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Abstract

In the daily development process, developers often need assistance in finding a sequence
of APIs to accomplish their development tasks. Existing deep learning models, which
have recently been developed for recommending one single API, can be adapted by
using encoder-decoder models together with beam search to generate API sequence rec-
ommendations. However, the generated API sequence recommendations heavily rely on
the probabilities of API suggestions at each decoding step, which do not take into account
other domain-specific factors (e.g., whether an API suggestion satisfies the program syntax
and how diverse the API sequence recommendations are). Moreover, it is difficult for devel-
opers to find similar API sequence recommendations, distinguish different API sequence
recommendations, and make a selection when the API sequence recommendations are
ordered by probabilities. Thus, what we need is more than deep learning. In this paper, we
propose an approach, named COOK, to combine deep learning models with post-processing
strategies for API sequence recommendation. Specifically, we enhance beam search with
code-specific heuristics to improve the quality of API sequence recommendations. We
develop a clustering algorithm to cluster API sequence recommendations so as to make it
easier for developers to find similar API sequence recommendations and distinguish differ-
ent API sequence recommendations. We also propose a method to generate a summary for
each cluster to help developers understand the API sequence recommendations. Our eval-
uation results have shown that (1) three deep learning models with our heuristic-enhanced
beam search achieved better performance than with the original beam search in terms of
CIDEr-1, CIDEr-5 and CIDEr-10 scores, with an average improvement of 1.8, 2.3 and 2.3,
respectively; and (2) our clustering algorithm achieved high performance on six metrics and
outperformed two variant clustering algorithms. Moreover, our user study with 24 partici-
pants shows that COOK can help developers accomplish programming tasks faster and pass
more test cases, and the participants confirm that clusters and summaries indeed help them
understand and select the correct API sequence recommendations.
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1 Introduction

Developers often need assistance in finding relevant code snippets or APIs to accomplish
their development tasks. They may either describe their task needs in natural language
queries or write some partial code fragments, based on which a recommendation system
recommends relevant code snippets or APIs. In this work, we focus on the scenario in which
developers want the recommendation of a sequence of APIs for the partial code they have
developed. This scenario can be supported by code search techniques, API usage pattern
mining techniques or deep learning-based code recommendation techniques.

Code search techniques (Hill and Rideout 2004; Luan et al. 2019; Ai et al. 2019; Kim
et al. 2018; Krugler 2013) encode the provided partial code in some feature space (e.g.,
variable usage features and token features) and search the code in a large code base that is
similar to the provided partial code in the feature space. The assumption is that developers
are mostly aware of what to do, but need assistance in some part(s) of the big picture.
However, when developers provide little partial code, the returned code snippets vary greatly
in the way of implementations (such as the APIs used in the code snippets). Even though
the returned code snippets may contain the needed API sequences, it is not an easy task to
identify them from the often abundant code snippets.

API usage pattern mining techniques (Fowkes and Sutton 2016; Wang et al. 2013; Zhong
et al. 2009; Nguyen et al. 2009, 2012) offer API recommendations at an abstract pattern
level, which is relatively intuitive to understand. API usage patterns can be manually con-
structed or automatically mined. Mining API usage patterns is preferable, because it can
better model API usage complexity and diversity than constructing API usage patterns man-
ually. However, these techniques cannot recommend any code outside of the mined patterns
and the number of mined patterns are often limited to a few hundreds (Luan et al. 2019).

In recent years, deep learning-based techniques (Chen et al. 2019a; Dam et al. 2016; Yan
etal. 2018; Nguyen et al. 2018; Li et al. 2018; Terada and Watanobe 2019; Yang et al. 2019a,
b, ¢) have been proposed for code recommendation and achieve good performance. These
approaches encode source code into a program representation (e.g., code tokens, abstract
syntax tree, or control flow graphs) and then apply deep neural networks (e.g., Recurrent
Neural Network, Pointer Network or Tree-Structured Long Short-Term Memory Network)
to learn the code semantics for code recommendation. While these approaches currently
only focus on recommending one API but not an API sequence, they can be adapted for API
sequence recommendation by using the encoder-decoder framework combined with beam
search.

However, are deep learning models sufficient to recommend API sequences of high qual-
ity? In fact, some hidden assumptions deserve deeper considerations beyond more advanced
models, but they have been largely overlooked in the current accuracy contest. In particu-
lar, the space of potential API sequence recommendations is quite open, and can have an
exponential growth with the number of recommended APIs, which amplifies the impact of
overlooked hidden assumptions.

On the one hand, beam search is a simple greed strategy to select API suggestions at
each decoding step based on only the API suggestion probabilities of consecutive decoding
steps. Here the assumption is that API suggestion probabilities determined by the encoder-
decoder model are sufficient to guide the beam search process. However, when developers



select the API suggestions, they consider other aspects (e.g., program syntax) beyond just
probability-based API rankings. The black box nature of encoder-decoder models actually
makes it challenging to incorporate these aspects into the neural networks and control what
the model outputs beyond probability distributions.

On the other hand, API sequence recommendations are presented in a probability-based
ranked list. Again, the assumption here is that the ranking by the probabilities is sufficient
for developers to make the selection. However, guided by only API suggestion probabilities,
beam search usually outputs many highly overlapping API sequences in the top positions,
which ignores the openness and diversity of the potential recommendations. Openness
means that the intentions of developers are open. For example, when a developer declares
a file object, we cannot accurately determine his intention because he may want to read
contents from a file, or delete a file, or write contents into a file. Diversity means that the
solutions and implementations are diverse. Since the intentions of developers are open, dif-
ferent intentions need different solutions and implementations. This makes the selection and
comparison of diverse solutions very ineffective, as other solutions are pushed down by their
low probabilities. Furthermore, to make an informed selection, developers need to under-
stand the commonalities and differences among different solutions. However, probabilities
have nothing to do with such commonalities and differences.

Inspired by the above insights, we take a complementary perspective to improve the rec-
ommendation of API sequences for the partial code. Since APIs are usually used together
with control units (such as the API java.io.File.exists is usually used together with the con-
trol unit #f), in our work, we take into consideration the program language keywords for
control structures (e.g., for, while, and if). Therefore, the API sequence recommendations
of our approach are API sequences with control structures. Our approach does not attempt
to further enhance the already very complex encoder-decoder models. Instead, we pro-
pose an approach named COOK that post-processes the API sequence recommendations for
any encoder-decoder models with three strategies. First, we inject two aspects of heuris-
tics (i.e., program syntax and recommendation diversity) into the beam search process to
prune unsatisfied API suggestions. Unsatisfied API suggestions mean that API suggestions
at each decoding step that violate the program syntax or API sequence recommendations
that have a high overlap. Second, we develop a hierarchical clustering algorithm that com-
bines text similarity and API embedding similarity for grouping similar API sequence
recommendations into clusters. Third, to help developer understand the API sequence rec-
ommendations, we provide a summary for each cluster based on the common code structure
and the functionality description of the key APIs in the API sequence recommendations.

We have instantiated and implemented three different encoder-decoder models (i.e.,
Seq2Seq, Transformer and GGNN2Seq models) for API sequence recommendation. We
have also conducted extensive experiments to evaluate the effectiveness of our approach.
Our evaluation results have shown that: (1) all the three encoder-decoder models with our
heuristic-enhanced beam search achieved better performance than with the original beam
search in terms of CIDEr-1, CIDEr-5 and CIDEr-10 scores, with an average improvement of
1.8, 2.3 and 2.3, respectively; and (2) our clustering algorithm achieved high performance
on six metrics and outperformed two other variant clustering algorithms. We also conducted
a user study with 24 master students on 6 programming tasks to demonstrate that COOK can
help students accomplish the programming tasks faster and pass more test cases. In addi-
tion, our interview with students using COOK confirmed that the clusters and summaries are
kindly indeed help them understand and select the correct API sequence recommendations.

In summary, this work makes the following contributions:



—  We propose an approach, named COOK, to enhance encoder-decoder models for
API sequence recommendation with three post-processing strategies, i.e., heuristic-
enhanced beam search, clustering API sequence recommendations, and summarizing
API sequence recommendations.

— We instantiate and implement three different encoder-decoder models for API sequence
recommendation.

—  We conduct extensive experiments, including automatic quantitative comparison exper-
iments and a user study, to evaluate the effectiveness of post-processing strategies of
CoOK.

2 Ingredients from Deep Learning
2.1 Program Representation for Encoder-Decoder Models

We introduce the program representation of the three instances of the encoder-decoder mod-
els that our approach is built upon. The three models are a Seq2Seq model, a Transformer
model and a GGNN2Seq model, which will be introduced later.

