
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

10-2021

Links do matter: Understanding the drivers of developer Links do matter: Understanding the drivers of developer

interactions in software ecosystems interactions in software ecosystems

Subhajit DATTA
Singapore Management University, subhajitd@smu.edu.sg

Amrita BHATTACHARJEE

Subhashis MAJUMDER

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
DATTA, Subhajit; BHATTACHARJEE, Amrita; and MAJUMDER, Subhashis. Links do matter: Understanding
the drivers of developer interactions in software ecosystems. (2021). 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME): Luxembourg, September 27 - October 1: Proceedings.
1-5.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6579

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6579&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Links do Matter: Understanding the Drivers of
Developer Interactions in Software Ecosystems

1stSubhajit Datta
Singapore Management University

Singapore
subhajit.datta@acm.org

2ndAmrita Bhattacharjee
Arizona State University

Tempe, USA
abhatt43@asu.edu

3rd Subhashis Majumder
Heritage Institute of Technology

Kolkata, India
subhashis.majumder@heritageit.edu

Abstract—Studies of collaborating individuals engaged in
collective enterprises usually focus on the individuals, rather
than the links supporting their interaction. Accordingly, large
scale software development ecosystems have also been examined
primarily in terms of developer engagement. We posit that
communication links between developers play a central role in
the sustenance and effectiveness of such ecosystems. In this paper,
we investigate whether and how developer attributes relate to the
importance of the communication channels between them. We
present a technique using 2nd order Markov models to extract
features of interest of the links and apply the technique on data
from a real-world project. Our statistical models – developed on
records involving 900+ software developers, exchanging 20,000+
comments, across 500 units of work – offer surprising insights
on factors associated with link importance, even after controlling
for known effects. These results inform a deeper appreciation of
the importance of links in large scale software development along
with a number of practical implications.

Index Terms—Software development, importance of links,
developer influence, Markov models

I. INTRODUCTION AND STUDY SETTING

In the two decades since the primacy of “individu-
als and interactions over processes and tools” was pro-
claimed in the Manifesto for Agile Software Development
(https://agilemanifesto.org/), large scale software development
has been recognized to be increasingly more interactional than
instructional. In development ecosystems that have formally
embraced the Agile way, as well as those that have not,
interactions between developers in large and distributed teams
play a critical role in the design, development, and delivery of
complex software systems. When these ecosystems are studied
to understand the key drivers towards quality and efficiency in
the development processes, the focus is primarily on identify-
ing the individuals who are important [1]. We posit that exam-
ining the importance of interactions between individuals can
present a complementary view towards a deeper understanding
of development ecosystems. The criticality of interactions in
software development has long been recognized; the prognosis
for delayed projects that Brooks’ Law predicts, comes largely
out of the interaction costs between developers [2].

Links or communication channels between developers serve
as essential conduits for their interaction. There is enough
evidence in the state of art and practice of large scale software
development to suggest that some interactions are proverbially
“more equal than others” [3]. However, factors that relate to

the importance of communication channels supporting these
interactions have not been examined to a notable extent
in existing studies. With this perspective, we examine the
following research question in this paper: In a software
development ecosystem, is the importance of a communication
channel related to the levels of influence of the developers
interacting over that channel?

Addressing this research question offers benefits for mul-
tiple stakeholders. At the individual level, it can inform
developers whether and how to nurture particular working
relationships with their peers within and across teams. For
project managers, communication channels are vital pathways
of information dissemination and reception. A mechanism
for understanding the factors that drive the importance of
such channels can aid team governance. At the organizational
level, communication channels entail set-up and maintenance
costs involving physical infrastructure, as well as those arising
from locational and temporal asynchrony between team mem-
bers [4]. These costs are significant for large and distributed
teams, with the number of possible links between developers
growing quadratically, even as the team grows linearly in size.
Thus, being able to decide whether a particular channel is
important, based on the characteristics of the developers at
its two ends, can be useful mechanism for optimal resource
allocation and cost saving. In this paper, we report preliminary
results from examining our research question using a technique
involving 2nd order Markov networks. To the best of our
knowledge, this is one of the first uses of such a technique in
the study of software development ecosystems. Our research
question is distilled into the following hypotheses, which we
will empirically examine:
H1: Higher influence of the sender sending information over

a communication link is related to higher link importance. The
corresponding null hypothesis is that there is no relationship
between the level of influence of the sender and the importance
of the link.
H2: Higher influence of the receiver receiving information

over a communication link is related to higher link impor-
tance. The corresponding null hypothesis is that there is no
relationship between the level of influence of the receiver and
the importance of the link.

