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Abstract 

 
We examine how learning from colleagues affects security analyst forecast 

outcomes. We represent the brokerage house as an information network of 
analysts connected through industry overlaps in their coverage portfolios. 
Analysts who are more centrally connected in their brokerage network produce 
more accurate forecast estimates and generate more influential forecast revisions. 
Consistent with learning, more central analysts tend to unwind their colleagues’ 
recent forecast errors in their forecast revisions. Learning appears to benefit all 
colleagues, as working at more interconnected brokerages (i.e., denser networks) 
improves forecast accuracy for all analysts. 

 
 

JEL Classification Code: D83, G17, G24 
 
Keywords: Learning, Networks, Analyst Forecast Accuracy 

 



 

 

 
 
 

Do security analysts learn from their colleagues? 
 
 
 

ABSTRACT 
 

We examine how learning from colleagues affects security analyst forecast 
outcomes. We represent the brokerage house as an information network of 
analysts connected through industry overlaps in their coverage portfolios. 
Analysts who are more centrally connected in their brokerage network produce 
more accurate forecast estimates and generate more influential forecast revisions. 
Consistent with learning, more central analysts tend to unwind their colleagues’ 
recent forecast errors in their forecast revisions. Learning appears to benefit all 
colleagues, as working at more interconnected brokerages (i.e., denser networks) 
improves forecast accuracy for all analysts. 
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A large body of research shows that securities analysts play an important role as 

information intermediaries in financial markets. For example, security analysts supply 

valuable information (e.g., Womack, 1996; Chen, Francis, and Jiang, 2005; Bradley, 

Clarke, Lee, and Ornthanalai, 2014; Loh and Stulz, 2011, 2017) and shape the information 

environment (e.g., Balakrishnan, Billings, Kelly, and Ljungqvist, 2014; Lou, Cohen, and 

Malloy, 2014; Merkley, Michaely, and Pacelli, 2017).1 This naturally raises the question 

of how forecast estimates are generated (e.g., Bradshaw, 2011). Extant studies find that 

forecast accuracy is a function of individual attributes including experience, personal 

characteristics, personal ties, and professional connections. However, even the best 

security analysts do not work in isolation. Their brokerage houses provide not only 

operational and back-office resources, but also a group of colleagues. These colleagues 

provide a potentially valuable network of knowledge and information.  

For example, an analyst covering Google may provide useful industry insights to a 

colleague2 covering Apple. This type of information sharing is valuable because evidence 

suggests that industry knowledge helps produce better forecast estimates.3 Indeed, our 

conversations with analysts suggest that colleagues often workshop ideas and solicit 

feedback from their colleagues. Lehman Brother’s research department in the early 1990s 

is an example of the importance of knowledge sharing. To foster communication and 

learning, Lehman Brothers instituted a policy that every analyst’s presentation must 

reference the work of at least two other colleagues. During that period, Lehman Brothers 

was regularly ranked among the top brokerage firms.4 

We hypothesize that analysts produce higher-quality equity research if they are better 

able to tap into the knowledge base of their in-house colleagues. To test our hypothesis, 

we map the information network within a brokerage house using industry overlaps among 

analyst coverage portfolios. Brown et al. (2015) write, “Industry knowledge is the single 

                        
1 Securities analyst also influence financial policy and valuation (e.g., Lang, Lins, and Miller, 2004; Chang, 
Dasgupta, and Hilary, 2006; Derrien and Kecskes, 2013). 
2 Throughout the paper, we use colleague to refer to analysts that work at the same brokerage house. 
3 See for example Boni and Womack (2006), Clement, Koonce, and Lopez (2007), Kadan, Madureira, Wang, 
and Zach (2012), Hilary and Shen (2013), Brown et al. (2015), Bradley, Gokkaya, and Liu (2017). 
4 “The Risky Business of Hiring Stars,” Harvard Business Review, May 2004 
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most useful input to analysts’ earnings forecasts and stock recommendations.” Our premise 

is that information exchange is more likely to occur between a pair of analysts if there is 

industry sector overlap in their coverage portfolios.  

Figure 1 provides an example of an actual brokerage network in our sample. A larger 

node represents an analyst who shares more overlaps in industry coverage relative to a 

periphery colleague represented as a small node. For example, the largest node in red 

represents an analyst with direct connections with every other colleague in the network, 

whereas the smallest node is only connected to five other nodes. To measure each analyst’s 

position in their brokerage network, we create an Analyst Centrality score that 

encapsulates four individual established network measures that capture various aspects of 

knowledge exchange. An analyst located in a central nodal position has a high Analyst 

Centrality score and is at the epicenter of information exchange within the brokerage 

network. If analysts can learn from their colleagues, we hypothesize that central analysts 

are in the best position to benefit from such knowledge exchange. 

Our first set of tests indicate that analysts with higher Analyst Centrality scores 

produce better equity research. Central analysts make more accurate forecasts and their 

forecasts are more influential. Economically, an analyst who is in the 75th percentile of 

Analyst Centrality is about 10.5% more accurate than one in the corresponding 25th 

percentile (relative to the median forecast error).5 Conditional on the deviation from the 

consensus forecast, an inter-quartile increase in Analyst Centrality is also associated with 

a 0.39% higher abnormal return to revision announcements. Our test specifications include 

firm-year fixed effects to ensure that our findings are not due to underlying heterogeneity 

in the coverage firm. We also conduct tests with brokerage-year fixed effects. This 

specification is important because it rules out common alternative explanations relating 

to brokerage prestige, sector specialization, resources, and other important yet 

unobservable brokerage level characteristics. The evidence is consistent with the view that 

                        
5 To put this into perspective, a similar inter-quartile increase in General Experience corresponds to a 14.8% 
improvement in forecast accuracy. 
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analysts with higher Analyst Centrality have better access to the information transmitted 

through their brokerage network. 

Analysts face other incentives that temper the benefits of in-brokerage information 

exchange. Although colleagues never cover the same company, they do compete for bonus 

pools or promotions within the brokerage. This type of tournament competition may 

weaken cooperation and diminish the incentives to share knowledge between colleagues. 

We find that such competitive pressures, which are more prominent at large investment 

banks, generally weaken the relation between analyst centrality and research quality. 

We design additional tests to understand the nature of information sharing among 

colleagues. Central analysts are better able to forecast earnings on complex companies as 

measured by multi-industry segments (e.g., Cohen and Lou, 2012). This suggests that 

central analysts are experts at piecing together information from different industries. In 

addition, central analyst can more accurately forecast hard-to-value firms as measured by 

R&D. This is consistent with the view that central analysts acquire more difficult to 

uncover insights from their colleagues.  

Next, we explore a possible way that central analysts learn such insights following the 

following learning paradigm (Clement, Hales, and Xu, 2011). In this paradigm, an analyst 

observes the ex-post forecast errors of her colleagues and in response, revises her own 

forecasts to incorporate the newly revealed information and to unravel the information 

previously gleaned from her colleagues. Consistent with this paradigm, we find that 

analysts with higher Analyst Centrality are more likely to issue revisions that adjust for 

their colleagues’ ex-post forecast errors. This evidence shows a potential channel of 

information propagation through the network as central analysts take into account their 

colleagues’ mistakes. 

An interesting question remains whether information flows among all analysts in the 

brokerage network. Using a network measure, we estimate the amount of interconnection 

among colleagues (i.e., ‘density’ per network theory). We also expect greater information 
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flow in brokerages with higher Consistent with this hypothesis, we find that denser 

brokerages produce more accurate forecasts. 

An unaddressed issue is the matching process between the analyst and the brokerage 

house. Concerns relating to brokerage characteristics are partially addressed in our main 

tests with the inclusion of brokerage-year fixed effects in our baseline specification. 

However, it remains that an analyst with expertise in a particular industry is more likely 

to match with a brokerage that specializes in that industry. To explore the causal relation 

between Analyst Centrality and forecast accuracy, we exploit shocks to Analyst Centrality 

using a sample of brokerage mergers (e.g., Hong and Kacperczyk, 2010; Kelly and 

Ljungqvist, 2012) from years 2000 to 2007. These mergers introduce exogenous changes 

to the acquirer’s brokerage structure, shocking the Analyst Centrality scores of existing 

analysts. We find that analysts who experienced increases in their Analyst Centrality 

scores subsequently issued more accurate forecasts relative to analysts whose Analyst 

Centrality scores declined. Results from a generalized difference-in-difference model (Autor, 

2003) show that 1) increases/declines in Analyst Centrality are effectively random with 

respect to pre-treatment forecast accuracy, and 2) gaps in forecast accuracy between both 

groups exist only in the post-treatment periods. 

One may wonder to what extent the Analyst Centrality measure reflects an analyst’s 

ability or effort. Of course, developing higher centrality is completely consistent with 

greater talent or skill. What distinguishes our learning hypothesis is that Analyst 

Centrality has incremental explanatory power beyond measures of ability or effort found 

in the prior literature. Notably, our main specifications include proxies for ability (i.e., 

experience) and effort (i.e., revision frequency). In addition, we proxy for analyst ability 

using analyst membership in the Institutional Investor All-America Research Team (i.e. 

All-American status). The effect of Analyst Centrality on forecasting outcomes is 

unchanged with the inclusion of this control in our main tests.  

Our paper contributes to a growing literature that seeks to penetrate the ‘black box’ 

of information generation of sell-side financial analysts (e.g., Bradshaw, 2011; Brown et 

al., 2015). Extant studies find that forecast accuracy is a function of experience, location, 
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personal characteristics, personal ties, and professional connections. 6  Our paper 

emphasizes the value of information transfer between colleagues. Related to our findings 

is the evidence in Hwang, Liberti, and Sturgess (2016) of information transmission among 

in-house analysts in the mergers and acquisition setting. Equity analysts may also acquire 

information from their colleagues in debt/macro research (Hugon, Lin, and Markov, 2016; 

Hugon, Kumar, and Lin, 2016), on the asset management side (Irvine, Simko, and Nathan, 

2004), and on the brokerage trading desk (Li, Mukherjee, and Sen, 2017). In contrast, we 

measure the general propensity of an analyst to receive information from her equity 

research colleagues using a network theoretic approach.  

Our study also links to a literature that explores how analyst incorporate various 

signals into their forecasts. Chen and Jiang (2006) show how analysts weight public and 

private information into their forecasts. Clement, Hales, and Xu (2011) find that analysts 

revise forecast following the revisions of their direct competitors who cover the same 

company. Our evidence suggests that colleagues are a valuable source of information. 

Our findings also contribute to the growing literature on information transmission 

through networks in financial markets. Venture capitalists and stock market investors 

who hold central positions in the network generate better investment returns (Hochberg, 

Ljungqvist, and Lu, 2007; Ozsoylev, Walden, Yavuz, and Bildik, 2013). Anjos and Fracassi 

(2015) find that internal information markets help conglomerates deliver more innovative 

and greater value. Studies also identify information transmission through workplace 

connections, personal networks, and social connections using educational backgrounds or 

social affiliations.7  

                        
6 See for example Clement (1999), Jacob, Lys, and Neale (1999), Malloy (2005), Bae, Stulz, and Tan (2008), 
Bradley, Gokkaya, and Liu (2017), Chen and Jiang (2006), Chen and Matsumoto (2006), Clement, Koonce, 
and Lopez (2007), Cohen, Frazzini, and Malloy (2010), Kumar (2010), Clement, Hales, and Xue (2011), 
Hilary and Shen (2013), Law (2013), Green, Jame, Markov, and Subasi (2014a, 2014b), Malloy (2005), 
Soltes (2014), Jiang, Kumar, and Law (2016). For a recent review, see Bradshaw (2011). 
7 For example, social ties with management affect both analyst forecast behavior and coverage decisions 
(e.g., Westphal and Clement, 2008; Cohen, Frazzini, and Malloy, 2010; Brochet, Miller, and Srivinasan, 
2014). Information also transmits through social networks among investors (e.g., Hong, Kubik, and Stein, 
2004, 2005; Pool, Stoffman, and Yonker, 2015), between boards and managers (e.g., Kuhnen, 2009), between 
corporate and bank managers (Engelberg, Gao, and Parsons, 2012), across corporate boards (e.g., Shue, 
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1. Sample and network definitions 

This section describes our methodology and variable construction. We discuss our data 

and present summary statistics on our sample. 

1.1. Defining Network Connections 

Studies show that industry-specific information is valuable in making accurate earnings 

forecast.8 Therefore, we presume that information transfer and dissemination is likely to 

occur between analysts that share industry sector overlaps in their coverage portfolios. 

This may occur for direct economic reasons. First, given the significant benefits of industry 

knowledge, there is economic value to discuss and solicit feedback from colleagues in the 

same industry. Second, given economies of scale in underlying resources such as sharing 

support staff, research assistants, and data sources, these types of interactions are likely 

to naturally develop among analysts in the same sector. Our study focuses primarily on 

these channels of information dissemination, but we discuss the possibility of other related 

channels in the next section. 

We construct the connections within-brokerage network based on the forecast data for 

fiscal year one from the Detailed History file of I/B/E/S. We use the Global Industrial 

Classification Standard (GICS) codes to classify industries because these are commonly 

used among practitioners (e.g., Bhojraj, Lee, and Oler, 2003). To ensure that our networks 

are meaningfully large, we require that a brokerage in a given year has at least 5 analysts. 

