

VI. THREATS TO VALIDITY AND FUTURE WORK

A. Threats to validity

We present results from an observational study. We will now
identify and address threats to the validity of our results in
terms of construct validity, internal validity, external validity
and reliability and outline plans of future work.

1) Construct validity: Construct validity is concerned with
the extent to which our variables are measured correctly.
Our variables are network metrics that are calculated using
established procedures. For all the four networks, we have
calculated every metric by the standard measure as shown in
Table II. Exponential Random Graph Models are now being
used extensively in the study of social networks, as discussed
in preceding sections. However we understand that other recent
modelling approaches like the Subgraph Generation Models



(SUGM) or hybrid models might also offer interesting insights
in our study setting. Different construction protocols for the
networks can also lead to different results.

2) Internal validity: Internal validity is established if a
study is free from systematic errors and biases. We stud-
ied historical data from the Openstack and Eclipse devel-
opment ecosystems as curated and published for research
purposes [40]; thus issues such as mortality and maturation
do not pose threats in our study setting. We have considered
two types of developer interaction networks for each of the two
development ecosystems we studied; replicating our study on
other types of networks can offer an opportunity to widen the
insights from our results.

3) External validity: External validity is concerned with the
generalizability of a study’s results.We have studied two soft-
ware development ecosystems and have drawn insights from
them. Thus, we do not claim our results to be generalizable
as yet. Further studies with other ecosystems may lead to
additional insights.

4) Reliability: Reliability relates to the extent to which the
results from a study can be reproduced. Our results are fully
reproducible. To facilitate the replication of our results, we
have shared the code components developed for this project
at https://github.com/IshitaB28/R.

B. Plans of future work

In this paper we present empirical evidence that closeness
and pagerank are among the influential drivers of link forma-
tion in networks of developers. In our future work, we plan
to expand our study setting to include additional development
ecosystems, as well as other types of development activities
such as code review. Also, we plan to explore the causal mech-
anisms that underlie the results from our statistical models to
address questions around why closeness and pagerank – rather
than degree and the other network metrics we considered –
predominantly drive link formation between developers in our
study setting.

VII. SUMMARY AND CONCLUSIONS

An in-depth understanding of the drivers of developer com-
munication in large scale software development ecosystems
has strong implications at individual, project, and organiza-
tional levels. In this paper we have examined a research
question around identifying developer attribute that maximally
influence developer interaction in such ecosystems. Using data
from multiple development activities in two large real-world
software development ecosystems, we construct networks
whose nodes represent developers and two developers are
linked if they co-participate in some particular development
activity. Analysis of these networks using exponential random
graph models (ERGMs) offer evidence that closeness and
pagerank are the two most important node properties influ-
encing link formation in these networks. From these results
we infer that contrary to conventional wisdom, degree is not
the key determinant of whether and how individuals connect
with one another in our study setting. Instead, the extent

to which developers are close to other developers and the
importance of developers among their peers play pre-eminent
roles in determining developer interaction. These results can
inform individual developers on the most effective interaction
practices in a project ecosystem; project managers can use
these results to facilitate developer communication that is most
optimal for team outcomes, and organizations can use the
insights from our study in team assembly and governance.
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