In a typically large and distributed software development
project, developers are embedded in a network of interactions

with their peers. Networks can serve as useful abstractions for
examining the characteristics of collaborative enterprises [5].
Accordingly, the first step in our approach is to define the
Review Comment Network (RCN), with developers as vertices
and the links representing some tangible aspect of their in-
teraction. Using established metrics pertaining to the vertices
of this network, we are able to quantify relevant developer
attributes. Using a 2nd order Markov model, we next transform
this “original network” to another network (the “M2 network”
or M2(RCN)) whereby links in the original network become
vertices in the M2 network. Due to the nature of this transfor-
mation, importance of RCN’s links will be reflected in specific
network metric(s) pertaining to the vertices of M2(RCN).
Thus, examining properties of the original network and the
corresponding M2 network allows us to extract characteristics
of developers and the links between them.

We test our hypotheses on the Chromium dataset, collected
and curated by Hamasaki et al. [6] for use by the research
community. This dataset includes records of developers dis-
cussing code review activities in Chromium projects (http:
//www.chromium.org/), which are the open-source projects
underpinning the Google Chrome browser and the Chrome
operating system. Peer review of code is a critical activ-
ity in all large scale software systems. Developers actively
interact during the review process, commenting on review
items (hereinafter referred to as “reviews”). Reviews are code
units relating to bug fixes or change requests; each review
is owned by a developer. Developer interaction during the
review process involves commenting on reviews owned by
other developers, and having one’s own reviews commented
upon by others. Thus every comment has uniquely identifiable
sender(s) and receiver(s) associated with it. The outcome of
this developer interaction around a review is a decision on
whether the related code units will be merged with main code
base – or abandoned – leading to the closure of the review.
Evidently, the importance of developer interaction around
reviews makes this development ecosystem specially suited for
examining our hypotheses. To gauge each developer’s level of
engagement in the review process, we queried the dataset to
extract a set of developer attributes of interest to us. We also
calculated a set of metrics from the RCN to reflect on each
developer’s position in the network vis-a-vis other developers.
The importance of each link in RCN was measured by an
appropriate network metric (as explained in the next section) of
the vertex in M2(RCN) corresponding to that link. Using these
parameters, regression models were developed to validate the
hypotheses.

II. METHODOLOGY

Data pre-processing: As mentioned in the previous section,
we use data from the Chromium projects as reported and made
available by Hamasaki et al. [6]. We accessed 826398 com-
ments spanning over 193135 review items from the dataset.
The review items were ranked on the basis of how many
comments they had attracted from the developers. We observed
that the distribution of comments per review is highly skewed,

with few reviews having many comments, and many reviews
having few. Given the context of our study, we select the
top 500 reviews with the highest number of comments which
collectively includes 22424 comments.

Construction of networks: In the datasets. email ids are
used to uniquely identify the developers. In some records, the
email ids have special characters, or wrong format that might
have been introduced due to parsing errors while populating
the database shared by Hamasaki et al. [6]. We delete such
records, along with the ones where one or more attributes
have missing or “NA” values. As mentioned earlier, on the
lines of our previous work, we generated a Review Comment
Network (RCN) using the filtered dataset, whose vertices are
developers, and two developers (di and dj) are connected by a
link directed from di to dj if there is at least one instance of di
sending a comment to dj on a review [7]. If a comment is not
a reply to another specific comment, we consider the link to
be between the commenter and review owner. Our constructed
RCN has vertices corresponding to 916 uniquely identifiable
developers and 5552 links between these developers. We then
proceed to create M2(RCN), the network based on 2nd order
Markov model from the RCN, using the following protocol:
For each link in the input network, we add a vertex to the M2
network, and for every directed 2-hop in the input network,
we add a link (a directed edge) between the corresponding
two vertices in the M2 network. This transformation results
in a larger network which encodes the concept of a 2nd order
structure. We note that this construction results in the links
of RCN being mapped to the vertices of M2(RCN). Thus,
M2(RCN) has 5552 vertices (equal to the number of links in
RCN).