We allow the network structures within the brokerage to vary through time to allow 

for changes in an analyst’s coverage portfolio. For example, consider two analysts, A and 

B, at the same brokerage. A connection exists in year t if A makes forecasts in GICS 

sectors 20 and 45, and B makes forecasts in GICS sector 45. By construction, the 

                        
2013; Larcker, So, and Wang, 2013, Fracassi, 2016), and between corporate boards and mutual fund 
managers (Cohen, Frazzini, and Malloy, 2008). 
8 See: Boni and Womack (2006), Clement, Koonce, and Lopez (2007), Kadan et al. (2012), Hilary and Shen 
(2013), Brown et al. (2015), Bradley, Gokkaya, and Liu (2017). Brown, Call, Clement, and Sharp (2015) 
write, “industry knowledge is the single most useful input to analysts’ earnings forecasts and stock 
recommendations.” 
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connection weight is independent of the number of unique firms covered in the overlapping 

GICS sectors by either analyst. While it is reasonable to expect that the intensity of 

information exchange increases with the number of firms covered in the overlapping 

sectors of connected analysts, our simple counting approach is more parsimonious and 

conservative. 

[Insert Figure 1] 

As an example, we illustrate the network structure of a brokerage (I/B/E/S identifier: 

481) in the year 2005. Each circular node represents an analyst in the brokerage network. 

The numbers below each node identify the GICS sectors covered by the analyst. Most 

analysts in this brokerage network cover up to two sectors, and only two analysts span 

four sectors in their coverage portfolios. A line between a pair of nodes denotes a direct 

connection between a pair of analysts. Nodes that are larger in size and illustrated with 

more intense colors (progressively, from light green to bright red) have more direct 

connections.9 Figure 1 shows that analysts can have different levels of connectedness even 

if they cover the same number of economic sectors. For example, an analyst who covers 

GICS sectors 25 and 45 has more direct connections than her colleague who covers GICS 

sectors 45 and 50.10 This suggests that the relation between an analyst’s coverage portfolio 

complexity and potential for information exchange is non-linear and dependent on the 

composition of her colleagues’ coverage portfolios. 

1.2. Defining Analyst Centrality 

There are many dimensions of the information exchange process. Aside from different 

types of information (e.g., firm-specific, industry news, and macroeconomic news), there 

is variation in the amount (i.e., volume) and speed of information transmission. Our 

approach uses the four most common measures of network centrality to describe 

                        
9 While we focus on direct connections in Figure 1, network theory informs us that a node’s connectedness 
is also influenced by her indirect connections in the network. In the next section, we explore some measures 
that account for dynamics arising from analysts’ indirect connections. 
10 This difference arises because there are more analysts in the brokerage network who cover GICS sector 
25 than the ones who cover GICS sector 50. 
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information exchange (e.g., Larker, So, and Wang, 2013). Each measure of network 

centrality captures a distinct feature of connectivity and information exchange. As such, 

any single measure is unlikely to capture all facets of information exchange (Newman, 

2003). Characterizing the information exchange process can be challenging (Borgatti, 

2005), but we describe below the intuition behind the types of inter-colleague information 

exchange that each measure is likely to capture and reserve the details for Appendix I. 

 Degree Centrality (Newman, 1979) and Eigenvector Centrality (Bonacich, 1972) are 

conventionally used to capture information flow in a network (Borgatti, 2005). Degree 

centrality counts the number of directly connected neighbors. An analyst with more 

direct connections has more opportunities for interaction and is likely to receive more 

information. Since our analysts are connected by industry overlaps, degree centrality 

likely captures information that is industry-specific or related to competition dynamics.  

 Eigenvector Centrality is a close cousin of Degree Centrality but places more weight 

on neighbors who are themselves more central whereas Degree Centrality places equal 

weight. This captures more relevant or valuable industry-specific information and 

additional information flow that is more macroeconomic in nature.  

 Closeness Centrality (Freeman, 1979) captures the speed (time-to-arrival) of receiving 

information that is produced anywhere in the network (Borgatti, 2005). In financial 

markets, the value of information is time-sensitive, and speed of information exchange 

helps an analyst incorporate colleagues’ information into her forecasts in a timely 

fashion.  

 Betweenness Centrality (Freeman, 1979) captures the relative position of analyst 

within the network structure. It captures cross-industry information exchange11 that 

is valuable to the analyst and relates to the positional benefit of ‘strategic 

complementarity’ in information production from colleagues working in different 

industries. An analyst with high Betweenness Centrality is more likely to reap cross-

industry synergistic gains from her colleagues’ information production. Technically, 

such cross-industry synergies are unlike the canonical type of information exchange 

                        
11 Kini et al. (2009) find that cross-industry information is valuable to forecast accuracy. 
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(i.e., degree and eigenvector centrality). Where there is an opportunity for an analyst 

to exploit synergies between two industries, the information exchange should be 

targeted and not via a circuitous path.12  

A large literature has stressed the importance of information transmission through 

informal or social connections. In contrast, we focus on professional linkages based on 

sector overlap in their coverage portfolios. It is likely that the analysts we study are 

connected socially too, beyond these professional relations (e.g., Hwang and Kim, 2011). 

Data limitations prevent us from capturing these non-professional ties, but we argue that 

information exchange outside of our constructed networks is likely to work against finding 

empirical support for our hypothesis. 

1.3. Principal Component Analysis 

Given the complexity of information in a network, any single measure of network 

centrality is unable to completely capture analyst connectedness (Newman, 2003; Valente, 

Coronges, Lakon, and Costenbader, 2008). Each measure of centrality may be better at 

capturing different types of information exchange, which we further discuss below. 

Our four centrality measures have cross-correlations ranging from 30.2% to 89.1%. 

Simultaneously using all four centrality measures is likely to induce multicollinearity issues. 

Therefore, we perform a principal component analysis (PCA) on degree, betweenness, 

closeness, and eigenvector centrality. From the first principal component, we extract its 

standardized factor score and define it as Analyst Centrality. We report more details of 

the PCA in Section 1.6. 

1.4. Forecast Accuracy 

Following Clement (1999), we construct Normalized Forecast Error from the latest firm-

year forecast values by calculating the absolute difference between the analyst’s firm-year 

                        
12 Borgatti (2005) makes clear that, due to the algorithmic implications of betweenness centrality, it is 
incompatible with the canonical type of untargeted information exchange. We also do not adopt the typical 
interpretation that betweenness centrality represents information brokering capacity. Instead, we stress that 
analysts with synergistic coverage portfolios will mechanically be situated between many colleagues. 
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forecast value and the corresponding earnings-per-share (EPS) of the firm-year, scaled by 

the firm-year mean absolute forecast error for comparability across observations. For 

analyst ݅ covering firm ݂ in year	ݐ, we define her Normalized Forecast Error as in (1).  
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1.5. Control Variables 

We include controls for the determinants of forecasting performance found in prior 

research.13 We provide a brief description of the key variables and provide full construction 

details in Appendix II. All continuous variables are winsorized at the 1st and 99th percentile 

values to limit the influence of outliers.  

To control for forecast characteristics associated with accuracy, we include proxies for 

revision activity (Revision Frequency), timeliness based on the closeness to the actual 

earnings announcement (Horizon), lowballing behavior (Lowball) 14, and deviation from 

the consensus forecast (Boldness). As lowballing behavior is associated with forecast 

accuracy, we also create a lowball measure following Hilary and Hsu (2013). Since 

centrality is likely associated with ability, we proxy for analyst ability using total work 

experience (General experience) and experience covering the firm (Firm Experience). To 

account for the analyst’s portfolio complexity, we measure number of unique firms (Firm 

Breadth) and the number of 2-digit GICS sectors (Industry Breadth) covered by the 

analyst during the year. We measure Brokerage Size as the logarithm of the number of 

analysts employed by the brokerage.  

                        
13 See for example, Mikhail, Walther, and Willis (1997); Clement (1999); Jacob, Lys, and Neale (1999); and 
Brown (2001), Ivković and Jegadeesh (2004). 
14 Hilary and Hsu (2013) show that analysts strategically increase forecast error consistency via lowballing 
behavior for firms with high institutional ownership. The lowballing strategy inevitably decreases forecast 
accuracy. Appendix II contains full details of the construction of lowball. 
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We also account for the influence of firm heterogeneity on forecasting outcomes by 

controlling for the number of analysts (Analyst Coverage), market capitalization, book-

to-market ratio, leverage, ROA volatility, and negative earnings (Loss)15.  

1.6. Descriptive Statistics 

Our sample comprises 5539 firms, 317 brokerages, 9170 analysts, and 274,671 firm-year 

forecasts from the years 1996 to 2014 using the I/B/E/S vintage from WRDS in May 

2015. Panel A presents summary statistics of unique analyst-year pairs. The average 

(median) analyst has 17 (12) connections and covers 1.68 (1) GICS sectors. The median 

brokerage employs 44 unique analysts. By definition, Degree Centrality, Closeness 

Centrality, Betweenness Centrality, and Eigenvector Centrality are non-negative. However, 

many analysts in the sample have negative values of Analyst Centrality because we used 

standardized variables in the PCA-extraction.16  

[Insert Table 1] 

Panel B of Table 1 presents Pearson correlations between the network centrality 

measures and analyst/brokerage characteristics. Naturally, Analyst Centrality is positively 

correlated with its component measures (54.6% to 94.9%). Analyst Centrality is also 

positive correlated with Industry Breadth (57.1%), but weakly related to Firm Breadth 

(16.5%), as analysts generally tend to cover firms in the same industry. Analyst Centrality 

has low correlations with measures of experience including General Experience, Firm 

Experience, and Brokerage Experience. Interestingly, Analyst Centrality is negatively 

correlated with All-American status, which suggests that central analyst are unlikely to 

be voted as All-Americans. 

Panel C reports a principal component analysis of the four network centrality measures. 

The first principal component captures approximately 66.5% of the variance in the four 

network centrality measures and is the only eigenvalue greater than one. The incremental 

variance explained by the next principal component is only about 20.9%. Other loadings 

                        
15 See Hwang, Jan, and Basu (1996) and Brown (1997; 1998). 
16 Standardization accounts for the different scales of the four network centrality variables. 
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on some centrality measures turn negative in principal components, thus making 

interpretation difficult. In light of these considerations, we construct Analyst Centrality 

based on the first principal component. 

[Insert Figure 2] 

1.7. Central analysts and industry coverage 

As discussed above, central analysts cover more industries but not necessarily more firms. 

Figure 2 shows the types of industries that central analyst cover. Analysts with high 

centrality primarily cover information technology, consumer discretionary, and industrials. 

In contrast, low centrality analysts tend to focus on health care, financials, and energy.  

2. Do central analysts produce better forecasts? 

Our learning hypothesis proposes that analysts generate better equity research if they can 

learn valuable information from their colleagues. In this section, we test the learning 

hypothesis by focusing on the analyst’s centrality in the network. Our main prediction is 

that central analysts make better forecasts because they have better access to intra-

brokerage information flow. We test this along two dimensions: 1) forecast accuracy, and 

2) market reactions to revision announcements. 

2.1. Forecast accuracy 

We test whether central analyst produce more accurate forecasts by estimating 

specification (2). 

Normalized Forecast Errori,f,t = α + β1∙Analyst Centralityi,t + ϑ∙Controlsi,f,t + εi,f,t   (2)

Our forecast accuracy measure is Normalized Forecast Error which allows for 

comparability across firms. The control variables include forecast horizon, revision 

frequency, forecast boldness, analyst experience, coverage experience, lowballing behavior, 

and complexity of coverage portfolio (i.e., firm breadth of coverage and industry breadth 

of coverage). Additionally, we include the following firm characteristics: earnings volatility, 
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transitory earnings, leverage, growth opportunities, firm size, and analyst coverage (e.g., 

Heflin, Subrahmanyam, and Zhang, 2003; Hilary and Hsu, 2013).  

Our baseline specification includes brokerage-year fixed effects to capture unobserved 

brokerage characteristics such as prestige and resources (e.g., Stickel, 1995; Clement, 1999; 

Hugon, Kumar, and Lin, 2016). We also estimate a specification with firm-year fixed 

effects to absorb unobserved heterogeneity of the coverage firm that affects all analysts’ 

forecasting performance in the firm-year. We carefully estimate the standard errors as 

follows. Since fixed effects do not fully capture correlations of regression residuals, we 

cluster the standard errors along two dimensions following Petersen (2009) and Gow, 

Ormazabal, and Taylor (2012). First, we cluster by analyst-firm because an analyst’s 

forecast error on a particular firm may be correlated over time. The second clustering 

dimension is either 1) firm-year to capture dependence in forecast errors of competing 

analysts in a firm-year or 2) brokerage-year to capture correlations of analysts’ forecasting 

performance within each brokerage-year. 

 [Insert Table 2] 

The results in Table 2 show that central analysts produce more accurate forecasts than 

their periphery colleagues. The specification in Column (1) shows that, controlling for 

analyst characteristics, central analysts produce more accurate forecasts than their 

periphery colleagues in the same brokerage. In Column (2), we show that the positive 

relation between forecast accuracy and Analyst Centrality is robust to the inclusion of 

controls for firm characteristics. Economically, an analyst in the 75th percentile of Analyst 

Centrality is 10.5% more accurate (relative to the median forecast error) than an analyst 

in the 25th percentile. For comparison, an interquartile increase (p25th to p75th 

corresponding to an interquartile range from 23 months to 90 months) in General 

Experience corresponds to a 14.8% improvement in forecast accuracy.17 Column (3) shows 

                        
17 From Table 1, the difference in Analyst Centrality between the 75th and 25th percentiles of its distribution 
is 1.337. This difference corresponds to a decrease in Normalized Forecast Error of 1.337 × 0.014 = 0.019. 
We de-normalize this value by the mean raw forecast error to obtain 0.019 × $0.222 = $0.0042, or about 
10.5% of the median raw forecast error ($0.04). An interquartile increase in General Experience (from 23 
months to 90 months) is a 290% increment. This has an impact of -0.020 × log (1+2.9) = 0.027 decrease 
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that the results are similar with the inclusion of firm-year fixed effects which necessarily 

omits controls for firm characteristics. The results suggest that central analysts make 

more accurate forecasts than their competitors who cover the same firm in the year. 