The output of these models are the same, i.e., API sequences. The inputs are however
different. The input of the Seq2Seq and Transformer models is API sequences, whereas the
input of the GGNN2Seq model is API graphs. The API graph that we define is a directed
graph that represents the program structure. Each node in an API graph represents a control
unit (e.g., if and while) or an (labeled) API invocation, and each edge represents a type of
flow (e.g., control flow or data flow) between two nodes. The API graph encodes four kinds
of flow types, i.e., control flow, data flow, control and data flow, and special flow. A control
flow (a.k.a. type c flow) means that there is only control flow between two nodes. A data
flow (a.k.a. type d flow) means that there is only data flow between two nodes. A control
and data flow (a.k.a. type cd flow) means that there are both control and data flow between
two nodes. A special flow (a.k.a. type s flow) means that one of the two nodes is a node
representing a “hole” to be filled, i.e., the code to be recommended.

We also introduce special placeholders into an API graph to reflect the structure of
control units. Specifically, we use Condition node to represent the start of a condition
expression, Then and Body nodes to represent the start of the body of a decision-making
(e.g., if) and loop (e.g., while) control unit respectively, and Out_control node to represent
the start of the APIs out of the control unit.

The API graph we adopt in our work is borrowed and referenced from the API context
graph in Chen et al. (2021). Thus, as in Chen et al. (2021), each edge is given an obvious
and unique type in our API graph. However, the type of an edge is not labeled in the API
usage graph in Nguyen et al. (2009). In addition, when a program contains a hole, our API
graph is still a connected graph containing a hole node, but the API usage graph in Nguyen
et al. (2009) is not a connected graph.

Take the code in Fig. 1 as an example. This code is to read contents from a file line
by line and compute the hash code of each line. The code at lines 3/4/5/6/10 are used to
read contents from a file line by line. The code at line 2 is used to create a list to store the
hash code of each line. The code at line 7 is used to declare a variable to store the hash
code. The $hole$ at line 8 is the position that the developer wants to get API sequence
recommendations to help him compute the hash code of the line and then add it into the list.
To recommend API sequences with deep learning models, we should convert the code into
some kind of code representation as an input. For the Seq2Seq and Transformer models,



1: public List<Integer> computeHashCode(String path) throws Exception{
2 List<Integer> result = new ArrayList<>();

3 FileReader rd = new FileReader(path);

4 BufferedReader br = new BufferedReader(rd);
S: String str = null;

6: while((str = br.readLine()) != null){

7: int hashCode;

8 $hole$;

9: }

10: br.close();

11: return result;

12: }

Fig. 1 Code Example

the input code representation is the input API sequence in the code which is obtained by
traversing the API graph shown in Fig. 2 according to depth-first order and control flow
before the hole. For the GGNN2Seq model, the input is the API graph itself.

2.2 Seq2Seq Model

In the Seq2Seq model (Bahdanau et al. 2015), given an API sequence x1, x3, ..., X, as input

(where x; (i =1, 2, ..., n) is an API call or a control unit), the encoder first sequentially
embeds (a.k.a. maps) x; into a vector through the embedding layer and then each vector is

java.util. ArrayList.new()

java.io.FileReader.new(java.lang.String)

- — — java.io.BufferedReader.new(java.io.Reader) — = = = = = — — H
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fed into the gated recurrent units (GRUs) one by one to generate the hidden states. Based
on the hidden states and the attention mechanism, the input API sequence is represented
as a context vector c. The decoder then generates the API sequence recommendations step
by step. At each step ¢, the decoder generates API suggestions based on the current con-
text vector ¢;, the last hidden state s,_1 of the GRUs in the decoder as well as the vector
representation of the last chosen API suggestion y;_; through the embedding layer.

2.3 Transformer Model

In the Transformer model (Vaswani et al. 2017), given an API sequence xi, x2, ..., X, as
input, the encoder first embeds x; into a vector through the input embedding layer and
then passes these vectors through the following layers (i.e., the positional encoding and a
block including multi-head attention, add&norm layer, and feed forward layer) to generate a
vector representation. The vector representation is then fed into the decoder, whose structure
is similar to the encoder, to generate API sequence recommendations step by step.

2.4 GGNN2Seq Model

In the GGNN2Seq model (Li et al. 2016), given an API graph as input, the API graph is
processed as a set of nodes and edges. The encoder first embeds the label of each node into
a vector, which is then used as the initial vector of the node annotation of GGNNSs, through
the embedding layer. Then the nodes and edges are fed into the GGNNSs to generate the
vector representation of the API graph. The vector representation of the API graph is set as
the initial hidden state of the GRU in the decoder for decoding. At each decoding step ¢, the
decoder generates API suggestions based on the last hidden state 4;_1 of the GRU and the
vector representation of the last chosen API suggestion y;_; through the embedding layer.

2.5 Beam Search

Encoder-decoder models usually apply the beam search to generate sequences at the decod-
ing step, which is a natural choice to generate API sequences. Instead of choosing one API
suggestion y; with the highest probability, K suggestions are chosen at each decoding step
t, typically the K most probable suggestions. After each step, the K API suggestions are
combined with K API sequences from the previous step to form a set of K2 candidates. Out
of the candidates, K API sequences with the highest probabilities are generated, which are
then used for the next step. A common way to compute the probability of a generated API
sequence is as follows.

> 10gP(yilyr—1. X)

T ey
where T is the total number of steps and log P (y:|y1.+1—1, X) is the log-likelihood of
generating y, at the 7-th step.

For example, for the Seq2Seq model, when generating K API sequences with the beam
search at the decoding step ¢, we choose K API suggestions with the highest probabilities at
the decoding step ¢ instead of just choosing one API suggestion with the highest probability
for each candidate API sequence at the decoding step ¢+ — 1. Each API suggestion that we
choose at the decoding step 7 is then appended at the end of its candidate API sequence at
the decoding step + — 1. Since there are K candidate API sequences at the decoding step
t — 1, we can obtain K2 candidate API sequences at the decoding step 7. Out of the K2
candidate API sequences, we preserve the K API sequences with the highest probabilities

PY)=



according to (1). At the decoding step ¢ + 1, the last hidden state at the decoding step ¢ of
each candidate API sequence, the current context vector at the decoding step ¢ + 1 of each
candidate API sequence, and the API suggestion that we choose at the decoding step ¢ are
used accordingly to generate the next K API suggestions of each candidate API sequence at
the decoding step ¢ + 1. The decoding process of an API sequence stops when the length of
the API sequence reaches the max length or the end of the API sequence is EOS (denoting
end of an API sequence). The overall processes of the Transformer and GGNN2Seq models
to generate K API sequences with the beam search are similar to the process of the Seq2Seq
model. However, the ways of computing the next states in each model are different.

3 Cooking for APl Sequence Recommendation

In this section, we present the details of our approach, which is referred to as COOK.
CoOK is designed based on the idea that API sequence recommendation requires more
than deep learning. That is to say, post-processing on the raw ingredients provided by deep
learning is critical to generating high-quality API sequence recommendations.

There are two phases in COOK. One is the model training phase, applying one of those
three encoder-decoder models so as to generate raw API suggestions at the decoding step.
The other is the post-processing phase, which includes multiple post-processing strategies
designed to improve the quality of the API sequence recommendations and to help devel-
opers to distinguish and understand the API sequence recommendations. There are three
strategies, i.e., heuristic-enhanced beam search, clustering API sequence recommendations,
and summarizing API sequence recommendations. We present the details of each strategy
in the following sections.

3.1 Heuristic-Enhanced Beam Search

We propose several code-specific heuristics to enhance the original beam search (as intro-
duced in Section 2.5) so that unsatisfied API suggestions at decoding steps are pruned. The
underlying idea of these heuristics is to take program syntax (i.e., syntax of control units
and variable accessibility) and recommendation diversity into account; i.e., API suggestions
at each decoding step that violate program syntax or API sequence recommendations that
have a high overlap are unsatisfied API suggestions that should be pruned.

3.1.1 Syntax-Oriented Heuristics

Program syntax is critical for API sequence recommendation. If an API sequence vio-
lates the program syntax, it will bring difficulty for the developers to understand the API
sequence and the developer will waste time locating and fixing the program syntax error
of the API sequence. Since the API sequence that we recommend contains both control
units and APIs (e.g., special placeholders, special APIs, API method calls and API field
accesses), we need to guarantee the correctness of the program syntax of the control units
and APIs. For each control unit, we should make sure that its syntactical structure is correct.
For example, Condition must come after a control unit to represents the condition branch
of a control unit. For another example, the API suggestion Elself among API suggestions
at a decoding step is invalid when there is no If structure in the program, because Elself
without an If structure as the root is not syntactically correct. For special placeholders (i.e.,
Condition, Then, Body and Out_control) that we introduce into the structure of the control



units, we must make sure that the special placeholders match their corresponding control
units. For example, a control unit must appear before Condition. For another example, the
API suggestion Body among API suggestions at a decoding step is invalid when there is
no While structure in the program. For special APIs (i.e., Break, Continue and Return), to
guarantee the correctness of the program syntax when they are used together with control
units, we must make sure that the special APIs satisfy the syntactical structure of control
units. For example, Continue should be used at the end of the body of a loop, which means
that Out_control should come after Continue when the control unit is a loop. For common
APIs (e.g., API method calls and API field accesses), to avoid the program syntax error of
the variable (object) accessibility, we should make sure that there exist variables or objects
that meet the type of the receiver and parameters of an API. For example, the API sugges-
tion java.io.OutputStream.write(byte[ ]) among API suggestions at a decoding step is invalid
and will cause an program syntax error when the program contains no object of the type
Java.io.OutputStream. Note that we focus on post-processing, thus new heuristics can be
easily extended into our heuristic-enhanced beam search. However, in this work, we focus
on the proposed heuristics based on the above mentioned analysis.