Use of 2nd order Markov model: Simple network repre-
sentations such as the RCN defined earlier implicitly assume
the 1st order Markov property, according to which, the transi-
tion probability P (it → it+1) of a random walker at the state
denoted by vertex it to the state denoted by vertex it+1 is
given by,

P (it → it+1) =
W (it → it+1)∑

j W (it → j)

where j denotes the neighbours of it and W (it → j)
represents the weight of the edge from it to j. If all the edge
weights are 1, this simply reduces to,

P (it → it+1) =
1

OutDegree(it)

This implies that the next state of the random walker depends
only on the current state and is independent of the previous
states, thus implying the memoryless nature of the 1st order
Markov property. This is often too strict a constraint and such
representations are not expressive enough to model complex
real-world interactions such as the ones we are analysing,
where developers discuss review items to reach a decision
on their outcomes. Some real-world networks that have been
shown to have higher-order dependencies are constructed from
Web click-stream, shipping traffic, passenger traffic along
flight pathways, and journal citations [8], [9]. Most of these

networks have some notion of sequential flow in them and
given the similar nature of information flow in RCN, we
leverage the 2nd order Markov property in the construction
of M2(RCN).

Model development: To validate our hypotheses we need to
identify metrics that capture the level of a link’s importance,
and how influential the sender and receiver of information
across that link are, in the context of RCN. Accordingly, we
define our dependent variable as LinkImportance, calculated
as the pagerank of the corresponding vertex in M2(RCN).
Pagerank is a commonly used measure of vertex importance in
a network [5]. As the links of RCN are transformed into the
vertices of M2(RCN), the pagerank of M2(RCN)’s vertices
indicate the importance of corresponding links in RCN. We
recognize that there are other methods of quantifying strength
of links in a network [10], [11]. However, as discussed, the
use of the network based on 2nd order Markov model offers a
more effective way of capturing link importance based on the
flow of information between developers, as appropriate in our
study setting. To measure how influential the individuals who
send and receive information across a particular link of RCN
are, we compute their eigenvector centralities. Eigenvector
centrality is widely used to capture how influential a vertex
is [5]. So, SenderInfluence and ReceiverInfluence serve as
our independent variables. To isolate the relations between
the independent variables and the dependent variable, we
need to account for some of the peripheral factors that may
affect the level of importance of communication channels in
our network. These factors are represented as the control
variables in our models. We consider the following categories
of control variables as their relevance has been identified in
existing studies [12]:

• Developer activities in the development ecosystem: We
consider the number of reviews owned by a devel-
oper sending and receiving information over a link
as SenderWorkload and ReceiverWorkload respectively;
these serve as proxies for the amounts of work being
handled by each developer. To have a sense of how
quickly developers are completing the activities they are
in charge of, we consider the SenderTaskCompletionTime,
and ReceiverTaskCompletionTime. For a particular link,
SenderTaskCompletionTime is calculated as the median of
the elapsed times between the opening and closure of all
reviews owned by the developer who is the source vertex
for the link. For a particular link, ReceiverTaskComple-
tionTime is calculated as the median of the elapsed times
between the opening and closure of all reviews owned
by the developer who is the destination vertex for the
link. Developer experience accrues out of the time spent
working in a project. In our study setting, comments
by developers on reviews serve as pointers to their
involvement in the project. Thus the span of time between
the first and last review comments by a developer can
be a reliable proxy for the developer’s experience in the
project; the SenderExperience and ReceiverExperience

variables are calculated accordingly.
• Developer position in the interaction network: The num-

ber of peers a particular developer is connected to, is
given by the degree of the corresponding vertex in RCN,
as reflected in the variables named SenderConnections
and ReceiverConnections. Similarly, the variables Sender-
Betweenness and ReceiverBetweenness are given by the
betweenness centralities of the corresponding vertices
in RCN. The clustering coefficient of a vertex reflects
the extent to which that vertex is clustered with other
vertices in the network; the model variables SenderClus-
tering and ReceiverClustering are given by the clustering
coefficients of the corresponding vertices in RCN. The
pageranks of the vertices representing the sender and the
receiver at the ends of the links in RCN are used as
the variables SenderImportance and ReceiverImportance
respectively.