Consistent with prior literature, we find that forecast accuracy is associated with 

shorter forecasting horizons, more firm-specific experience, bolder forecasts, less low 

balling behavior (e.g., Clement and Tse, 2005; Hilary and Hsu, 2013). Greater effort, as 

proxied by higher revision frequency is also associated with greater accuracy. Higher 

analyst coverage also creates greater accuracy, consistent with greater competition 

spurring more effort. (e.g., Merkley, Michaely, and Pacelli, 2017; Loh and Stulz, 2017). 

We also find that analysts that cover more industries (Industry Breadth) tend to have 

greater forecast errors as their coverage portfolio becomes more complex (e.g., Clement, 

1999; Clement and Tse, 2005). This is noteworthy because Analyst Centrality measure is 

related to Industry Breadth, but the two measures have opposing effects on forecast 

accuracy. An interquartile increase in Industry Breadth reduces accuracy by 3.3% relative 

to the median forecast error.18 This is consistent with a tradeoff between the benefits of 

intra-brokerage information exchange and the costs of undertaking more complex tasks.  

Overall, the evidence is consistent with the view that analysts with higher values of 

Analyst Centrality have greater information advantages. The findings suggest that central 

analysts are likely learning valuable information from their intra-brokerage colleagues. 

The relation is unlikely due to unobservable brokerage-related factors or heterogeneity in 

coverage-firm specific characteristics.  

2.2. Forecast revision informativeness:  Market reactions 

                        
in Normalized Forecast Error. On average, this translates to 0.027 × $0.222 = $0.0059, or about 14.8% of 
the median raw forecast error ($0.04). 
18 From Table 1, the difference in Industry Breadth between the 75th and 25th percentiles of its distribution 
is 1. This difference corresponds to an increase in Normalized Forecast Error of 1 × 0.006 = 0.006. We de-
normalize this value by the mean raw forecast error to obtain 0.006 × $0.222 = $0.0013, or about 3.3% of 
the median raw forecast error ($0.04). 



 

 
 
 

15 

If central analysts benefit from information exchange, we expect that their forecast 

revisions contain more novel and value-relevant information that will attract greater 

market reactions. We test this prediction by estimating specification (3). 

 
AbsCAR [-1,+1]r,i,f,t = α + β1∙Analyst Centralityi,t + 

 β2∙Analyst Centralityi,t×Consensus Deviation +  ϑ∙Controlsi,f,t + εi,f,t 
(3)

The unit of analysis is each forecast revision on a firm by a particular analyst. Standard 

errors are double-clustered by year-week to capture common time-varying macroeconomic 

shocks and also by firm because market reactions to forecast revisions may be correlated 

over time for a given firm. We control for Consensus Deviation because we expect stronger 

market reactions when the analyst’s revision significantly deviates more from the 

prevailing consensus forecast (e.g., Clement and Tse, 2003; Hilary and Shen, 2013). 

Consensus Deviation is the absolute difference between an analyst’s revision value and 

the prevailing forecast consensus, normalized by the absolute value of the forecast 

consensus. We also control for stock performance during the run-up to the forecast revision 

date to capture potential auto-correlation in returns.  

[Insert Table 3] 

Table 3 shows that central analysts command larger market reactions around their 

forecast revisions. Column (1) shows a statistically positive association between Analyst 

Centrality and 3-day market reactions around forecast revisions. Furthermore, the 

interaction term shows that, conditional on the deviation from the consensus forecast, the 

revisions of a central analyst command higher market reactions than those of a peripheral 

analyst. This suggests that the market perceives the revisions of central analysts to contain 

more relevant and novel information, even after controlling for Consensus Deviations. 

The results are similar in Column (2) with the inclusion of controls for analyst 

characteristics and stock performance during run-ups to the forecast revisions. Evaluated 

at the median Consensus Deviation, an inter-quartile increase in Analyst Centrality is 
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associated with higher returns of about 0.39% over 3 days.19 Consistent with Bradley, 

Gokkaya and Liu (2017), the forecast revisions of analysts who have higher general 

experience and who work in larger brokerages also attract larger market reactions. Overall, 

the evidence is consistent with the view that analysts with higher centrality possess more 

novel and value-relevant information. 

A potential concern is that confounding events including material firm announcements 

may coincide with analysts’ forecast revisions. To alleviate this concern, we collect all 

dates on which firms file SEC Form 8-Ks20 from the EDGAR database. Thereafter, we 

drop a forecast revision from our sample if a Form 8-K is filed in the (-1, +1) day window 

of the revision. Additionally, we exclude a forecast revision from our sample if the firm 

has earnings announcements in the (-1, +1) day window of the revision. These filters 

reduce our sample size by about 48%, suggesting that analysts’ revisions are often 

motivated by the disclosures of new information by firms. We repeat our analysis in this 

reduced sample and present the results in Column (3). Notwithstanding a marginal drop 

in economic magnitude, we continue to find that the forecast revisions of central analysts 

attract larger market reactions.  

Finally, we repeat our analysis on a further-reduced sample of standalone forecast 

revisions (Gleason and Lee, 2003; Chen and Matsumoto, 2006).21 Under the caveat that 

this filter inevitably introduces a look-ahead bias, we continue to find a positive relation 

between Analyst Centrality and market reactions around forecast revisions in Column (4). 

Despite our exclusions of forecast revisions that coincide with issuances of Form 8-Ks 

and earnings announcements, an alternative explanation remains that central analysts 

only issue forecast revisions around significant news events. We address this possibility 

                        
19 The difference between the 25th and 75th percentiles of the Analyst Centrality distribution is 1.337. The 
median Consensus Deviation in the sample is 0.046. Evaluated at the median level of Consensus Deviation, 
an inter-quartile increase in Analyst Centrality corresponds to an increase in market reactions of 
0.009×0.046×1.337+0.288×1.337=0.358% 
20 In addition to annual and quarterly reports, public companies are required to report certain material 
corporate events on a more current basis via the Form 8-K. A comprehensive list of the event types that 
trigger a firm’s obligation to file a Form 8-K is available on the SEC website. 
21 Standalone forecast revisions have no other revisions released in the (-1, +1) day window of the revision. 
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by replacing Consensus Deviation with Self Deviation in our model. The latter variable 

captures the magnitude of deviation between an analyst’s revision and her previous 

forecast value. Our results in Table 1 of the Internet Appendix show that, conditional on 

the magnitudes of such deviations, central analysts still command larger market reactions. 

Notably, we also find that market reactions to forecast revisions increase unconditionally 

with Analyst Centrality. Overall, the results are consistent with the view that central 

analysts have access to better information and learn from their brokerage colleagues. As 

a result, they make more informative forecast revisions that generate larger market 

reactions.  

2.3. Competition and learning 

Sell-side analysts work in highly competitive environments. Our main tests control for 

cross-brokerage competition effects using the number of analysts who covers the same 

firm (e.g., Merkley, Michaely, and Pacelli, 2017; Loh and Stulz, 2017). However, analysts 

also face direct in-house competition for year-end bonus or promotions (e.g. Groysberg, 

Healy, and Maber, 2011). Under intense competition within the brokerage, analysts may 

abstain from collaboration or withhold feedback, and thus weaken information exchange. 

To explore these dynamics, we proxy for the intensity of in-house competition using 

the existence of large investment banking businesses. We rank investment banks (IB) by 

their IPO and SEO deal values in every year using data from SDC platinum. Investment 

banks are added to the Large IBs pool sequentially until the pool accounts for 75% of the 

total deal value in the market of that year.22 The remaining brokerages (i.e. smaller IBs 

and non-IBs) are assigned to the Non-Large IBs pool.  

[Insert Table 4] 

                        
22 We perform this ranking procedure separately for IPO and SEO deals so that a brokerage with substantial 
IPO deal flow but weak SEO deal flow (or vice versa) is still classified as a Large IB. The market for 
underwriting services is dominated by a few IBs – the 15 Large IBs out of 101 IBs in our sample account 
for at least 75% of the IPO/SEO market share. 
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The results in Table 4 are consistent with the notion that the learning mechanism 

weakens in highly competitive environments. In Panel A, we find a positive relation 

between Analyst Centrality and forecast accuracy in the Non-Large IBs sample in Column 

(1); however, this relation is absent among the largest IBs in Column (2). This suggests 

that central analysts do not benefit strongly from inter-colleague information exchange at 

the large investment banks. We also use Brokerage Size as an alternative measure for in-

house competition because larger brokerages tend to offer higher compensation and 

employment prestige. In every year, we sort brokerages into terciles according to their 

size. Columns (3) through (5) present results on sub-samples increasing in Brokerage Size. 

The link between Analyst Centrality and forecast accuracy appears to increase in the first 

two Brokerage Size terciles, but diminishes among the largest brokerages.  

We repeat the above analysis on market reactions surrounding analysts’ forecast 

revisions in Panel B. In a sample that excludes revisions around issuances of Form 8-Ks 

and earnings announcements, we find that the positive relation between market reactions 

and Analyst Centrality is present among Non-Large IBs but not among the largest IBs. 

Similar to the patterns in Panel A, we also find that the effect of Analyst Centrality decays 

with Brokerage Size in the context of market reactions.  

Overall, these findings support the salience of competition as a factor in designing an 

optimal collaborative structure for information exchange among workers.  

3. The learning channel 

Our evidence thus far is consistent with the view that intra-brokerage information transfer 

affects forecast performance. In this section, we examine the potential learning channel 

more carefully. 

3.1. Learning information on hard-to-value stocks 

We hypothesize that central analyst are more likely to learn information that is more 

complex in nature from their colleagues. Koh and Reeb (2015) show that firms that fail 
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to report R&D expenditures have higher uncertainty about their true level of innovation 

and future growth prospects. Information incorporation is also more complicated for firms 

with highly dispersed operations across numerous industry segments (Cohen and Lou, 

2012).  

We construct High R&D, which is an indicator equal one if either the R&D intensity 

of the firm is above the yearly median or the firm has missing R&D expenditure data in 

Compustat23, and Conglomerate, which is the Herfindahl index of a firm’s sales across its 

industry segments. To facilitate interpretation, we multiply the Herfindahl index by minus 

one so that higher values of Conglomerate correspond to higher firm complexity. We 

interact Missing R&D and Conglomerate with Analyst Centrality respectively to examine 

incremental effects of colleague learning on stocks that are difficult to value. 

Table 5 shows that central analysts are better able to forecast earnings for such hard-

to-value stocks. Column (1) of Table 5 shows a statistically negative coefficient on the 

interaction term Analyst Centrality x High R&D. Column (2) shows similar results using 

Firm Complexity measure. Column (3) shows that our conclusions are unchanged when 

including both High R&D and Firm Complexity (and their interactions with Analyst 

Centrality) in the same specification. Interestingly, the statistically negative loadings on 

both interaction terms suggest that High R&D and Firm Complexity proxy for different 

dimensions of valuation for difficult-to-value stocks.  

This evidence provides some color on the nature of information analysts learn from 

their colleagues. The findings suggests that central analyst are able to gain particularly 

valuable and rare insights to help forecast uncertain or complex firms. 

3.2. Learning from our colleague’s mistakes 

We examine whether central analysts are able to learn from their colleague’s mistakes 

under the following paradigm. A central analyst observes the ex-post forecast errors of 

her colleagues when actual earnings are announced in the colleague’s coverage portfolio. 
                        
23 R&D intensity is defined as the ratio of R&D expenditures to total assets. Our results also hold if we 
require sample firms to have non-missing R&D expenditure data. 
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In response, the central analyst revises her own forecasts to incorporate the newly revealed 

information in her colleagues’ forecast error. We hypothesize that after a colleague’s 

forecast is revealed to be optimistic, the central analyst is likely to learn from this mistake 

and revise her forecast downwards. Our test focuses on an analyst’s revision behavior 

upon the revelations of ex-post forecasting performance of her brokerage colleagues. 

To measure the re-adjustment of the analyst’s prior forecast, we construct Analyst 

Revision, a signed measure defined as the difference between an analyst’s forecast revision 

value and her prior forecast value, deflated by the absolute value of the latter. Therefore, 

a positive (negative) value of Analyst Revision reflects an increase (a decrease) in the 

analyst’s forecast value from her previous forecast.  