Therefore, we first propose a set of heuristic rules to ensure that an API suggestion is
always syntactically correct. An API suggestion at a decoding step is preserved only if it
satisfies the rules. The detailed syntax checking rules are as follows. Specifically, for control
units, we define the following rules.

—  If the last chosen API suggestion is a control unit (e.g., If and While), the current API
suggestion must be Condition and other API suggestions should be pruned.

— If the current API suggestion is Elself or Else, it must match a previous If control unit.
Otherwise, it is pruned.

For special placeholders (i.e., Condition, Then, Body and Out_control), we define the
following rules.

—  If the current API suggestion is Condition and the last chosen API suggestion is not a
control unit, it is pruned. Otherwise, it is preserved.

— If the current API suggestion is Then, Body or Out_control, it must match a previous
control unit. Otherwise, it is pruned.

For special APIs (i.e., Break, Continue and Return), we define the following rules.

— If the last chosen API suggestion is Break or Continue, the current APl suggestion
should be Out_control, Elself or Else. If the current API suggestion is Out_control and
matches a previous control unit, it is preserved. If the current API suggestion is Elself
or Else and matches a previous If control unit, it is preserved. Otherwise, it is pruned.

— If the last chosen API suggestion is Return, the current API suggestion should be
Out_control, Elself, Else or EOS (denoting end of an API sequence). If the current API
suggestion is EOS and Return is not in a control unit, it is preserved. If the current
API suggestion is Elself or Else and matches a previous If control unit, it is preserved.
If the current API suggestion is Out_control and matches a previous control unit, it is
preserved. Otherwise, it is pruned.

Then, we propose a heuristic rule to check whether the current code context contains the
variables or objects that meet the type of the receiver and parameters of the API sugges-
tion at a decoding step. It ensures variable accessibility; i.e., all variables and objects for
the receivers and parameters of API suggestions at each decoding step are accessible in the



code context. The variables and objects in the code context include the variables and objects
declared or created before the recommendation position, and the variables and objects gen-
erated in the already generated API sequence till the last decoding step. If the return type of
an API suggestion in the already generated API sequence till the last decoding step is not
void, we consider it as an object of that return type. At the current decoding step, if an API
suggestion is a static API method or field access, we do not check the type of its receiver,
because the class can be directly used. Otherwise, we check whether there exists a variable
or object that can match the type of the receiver. If there is no match for the receiver, this
API suggestion is pruned. For each parameter in an API suggestion at the current decoding
step, if the type of the parameter is a basic type (e.g., int and double) or java.lang.String,
we do not check because this parameter can be concretized with a constant. Otherwise, we
check whether there exists a variable or object that can match the type of the parameter. If
there is no match for the parameter, this API suggestion is pruned. Note that we also con-
sider the scope of the variables and objects when making a check. For example, when we
check an API suggestion out of an If control unit, the variables and objects within the If
control unit are not included in the code context.

The reasons why we use syntactical rules as heuristics are as follows. First, since the deep
learning model is an implicit model that runs in a black-box way, it is difficult to enforce
syntactical rules into the deep learning model explicitly. Thus, it is better to use syntactical
rules as heuristics to enforce them in the post-processing process. Second, using syntactical
rules as heuristics is more lightweight and flexible, which allows us to extend new heuristics
in the future.

3.1.2 Diversity-Oriented Heuristics

Recommendation diversity is another important factor for API sequence recommendation.
Take the two API sequence recommendations in Fig. 3 as an example. We can see that the
second API sequence contains the first API sequence and these two API sequences reflect
the same core semantics that invoke a method using the reflection mechanism. However,
due to the uncertainty of the intention of developers, whether a developer needs to set the
accessibility of a method depends on the method (s)he invokes. In addition, a developer may
want to invoke a field or create an instance instead of invoking method using the reflection
mechanism. Thus, it is better to just preserve one of the two API sequences, which can
allow us to add another API sequence (which reflects the semantics of invoking a field or
creating an instance) into the top-k API sequence recommendations to increase the diversity

First API Sequence:
java.lang.Class.getDeclaredMethod(java.lang.String,java.lang.Class|])
java.lang.reflect. Method.invoke(java.lang.Object,java.lang.Object|])

Second API Sequence:
java.lang.Class.getDeclaredMethod(java.lang.String,java.lang.Class|])
java.lang.reflect. Method.setAccessible(boolean)

java.lang.reflect. Method.invoke(java.lang.Object,java.lang.Object|])

Fig.3 Example for Recommendation Diversity



of recommendations. In this example, the second API sequence is preserved because it has
a higher probability according to (1).

Therefore, we design a heuristic rule to increase the diversity of the final API sequence
recommendations. If one API sequence recommendation contains another API sequence
recommendation, we define that these two API sequences have an inclusion relationship.
Before appending an API sequence into the final API sequence recommendations, we com-
pare this API sequence with API sequences in the API sequence recommendations one by
one. If two API sequences have inclusion relationship, we just preserve one of them. Cur-
rently, we preserve the one with the higher probability computed by (1) because the one
with higher probability is considered more satisfiable with the current code context by the
encoder-decoder model.

We modify the longest common subsequence (LCS) algorithm to judge whether two
API sequences have inclusion relationship. Since we take into consideration the control
units in an API sequence, we need to make sure that the syntax of the control units in
the longest common subsequence is correct. If we cannot guarantee the correctness of the
syntax of control units in the longest common subsequence, the program logic may be
destroyed, which means that APIs maybe appear in the wrong control unit. Take the two
API sequences in Fig. 4 as an example. The modification is that we add a judgment on
the mapping of Condition, Then, Body and Out_control to its corresponding control unit.
If we just apply LCS, the longest common subsequence is marked italic in Fig. 4. How-
ever, it is obvious that the italic Out_control does not belong to the italic If in the first
API sequence, which causes the problem that the italic APIs java.lang.String.length()
and java.lang.String.substring(int, int) appear in the first If control structure. Indeed,
these two APIs belong to the second If control structure. Thus, we should add a judgment
on the mapping of Condition, Then, Body and Out_control to its corresponding control unit
in LCS. If Condition, Then, Body and Out_control are all mapped with their corresponding
control units correctly, we can guarantee that the APIs in the longest common subsequence
appear in the correct control units. Therefore, the two API sequences in Fig. 4 do not have
inclusion relationship.

First API Sequence:

If Condition java.lang.String.endsWith(java.lang.String) Then
java.lang.String.replaceAll(java.lang.String,java.lang.String)
Out_control

If Condition java.lang.String.contains(java.lang.CharSequence) Then
Jjava.lang.String.length()

Java.lang.String.substring(int,int)

QOut _control

Second API Sequence:

If Condition java.lang.String.endsWith(java.lang.String) Then
Jjava.lang.String.length()

Java.lang.String.substring(int,int)

Out_control

Fig.4 Example for Modified LCS



3.2 Clustering APl Sequence Recommendations

Given the API sequence recommendations from our heuristic-enhanced beam search, we
cluster them into several clusters. The goal is to make it easier for developers to find sim-
ilar API sequence recommendations, distinguish different API sequence recommendations
and facilitate their selection. For example, there are two API sequence recommendations
that use FileOutputStream to write contents into a file, one API sequence recommendation
that uses ZipInputStream to process a zip file, and three API sequence recommendations
that use BufferedReader to read contents from a file. These API sequence recommenda-
tions should be ideally grouped into three clusters. Without clustering, these API sequence
recommendations are ordered by their probabilities, which makes it difficult for develop-
ers to find similar API sequence recommendations and distinguish different API sequence
recommendations.

To this end, we apply a hierarchical clustering algorithm to cluster API sequence rec-
ommendations. Clustering requires a way of measuring the similarity between different
API sequences. We combine text similarity and API embedding similarity to compute the
distance of two API sequences.

Text similarity reflects how textually-similar two API sequences are. If the text simi-
larity of two API sequences is zero, meaning that there is no common API in these two
API sequences except for control units, these two API sequences should be clustered into
different clusters, because we consider that these two API sequences reflect different seman-
tics or solutions. If the text similarity of two API sequences is not zero, which means that
there exist common APIs in these two API sequences and they are more or less semantically
similar, we further take into consideration the API embedding similarity between these two
API sequences. The underlying idea is that two API sequences should be put in the same
cluster if their API embedding similarity is relatively high even if their text similarity is rel-
atively low and two API sequences should be clustered into different clusters if their API
embedding similarity is relatively low even if their text similarity is relatively high.