The formulas for calculating network metrics such as
degree, betweenness, eigenvector centralities, pagerank, and
clustering coefficients have been derived and explained by
Newman [5]. As the dependent variable is continuous in
nature, multiple linear regression is chosen as a modelling
paradigm, rather than Poisson or negative binomial regres-
sions which are considered if the dependent variable is a
count of some parameter of interest [13]. Multiple linear
regression rests on the assumptions of linearity, normality,
and homoscedasticity of the residuals, as well as the absence
of multicollinearity between the independent variables. To
validate these assumptions, residual properties were exam-
ined using histograms, Q-Q plots and scatter plots of the
standardized residuals, and the variance inflation factors were
calculated to check for multicollinearity. To develop the most
parsimonious models, we removed the following variables as
they were found to be strongly correlated with other model
variables, and their presence would have lead to issues related
to multicollinearity: SenderConnections, ReceiverConnections,
SenderBetweenness, ReceiverBetweenness, SenderImportance,
and ReceiverImportance. The descriptive statistics of the vari-
ables finally included in the models is given in Table I. As the
dependent variable has a strong positive skew, its fourth root
is taken for inclusion in the model.

Table II shows results from the multiple linear regression
models. The model with the dependent variable and the control
variables is described on the left (Model I), and the model
on the right shows the enhanced model that additionally
includes the independent variables (Model II). As mentioned
in the table caption, superscripts of the coefficients indicate the
ranges of their respective p values; the p values are calculated
using the t-statistic – the ratio of each coefficient to its standard
error – and the Student’s t-distribution. The lower portion of
the table describes the overall model in terms of: N – the
number of data points in the model; R2 – the coefficient
of determination, expressing the ratio of the regression sum
of squares to the total sum of squares and it indicates the
goodness-of-fit of the model; df – degrees of freedom; F –

TABLE I: Descriptive statistics of the model variables

Variable Mean Std Dev Median
LinkImportance 7.221× 10−5 4.176× 10−5 6.48× 10−5

SenderClustering 0.466 0.218 0.43
ReceiverClustering 0.467 0.234 0.426
SenderWorkload 579.221 666.93 339
ReceiverWorkload 548.202 566.76 360
SndrTaskComplnTm 140.069 197.302 15.5
RcvrTaskComplnTm 168.457 207.796 62
SenderExperience 911.76 471.088 936
ReceiverExperience 970.092 443.151 1007
SenderInfluence 0.096 0.097 0.064
ReceiverInfluence 0.138 0.119 0.1

TABLE II: Regression models to understand the influences
on LinkImportance. Note: Significance levels “****”, “***”,
“**”, “*”, “-”, denote corresponding p-value ≤ 0.001, ≤ 0.01,
≤ 0.05, ≤ 0.1, and ≥ 0.1 respectively.

Model I Model II
Intercept 0.091 **** 0.075 ****

(8.229× 10−4) (7.556× 10−4)
SenderWorkload −3.46× 10−6 **** −2.927× 10−6 ****

(2.328× 10−7) (1.856× 10−7)
ReceiverWorkload −3.77× 10−7 - 1.755× 10−7 -

(2.749× 10−7) (2.191× 10−7)
SndrTaskComplnTm 2.845× 10−6 **** −1.829× 10−6 ****

(6.761× 10−7) (5.449× 10−7)
RcvrTaskComplnTm 4.476× 10−7 - 1.053× 10−6 **

(6.38× 10−7) (5.131× 10−7)
SenderExperience 4.613× 10−6 **** 3.495× 10−6 ****

(3.844× 10−7) (3.066× 10−7)
ReceiverExperience 4.446× 10−7 - −2.457× 10−7 -

(4.043× 10−7) (3.237× 10−7)
SenderClustering -0.009 **** 0.013 ****

(7.469× 10−4) (7.101× 10−4)
ReceiverClustering 0.002 *** 0.003 ****

(6.887× 10−4) (6.457× 10−4)
SenderInfluence 0.074 ****

(0.001)
ReceiverInfluence 0.004 ****

(0.001)
Model parameters
N 5552 5552
R2 0.118 0.442
df 5543 5541
F 92.562 438.076
Sig level **** ****

Fisher F-statistic, the ratio of the variance in the data explained
by the linear model divided by the variance unexplained by
the model. The overall model’s p value, calculated using the
F-statistic and the F-distribution, indicates whether the overall
model is statistically significant. If the p ≤ level of significance
for a coefficient or the overall model, we conclude that the
corresponding result is statistically significant, on the basis of
null hypothesis significance testing.