For a forecast revision of a given analyst, we collect all instances of her colleagues’ 

realized forecast errors that occurred within the past 30 days. We only retain the realized 

forecast errors of 1) colleagues who are directly connected to the analyst (i.e. who cover 

the same industries), and 2) colleagues who cover either the major suppliers or major 

customers of the analyst’s firms.24 Each realized forecast error is classified as optimistic if 

the forecasted value is above the actual reported EPS. We define Colleague Optimism as 

the proportion of optimistic forecast errors in the 30-day window. Given an analyst ݅ in 

brokerage ܩ covering firm ݂ and making a forecast revision on date	݀, we let ݎሺ݆, ݀ሻ equate 

to unity if colleague	݆  has a realized forecast error 30 days prior to ݀  with the below 

characteristics, and equate to zero otherwise. 
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24 We identify customer and supplier pairs from the business segment files of Compustat. In accordance 
with SFAS 14, public firms are required to disclose sales to their principal customers, defined as customers 
that contribute to at least 10 percent of the total revenue of the firm or if sales to a customer are material 
to the business of the firm. Principal customer names are manually matched to Compustat GVKEYs 
following the approach in Fee, Hadlock, and Thomas (2006). For customer names that are abbreviated, we 
hand-match and use industry affiliations to determine whether the customer is in Compustat. For the 
remaining unmatched customers, we check their corporate websites in the Directory of Corporate Affiliation 
(DCA) database to determine if the customer is a subsidiary of a listed firm. If so, we assign the customer 
to its parent’s GVKEY. To ensure accuracy, we discard any customer name that cannot be unambiguously 
matched to a GVKEY. 
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To test the learning channel, we estimate specification (5).  
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To assess the conditional effect of Analyst Centrality on Analyst Revision, we include 

the interaction of Analyst Centrality with Colleague Optimism as the key variable. While 

analysts may unconditionally revise their forecasts downwards after their colleagues’ 

forecasts are revealed to be optimistic, we expect this effect to be stronger for central 

analysts because they participate in inter-colleague information exchange more intensely. 

We include controls for analyst and brokerage characteristics, and the stock performance 

of the firm leading up to the forecast revision. Standard errors are double-clustered by 

year-week and firm to capture dependence in analysts’ revisions. 

[Insert Table 6] 

Table 6 shows that central analysts are more likely to re-adjust their forecasts in 

response to their colleagues’ ex-post forecasting mistakes. Column (1) shows that 

Colleague Optimism predicts more negative forecast revisions. This suggests that, 

unconditionally, analysts’ forecast revisions tend to be more negative in response to a 

higher incidence of optimistic errors made by their colleagues. In Column (2), the 

interaction between Analyst Centrality and Colleague Optimism is significantly negative. 

This implies that central analysts issue more negative revisions in response to their 

colleagues’ revealed optimism. This suggests that central analysts may have previously 

incorporated more of their colleagues’ information in their forecasts and now unravel 

erroneous information. 

An alternative interpretation is that when an industry shock occurs, central analysts 

are too busy to update their forecast due to the complexity of their coverage portfolio. 

Their revisions would then appear to lag their colleagues’ revisions. However, given that 

the revisions of central analysts generate larger market reactions (see Table 3), they are 

more likely to contain novel information. If the revisions of central analysts are delayed 
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after the news shock, it is unlikely that those revisions would generate significantly larger 

market reactions. 

The results may also reflect a central analyst’s superior ability to process public 

information because ex-post forecast errors are publicly available information. To rule out 

the information-processing hypothesis, we introduce Global Optimism, the global analog 

of Colleague Optimism. To construct Global Optimism, we collect all realized forecast 

errors 1) in the 30 days leading up to the analyst’s revision, and 2) that are not made by 

the analyst’s colleagues. Global Optimism is the proportion of optimistic forecast errors 

made by non-colleagues in the 30-day window.25 

We add Global Optimism and its interaction with Analyst Centrality to our 

specification in Column (3). Unconditionally, analysts’ revisions tend to be more negative 

as Global Optimism increases. This is unsurprising because realized forecast errors, even 

those made by non-colleagues, may be informative. However, the interaction between 

Analyst Centrality and Global Optimism no longer predicts the analyst’s revision activity. 

This shows that central analysts do not re-adjust their forecasts incrementally to forecast 

errors outside their brokerages. This finding is inconsistent with the hypothesis that 

central analysts have superior ability to process public information. In contrast, the 

interaction between Analyst Centrality and Colleague Optimism remains negative and 

statistically significant, supporting the learning hypothesis.  

3.3. Do all analysts within a brokerage benefit from information exchange? 

An interesting question is whether gains from learning also accrue to periphery analysts. 

Both central and periphery analysts may collectively benefit via two-way feedback in a 

brokerage. To examine the collective benefit from learning, we create a Network Density 

measure (Newman, Watts, and Strogatz, 2002).26 A network is dense (sparse) if its nodes 

are strongly (weakly) interconnected among one another, thus allowing for higher 

                        
25 We provide additional evidence in Internet Appendix Table 2 that our results hold when we increase the 
window length from 30 days to 60 days in the constructions of Colleague Optimism and Global Optimism.  
26 Appendix I presents the technicalities of Network Density and working examples. 
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information exchange and flow (Smith-Doerr and Powell, 2010; Gibbert and Durand, 

2009). Higher Network Density is likely to improve analyst performance as the rate of 

information exchange increases among analysts.  

For each analyst-year, we construct Outperformance (%) as the proportion of her 

forecasts with realized forecast errors that are lower than their firm-year averages.27 

Analysts with higher values of Outperformance (%) are more accurate than their 

competitors from other brokerages. We estimate a Tobit model following equation (6) and 

include controls for analyst experience and portfolio complexity. By construction, Network 

Density is normalized by network size but we also explicitly control for brokerage size. 

We cluster standard errors at the brokerage-year level. 

Outperformance (%)i,t = α + β1·Analyst Centrality i,t-1 + β2·Network Density i,t-1 + ε i,t (6)

[Insert Table 7] 

 The evidence in Table 7 suggests that both central and periphery analysts benefit from 

inter-colleague information exchange. In Column (1), we verify that our baseline findings 

hold at the analyst-year level. We find a positive and significant association between 

Analyst Centrality and Outperformance (%). Consistent with our earlier findings, central 

analysts have higher forecast accuracy than their periphery colleagues. We include 

Network Density to the specification in Column (2) and find that analysts who reside in 

denser brokerage networks are more accurate than competing analysts in sparser 

brokerage networks. This suggests that analysts benefit from a network structure that 

promotes inter-colleague information exchange for both central and periphery analysts. 

The positive loading on Analyst Centrality in Column (2) suggests that, while analysts 

benefit collectively from information exchange, the gains to central analysts are greater 

than those to their peripheral colleagues.  

                        
27 This construction helps to account for firm-specific heterogeneity of forecast difficulty across analysts in 
a brokerage. In untabulated results, our findings are qualitatively and quantitatively similar when we 
measure an analyst’s performance as her median Normalized Forecast Error in the year. 
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By virtue of our network construction methodology, brokerages that cover only one or 

fewer 2-digit GICS sectors will have mechanically high values of Network Density. To 

alleviate this concern, we repeat our analysis in Column (3) on a reduced sample of 

brokerages that cover at least three 2-digit GICS sectors.28 We find that our results in 

Column (3) remain quantitatively and qualitatively similar. 

 Overall, we show that brokerage structures that facilitate inter-colleague information 

exchange benefit not only central analysts but also their periphery colleagues. However, 

central analysts benefit disproportionately more from learning in brokerage networks.  

4. Causal effects of analyst centrality on forecast accuracy 

An unaddressed issue is the matching process between the analyst and the brokerage 

house. Concerns relating to brokerage characteristics discussed above are partially 

addressed in our main tests with the inclusion of brokerage-year fixed effects in our 

baseline specification. However, it remains that an analyst with expertise in a particular 

industry may be more likely matched with a brokerage that specializes in that industry. 

To establish a causal relation between Analyst Centrality and forecast accuracy, we exploit 

brokerage mergers (Hong and Kacperczyk, 2010; Kelly and Ljungqvist, 2012) from years 

2000 to 2007 as exogenous shocks to Analyst Centrality scores.29 For each merger event, 

we track all analysts who work at the same acquirer brokerages pre-event and post-event. 

We further require that each analyst covers the same firm before and after the merger. 

Therefore, our unit of observation in this quasi-natural experiment is an analyst-firm. 

Derrien and Kecskes (2013) find that most brokerage mergers are usually motivated by 

business reasons, suggesting that analysts who leave post-merger, if any, are not 

systematically different in forecast accuracy. Further, we exclude closures because it is 

plausible that only high-ability analysts manage to find new employment post-closure. 

Restricting our analysis to analysts in brokerage mergers alleviates concerns of selection 

                        
28 Our results are quantitatively and qualitatively similar when we adopt different values for this arbitrary 
cutoff. 
29 In Appendix III, we document the list of 17 brokerage mergers that we are able to match to our final 
sample. 
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bias due to unobserved analyst ability. Essentially, the shocks to Analyst Centrality of 

analysts emanate from changes in their within-brokerage network structure due to the 

mergers. 

The treatments in this test are Analyst Centrality Up and Analyst Centrality Down. 

Analyst Centrality Up is an indicator that equal to one if the analyst’s average post-

merger Analyst Centrality is higher than her average pre-merger value, and to zero 

otherwise. Analyst Centrality Down is defined symmetrically. Since brokerage mergers are 

scattered temporally, we use a difference-in-difference model, generalized to accommodate 

multiple treatment groups, and multiple shocks across time, following Autor (2003). We 

estimate the specification in (7).  
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where ߛ represents the group (analyst-firm) fixed effects and ߬௧ represents the year 

fixed effects. ݇ is the time at which the brokerage merger occurs, the term ܦ,௧	is an 

indicator which switches to one in year ݐ if the group receives the treatment. Note that 

this generalized model allows ݇ to vary in different	݃. This is important because brokerage 

mergers in our sample occur at various points in time. We let ݆ ് 0 because we skip the 

year of the brokerage merger. Visual inspection of the parallel trend assumption is tenuous 

in a model with shocks spread across time. Therefore, we include temporal leads and lags 

of the treatment in the model to test the assumption econometrically. Building ݉ leads 

and ݊  lags of the treatment effect ߚ	  into the model allows us to estimate the pre-

treatment dynamics (݉ leads) and post-treatment dynamics (݊ lags). The parallel trend 

assumption is fulfilled if ߚ  is not statistically significant for	݆ ൏ 0 – this suggests the 

absence of anticipatory effects of the treatment. 

We use a 6-year window centered on the brokerage merger event. We choose 

Normalized Forecast Error as the dependent variable because it is a normalized measure 

that allows for comparison of forecast accuracy across different analyst-firms. The key 

independent variables are the three temporal leads (Pre-Treatment) and three temporal 
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lags (Post-Treatment) of the treatment. The mth temporal Pre-Treatment is an indicator 

that equates to unity only in the mth year before the brokerage merger and only if the 

analyst-firm is treated, and zero otherwise. Similarly, the nth temporal Post-Treatment is 

an indicator that equates to unity only in the nth year and only if the analyst-firm is 

treated, and zero otherwise. Apart from year dummies and analyst-firm dummies, we also 

add analyst time trends to help control for confounding heterogeneity.  

[Insert Table 8] 

We present results from the generalized difference-in-difference model in Table 8. In 

Column (1), we find that the coefficients of the Pre-Treatment indicators are statistically 

insignificant. This implies that before employment shocks, analysts who experienced 

Analyst Centrality Up display no systematic differences in forecast accuracy compared to 

analysts whose centrality scores did not improve. Econometrically, anticipatory effects of 

the treatment are unlikely to be the spurious driver of our results – this helps us to 

validate the parallel trend assumption. Crucially, this suggests that the assignment of 

analysts, into more central or less central network positions subsequent to the brokerage 

mergers, is independent on their pre-shock performance. On the other hand, we find that 

the positive effects of higher Analyst Centrality on forecast accuracy occur only after 

treatment has been administered. The weak statistical significance of the t+1 Post-

Treatment indicator suggest the presence of post-merger adjustment costs which delay 

the gains to learning.  

Switching the treatment to Analyst Centrality Down in Column (2) yields 

symmetrically similar conclusions. In summary, our findings suggest that analysts who 

experience an increment in Analyst Centrality display higher forecast accuracy than those 

who did not. Moreover, we show that the differences in forecast accuracy manifest largely 

in the post-treatment period, and not in the pre-treatment period. 
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5. Discussion and robustness tests 

In this section, we discuss and analyze alternative explanations to the learning hypothesis. 

We also perform a series of tests to ensure that our results are robust. 

5.1. Does individual ability or talent explain our findings? 

Analyst Centrality is likely to capture a component of talent or ability as a talented 

analyst may develop high centrality after surviving intense labor market competition. 

High-ability analysts are also likely to acquire greater coverage responsibilities over time. 

Therefore, our main tests include control for measures of analyst ability (i.e., experience 

and lowballing frequency).  

To further disentangle the learning hypothesis from the ability explanation, we proxy 

for another dimension of ability with membership in the All-American Research Team 

(e.g., Leone and Wu, 2007). Studies show that membership in the Institutional Investor 

All-American Research Team (All-American) reflects analyst ability.30 We re-estimate the 

forecast accuracy and market reaction tests presented in Tables 2 and 3. Due to our 

limited data on All-American Research Team membership, we end the sample period in 

2008 for these additional tests.  

[Insert Table 9] 

Table 9 shows that our main results are unchanged after controlling for All-American 

status. In Column (1) of Panel A, we first show that our main centrality results hold in 

this subsample period. Column (2) includes the All-American indicator. The coefficient 

estimate on Analyst Centrality remains significantly negative and the economic effect is 

not statistically distinguishable across Columns (1) and (2). Consistent with prior 

literature, we also find that All-American analysts are more accurate. The market reaction 

tests in Panel B yield similar inferences. We first show in Column (1) that during this 

                        
30 All-American analysts produces more accurate forecasts (Stickel, 1992), elicit stronger market reactions 
around their forecasts (Gleason and Lee, 2003), exhibit performance persistence (Leone and Wu, 2007), and 
attract more investment banking deal flows (Clarke et al., 2007) 
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sub-sample, central analysts command larger market reactions around their forecast 

revisions. Column (2) shows our main conclusions are unchanged with the inclusion of the 

All-American indicator. 