Take the three API sequences in Fig. 5 as an example. The text similarity of the first
and second API sequences is 0.29, which is lower than the text similarity (0.33) of the
second and third API sequences. Thus, if just use the text similarity, the second and third
API sequences are clustered into the same cluster. However, the core semantics of the first
and second API sequences are more similar, which are to process a string and return a
substring. So, even though the text similarity of the first and second API sequences is lower,
they should be clustered into the same cluster instead of clustering the second and third

First API Sequence: Third API Sequence:
java.lang.String.indexOf(int) java.lang.String.length()
If Condition Then java.lang.System.out.println(java.lang.String)

java.lang.String.substring(int,int)
return
Out_control

Second API Sequence:
java.lang.String.length()
java.lang.String.substring(int,int)
return

Fig. 5 Example for Combining Text Similarity with API Embedding Similarity



API sequences into the same cluster. Combining the text similarity and API embedding
similarity can solve the above problem.

Based on the above observations, we define the distance of two API sequences Y and Y’
used in the hierarchical clustering algorithm, written as D(Y, Y'), as follows.

1 text(Y,Y)=0
DY) = { (1—ae(Y, YN +(1—(text (YY) @
2

text(Y,Y') #0

where ae(Y, Y') is the API embedding similarity of ¥ and Y’; and text (Y, Y’) is the text
similarity of Y and Y’.

The text similarity is designed such that the higher the score, the more textually-similar
they are. In this work, it is defined based on the longest common sequence of ¥ and Y’.
That is, given two API sequences, to compute the text similarity, we apply the modified
LCS algorithm in Section 3.1 to get the longest common sequence that contains at least one
common APIL. The text similarity rext (Y, Y’) is computed as follows.

, len(C)
text(Y,Y') = 3)
max(len(Y), len(Y"))
where C denotes the longest common sequence that contains at least one common API,
function len() is to get the length of a sequence, and function max() is to get the larger
length.

Given two API sequences, to compute the API embedding similarity, we leverage the
embeddings from the encoder-decoder model to represent an API sequence as a vector.
Given an API sequence Y = y1, y2, ..., ¥n, its vector representation V (Y) is defined as
follows.

V() = (€

where embed(y;) is the vector representation of the API y, that can be obtained from the
embeddings of the encoder-decoder model, and r is the length of the API sequence. The
API embedding similarity is computed based on the cosine similarity of these two vectors.

Given the similarity measure, we use the Silhouette Coefficient (Rousseeuw 1987) to
select the clusters with the highest score as the final cluster results of the hierarchical
clustering algorithm.

n

3.3 Summarizing APl Sequence Recommendations

Given the API sequence recommendations in each cluster, we summarize them to help
developers understand the “consensus” of each cluster.

As reported in Chen et al. (2019a), developers are often not familiar with recommended
APIs, they just rely on the names of the recommended APIs to decide whether an API is
what they expect. They hope that easy-to-understand explanations of recommended APIs
can be provided to allow them to better choose the right API. We can see that developers
already call for explanations of APIs in the single API recommendation task. Hence, it is
more important to provide summaries in the API sequence recommendation task, which
contains multiple APIs.

The main idea of the solution on summarizing API sequences is to first extract the longest
common subsequence of API sequences (which reflects the common semantics (intention)
of API sequences) in a cluster, then recognize the key APIs reflecting the key intention of
the longest common subsequence, and finally generate the summary of the key APIs.



To generate a summary for each cluster, we first use the algorithm introduced in
Section 3.1 to extract the longest common sequence of any pair of API sequence recom-
mendations. Note that our approach is based on the assumption that the longest common
sequence summarizes the “consensus” of the sequences. The API sequence recommenda-
tions in the same cluster contain common APIs and have similar semantics, so the longest
common sequence can be used as the “consensus” to represent the similar semantics.

Then, we recognize the key APIs in the longest common sequence for summarization.
Specifically, we construct a graph to reflect the data and control flows among APIs in
the longest common sequence, which is then used in the PageRank algorithm (Brin and
Page 1998) to recognize the key APIs. The control flow among APIs in the longest com-
mon sequence is exact, however, we cannot obtain the exact data flow among APIs in
the longest common sequence because all APIs are represented in an abstract way. Thus,
we analyze all possible data flows among APIs in the longest common sequence com-
bined with the partial code based on type matching. If the type of a declared variable
(or object) or the return type of an API matches the type of a receiver or a parameter in
another API, we add a data flow between them. For example, a longest common sequence
of a partial code is shown in Fig. 6, and the constructed graph is also shown in Fig. 6.
The return type of java.io.BufferedReader.readLine() is java.lang.String, which matches
the type of the parameter in the API java.lang.StringBuilder.append(java.lang.String).

Partial Code:
File file = new File(path);
FileReader in = new FileReader(file);

Longest Common Sequence:
java.io.BufferedReader.new(java.io.Reader)
java.lang.StringBuilder.new()

While Condition java.io.BufferedReader.readLine() Body
Java.lang.StringBuilder.append(java.lang.String)

Out _control

Graph for PageRank:
java.io.File.new(java.lang.String)

java.io.FileReader.new(java.io.File)

r = = java.io.BufferedReader.new(java.io.Reader)

java.lang.StringBuilder.new()— - - = - - - —

1
1
While |
l } 1 | |7 Typec
Condition Body Out_control 1 |=—-> Typed
: —¢ Typecd

v
java.lang.StringBuilder.append(java.lang.String)
1

>java.io.BufferedReader.readLine() — !

Fig.6 Example for Recognizing Key APIs



Thus, there is a possible data flow between these two APIs. After applying the PageR-
ank algorithm on the graph in Fig. 6, we obtain java.io.BufferedRead er.readLine() and
Jjava.lang.StringBuilder.append(java.lang.String) as two key APIs. As the two key APIs are
in a control unit (i.e., a loop unit While), we also mark the control unit as a key API (is italic
Fig. 6) to maintain the structural completeness.

Finally, for each identified key API, we extract the first sentence in its documentation as
its summary. For a control unit, we define a summary template. For example, for a While
control unit, we define its summary as “Depending on the result of some condition, do the
following things iteratively: do something”. “some condition” and “do something” will be
replaced with the summary of the corresponding API in the condition and body of While.
For example, the summary of the key APIs in Fig. 6 is “Depending on the result of reading a
line of text, do the following things iteratively: append the specified string to this character
sequence”.

4 Evaluation

To evaluate the effectiveness of COOK, we conducted experiments to answer the following
three research questions.

— RQ1 (Effectiveness of Heuristic-Enhanced Beam Search): How is the quality of the
API sequences recommended by our heuristic-enhanced beam search?

— RQ2 (Effectiveness of Clustering Algorithm): How effectively can our clustering
algorithm cluster API sequence recommendations?

— RQ3 (Effectiveness of COOK in Real Tasks): How effectively can COOK help
developers accomplish real programming tasks?

4.1 Implementation and Data Collection

We have developed an implementation of COOK for JDK 1.8, i.e., recommend API
sequences that involve JDK APIs. We used JavaParser! to parse source code into ASTs
(Abstract Syntax Trees) and leveraged Java reflection mechanism to identify JDK API
invocations in source code for constructing API sequences and graphs. All three encoder-
decoder models were implemented using TensorFlow 1.14. https://github.com/tensorflow/
tensorflow.

We collected a large code corpus from GitHub for training. We crawled Java projects that
had more than 1000 stars, and finally we obtained 1,914 Java projects. We randomly selected
90% of the Java projects as the training set and the remaining 10% of the Java projects as
the validation set. Following prior works (Chen et al. 2019a; Nguyen and Nguyen 2015;
Liu et al. 2018), for each method in a Java project, we constructed training and validation
instances at each position in the method. A position is the position of an API in the target
library (e.g., JDK library) or a control unit in the method. At a position, we removed some
APIs. The removed APIs were used as ground truth and the remaining code was used as
the incomplete code. In total, our training and validation sets had 9,133,429 and 1,456,829
instances, respectively.

For all the three encoder-decoder models, the embedding size was set to 300; the hidden
size was set to 300 in the encoder and 600 in the decoder; the dropout was set to 0.75; the

Uhttps://github.com/javaparser/javaparser/
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learning rate was set to 0.005; the batch size was set to 256. During training, if the loss does
not decrease in five successive epochs on validation set, the training process ends and the
model with the lowest loss is used as the final model.