III. RESULTS AND DISCUSSION

We observe from Table II that both models (I and II) are
statistically significant overall (p-value ≤ 0.001 in each case).
Model I has a goodness-of-fit around 12% (R2 = 0.118),
which grows to around 44% for Model II (R2 = 0.442).
This implies that addition of the independent variables, over

and above the control variables, leads to an increase in the
goodness-of-fit by a factor of more than 2.5. The values of
the F-statistic corresponding to Models I and II also indicate
that the latter model with the independent variables is able to
explain the variability in the data to a much larger extent.

Nature of our results: We observe from Model II in
Table II that both SenderInfluence and ReceiverInfluence have
statistically significant relations with LinkImportance. Higher
levels of both of these variables relate to higher LinkImpor-
tance. Thus for both the hypotheses H1 and H2 introduced
in Section I, we can reject the null hypothesis, in favour
of the corresponding alternate hypothesis. Conventional wis-
dom leads us to expect the most important communication
channels to be the ones bridging widest power gradients,
with most influential developers sharing information with the
least influential ones. However, we see a counter-intuitive
trend in our results: higher importance of links is related
to higher levels of influence of both sender and receiver of
information across such links. These relationships hold after
controlling for the effects of workloads, task completion times,
experiences, and clustering levels of senders and receivers.
Barring receiver workload and receiver experience, all other
relations are statistically significant.

Implications: As we recall, RCN is constructed from in-
stances of developers exchanging comments over code review
items. As evident from some of the related work cited in
the preceding sections, code review is a peer-driven process
where each developer shares concerns and suggestions for
improvement. Hierarchical seniority – and the prestige that
comes with it – is not expected to influence the progression
and outcome of the review process. We see a reflection of this
dynamic in our results; higher importance of communication
channels are seen to be related to higher influence of senders
as well as receivers. This is indicative of interaction between
peers who are communicating on a common platform, bereft
of positional asymmetries.

Developer profiles: In Model II of Table II, we see evidence
that senders with lower workload, quicker task completion,
higher experience, and higher levels of clustering are associ-
ated with higher link importance (all effects being statistically
significant). Such a profile typifies developers who are able to
focus more intently on peer review activities, coupled with an
elevated level of familiarity with the development ecosystem.
Thus they are better placed to offer useful information and
advice to their peers. On the other hand, higher levels of
link importance are seen to be related to receivers who have
higher workload, slower task completion, lower experience,
and higher clustering (only the effects around workload and
experience lack statistical significance). Developers with these
characteristics are best positioned to utilize the shared wisdom
of the peer review process.

Utility of our findings: Our results can inform team
assembly and governance in large scale software development
ecosystems. As communication channels between influential
developers are seen to be of enhanced importance, managers
can facilitate communication between such developers by co-

locating them and/or making it easy for them to exchange their
views in other ways. Additionally, insights from our study can
facilitate the design of features in collaborative development
environments which enable smooth delivery of information
to those developers who need it most. At organizational
levels, the ability to identify important links on the basis of
characteristics of individuals at the two ends of the links, can
lead to effective processes towards employee retention and
reward.

Threats to validity: We present results from an observa-
tional study rather than a controlled experiment; thus cor-
relations in our statistical model do not necessarily imply
causation. However, in any study-setting involving real-world
software development ecosystems, controlled experiments are
often infeasible to design and execute. Thus results from our
correlational study can offer useful insights on the dynamics
of developer interaction. Construct validity is concerned with
ensuring that measurement errors in the variables of interest
do not challenge the conclusions from a study. The model
variables have been calculated from the available data or
extracted from RCN or M2(RCN) using established network
metrics. Thus, we do not see notable threats to construct
validity from this aspect. But including other control variables
such as code complexity may influence our results. Internal
validity seeks to establish that systematic errors and biases
do not invalidate the conclusions from a study. As we have
used a dataset whose processes of collection and curation have
been published in a peer-reviewed paper [6], and the dataset
includes historical information, we do not expect mortality
and maturation of the subjects to represent notable threats to
internal validity. However, the extent to which code review
information in the development ecosystem being studied was
captured in the available dataset can be a threat to internal
validity. As the paper presenting the dataset mentioned that
the review process was captured in a review management
system and the data was derived from it [6], we believe the
threat to internal validity to be minimal. External validity
of a study relates to the generalizability of its results. In
this paper, we report results from a single study; while we
believe the results are informative and useful, we do not
claim them to be generalizable as yet. Reliability of a study
comes from the reproducibility of its results. With access to
the dataset, our results are fully reproducible and we share
the code components used in our analysis (https://github.com/
AmritaBh/markov-network). In our future work extending
these preliminary results, we plan to address the threat to
external validity by replicating the results from this study
across other datasets. Additionally, our next objective is to
analyse contents of the developer comments to help us better
understand the flow of information between developers. This
can enable a deeper examination of 2nd order Markov model
dynamics in our study setting.