Together, the results suggest that the superior performance of central analyst is 

unlikely to be completely driven by greater individual ability or talent alone. Of course, 

it is plausible that talented and highly-skilled analysts acquire higher centrality over time. 

For instance, the management may design a brokerage network around high-ability 

analysts to leverage on their expertise. What distinguishes our learning hypothesis is that 

Analyst Centrality has incremental explanatory power beyond measures of ability found 

in the prior literature.  

5.2. Regulation Fair Disclosure 

 
Regulation Fair Disclosure (Reg. FD) eliminated the practice of selective disclosure of 

information. As access to non-public communications with firm managers was 

traditionally an important information acquisition channel of analysts, the 

implementation of Reg. FD posed a paradigmatic shift in analysts’ operations. Mohanram 

and Sunder (2006) argues that, in the post-Reg. FD regime, analysts may heighten 

information discovery efforts to offset the impact of reduced access to firm management. 

Following this argument, insights from inter-colleague information exchange may fill the 

void that emerged after Reg. FD. 

 [Insert Table 10] 

Table 10 shows how the effect of Analyst Centrality changes with the implementation 

of Reg. FD. In Column (1), we find that, controlling for brokerage-year fixed effects, 

central analysts do not exhibit higher forecast accuracy than their periphery colleagues in 

the pre-Reg. FD period. In contrast, Column (2) shows that Analyst Centrality has a 

positive and statistically significant impact on forecast accuracy after the implementation 

of Reg. FD. Economically, the effect of Analyst Centrality in Column (2) is about 17 times 

the size that in Column (1).  
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We repeat the split-sample analysis on market reactions to analysts’ forecast revisions. 

Following our empirical setup in Table 3, we also exclude forecast revisions if they coincide 

with issuances of Form 8-Ks or earnings announcements for this test. Columns (3) and 

(4) show that the forecast revisions of central analysts command higher market reactions 

both before and after the implementation of Reg. FD. Furthermore, the effect of Analyst 

Centrality on market reactions, conditional on deviations from the consensus forecast is 

also higher in both regimes. However, we do not find statistically significant pre- and post- 

difference in the effect of Analyst Centrality.  

5.3. Are only direct connections important? 

Analysts typically issue forecast revisions upon receiving value-relevant information. 

If information sharing occurs within a brokerage, this information shock is likely to diffuse 

to other colleagues. Such information may even flow when colleagues are more than ‘one-

step’ away. As information propagates through the network, revision-activity may diffuse 

like a wave through the network. The information propagation may weaken with distance 

because 1) the information shocks become less value-relevant further away from the origin 

and 2) analysts have limited information-processing capacities and may not ‘pass on’ the 

information with fidelity. 

Following Ahern and Harford (2014), we construct a measure called Closeness-

weighted Revision Activity that captures these waves of revision activity. For each analyst-

brokerage pair, we find the earliest and latest forecast announcement dates. In between 

these two dates, we divide the analyst’s tenure at the brokerage by months. We exclude 

the first and last months of her tenure at the brokerage from our sample to avoid 

truncation issues. In each month, we construct Revision Count as the total number of 

forecast revisions made by the analyst. Next, we compute Closeness-weighted Revision 

Activity of the analyst as the weighted sum of all colleagues’ Revision Count in the 
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previous month. We use the reciprocal of the shortest-path distance31 between an analyst 

i and a given colleague j in brokerage G as the weight. 

i,t r,j,t-1j G,j i r
i,j,t

1Closeness -weighted Revision Activity  = Revision
Distance 

      (8) 

 Since the dependent variable, Revision Count, is a discrete count variable, we estimate 

negative binomial regressions following equation (9). We include controls for analyst 

characteristics and brokerage size. 

Revision Counti,t =α +β1·Closeness-weighted Revision Activityi,t + θ Controlsi,t +εi,t      (9) 

Table 3 of the Internet Appendix shows that revision activity diffuses within the 

brokerage network. Column (1) shows a significantly positive relation between Closeness-

weighted Revision Activity and Revision Count. This indicates that the analyst’s own 

revision activity increases in response to colleagues’ intense revision activity. Since the 

sum of colleagues’ revision activity mechanically increases with the number of analysts 

employed at the brokerage, we adopt a size-normalized measure of Closeness-weighted 

Revision Activity. Specifically, we scale the revision activity at each distance tier by the 

number of colleagues residing in that tier before applying the above distance-weighted 

aggregation. Additionally, as the number of revisions made by an analyst is expected to 

increase with the number of firms under her coverage, we include Firm Breadth as an 

exposure variable in the model. Our conclusion remains unchanged when we adopt this 

alternative measure in Column (2). Economically, a unit increase in size-normalized 

Closeness-weighted Revision Activity is associated with a 1.5% increase in the analyst’s 

Revision Count.  

In Columns (3) and (4), we show that analysts are influenced more strongly by the 

revision activity of proximate (shorter paths) colleagues in the network. We define 

Distance1 (Distance2) Revision Activity of an analyst as the total Revision Count of all 

colleagues who are at one path-length (two path-lengths) away in the network, scaled by 

                        
31 Returning to the simplistic triad of analysts A, B, and C in the above example, analyst A has shortest-
path distances of one and two to analysts B and C respectively. 
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the number of colleagues residing at one path-length (two path-lengths). Comparing their 

estimated coefficients in Columns (3) and (4), Distance1 Revision Activity has an 

economic magnitude approximately two times larger than that of Distance2 Revision 

Activity. 32  The Welch-Satterthwaite t-test indicates that this difference in economic 

magnitudes is statistically significant at the 1% level. Column (3) shows that an analyst 

has a 3.2% increase in his revision activity for an additional forecast revision made by a 

colleague at one path-length away. In Column (4), this effect shrinks to 1.1% for forecast 

revisions made by colleagues at two path-lengths away. This suggests that the diffusion 

of revision activity degrades with distance.  

5.4. Do central or peripheral analysts drive our findings? 

We hypothesize that central analysts are better positioned to benefit from information 

exchange in brokerages. However, it is plausible that only the most peripheral analysts 

persistently underperform but the other (more central) analysts’ forecast accuracy do not 

increase with Analyst Centrality. On average, this pattern will still generate a positive 

relation between Analyst Centrality and forecast accuracy. Crucially, this pattern is 

consistent with an alternative hypothesis that Analyst Centrality spuriously correlates 

with the amount of brokerage resources allocated to analysts; the most peripheral analysts 

underperform relatively because brokerages allocate less research support to their coverage 

portfolios. In contrast, the relation between Analyst Centrality and forecast accuracy 

applies for both peripheral and central analysts under the colleague-learning hypothesis.  

 To test whether our findings apply generally to all analysts, we introduce a tiered-

decomposition of Analyst Centrality. Specifically, we assign High (Low) Centrality 

indicators to analysts in the top (bottom) tercile of Analyst Centrality in every year. 

Thereafter, we repeat our baseline analysis with these indicators in lieu of Analyst 

                        
32 We refrain from including both Distance1 Revision Activity and Distance2 Revision Activity in the same 
specification because they are highly collinear with each other. We only present results up to a path-length 
of two because analysts in many brokerages are connected to any colleague by two path-lengths. 
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Centrality as key variables. This empirical design allows us to benchmark the performance 

of the most peripheral and most central analysts with their moderately central colleagues. 

 The results in Table 4 of the Internet Appendix indicate that the relation between 

Analyst Centrality and forecast accuracy applies generally to both peripheral and central 

analysts. In Column (1), we estimate the effect of Low Centrality on forecast accuracy in 

the absence of High Centrality. Thus, the benchmark category in Column (1) comprises 

analysts who are either moderately central or highly central. We find that Low Centrality 

loads positively and significantly on forecast error. In line with our expectation, peripheral 

analysts exhibit lower accuracy than their more central colleagues do. Following this, we 

replace Low Centrality with High Centrality in Column (2). Consistent with our prior 

findings that analysts who are more central have higher forecast accuracy, we find a 

negative and statistically significant loading on High Centrality. In Column (3), we 

estimate the effects of Low Centrality and High Centrality on forecast error simultaneously. 

With moderately central analysts as the benchmark category, we expect High Centrality 

to load insignificantly on forecast error if our prior findings are driven exclusively by the 

most peripheral analysts. Our results indicate otherwise; Low Centrality and High 

Centrality load positively and negatively on forecast error when they are jointly included 

in the regression specification. In Columns (4) through (6), we repeat the preceding 

analysis but Low (High) Centrality corresponds to the bottom (top) quartile of Analyst 

Centrality instead. Our conclusions remain unchanged from Columns (1) through (3). 

 Overall, our evidence does not support the alternative hypothesis that the effect of 

Analyst Centrality is exclusively driven by a relative underperformance of the most 

peripheral analysts in brokerages. Our evidence is also inconsistent with the notion that 

brokerages allocate fewer resources to analysts with low Analyst Centrality. 

5.5. Robustness: Alternative industry classification schemes in network construction 

The broadness of the 2-digit GICS industry classification scheme may create imprecision 

and generate noise in our measure of analysts’ propensities to learn from their colleagues. 
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However, noise tends to reduce the fidelity of the network and is likely to bias against 

uncovering evidence of inter-colleague learning. Alternatively, we could adopt a more 

granular industry classification scheme in our network construction but this approach 

risks the possibility of failing to register inter-colleague connections that are in reality 

present. Therefore, the optimal choice of industry classification schemes reflects a trade-

off between being too broad or too narrow. 

To show that our baseline findings are not due to our choice of industry classification 

scheme, we use a more granular industry classification scheme – the 2-digit SIC scheme – 

in our network construction methodology. 

 Table 5 of the Internet Appendix reports results on the relations between Analyst 

Centrality (SIC-2D) and 1) forecast accuracy, 2) market reactions around forecast 

revisions. Control variables are included per the model specifications in Tables 2 and 3 

but their estimated coefficients are not tabulated for brevity. The definition of Analyst 

Centrality (SIC-2D) remains unchanged from Sections 1.2 and 1.3, except that it is 

computed on within-brokerage networks in which two analysts are connected if they cover 

at least one 2-digit SIC industry in common. Our conclusions remain unchanged with the 

adoption of Analyst Centrality (SIC-2D) in our tests. We continue to find that, controlling 

for brokerage-year fixed effects, more central analysts exhibit higher forecast accuracy. 

Market reactions around forecast revisions are also increasing in Analyst Centrality (SIC-

2D), both conditional and unconditional on analysts’ deviations from the prevailing 

consensus. The economic magnitudes on the effect of analyst centrality are also 

comparable to those in Tables 2 and 3. Overall, we show that our main findings are not 

sensitive to the granularity of industry classification schemes adopted in our network 

construction methodology.33 

                        
33 However, when compared to Tables 2 and 3, our sample sizes in Table 11 are marginally smaller with the 
use of 2-digit SIC in our network construction methodology. The increased granularity of the industry 
classification scheme causes some brokerages in our sample to have no within-brokerage connections among 
their analysts. Since Analyst Centrality is undefined for all analysts in these brokerages, they are omitted 
from our sample. 
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6. Conclusion 

In knowledge-based professions, the quality and ability of one’s co-workers can have a 

significant impact on an employee’s productivity. Our study focuses specifically on the 

effects of learning from one’s colleagues by examining financial analysts. This setting is 

particularly well-suited because information is a key input to an analyst’s performance. 

Using GICS sector overlaps in their coverage portfolios, we build an information 

network within a brokerage house to measure potential information flow among colleagues. 

Our evidence suggests that analysts who are more centrally located in their brokerage 

networks produce higher quality equity research. We provide more direct evidence that 

high centrality analysts are more likely to learn from their colleagues. If high centrality 

analysts are tapping into their colleagues’ knowledge and expertise, we expect that they 

would be more likely to include such information in their forecast revisions. Consistent 

with this argument, we find that high centrality analysts are more likely to revise their 

forecasts after their colleagues’ forecasting mistakes are known. Controlling for analyst 

membership in the Institutional Investor All-America Research Team, supplementary 

analysis suggests that the positive effect of Analyst Centrality on superior forecasting 

outcomes is incremental to that of innate analyst ability. 

The formation of within-brokerage networks may be endogenous. Therefore, to better 

understand the causal relation between within-brokerage network centrality and forecast 

accuracy, we exploit exogenous brokerage mergers from 2000 to 2007. These mergers 

introduce exogenous changes to the brokerage structures of the acquirers and targets, and 

hence impact the Analyst Centrality of their analysts. We find that analysts who 

experienced increases in within-brokerage network centrality improve their forecast 

accuracy.   
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Appendix I 

II.A. Degree Centrality 

Degree centrality is related to the number of colleagues that an analyst is immediately 
connected to in a brokerage network. For example, in Figure 1, analyst A – represented 
by the red node – is immediately connected to four colleagues. Since degree centrality is 
increasing in the number of analysts N in a brokerage G, we normalize degree centrality 
by NG – 1, or the maximum possible number of direct connections an analyst can have 
in a network.  
 

 
 
Degree centrality favors analysts who have relatively more opportunities. Consider the 
network in Figure 2. Analysts A and Z are represented as red and blue nodes respectively. 
If Z cannot provide resources to A, A has the opportunity to ask her other 3 neighbors 
– represented as green nodes. However, Z does not have an alternative connection if A is 
unable to provide resources. Under degree centrality, A possesses more social power than 
Z because the former is less dependent on any single colleague. Being connected to more 
colleagues also increases the likelihood that A will receive any information being circulated 
in the network. The formal mathematical definition of degree centrality for a given analyst 
i is as follows. 
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Following the above discussion, we show that analyst A has a higher degree centrality 
than analyst Z. 