4.2 Effectiveness of Heuristic-Enhanced Beam Search (RQ1)

To evaluate the effectiveness of our heuristic-enhanced beam search, we compared the qual-
ity of the API sequences recommended by the three encoder-decoder models with and
without our heuristic-enhanced beam search on six test projects. The API sequence recom-
mendations of the models equipped with the original beam search are generated in the way
we introduced in Section 2.5, in which we set k to 10. The API sequence recommendations
of the models equipped with our heuristic-enhanced beam search are generated by introduc-
ing the syntax-oriented heuristics and diversity-oriented heuristics into the original beam
search at each decoding step to prune unsatisfied API suggestions.

Effectiveness Metrics We employed the CIDEr? score (Vedantam et al. 2015) as the indi-
cator of the quality of API sequence recommendations. CIDEr was originally proposed to
compute the similarity between two sentences based on a weighted combination of n-grams
while taking the frequency of words into consideration.

Zohar and Wolf (2018) focused on program synthesis task and employed the CIDEr
score to compute the similarity between the synthesized program and the target program.
Following this work, we employed the CIDEr score to compute the similarity between an
API sequence recommendation and the API sequence ground truth. The higher the CIDEr
score, the more similar the two API sequences. Thus, a 10% improvement of CIDEr means
that the API sequence recommendation is 10% more similar to the API sequence ground
truth, which indicates that the API sequence recommendation may contain more ordered
APISs that appear in the API sequence ground truth.

As we want to recommend the top-k API sequence recommendations for each test
instance, we defined the CIDEr-k score to compute the highest CIDEr score. For each of the
top-k API sequence recommendations of each test instance, we computed its CIDEr score,
and the highest CIDEr score was used as the final CIDEr score of these top-k API sequence
recommendations.

Test Projects We chose six open-source Java projects: Galaxy https:/github.com/
puniverse/galaxy, JGit https://github.com/eclipse/jgit, Froyo-Email https://github.com/
Dustinmj/Froyo_Email, Grid-Sphere https://github.com/brandt/GridSphere, Itext https:/
github.com/itext/itextpdf and Log4j https://github.com/apache/log4j to construct the test
instances. These projects have been widely used as test projects in previous research on
API recommendation (e.g., Chen et al. 2019a; Nguyen et al. 2015, 2016; Liu et al. 2018).
Note that they were not included in the training set or validation set. The test instances were
constructed in the same way as the training and validation instances. Furthermore, we fil-
tered duplicated test instances. If the input API sequences, API graphs and the ground truth
of two test instances were the same, the two test instances were considered to be dupli-
cated. In addition, we filtered test instances whose length of the API sequence ground truth
are less than 4 for two reasons. First, we expect to help developers finish tasks with long
API sequences. When the length of an API sequence is short, developers may tend to write

2https://github.com/vrama91/cider
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code by themselves or use tools that recommend the next API iteratively. Second, the com-
putation of the CIDEr score involves 1-ngram, 2-ngram, 3-ngram and 4-ngram. Thus, as
in Zohar and Wolf (2018), we focus on long API sequences.

Results The results of CIDEr-k score on the constructed test instances are reported in
Table 1. The first column lists the project name as well as the number of test instances

Table 1 CIDEr-k scores of encoder-decoder models with and without heuristic-enhanced beam search

Project Model CIDEr-1 CIDEr-5 CIDEr-10
Seq2Seq+OBS 12.6 20.5 23.6
Seq2Seq+HBS 16.0 24.9 28.3
Galaxy Transformer+OBS 9.8 16.6 18.1
(167) Transformer+HBS 12.1 18.2 19.9
GGNN2Seq+OBS 13.5 20.3 232
GGNN2Seq+HBS 14.9 25.1 28.8
Seq2Seq+OBS 12.6 21.8 25.0
Seq2Seq+HBS 13.5 23.6 26.5
JGit Transformer+OBS 12.1 21.7 25.4
(1,298) Transformer+HBS 14.0 23.2 25.7
GGNN2Seq+OBS 12.9 22.5 25.5
GGNN2Seq+HBS 154 25.5 28.3
Seq2Seq+OBS 13.8 25.1 28.1
Seq2Seq+HBS 16.6 27.2 304
Froyo-Email Transformer+OBS 13.8 24.5 28.2
(504) Transformer+HBS 16.0 28.7 31.6
GGNN2Seq+0OBS 15.8 27.7 29.7
GGNN2Seq+HBS 18.4 32.7 35.0
Seq2Seq+OBS 17.4 27.1 29.3
Seq2Seq+HBS 17.9 27.8 30.3
Grid-Sphere Transformer+OBS 18.4 27.7 29.9
(574) Transformer+HBS 18.8 28.3 31.8
GGNN2Seq+0OBS 17.3 28.0 29.7
GGNN2Seq+HBS 20.3 31.5 335
Seq2Seq+OBS 18.6 274 29.9
Seq2Seq+HBS 20.9 29.3 31.6
Ttext Transformer+OBS 19.7 27.2 29.3
(1,546) Transformer+HBS 20.4 28.5 30.3
GGNN2Seq+0OBS 18.8 28.0 30.1
GGNN2Seq+HBS 22.8 324 34.6
Seq2Seq+OBS 16.5 22.8 25.6
Seq2Seq+HBS 17.2 22.7 24.7
Log4j Transformer+OBS 16.3 234 25.0
(696) Transformer+HBS 17.5 234 25.5
GGNN2Seq+OBS 18.2 24.9 27.3
GGNN2Seq+HBS 18.4 25.2 28.2




in each project. The second column shows the encoder-decoder models equipped with the
original beam search (OBS) and our heuristic-enhanced beam search (HBS). The remaining
columns report the CIDEr-1, CIDEr-5 and CIDEr-10 score.

We can see that the GGNN2Seq model with the original beam search achieved higher
CIDEr-k scores than the Seq2Seq and Transformer models with the original beam search in
most cases, and the improvement ranged from 0.5 to 3.7. The Transformer model achieved
better performance than the Seq2Seq model in NLP tasks, but the Transformer model with
the original beam search achieved lower CIDEr-k score than the Seq2Seq model in most
cases. The improvement of the GGNN2Seq model is credited to the consideration of pro-
gram structure. However, the improvement of the Transformer model over the Seq2Seq
model is not as we expected. These results indicate that the advances in encoder-decoder
models are not applicable to all cases every time, unless the advances take into consideration
of the features of a specific problem (e.g., GGNN2Seq model takes the program structure
into consideration). Therefore, we take a complementary perspective to add post-processing
strategies for API sequence recommendation.

In almost all the cases, all encoder-decoder models with our heuristic-enhanced beam
search achieved higher CIDEr-k score than with the original beam search, and the improve-
ment ranged from 0.2 to 5.6. In some cases, the improvement of our heuristic-enhanced
beam search was even higher than using more advanced encode-decoder models. For
example, the CIDEr-1 scores of the Seq2Seq model and the Transformer model with our
heuristic-enhanced beam search on Froyo-Email were higher than that of the GGNN2Seq
model with the original beam search. It shows that our heuristic-enhanced beam search
is effective to all deep learning models and almost all the cases. Besides, our heuristic-
enhanced beam search can be extended with more heuristic rules and combine domain-
specific knowledge. As the GGNN2Seq model achieves the best performance in most cases,
we adopt the GGNN2Seq model as the representative model in RQ2 and RQ3.

Since all encoder-decoder models with our heuristic-enhanced beam search achieved
higher CIDEr-k score than with the original beam search, we further conducted an
experiment to evaluate the false positive rate of HBS as opposed to OBS. We define
that API sequence recommendations of OBS that violate the heuristic rules (i.e.,
syntax-oriented heuristics and diversity-oriented heuristics), are not included in the API
sequence recommendation of HBS, and the CIDEr scores are lower than the high-
est CIDEr score in the API sequence recommendation of HBS as false positives.
The false positive rate is computed as the ratio of the number of false positives to
the total number of API sequence recommendations of OBS. The results are reported
in Table 2.

We can see that the false positive rate is high for each testing project of each encoder-
decoder model. This indicates that our heuristic-enhanced beam search can effectively
reduce the false positives in the decoding step. We can also see that even with better code
representation (as in GGNN2Seq), our heuristic-enhanced beam search can still make sense
though the false positive rate is lower than those of the other two models. This does not mean
that there is no need to apply heuristic-enhanced beam search when the code representation
becomes better. Conversely, when the code representation becomes better, we should exploit
other suitable heuristic rules and try to introduce knowledge into to the heuristic-enhanced
beam search to enhance the reasoning ability.

Furthermore, we conducted an experiment to evaluate whether the length of an API
sequence to be recommended will affect the effectiveness of our heuristic-enhanced
beam search. We divided the test instances in all the six test projects into 18 subsets



Table 2 False positive rate (%)

Project Seq2Seq Transformer GGNN2Seq
Galaxy 72.5 73.8 62.4
JGit 64.8 68.0 60.3
Froyo-Email 64.0 66.6 58.3
Grid-Sphere 63.9 68.2 57.5
Itext 64.3 69.1 61.1
Log4j 66.9 69.5 56.4

according to the length of an API sequence (i.e., 4 to 20, and over 20). For each subset, we
evaluated the CIDEr-10 score for each model with OBS and HBS separately. The results are
reported in Table 3.