IV. CONCLUSION

In this paper, we present results from a study to under-
stand how developer characteristics relate to importance of

their communication channels in large software development
ecosystems. Using data from a real-world project, we construct
a developer interaction network and transform it using a 2nd
order Markov model. The original network and the trans-
formed network allow us to extract quantitative measures of
the attributes of developers, as well as those of the communi-
cation links between them. Statistical models built using these
attributes lead us to the counter-intuitive result that higher link
importance is related to higher levels of influence of both the
sender and the receiver of information across the links, even
after controlling for the effects of workload, task completion
times, experience, and levels of clustering of senders as
well as receivers. Our results can inform various aspects of
team assembly and project governance and they offer insights
leading to wider investigations of link importance in large
scale software development.

REFERENCES

[1] K. Ehrlich and M. Cataldo, “All-for-one and one-for-all?: a multi-
level analysis of communication patterns and individual performance
in geographically distributed software development,” in Proceedings of
the ACM 2012 conference on Computer Supported Cooperative Work,
ser. CSCW ’12. New York, NY, USA: ACM, 2012, pp. 945–954.

[2] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing, 20th Anniversary Edition. Addison-Wesley, 1995.

[3] A. Schroter, J. Aranda, D. Damian, and I. Kwan, “To talk or not to talk:
factors that influence communication around changesets,” in Proceedings
of the ACM 2012 conference on Computer Supported Cooperative Work,
ser. CSCW ’12. New York, NY, USA: ACM, 2012, pp. 1317–1326.

[4] P. Wagstrom and S. Datta, “Does latitude hurt while longitude kills?
geographical and temporal separation in a large scale software develop-
ment project,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY, USA: ACM,
2014, pp. 199–210.

[5] M. E. J. Newman, “The structure and function of complex networks,”
cond-mat/0303516, Mar. 2003, SIAM Review 45, 167-256 (2003).

[6] K. Hamasaki, R. G. Kula, N. Yoshida, A. E. C. Cruz, K. Fujiwara,
and H. Iida, “Who does what during a code review? datasets
of oss peer review repositories,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 49–52. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487096

[7] S. Datta, D. Bhatt, M. Jain, P. Sarkar, and S. Sarkar, “The Importance
of Being Isolated: An Empirical Study on Chromium Reviews,” in 2015
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), Oct. 2015, pp. 1–4.

[8] J. Xu, T. L. Wickramarathne, and N. V. Chawla, “Representing higher-
order dependencies in networks,” Science advances, vol. 2, no. 5, p.
e1600028, 2016.

[9] M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R. Lam-
biotte, “Memory in network flows and its effects on spreading dynamics
and community detection,” Nature communications, vol. 5, p. 4630,
2014.

[10] R. Xiang, J. Neville, and M. Rogati, “Modeling relationship strength
in online social networks,” in Proceedings of the 19th international
conference on World wide web. ACM, Apr. 2010, pp. 981–990.

[11] E. Gilbert and K. Karahalios, “Predicting Tie Strength with Social
Media,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’09. New York, NY, USA: ACM, 2009,
pp. 211–220, event-place: Boston, MA, USA.

[12] S. Datta, “How does developer interaction relate to software quality?
an examination of product development data,” Empirical Software En-
gineering, vol. 23, no. 3, pp. 1153–1187, Jun. 2018.

[13] B. Tabachnick and L. Fidell, Using Multivariate Statistics. Boston:
Pearson Education, 2007.

	Links do matter: Understanding the drivers of developer interactions in software ecosystems
	Citation

	tmp.1642061481.pdf.TTvqy