	ݐݏݕ݈ܽ݊ܽ	݂	ݕݐ݈݅ܽݎݐ݊݁ܥ ൌ 	
ሺ3 ൈ 1ோௗீሻ  ሺ1 ൈ 1ோௗ௨ሻ  ሺ3 ൈ 0ோௗ௪ሻ

9 െ 1
ൌ 0.500 

ࢆ	ݐݏݕ݈ܽ݊ܽ	݂	ݕݐ݈݅ܽݎݐ݊݁ܥ ൌ 	
ሺ1 ൈ 1௨ோௗሻ  ሺ0 ൈ 1௨ீሻ  ሺ0 ൈ 0௨௪ሻ

9 െ 1
ൌ 0.125
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II.B. Closeness Centrality 

Closeness centrality is related to the distances between an analyst and all her colleagues 
(both immediately or not immediately connected) in a brokerage network. For example, 
in Figure 3a, the closeness centrality of analyst A – represented by the red node – is the 
reciprocal of the sum of its shortest-path distances to all other brokerage colleagues. Since 
the sum of shortest-path distances is increasing in the number of analysts, closeness 
centrality is normalized by the minimum possible sum of shortest-path distances, NG	–	1. 
For an analyst whose normalized closeness centrality equates to unity, all her colleagues 
are immediately connected to her. 
 

 

 
 
Closeness centrality favors analysts who can access their colleagues, or are reachable by 
their colleagues, at relatively shorter path lengths. An advantage of closeness centrality 
over degree centrality is that the former can also account for indirect connections in the 
network. This advantage is salient if there are isolated or disconnected components 
(cluster of nodes) in the network. When such components are present, closeness centrality, 
unlike degree centrality, can differentiate global (network-wide) centrality from local 
centrality. To illustrate the difference between closeness and degree centralities, consider 
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a brokerage network G in which analysts A and Z are represented as a red node in Figure 
3a and a green node in Figure 3b respectively. The shortest-path distance of each colleague 
from analysts A and Z is indicated in the orange nodes. We show below that analyst Z 
has a higher closeness centrality than analyst A even though both analysts have the same 
values of degree centrality. The formal mathematical definition of closeness centrality for 
a given analyst i is as follows. 

,௦௦௦ሺ݅ݕݐ݈݅ܽݎݐ݊݁ܥ ሻܩ	 ൌ
ீܰ െ 1

∑ ݀ሺ݅, ݆ሻேಸିଵ
ஷ,∈ீ

 ீܰ ൌ ݎܾ݁݉ݑܰ ݂ ݏݐݏݕ݈ܽ݊ܽ  ܩ	݇ݎݓݐ݁݊	݊݅
݀ሺ݅, ݆ሻ ൌ ݐݏ݁ݐݎ݄ܵ ݄ݐܽ ݊݁݁ݓݐܾ݁	݁ܿ݊ܽݐݏ݅݀ ݅ ܽ݊݀ ݆ 

We now show that analysts A and Z have different values of closeness centrality despite 
having the same values of degree centrality. 

ݐݏݕ݈ܽ݊ܽ	݂	௦௦௦ݕݐ݈݅ܽݎݐ݊݁ܥ  ൌ
8 െ 1

1  1  1  2  3  3  4
ൌ 0.467 

ݐݏݕ݈ܽ݊ܽ	݂	௦௦௦ݕݐ݈݅ܽݎݐ݊݁ܥ ࢆ ൌ
8 െ 1

1  1  1  2  2  3  3
ൌ 0.538 
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II.C. Betweenness Centrality 

Betweenness centrality is related to the number of geodesics (shortest paths) in the 
brokerage network that pass through an analyst. 
 

 
 
We first elaborate on the definition of geodesics. For a pair of analysts, a geodesic between 
them is a path of the shortest possible length. An analyst pair may have more than 1 
geodesic. Consider analysts E and F. Analyst E may reach analyst F via 2 paths – EZF 
and EAF. Since both paths have lengths of 2, and the shortest possible path length 
between the analyst pair is 2, both EZF and EAF qualify as geodesics.  
 
The betweenness centrality of analyst A is the sum of proportions of all geodesics (not 
involving A) which pass through A. Revisiting the example of analyst pair E and F, 
there are 2 geodesics EZF and EAF between them but only path EAF passes through 
analyst A, yielding a proportion of 0.5. If we repeat this computation for all possible 
analyst pairs with reference to analyst A, we will obtain her betweenness centrality. Since 
these sums of proportions are increasing in the number of analysts, betweenness centrality 
is normalized by ଶ

ሺேಸିଵሻሺேಸିଶሻ
 the number of unique analyst pairs not involving A.  

Betweenness centrality favors analysts who have brokering capacity. In Figure 4, analyst 
A is in an advantageous brokering position relative to analysts D and E. Should D and 
E choose to interact with each other, they must do so via A. In contrast, if A chooses to 
interact with either D or E, he may do so without the need to pass through any colleagues.  

 

 

The formal mathematical definition of betweenness centrality for a given analyst i is as 
follows. 
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,௧௪௦௦ሺ݅ݕݐ݈݅ܽݎݐ݊݁ܥ ሻܩ	 ൌ
2

ሺ ீܰ െ 1ሻሺ ீܰ െ 2ሻ


,ݔሺݏ ሻ݅|ݕ
,ݔሺݏ ீ∋ሻ௫ஷ,௬ஷ,௫,௬ݕ

 

ீܰ ൌ ݏݐݏݕ݈ܽ݊ܽ	݂	ݎܾ݁݉ݑܰ ݅݊ ݇ݎݓݐ݁݊  ܩ
,ݔሺݏ ሻݕ ൌ ݏܿ݅ݏ݁݀݁݃	݂	ݎܾ݁݉ݑܰ ݊݁݁ݓݐܾ݁ ݕ݊ܽ ݎ݅ܽ ݔ ܽ݊݀  ݕ

,ݔሺݏ ሻ݅|ݕ ൌ ݏܿ݅ݏ݁݀݁݃	݂	ݎܾ݁݉ݑܰ ݊݁݁ݓݐܾ݁ ݕ݊ܽ ݎ݅ܽ ݔ ܽ݊݀ ݕ ݄݃ݑݎ݄ݐ	݃݊݅ݏݏܽ ݅ 

We now show that analyst A has a higher betweenness centrality than analyst Z. The 
identities of analyst pairs are denoted by subscripts in the denominators of the fractions. 

ݐݏݕ݈ܽ݊ܽ	݂	௧௪௦௦ݕݐ݈݅ܽݎݐ݊݁ܥ  ൌ
1
6
൬
1
1ா


1
1ி


2
2


1
2ாி


0
1ா


0
1ி

൰ ൌ 0.583

ݐݏݕ݈ܽ݊ܽ	݂	௧௪௦௦ݕݐ݈݅ܽݎݐ݊݁ܥ ࢆ ൌ
1
6
൬
0
1


0
1ா


0
1ி


0
1ா


0
1ி


1
2ாி

൰ ൌ 0.083

 
 



 

 
 
 

46 

II.D. Eigenvector Centrality 

Eigenvector centrality is related to the notion that the centrality of an analyst is high if 
her connected colleagues are highly central in the brokerage network. A notable 
application of eigenvector centrality is the PageRank algorithm used by the Google search 
engine to determine the importance of websites on the Internet. The underlying logic of 
the algorithm is that important websites are more likely to receive more web-links from 
other important websites. Similarly, an analyst has a high eigenvector centrality if her 
connected colleagues also possess high eigenvector centralities. Under eigenvector 
centrality, not only does the quantity of connections determine one’s prominence in the 
network, but the quality of those connections matters as well. 
 
To motivate the mathematical intuition behind eigenvector centrality, consider a simple 
network structure in Figure 5 and its corresponding adjacency matrix ۵ۻ below. The row-
wise and column-wise sequences of the elements follow P, Q, R, and S. Where there is a 
connection, the element values equate to unity, and equate to zero otherwise. For example, 
element ܕ, equates to unity because P and Q are connected. On the other hand, 
element ܕ, equates to zero because there is no connection between P and R. 
 

 
	

۵ۻ ൌ ൦

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

൪ 

Next, suppose there is a 4 by 1 vector ۹۵  of centrality values. For the purpose of 
exposition, we begin by choosing ۹۵	to	be a vector of un-normalized degree centralities. 
We arbitrarily choose un-normalized degree centralities as a starting point for its 
simplicity. For all purposes of this exposition, we could have defined ۹۵ to be a vector of 
any other centrality values.  

 

 

Formally, we write ۹۵ as follows. 



 

 
 
 

47 

۹۵ ൌ ൦

2
3
1
2

൪		 

 
,,ܓ	݁ݎ݄݁ݓ ,,ܓ ,,ܓ ,ࡼ	݂	ݏ݁݅ݐ݈݅ܽݎݐ݊݁ܿ	݁݁ݎ݃݁݀	݀݁ݖ݈݅ܽ݉ݎ݊݊ݑ	݄݁ݐ	݁ݎܽ	,ܓ	݀݊ܽ ,ࡽ ,ࡾ  ݕ݈݁ݒ݅ݐܿ݁ݏ݁ݎ	ࡿ	݀݊ܽ

Now we perform the below matrix multiplication, we obtain another 4 by 1 matrix. 

۵ۻ ∙ ۹۵ ൌ ൦

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

൪ ∙ ൦

2
3
1
2

൪ ൌ ൦

0 ൈ 2  1 ൈ 3  0 ൈ 1  1 ൈ 2
1 ൈ 2  0 ൈ 3  1 ൈ 1  1 ൈ 2
0 ൈ 2  1 ൈ 3  0 ൈ 1  0 ൈ 2
1 ൈ 2  1 ൈ 3  0 ൈ 1  0 ൈ 2

൪ ൌ ൦

5
5
3
5

൪ 

For each analyst in the network, the matrix multiplication sums up only the centralities 
of colleagues whom he is directly connected to. Alternatively, this multiplication is not 
only causing each analyst to receive her connected colleagues’ centralities, but also causing 
her to distribute her centrality to connected colleagues concurrently. From the above 
example, the element [1, 1], corresponding to P, of the resulting matrix carries a value of 
5, the cumulative centrality of her connections. This value is derived from P’s connections 
– Q and S – who have degree centralities of 3 and 2 respectively. Now, we can interpret 
this matrix multiplication as ‘spreading’ the initial vector ۹۵ across the network.  

Suppose we repeat the multiplication to spread the initial vector ۹۵ further, we obtain 
more 4 by 1 matrices.  

ࡳࡹ ∙ ࡳࡹ ∙ ࡳࡷ ൌ ൦

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

൪ ∙ ൦

5
5
3
5

൪ ൌ ൦

10
13
5
10

൪ ۵ۻ ∙ ۵ۻ ∙ ۵ۻ ∙ ۹۵ ൌ ൦

0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0

൪ ∙ ൦

10
13
5
10

൪ ൌ ൦

23
25
13
23

൪ 

While we observe that the values of elements in the matrices continue to become larger, 
one may speculate that there may exist an equilibrium where the proportion of total 
centralities held by each analyst is constant remains constant through additional stages of 
multiplication. At such an equilibrium, the centrality value of each analyst fully reflect 
the centralities of all connected colleagues. We can search for this equilibrium by choosing 
the initial vector	۹۵. Upon closer inspection, the search for this equilibrium solution is in 
fact a search for the eigenvector of the adjacency matrix	۵ۻ. 

If we had replaced each element of the centrality vector ۹۵	with values of eigenvector 
centralities, the brokerage network can be described as follows. 

,ா௩௧ሺ݅ݕݐ݈݅ܽݎݐ݊݁ܥ ሻܩ ൌ ݐ݈݊݁݉݁݁ ݒ ݂ ݔ݅ݎݐܽ݉  ۵܄

ݎݐܿ݁ݒ݊݁݃݅݁	݊ܽ	ݏ݅	۵܄ ݂ ݄݁ݐ ݏᇱ݇ݎݓݐ݁݊ ݕ݆ܿ݊݁ܿܽ݀ܽ  ۵ۻ	ݔ݅ݎݐܽ݉
,ݎ ۵ۻ ∙ ۵܄ ൌ ૃ ∙  ۵܄

is	ૃ		݁ݎ݄݁ݓ a scalar 
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Suppose we perform a matrix multiplication between ۵ۻ and its eigenvector	۵܄. 

۵ۻ ∙ ۵܄ ൌ ૃ ∙  ۵܄

And multiply the resulting vector with	۵ۻ. 

۵ۻ ∙ ૃ ∙ ۵܄ ൌ ૃ ∙ ۵ۻ ∙ ۵܄ ൌ 	ૃ ∙ ૃ ∙ ۵܄ ൌ ݐ݊ܽݐݏ݊ܿ ∙  ۵܄

We observe that even with incremental steps of matrix multiplication, the resulting vector 
is always a scalar inflation of the starting vector	۵܄. Thus, we can say that the vector	۵܄ 
fully represents the cumulative centrality (or prominence) of analysts and their colleagues 
in the brokerage network.  
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II.E. Network Density 

Network density is a measure that describes the overall interconnectedness of analysts in 
a brokerage network. Distinct from centrality measures which are analyst-centric, network 
density is a brokerage-level measure that relates to the network structure of the brokerage. 
Analysts in a brokerage with high network density would be strongly interconnected to 
one another. To define interconnectedness among analysts, we rely on the concept of 
transitivity (Newman, Watts, and Strogatz, 2002). The concept of transitivity readily 
maps to our intuition of interconnectedness when we consider the colloquialism – “we are 
interconnected if the friend34 of my friend also happens to be my friend”. Notice that the 
colloquialism elicits an image of a triangle with a node at each of its 3 vertices. This idea 
is at the heart of defining network transitivity35 (or network density). 
 