We can see that our heuristic-enhanced beam search is insensitive to the sequence length.
In most cases, the model with our heuristic-enhanced beam search achieved higher CIDEr-
10 score than with original beam search. This is because that the heuristic rules defined in
our heuristic-enhanced beam search pay attention to characteristics of the source code itself.
The sequence length has no relation with the characteristics of the source code.

Table 3 CIDEr-10 scores for different sequence lengths (%)

Length Seq2Se Seq2Se Transform Transform GGNN2 GGNN2
q+OBS q+HBS er+OBS er+HBS Seq+OBS Seq+HBS
4 26.5 25.5 25.8 25.3 28.5 30.0
5 354 35.8 36.0 36.2 354 41.5
6 25.5 274 25.0 26.9 26.3 32.0
7 271 26.7 242 26.0 27.8 29.5
8 232 254 22.7 24.6 24.1 26.8
9 233 25.8 24.0 24.5 24.7 26.2
10 279 323 28.7 314 30.0 334
11 25.0 26.6 24.8 28.2 24.6 28.8
12 24.2 27.8 22.5 254 25.6 27.8
13 23.4 274 24.6 25.5 247 28.6
14 24.3 27.2 24.0 25.5 24.5 28.0
15 26.9 29.3 28.0 29.5 27.4 29.1
16 254 28.6 26.4 26.6 24.8 29.3
17 28.1 28.6 28.6 29.1 27.0 29.8
18 25.2 29.5 26.3 28.4 24.1 28.0
19 26.0 28.5 24.5 26.0 27.0 28.7
20 29.7 33.8 32.0 31.9 28.8 31.2

20+ 24.6 26.1 23.5 25.2 23.8 26.5




4.3 Effectiveness of the Clustering Algorithm (RQ2)

To evaluate the effectiveness of our clustering algorithm, we compared our clustering results
with manual clustering results.

Evaluation Metrics We employed six metrics, i.e., Adjusted Rand Index (ARI) (Hubert and
Arabie 1985), Normalized Mutual Information (NMI) (Nguyen et al. 2010), Homogeneity
(HOM), Completeness (COM), V-measure (V-M) (Rosenberg and Hirschberg 2007), and
Fowlkes-Mallows Index (FMI) (Fowlkes and Mallows 1983), as used in prior work (Huang
et al. 2018), as the indicators to measure the performance of our clustering algorithm.
Since our clustering algorithm combines the text distance and API embedding distance
(TD+AED) for hierarchical clustering, we also compared it with two variants, i.e., the first
variant clustering algorithm only uses the API embedding distance (AED) and the second
variant clustering algorithm only uses the text distance (TD).

ARI measures the similarity between two clustering labels in a statistical way. NMI
measures the mutual information between two clustering labels. HOM is the proportion of
clusters containing only members of a single class. COM is the proportion of all members
of a given class that are assigned to the same cluster. V-M is the harmonic mean of HOM
and COM. FMI is the geometric mean of the pairwise precision and recall. For all above six
metrics, the higher the value, the better the clustering performance (Huang et al. 2018).

Test Instances and Ground Truth Construction we randomly selected 30 test instances
(5 test instances from each project) from all the test instances in RQ1. As we need to
manually label clusters of each test instance to construct the ground truth and it is
time-consuming to label a large amount of test instances, we randomly selected 30 test
instances.

For each test instance, we obtained its top 10 API sequence recommendations through
GGNN2Seq model with our heuristic-enhanced beam search. Two of the authors individu-
ally manually clustered the top 10 API sequence recommendations of each test instance. For
any two of the top 10 API sequence recommendations for each test instance, we checked
whether the two authors clustered these two API sequences into the same cluster, and used
Cohen’s Kappa coefficient (McHugh 2012) to compute the score of the agreement between
the two authors. The original agreement between the two authors was substantial, achiev-
ing a Cohen’s Kappa coefficient of 0.76. Further, based on the original clusters of the
top 10 API sequence recommendations clustered by the two authors, if the clusters were
not the same, a third author would be involved to have group discussions to reach a total
agreement.

Results The results are presented in Table 4. Our clustering algorithm using TD+AED
achieved the best performance on all the six metrics and achieved a significantly higher
score (from 0.82 to 0.92) on the six metrics than the two variants. These results demonstrate
that our clustering is effective in clustering API sequence recommendations.

4.4 Effectiveness of Cook in Real Tasks (RQ3)

To evaluate how effectively COOK helps developers in practice, we developed IntelliJ IDEA
plugins for the GGNN2Seq model with the original beam search and COOK respectively,
and conducted a user study. We asked two groups of participants to complete a set of pro-
gramming tasks with these two plugins. In addition, we asked another group of participants



Table 4 Clustering performance

Method ARI NMI HOM COM V-M FMI
AED 0.37 0.63 0.58 0.86 0.63 0.59
D 0.66 0.81 0.88 0.82 0.81 0.78
TD+AED 0.82 0.84 0.88 0.92 0.87 0.90

to complete the same set of programming tasks with the standard IntelliJ IDEA. Note that
the standard IntelliJ IDEA itself provides standard code-completion feature.

Tasks in the User Study Following a prior work (Chen et al. 2019a), we obtained pro-
gramming tasks from Stack Overflow. First, we obtained the top 750 posts with tag “Java”,
ordered by votes. Second, we excluded posts about concept explanation, bug fixes, perfor-
mance comparisons and difference explanation as they were not about API usages. Third,
we checked whether the answer with most votes of each post was JDK API sensitive and
had at least four API invocations. If yes, the corresponding post was preserved. Finally, we
obtained 31 posts. We randomly selected six posts as programming tasks from the 31 posts.
For each task, we designed several test cases (i.e., 5 test cases on average). Following previ-
ous works (Chen et al. 2019a, 2021) that include a user study, we randomly selected 6 tasks
to avoid bias. We do not include more tasks because participants will become slack when
there are too many tasks to finish, which will affect the results of the experiment. In addi-
tion, the number of tasks used in Chen et al. (2019a, 2021) is also no more than 6. The six
tasks are as follows:

— T1: Read the contents of a file. https://stackoverflow.com/questions/4716503/.

—  T2: Extract a substring using regex. https://stackoverflow.com/questions/4662215/.

— T3: Get the filenames of all files in a folder. https://stackoverflow.com/questions/
5694385/.

— T4: Convert a serializable object to a byte array. https://stackoverflow.com/questions/
28360646/

— T5: Create an instance by class name and constructor. https://stackoverflow.com/
questions/6094575/.

— T6: Generate an MDS5 hash of a given string. https://stackoverflow.com/questions/
415953/.

Though the tasks were chosen randomly as in previous work, we find the length of API
sequence to be recommended and the cyclomatic complexity of the chosen tasks are
different, which can simulate the scenarios of different situations.

Participants in the User Study We recruited 24 master students, majoring in software engi-
neering, from our school. We asked the 24 participants to complete a pre-study survey to
evaluate their experience and capability in Java programming. Based on the results of the
survey, we divided the 24 participants into three groups G1, G2, and G3, so that the overall
capabilities of G1, G2 and G3 were at an equivalent level.

We assigned G1 to use the plugin of the GGNN2Seq model with the original beam
search, and assigned G2 to use the plugin of COOK. We assigned G3 to use the standard
IntelliJ IDEA which provides the standard code-completion feature. For each task, we pro-
vided the first line of code of the answer to make sure that even if a participant had no
solution to solve a task, participants in G1 and G2 could use plugins for help based on
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the first line of code. If the participants had their own solutions to solve a task, they were
allowed to ignore and delete the first line of code. Participants were asked to accomplish
the six tasks and they were not allowed to search code and solutions from the Internet, and
they could use plugins we provided to obtain top 10 API sequence recommendations. Each
participant was given 20 minutes to accomplish each task, and they were required to submit
their current implementation of each task once the time was up.

Evaluation Metrics We defined task completion time and test pass rate as the indicators to
measure the performance of the two plugins. The task completion time is the time that a par-
ticipant takes to accomplish a task. The test pass rate is the percentage of test cases that are
passed.