Consider a simple network P in Figure 6. 
 

 
 

We begin by counting the number of paths of length = 2. In total, there are 12 paths of 
length = 2: one originating from A (ABC), two originating from B (BCE; BCD), three 
originating from C (CBA; CDE; CED), three originating from D (DCB; DCE; DEC), 
and three originating from E (ECB; ECD; EDC). Notice that paths are sequences so 
that, for example, ECB is distinct from BCE. 
 
From the paths of length = 2, a subset of them form closed triangles (recall the 
colloquialism above). In this network, there are 6 closed triangles: two originating from C 
(CDEC; CEDC), two originating from D (DCED; DECD), and two originating from 
E (ECDE; EDCE). As the case with paths of length = 2, closed triangles are also 
sequences so that, for example, ECDE is distinct from EDCE. 
 
                        
34 To be clear, a “friend” from the perspective of an analyst is a colleague who shares a connection with her. 
35 Network transitivity is also known as global clustering coefficient. 
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Notice that closed triangles can only be formed from three nodes that sit on the same 
path of length = 2. Following this, the transitivity of the network in Figure 6 is the ratio 
of the number of closed triangles to the number of paths of length = 2. 
 

ࡼ	݂	ݕݐ݅ݒ݅ݐ݅ݏ݊ܽݎܶ ൌ 	
6
12

	ൌ 0.500 

 
 Consider another simple network Q in Figure 7. 
 

 
 
Again, we begin by counting the number of paths of length = 2. In total, there are 28 
paths of length = 2: six originating from A (ABC; ACB; ACD; ACE; ADC; ADE), 
five originating from B (BAC; BAD; BCA; BCD; BCE), six originating from C (CAB; 
CAD; CBA; CDA; CDE; CED), six originating from D (DAB; DAC; DCA; DCB; 
DCE; DEC), and five originating from E (ECA; ECB; ECD; EDA; EDC). 
 
Of the set of paths with length = 2, 18 of them form closed triangles: four originating 
from A (ABCA; ACBA; ACDA; ADCA), two originating from B (BACB; BCAB), 
six originating from C (CABC; CBAC; CADC; CDAC; CDEC; CEDC), four 
originating from D (DACD; DCAD; DCED; DECD), and two originating from E 
(ECDE; EDCE). 
 

ࡽ	݂	ݕݐ݅ݒ݅ݐ݅ݏ݊ܽݎܶ ൌ 	
18
28

	ൌ 0.643 
 
From a quick visual inspection of Figures 6 and 7, we observe that the nodes in Q are 
more interconnected than those in P. This observation agrees with our calculations that 
Q has a higher transitivity score than P. 
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Appendix II. Variable Definitions 
Analyst Centrality Standardized PCA-extracted factor score of 4 network centrality measures – Degree Centrality, Closeness 

Centrality, Betweenness Centrality and Eigenvector Centrality. 
Degree Centrality Degree Centrality is related to the number of colleagues that the analyst is immediately connected to in the 

brokerage network (see Appendix I for details on centrality measures). 
Closeness Centrality Closeness Centrality is related to the path distances between the analyst and all her colleagues in the brokerage 

network (see Appendix I for details on centrality measures). 
Betweenness Centrality Betweenness Centrality is related to the number of geodesics (shortest paths) in the brokerage network that pass 

through the analyst (see Appendix I for details on centrality measures). 
Eigenvector Centrality Eigenvector Centrality is related to the notion that the centrality of the analyst is high if her connected colleagues 

are also well-connected in the brokerage network (see Appendix I for details on centrality measures). 
Revision Frequency Total number of revisions made by the analyst in the firm-year.
Horizon Number of days elapsed between the analyst’s firm-year forecast and the actual earnings announcement. We exclude 

all forecasts that are more than 365 days or less than 30 days from the actual earnings announcement. 
Boldness The deviation of an analyst’s forecast from the consensus forecast in the previous year. 
General Experience Number of months elapsed between an analyst’s first appearance in I/B/E/S and her firm-year forecast.
Firm Experience Number of months elapsed between an analyst’s earliest forecast of the firm in I/B/E/S and her firm-year forecast.
Brokerage Experience Number of months elapsed between an analyst’s first appearance in the brokerage in I/B/E/S and her firm-year 

forecast. 
Firm Breadth Number of unique firms covered by the analyst in the year. 
Industry Breadth Number of unique 2-digit GICS (Global Industry Classification Standard) sectors covered by the analyst in the 

year.  
Lowball Number of times over the past 3 years that lowballing forecasts were issued for the firm by the analyst. For a 

forecast to be classified as a lowballing one, 3 conditions must be met. First, the forecast value must be below the 
actual EPS value. Second, the forecast error (absolute difference between forecast value and actual EPS value) 
must be either greater than 3 cents or higher than 5% of the actual EPS value. Third, to reduce the likelihood of 
mistaking forecasting difficulty for lowballing behavior, the difference between the forecast value and the consensus 
value must be greater than 3 cents or higher than 5% of the consensus value. 

Brokerage Size Logarithm of the number of analysts employed by the brokerage in the year. 
Loss Indicator that equates to unity if the actual EPS of the firm is negative, and equates to zero otherwise.
Forecast Dispersion Standard deviation of firm-year forecast values among analysts. 
Analyst Coverage Number of analysts who have contributed at least 1 forecast in the firm-year.
Leverage Sum of short-term debt and long-term borrowings, scaled by total assets of the firm. 
Market-to-Book Ratio Ratio of firm book value to its market capitalization in the year.
Total Assets Total assets of the firm. 
ROA Volatility Volatility of the ratio of net income to total firm assets over the past 36 months.
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Appendix II. (Continued) 
Analyst Revision Difference between the forecast revision value and the previous forecast value, scaled by the absolute value of the 

latter variable. Analyst Revision is a signed variable – positive (negative) values of Analyst Revision reflect 
increments (declines) in the analyst’s forecasted value from her previous forecast. 

Forecast Error Absolute difference between the analyst’s final firm-year forecast and the actual firm-year EPS value. 
Normalized Forecast Error Forecast Error scaled by the average Forecast Error across analysts in the firm-year.
Number of Forecasts The number of competitor analysts who issue a forecast in the (-1, +1) window surrounding an analyst’s forecast.
Consensus Deviation Absolute difference between the analyst’s revision value and the prevailing firm-year consensus value, scaled by 

the absolute value of the latter variable. 
Self Deviation Absolute difference between the analyst’s revision value and her prior forecast value, scaled by the absolute value 

of the latter variable. 
Number of Forecasts Number of firm-year forecasts issued by all analysts in the week of the analyst’s forecast revision.
Colleague Optimism For a forecast revision of a given analyst, we collect instances of her colleagues’ realized forecast errors that occurred 

within the past 30 days. We only retain the realized forecast errors of 1) colleagues who are directly connected to 
the analyst (i.e. who cover the same industries), and 2) colleagues who cover either the major suppliers or major 
customers of the analyst’s firms. For each forecast error of the analyst’s colleagues, we classify them as optimistic 
if the forecasted value is above the actual earnings. If the forecast error is zero, it is neither optimistic nor pessimistic 
but is still counted in the window. Colleague Optimism is the proportion of optimistic forecast errors issued by 
colleagues in the 30-day window. 

Global Optimism For a given forecast revision of an analyst, we collect all instances (including non-colleagues) realized forecast errors 
in the same 2-digit GICS sector within the past 30 days. Alternatively, the firms covered by all analysts (including 
non-colleagues) in the same 2-digit GICS sector must have announced their actual earnings in the same 30-day 
window. For each forecast error, we classify it as optimistic if the forecasted value is above the actual earnings. If 
the forecast error is zero, it is neither optimistic nor pessimistic but is still counted in the window. Global Optimism 
is the proportion of optimism forecast errors issued by all non-colleague analysts in the 30-day window. 

All-American Indicator that equates to unity if the analyst belongs to the Institutional Investor All-America Research Team in 
the year, and equates to zero otherwise. 

Herding Rate Following Clement and Tse (2005), an analyst’s forecast revision in the firm-year is classified as non-herding only 
when it is either above both her prior forecast and pre-revision consensus forecast or below both her prior forecast 
and pre-revision consensus forecast. Otherwise, the revision is classified as herding. Herding Rate is the ratio of 
herding revisions to the total number of revisions made by an analyst in the firm-year. 

Abs. CAR [-1, +1] Market-adjusted cumulative abnormal returns, centered on the forecast revision date.
Outperformance A firm-year forecast is defined as an outperforming forecast if its forecast error is lower than the mean forecast 

error. Outperformance (%) of an analyst is the percentage of her forecasts in a year that are categorized as 
outperforming forecasts. 
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Appendix II. (Continued) 
Firm Complexity Using segment data from Compustat, we determine the number of 2-digit SIC industries that each firm operates 

in, following the procedure in Cohen and Lou (2012). For each firm, we then compute the Herfindahl-Hirschman 
index (HHI) of its industry segment sales. A high HHI indicates that firm sales are concentrated in one or few 
industries, and implies that the firm has low complexity. A symmetrical reasoning may be applied to a low HHI. 
To facilitate interpretation, we multiply the HHI by -1 and define this measure as Firm Complexity. A firm with 
a more positive Firm Complexity score indicates that firm sales are dispersed across multiple industry segments, 
and that the firm is complex. 

High R&D An indicator that equates to unity if either 1) R&D expenses are missing, or 2) R&D intensity (ratio of R&D to 
total assets) is above the year median, and equates to zero otherwise. 

Revision Count For each analyst-brokerage pair, we find her earliest and latest forecast announcement dates. In between these two 
dates, we divide the analyst’s tenure at the brokerage by months. We exclude the first and last months of her 
tenure from our sample to avoid truncation issues. In each month, Revision Count is the total number of forecast 
revisions made by the analyst. 

Closeness-weighted  
Revision Activity 

For a given analyst, we find the shortest-path length between her and her brokerage colleagues. For example, if 
analyst A is directly connected to analyst B, and analyst C is in turn connected to analyst B, the shortest-path 
length between analysts A and C is two. Using the reciprocals of shortest-path lengths as weights, Closeness-
weighted Revision Activity of an analyst is the weighted sum of her colleague’s Revision Count in the previous 
month. 

Distance1 Revision Activity Distance1 Revision Activity of an analyst is the total Revision Count of her colleagues who are separated by a 
shortest-path length of one, normalized by the number of such colleagues. 

Distance2 Revision Activity Distance2 Revision Activity of an analyst is the total Revision Count of her colleagues who are separated by a 
shortest-path length of two, normalized by the number of such colleagues. 
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Appendix III. Brokerage Merger Events in Table 8 

We compile the list of brokerage mergers from Hong and Kacperczyk (2010), and Kelly and Ljungqvist (2012). The table below 
documents the 17 mergers in our final sample. 

 
Acquirer Brokerage Target Brokerage Date 
Salomon Smith Barney Schroder Wertheim Apr 2000 
Soundview Wit Capital May 2000 
Paine Webber J.C. Bradford Jun 2000 
Credit Suisse First Boston Donaldson Lufkin & Jenrette Oct 2000 
UBS Warburg Dillon Reed Paine Webber Dec 2000 
J.P. Morgan Chase Manhattan Dec 2000 
J.P. Morgan Chase Hambrecht & Quist Jan 2001 
Dresdner Bank Wasserstein Perella Feb 2001 
Fahnestock Josephthal Lyon & Ross Sep 2001 
First Union Wachovia Securities Oct 2001 
UBS Schwab Soundview Oct 2004 
Janney Montgomery Scott Parker/Hunter Mar 2005 
Merrill Lynch Advest Dec 2005 
Merrill Lynch Petrie Parkman Dec 2006 
Stifel Financial Ryan Beck & co Jan 2007 
Fox-Pitt Kelton Cochran, Caronia Securities Sep 2007 
Fahnestock CIBC World Markets Jan 2008 
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Figure 1. Example of a Within-brokerage Network 

This figure maps the network structure of I/B/E/S brokerage identifier (481) in the year 2005. 
Each node represents an analyst in the brokerage. The numbers below each node identify the 
GICS sectors covered by the analyst. 36 Larger sized nodes with more intense colors (green to red) 
reflect a higher numbers of direct connections. 

 

                        
36 The 2-digit GICS sector codes map to the economic sectors as follows: 20 (industrials), 25 (consumer 
discretionary), 35 (healthcare), 45 (information technology), and 50 (telecommunication services). For a full 
map of all eleven 2-digit GICS sector codes, refer to https://www.msci.com/gics. 
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Figure 2. Distribution of GICS Sector Coverage 

This figure shows the distribution of GICS sector coverage across analyst centrality quartiles. In each year, we sort unique analysts by 
their analyst centrality scores and allocate them to quartiles. Within each quartile, we track the distribution of analyst-firms under 
coverage across GICS sectors.  
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Table 1. 
Descriptive Statistics 

Panel A reports the summary statistics of unique analyst-year pairs. Since an analyst covers multiple firms in a year, we report summary 
statistics at the analyst-year level to show analyst characteristics that drive the formation of within-brokerage networks. Panel B 
reports Pearson correlations among selected variables of unique analyst-year pairs. Panel C reports results of principal component 
analysis on the four centrality measures. Panel D reports the summary statistics of the baseline sample used in Table 2 Column (1). 
Due to data limitations, descriptive statistics of All-American is based on a sample truncated in the year 2008. In Panel A and B, Firm 
Experience and Brokerage Experience are averaged at the analyst-year level. 
 