Results The results are reported in Tables 5 and 6 respectively. We can see that participants
in G3 accomplished some tasks faster (i.e., T1, T3 and T4) and passed more test cases (i.e.,
T1, T3, TS and T6) than participants in G1, and participants in G1 accomplished some tasks
faster (i.e., T2, T5 and T6) and passed more test cases (i.e., T2 and T4) than participants
in G3. The reasons why participants in G1 accomplished some tasks slower and passed
less test cases than participants in G3 are as follows. First, when the participants rely on
the API sequence recommendations to accomplish a task, the more accurately (the higher
quality) the API sequence recommendations the more test cases will be passed. However,
the quality of the API sequence recommendations provided by the plugin of G1 is lower
than that of G2. Thus, when the participants mainly rely on API sequence recommendations
of relatively low quality in G1, which may need extra efforts to make changes, their thinking
may be limited to the API sequence recommendations and ignore to carefully check and
change the API sequence recommendations accordingly. In this situation, it is better for

Table 5 Task completion time of the tasks (seconds)

Task Group avg min max median stan. dev. p-value (G1 & G2)

T1 Gl 749.5 454 1130 693.5 227.57 0.0156
G2 402.6 140 1052 308.5 310.98
G3 523.4 132 1028 468 339.08

T2 Gl 643.3 335 960 629.5 273.47 0.0518
G2 393.8 110 720 387.5 262.78
G3 741.3 395 1200 672.5 322.29

T3 Gl 429.8 180 660 454 182.93 0.1860
G2 336.6 124 648 245.5 192.11
G3 398.0 205 649 344 188.19

T4 Gl 1037.8 736 1200 1150 204.61 0.0013
G2 3324 87 959 189 326.74
G3 959.0 246 1200 1200 374.23

T5 Gl 844.9 281 1200 990 396.30 0.0633
G2 524.0 185 1200 313.5 420.74
G3 911.4 274 1200 1197.5 417.84

T6 Gl 407.9 122 1080 291 327.72 0.2474
G2 258.3 97 500 214.5 143.45

G3 435.8 134 1200 282 370.30




Table 6 Test pass rate of the tasks

Task Group avg min max median stan. dev. p-value (G1 & G2)

T1 Gl 0.67 0.00 1.00 1.00 0.47 0.1199
G2 0.92 0.33 1.00 1.00 0.24
G3 0.88 0.33 1.00 1.00 0.25

T2 Gl 0.78 0.00 1.00 1.00 0.41 0.2441
G2 0.97 0.75 1.00 1.00 0.09
G3 0.44 0.00 1.00 0.25 0.48

T3 Gl 0.66 0.13 1.00 0.69 0.37 0.0417
G2 0.94 0.50 1.00 1.00 0.18
G3 0.72 0.00 1.00 1.00 0.41

T4 Gl 0.50 0.00 1.00 0.50 0.53 0.0151
G2 1.00 1.00 1.00 1.00 0.00
G3 0.38 0.00 1.00 0.00 0.52

T5 Gl 0.25 0.00 1.00 0.00 0.46 0.0303
G2 0.75 0.00 1.00 1.00 0.46
G3 0.38 0.00 1.00 0.00 0.52

T6 Gl 0.77 0.00 1.00 1.00 0.43 0.0855
G2 1.00 1.00 1.00 1.00 0.00
G3 0.88 0.00 1.00 1.00 0.35

the participants to write the code by themselves if they know how to write. Second, the
API sequence recommendations provided by the plugin of G1 have an overlap. This may
make the participants get lost in the recommendation list, which may waste their time for
selection. However, when using the post-processing strategies that we proposed, participants
in G2 accomplished each task faster and passed more test cases than participants in G3.
This indicates that our proposed post-processing strategies can improve the quality of the
API sequence recommendations and help participants to select the expected API sequence
faster. These results show that it is necessary to improve the quality of the API sequence
recommendations to avoid side effects.

In addition, we further analyzed the improvement achieved by the plugin of G2 when
compared with the plugin of G1 to evaluate the effectiveness of our heuristic-enhanced
beam search compared with the original beam search, clustering algorithm and summarizing
method. We can see that participants in G2 accomplished each task faster and passed more
test cases than participants in G1. On average, participants in G1 took 407.9-1037.8 seconds
to accomplish a task, while participants in G2 spent 258.3-524.0 seconds. Participants in G1
passed 25-78% test cases, while participants in G2 passed 75-100% test cases. Especially,
the test pass rate of T4 and T6 in G2 were 100%. The length of the API sequence and the
cyclomatic complexity of each task is different. The length of the API sequence for each
task is 16, 11, 19, 7, 5 and 5 respectively. The cyclomatic complexity of each task is 2, 2, 4,
1, 1 and 1 respectively. From the results, we can see that participants in G2 achieved better
performance for each task regardless of the length and cyclomatic complexity of each task.
It indicates that our heuristic-enhanced beam search can be applied to tasks with different
lengths and cyclomatic complexity. This is because that the heuristic rules defined in our
heuristic-enhanced beam search pay attention to characteristics of the source code itself.



The sequence length has no relation with the characteristics of the source code (which is
consistent with the finding in RQ1). In addition, since we take into consideration the control
units, we can successfully recommend API sequences with different cyclomatic complexity.
We used Mann-Whitney U test to evaluate whether the difference of the task completion
time and test pass rate between G1 and G2 was significant. A difference is considered to be
significant if the p-value is less than 0.05. We can see that participants in G2 significantly
outperformed participants in G1 in terms of task completion time for two tasks (i.e., T1 and
T4) and in terms of test pass rate for three tasks (i.e., T3, T4 and T5).

Moreover, participants in G2 were asked to evaluate the effectiveness of the clusters and
summaries of each task by giving scores ranging from 1 to 5 (the higher the score, the better
the effectiveness) with the following three questions.

— UQ1: How is the quality (e.g., recommendations in the same cluster are similar) of the
clusters?

— UQ2: Are the clusters helpful for you to distinguish recommendations?

— UQ3: Are the summaries useful to help you understand the recommendations?

The average score of UQ1, UQ2 and UQ3 of each task ranged from 3.5 to 4.4, which
indicates that the feedback of clusters and summaries are quite positive, and our clusters and
summarizations do help developers better distinguish and understand the recommendations.

Interview with Participants We also conducted an interview with each participant to obtain
the feedback of using two plugins. We asked the following two interview questions.

— IQ1: When are you willing to get help from plugins?
— IQ2: In which tasks do you think the plugins help you?

For IQ1, all participants in G1 and G2 said that they preferred to use plugins when they
had no idea on which API(s) to use to accomplish a task, they forgot the API(s), or the
code to be written was long (i.e., a long sequence of function calls) though they knew the
API(s). In the first and second situations, the API sequence recommendations can help them
correctly accomplish a task. In the third situation, the API sequence recommendations can
help them accomplish a task faster. If they were familiar with the API(s) related to a task
and the code to be written was not long, they preferred to write the code by themselves.

For 1Q2, participants in G2 said that the plugin they used could help them accomplish
each task, especially for T4 and T5. They said that they had no idea which API(s) to use to
accomplish tasks T4 and TS5, but the API sequence recommendations provided by the plugin
gave them solutions and the clusters and summaries helped them distinguish and understand
the recommendations and facilitate their selection. For example, participants in G2 said
that the clusters in TS5 successfully distinguished API sequence recommendations (e.g., a
cluster for invoking a method using the reflection mechanism, a cluster for invoking a field
using the reflection mechanism, a cluster for creating an object instance using the reflection
mechanism, and a cluster for connecting to a database). In addition, the summaries for
each cluster can help them understand the API sequence recommendations and successfully
select the one to create an object instance using the reflection mechanism.

Then, we investigated the API sequence recommendations provided by plugins of G1 and
G2 for T4 and TS5 respectively, and we found that the plugin of G2 successfully provided
the correct API sequence for T4 and T3, but the plugin of G1 did not. The successful API
sequence recommendation of the plugin in G2 for T4 and T3 is credited to our heuristic-
enhanced beam search. Two of the API sequence recommendations for T5 without our



heuristic-enhanced beam search were shown in Fig. 3. These two API sequences have an
inclusion relationship, and thus one of these two API sequence recommendations should be
pruned. With our heuristic-enhanced beam search, the second API sequence in Fig. 3 with a
higher probability is preserved, which leaves a position in the top 10 recommendations for
the API sequence related to creating an object instance using the reflection mechanism. We
also asked the reason that some participants in G1 successfully accomplished T4 and T5.
It turns out that they knew the key API(s) for T4 and TS. Thus, when they wrote the key
API(s) in the code context, the plugin in G1 can also provide the correct API sequence rec-
ommendation. However, most participants in G1 and G2 did not know the key API(s) and
the advantages of the plugin in G2 can help them complete the task.

We also analyzed the performance of T1, T2, T3 and T6 for two groups. For T1, even
though the plugin in G1 failed to provide the API sequence recommendations that partic-
ipants expected, the participants in G1 still accomplished the task by themselves because
they were familiar with the APIs for reading a file. However, the plugin in G2 provided the
expected API sequence for participants to select. As a result, the improvement of the task
completion time for T1 is significant.

For T3, the plugin in G2 provided an API sequence recommendation to judge whether
a file is a directory, which required that the participants recursively process a directory.
However, some participants in G1 forgot to recursively process a directory as the above
recommendation was not provided. As a result, the improvement of the test pass rate is
significant.

For T2 and T6, their API usages were relatively common and rigid, which are to use regex
to extract a string and digest a string with MDS5. Thus, both plugins can provide the correct
API sequence recommendations. As a result, the improvement of the task completion time
and test pass rate for T2 and T6 are not significant.

4.5 Threats to Validity

The threats to the internal validity lie in two aspects. First, the ground truth of clustering
labels in RQ2 were manually labeled by two authors. However, the original agreement of
the two authors was substantial and we organized group discussions to reach an agreement
when they had conflicts. Second, the test cases in RQ3 for each task may not be complete.
However, the test cases were designed by taking into consideration of all situations as many
as possible of each task.

The threats to the external validity lie in two aspects. First, our approach focuses on
JDK APIs. Thus, it is not clear how well the approach can support APIs in other libraries.
Second, the test instances in RQ1 were constructed automatically which may not reflect the
scenarios in real world. Thus, we also conducted a user study to evaluate the scenarios in
real world.

5 Related Work

A large body of works on code recommendation are related to this work. These code
recommendation methods recommend the next API or a code snippet under a given context.

Most of the existing code recommendation methods focus on recommending the next
API under a given context. Traditional methods (Pletcher and Hou 2009; Hou and Pletcher
2010, 2011) heavily rely on the type information to infer the next API. Some meth-
ods (Bruch et al. 2009; Asaduzzaman et al. 2016) focus on computing the similarity between



the given context and previously seen code context to provide recommendations. Many
methods (Hindle et al. 2012; Allamanis and Sutton 2013; Nguyen et al. 2013, 2015, 2018;
Tu et al. 2014; Raychev et al. 2014; Liu et al. 2018; White et al. 2015; Dam et al. 2016; Yan
et al. 2018; Svyatkovskiy et al. 2019; Li et al. 2018; Terada and Watanobe 2019; Yang et al.
2017, a, b, c; Chen et al. 2019a) have been proposed based on learning statistical language
models from source code for recommending the next API. The statistical language models
can be as simple as n-gram model or as complex as deep learning models. For example,
Hindle et al. (2012) train an n-gram model based on the tokens of the source code to rec-
ommend the next token, which can be used to recommend the next APIL. Tu et al. (2014)
leverage a cache to capture the localized regularities in the source code to enhance the n-
gram model. Nguyen and Nguyen (2015) propose a graph-based statistical language model,
which treats source code as graphs and leverages Bayesian statistical inference to compute
the probabilities between a given graph and the graphs in the code corpus, to recommend
the next API. Deep learning models are also widely used for code recommendation and
achieve good performance. For example, Dam et al. (2016) train an LSTM neural network
based on code tokens. Yan et al. (2018) enhance the LSTM neural network with determin-
istic negative sampling to filter out the APIs that do not belong to current class. Chen et al.
(2019a) treat source code as trees and apply Tree-LSTM to train a deep learning model
to recommend the next API. Compared with the above methods, our approach focuses on
recommending API sequences under a given context instead of just the next single API.

There also exist works focusing on recommending a code snippet under a given context.
One category of these approaches, such as Fowkes and Sutton (2016), Wang et al. (2013),
Zhong et al. (2009), Nguyen et al. (2009), and Nguyen et al. (2012), focus on mining API
usage patterns and then these mined patterns can be used to recommend a code snippet by
matching the mined API patterns with the given context. For example, Zhong et al. (2009)
apply frequent subsequence mining to mine API usage patterns based on clustered API
sequences. Nguyen et al. (2009) mine API usage patterns based on API usage graphs instead
of API sequences. Nguyen et al. (2012) propose an approach to try to match mined patterns
as in Nguyen et al. (2009) with the given code context based on graph-based features and
token-based features. Methods based on mined API usage patterns are limited to the number
of mined API usage patterns. In comparison, benefit from the deep learning models, there
is no need for our approach to mine API usage patterns in advance.

The other category of current methods, such as Hill and Rideout (2004), Luan et al.
(2019), Ai et al. (2019), Kim et al. (2018), and Krugler (2013), define and extract features
from source code and then search for the most similar code snippets as recommendations
based on these features. For example, Hill and Rideout (2004) represent a method as a
vector that contains different features, such as the number of lines of code, the number of
arguments and the cyclomatic complexity, and then apply the k-nearest neighbor algorithm
to detect similar code snippets. Luan et al. (2019) define a set of structural features (e.g.,
token features, variable usage features and parent features) of source code represented as a
feature matrix, and then search similar code snippets based on these features. These meth-
ods rely heavily on the quality of the defined and extracted features. In comparison, above
mentioned methods focus on recommending code snippets in a concretized way. However,
our approach focuses on recommending API sequences in an abstract way. Therefore, the
scenario is different. In addition, it is inappropriate to evaluate above mentioned methods
with the CIDEr score. Because the code snippets maybe contain native methods that do
not exist in the ground truth and the variable names in the code snippets and the ground
truth may be quite different, which may affect the CIDEr score. Thus, we do not compare
our approach with above mentioned methods. Furthermore, our approach provides clusters



and summaries to help developers understand and select the correct recommendation more
conveniently and easily.

There are also other approaches aiming at recommending code snippets, but the input
is not the source code. Mandelin et al. (2005) and Alnusair et al. (2010) focus on recom-
mending code snippets based on a given input type of an object and an output type of an
object. Many methods focus on recommending code snippets based on a given natural lan-
guage query, such as Guet al. (2016, 2018), Sachdev et al. (2018), Cambronero et al. (2019).
Compared with the above methods approaches, our approach takes incomplete source code
directly as input.

There exist approaches that leverage encoder-decoder models for program repair, such
as Tufano et al. (2019a, 2019b), Chen et al. (2019b) and Chakraborty et al. (2020). These
approaches use a variety of syntactic and semantic representations to improve the per-
formance of program repair. Though these approaches achieve different improvements,
there still leaves room for improvement by using our idea of applying post-processing for
encoder-decoder models. Take CODIT (Chakraborty et al. 2020) as an example. It is valu-
able to use tree-based neural networks, which take into consideration the syntactic structure,
to model source code in CODIT. This indicates that using better code representations with
corresponding neural networks makes sense, which is consistent with the results in our
experiment (RQ1). However, there also leaves room for improvement in CODIT. In our
work, we emphasize the idea of using post-processing for encoder-decoder models to reduce
false positives instead of making the encoder-decoder models complicated. For example, we
can define a heuristic rule to check whether a method call is available in the previous gener-
ated object in the token generation model in CODIT. For another example, we can define a
heuristic rule to preserve the correct tokens of a token type instead of using mask operation
in the encoder-decoder models to reduce the complexity of the encoder-decoder models.
To sum up, the idea of applying post-processing for encoder-decoder models we propose
is more flexible and can reduce the complexity of the encoder-decoder models. Essentially,
encoder-decoder models are probabilistic models. Thus, even with better code representa-
tions, encoder-decoder models cannot guarantee that there is no false positive only based on
probabilities. In addition, knowledge can be introduced into post-processing in the future to
enhance the reasoning capability. This means that even if we use better abstract represen-
tations of source code, we still have to do necessary post-processing to further improve its
capability.

Nguyen et al. (2019) apply program syntax rule and accessibility rule to recommend a
statement. Though the main idea of Nguyen et.al is similar to us, which is to improve the per-
formance through post-processing, our approach is still different from theirs in the following
aspects. First, we focus on recommending an API sequence, while they focus on recom-
mending a statement. Thus, the scenario is different. Second, since the scenario is different,
the details of syntax-oriented rules are different. In fact, the detailed rules are designed
based on the code representation of the corresponding scenario. Third, we design a diversity-
oriented rule to deal with the overlap problem of the original beam search, which Nguyen
et.al do not consider. Fourth, although the experiments in Nguyen et al. (2019) show the
effectiveness of post-processing for the n-gram model, the effectiveness of post-processing
for deep learning models is not clear. Thus, there is a need to evaluate the effectiveness
of post-processing for deep learning models. Since our heuristic-enhanced beam search
can ease the overlap problem and improve the diversity of the API sequence recommenda-
tions, there is a need to help developers distinguish API sequences of different semantics.
This is why we propose a clustering algorithm. Since there may be several clusters of API
sequences, there is a need to generate a summary for each cluster to help developers more



quickly and easily capture and understand the core semantics of API sequences. This is why
we propose a method to generate a summary for each cluster.

6 Conclusion

In this work, instead of pursuing more advanced deep learning models, we propose an
approach, named COOK, to enhance deep learning-based API sequence recommendation
with three post-processing strategies, i.e., heuristic-enhanced beam search, and clustering
and summarizing API sequence recommendations. Our strategies can improve the quality
of recommended API sequences, and facilitate developers to understand and select recom-
mended API sequences. Our extensive experiments on real-world projects and a user study
with 24 participants have demonstrated the promising results of our approach.
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