Panel A. Summary Statistics (unique analyst-year pairs) 

 N Mean StDev p10 p25 p50 p75 p90 
Number of Connections 60694 16.023 14.565 3 6 12 22 35
Industry Breadth 60694 1.564 0.914 1 1 1 2 3
Firm Breadth 60694 9.660 7.188 1 4 9 14 19
General Experience (mth) 60694 52.286 51.445 2 12 37 78 129
Firm Experience (mth) 60694 22.671 26.588 0 2 14 34 59
Brokerage Experience (mth) 60694 2.470 2.981 0 0 12 48 72
Brokerage Size 60694 58.753 51.107 11 19 42 88 123
All-American 42558 0.102 0.303 0 0 0 0 1
Analyst Centrality 60694 0.007 0.984 -1.034 -0.720 -0.229 0.597 1.512
Degree Centrality 60694 0.371 0.257 0.103 0.169 0.295 0.511 0.774
Closeness Centrality 60694 0.553 0.193 0.345 0.452 0.536 0.646 0.807
Betweenness Centrality 60694 0.021 0.063 0 0 0 0.010 0.058
Eigenvector Centrality 60694 0.151 0.137 0.006 0.033 0.115 0.232 0.354
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Table 1. (Continued) 
Panel B. Pearson Correlations (unique analyst-year pairs) 

 [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] 
Analyst Centrality [A] 1  
Degree Centrality [B] 0.949 1          
Closeness Centrality [C] 0.889 0.887 1         
Betweenness Centrality [D] 0.518 0.324 0.277 1        
Eigenvector Centrality [E] 0.848 0.746 0.592 0.378 1       
Industry Breadth [F] 0.571 0.494 0.437 0.521 0.476 1      
Firm Breadth [G] 0.165 0.158 0.18 0.128 0.078 0.307 1     
General Experience [H] 0.008 -0.004 -0.009 0.048 0.011 0.061 0.344 1    
Firm Experience [I] -0.053 -0.066 -0.062 0.014 -0.037 0.013 0.287 0.801 1   
Brokerage Experience [J] 0.021 0.015 0.029 0.045 -0.01 0.111 0.339 0.641 0.628 1  
Brokerage Size [K] -0.376 -0.409 -0.176 -0.144 -0.46 -0.119 -0.042 0.001 0.051 0.085 1 
All-American [L] -0.121 -0.133 -0.07 -0.031 -0.141 0.01 0.203 0.192 0.245 0.208 0.261

 
Panel C. Principal Component Analysis 

 Component 
(1) 

Component 
(2) 

Component 
(3) 

Component 
(4) 

Degree Centrality 0.948 -0.208 0.085 -0.225 
Closeness Centrality 0.886 -0.258 0.345 0.171 
Betweenness Centrality 0.512 0.851 0.118 -0.002 
Eigenvector Centrality 0.846 -0.011 -0.528 0.074  
Eigenvalue 2.661 0.834 0.419 0.085 
Variance explained (%) 66.5 20.9 10.5 2.1 
Cumulative variance (%) 66.5 87.4 97.9 100 
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Table 1. (Continued) 
Panel D. Summary Statistics (baseline sample) 

 N Mean S.D p10 p25 p50 p75 p90 

Analyst Centrality 274673 0.083 0.958 -0.983 -0.619 -0.107 0.671 1.459
Degree Centrality 274673 0.385 0.247 0.111 0.192 0.326 0.538 0.750
Closeness Centrality 274673 0.569 0.177 0.377 0.469 0.555 0.663 0.796
Betweenness Centrality 274673 0.028 0.068 0.000 0.000 0.000 0.023 0.082
Eigenvector Centrality 274673 0.155 0.130 0.008 0.045 0.126 0.237 0.346
Horizon 274673 116.442 90.613 21 55 98 125 273
Brokerage Size 274673 60.444 48.143 12 22 47 91 119
Revision Frequency 274673 3.664 2.868 1 2 3 5 7
Boldness 274673 -0.002 0.256 -0.110 -0.025 0.001 0.023 0.093
General Experience 274673 80.503 54.008 20 37 69 114 160
Firm Experience 274673 42.068 38.132 10 13 28 58 96
Firm Breadth 274673 15.451 7.737 7 11 15 19 24
Industry Breadth 274673 1.789 1.039 1 1 1 2 3
Lowball 274673 0.159 0.366 0 0 0 0 1
Loss 274673 0.125 0.330 0 0 0 0 1
Analyst Coverage 274673 16.945 9.702 6 9 15 23 31
Forecast Error 274673 0.222 33.947 0.005 0.013 0.040 0.110 0.290
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Table 2. 
The Effect of Analyst Centrality on Forecast Accuracy 

This table presents results from OLS regressions on the effect of analyst centrality on forecast 
accuracy. The dependent variable is Normalized Forecast Error, defined as Raw Forecast Error 
scaled by the average forecast error in the firm-year. Raw Forecast Error is defined as the absolute 
difference between an analyst’s last firm-year forecast and the actual value. The key independent 
variable is Analyst Centrality. Analyst Centrality is the standardized PCA-extracted factor score 
of 4 network centrality measures – Degree Centrality, Closeness Centrality, Betweenness 
Centrality and Eigenvector Centrality (see Appendix I for details on centrality measures). Columns 
(2) and (4) exclude firm financial variables because they are invariant at the firm-year level. 
Detailed definitions of other variables are in Appendix II. Robust standard errors are reported in 
parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 2. (Continued) 
 

  (1) (2) (3) 

 
OLS: 

Normalized 
Forecast Error

OLS: 
Normalized 

Forecast Error

OLS: 
Normalized 

Forecast Error 

Analyst Centrality -0.019*** -0.014*** -0.009*** 
(0.003) (0.003) (0.003) 

Revision Frequency -0.006*** -0.005*** -0.009*** 
(0.001) (0.001) (0.002) 

Boldness -0.019*** -0.019*** -0.020** 
(0.006) (0.006) (0.009) 

Horizon 0.003*** 0.003*** 0.004*** 
(0.000) (0.000) (0.000) 

General Experience -0.019*** -0.020*** -0.019*** 
(0.002) (0.002) (0.003) 

Firm Experience 0.003 0.004 -0.011*** 
(0.003) (0.003) (0.003) 

Firm Breadth -0.000 -0.000 -0.001*** 
(0.000) (0.000) (0.000) 

Industry Breadth 0.014*** 0.006** 0.012*** 
(0.003) (0.003) (0.002) 

Lowball 0.067*** 0.066*** 0.084*** 
(0.005) (0.005) (0.006) 

Loss  -0.011**  
(0.005)  

Analyst Coverage  -0.003***  
(0.000)  

Leverage  0.010  
(0.007)  

Book-to-Market Ratio  0.002  
(0.002)  

Total Assets  0.008***  
(0.001)  

ROA Volatility  -0.000  
(0.000)  

Brokerage Size   0.003 
(0.002) 

  
Observations 274,673 274,673 274,673 
R-squared 0.176 0.177 0.277 
Brokerage-Year fixed effects Yes Yes No 
Firm-Year fixed effects No No Yes 
Brokerage-Year cluster Yes Yes No 
Firm-Year cluster No No Yes 
Analyst-Firm cluster Yes Yes Yes 
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Table 3. 
The Effect of Analyst Centrality on Market Reactions to Forecasts 

This table presents results from OLS regressions. The dependent variable in this table is the 
absolute 3-day market-adjusted cumulative abnormal returns, centered on the forecast revision 
date. The key independent variable is Analyst Centrality and its interaction with Consensus 
Deviation. Analyst Centrality is the standardized PCA-extracted factor score of 4 network 
centrality measures – Degree Centrality, Closeness Centrality, Betweenness Centrality and 
Eigenvector Centrality (see Appendix I for details on centrality measures). Consensus Deviation 
is the absolute difference between an analyst’s revision value and the prevailing consensus, 
normalized by the absolute value of the latter variable. Stock return variables are unitized in 
percentage points. Detailed definitions of other variables are in Appendix II. In Column (3), we 
exclude a forecast revision if the firm files SEC 8-Ks in the (-1, 0) day window of the revision. In 
Column (4), we exclude a forecast revision if the firm either files SEC 8-Ks or has an earnings 
announcement in the (-1, 0) day window of the revision. Robust standard errors are reported in 
parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 3. (Continued) 

  (1) (2) (3) (4) 

 
OLS: 

Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

Exclude 8-K events No No Yes Yes 
Exclude earnings announcements No No Yes Yes 
Standalone forecasts only No No No Yes 

Analyst Centrality [A] 0.336*** 0.288*** 0.209*** 0.145***
(0.022) (0.023) (0.021) (0.023) 

[A] x Consensus Deviation 0.014*** 0.009*** 0.022** 0.055***
(0.005) (0.003) (0.009) (0.011) 

Consensus Deviation 0.011** 0.007** 0.011** 0.026***
(0.005) (0.003) (0.004) (0.005) 

General Experience 0.113*** 0.050*** 0.028 
 (0.017) (0.017) (0.021) 

Firm Experience -0.063*** -0.049*** -0.016 
 (0.009) (0.009) (0.012) 

Firm Breadth -0.027*** -0.021*** -0.019***
 (0.002) (0.002) (0.002) 

Industry Breadth -0.139*** -0.142*** -0.091***
 (0.021) (0.018) (0.023) 

Brokerage Size 0.225*** 0.231*** 0.177***
 (0.020) (0.019) (0.023) 

Number of Forecasts 0.206*** 0.308***  
 (0.008) (0.014)  

Abs. CAR [-5, -2] -0.022*** -0.028*** -0.030***
 (0.005) (0.004) (0.006) 

Leverage 0.723*** 0.564*** 0.455***
 (0.135) (0.121) (0.139) 

Book-to-Market Ratio 0.389*** 0.350*** 0.304***
 (0.091) (0.085) (0.108) 

Total Assets -0.784*** -0.632*** -0.599***
 (0.020) (0.017) (0.019) 

ROA Volatility 0.001 0.004* 0.007 
 (0.002) (0.002) (0.005) 

 
Observations 1,211,243 1,211,243 637,010 130,626 
R-squared 0.004 0.125 0.126 0.093 
Week cluster Yes Yes Yes Yes 
Firm cluster Yes Yes Yes Yes 
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Table 4. 
Does Competition Weaken Learning? 

This table presents results from OLS regressions. The dependent variable in Panel A is Normalized Forecast Error, defined as Raw 
Forecast Error scaled by the average forecast error in the firm-year. Raw Forecast Error is defined as the absolute difference between 
an analyst’s last firm-year forecast and the actual value. The dependent variable in Panel B is the absolute 3-day market-adjusted 
cumulative abnormal returns, centered on the forecast revision date. The key independent variables are Analyst and its interaction 
with Consensus Deviation. Analyst Centrality is the standardized PCA-extracted factor score of 4 network centrality measures – Degree 
Centrality, Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see Appendix I for details on centrality measures). 
Consensus Deviation is the absolute difference between an analyst’s revision value and the prevailing consensus, normalized by the 
absolute value of the latter variable. We split the sample by the investment banking business size of the brokerages in Columns (1) 
and (2). In every year, we rank investment banks (IB) by their combined IPO and SEO deal values. Investment banks are added to 
the Large IBs pool sequentially until the pool accounts for 75% of the total deal value in the market of that year. All other brokerages 
(i.e. smaller IBs and non-IBs) are assigned to the Non-Large IBs pool. We split the sample by Brokerage Size in Columns (3) through 
(5). In every year, we sort brokerages into terciles according to their Brokerage Size. Column (3) contains the smallest brokerages while 
Column (6) contains the largest brokerages. We include control variables used in Column (2) of Table 2 or Column (3) of Table 3 but 
suppress their estimated coefficients to facilitate presentation. Robust standard errors are reported in parentheses. ***, **, * represent 
statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 4. (Continued) 
Panel A. Competition, Analyst Centrality, and Forecast Accuracy 

  (1) (2) (3) (4) (5)

 
OLS: 

Normalized 
Forecast Error

OLS: 
Normalized 

Forecast Error

OLS: 
Normalized 

Forecast Error 

OLS: 
Normalized 

Forecast Error 

OLS: 
Normalized 

Forecast Error

Sample Non-Large 
IBs 

Large 
IBs 

Small 
brokerages 

Medium 
brokerages 

Large 
brokerages 

Analyst Centrality -0.016*** 0.018 -0.013*** -0.023*** 0.000 
(0.003) (0.014) (0.004) (0.006) (0.009) 

      
Control variables Yes Yes Yes Yes Yes 
      
Observations 235,744 38,927 87,352 91,031 96,288 
R-squared 0.179 0.166 0.199 0.173 0.159 
Brokerage-year fixed Yes Yes Yes Yes Yes 
Brokerage-year cluster Yes Yes Yes Yes Yes 
Analyst-firm cluster Yes Yes Yes Yes Yes 
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Table 4. (Continued) 
Panel B. Competition, Analyst Centrality, and Market Reactions 

  (1) (2) (3) (4) (5)

 
OLS: 

Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

Sample Non-Large 
IBs 

Large 
IBs 

Small 
brokerages 

Medium 
brokerages 

Large 
brokerages 

Exclude 8-K events and 
earnings announcements Yes Yes Yes Yes Yes 

Analyst Centrality [A] 0.197*** 0.527*** 0.136*** 0.390*** 0.513*** 
(0.019) (0.075) (0.018) (0.042) (0.083)

[A] x Consensus Deviation 0.020** 0.011 0.018* 0.022 0.001 
(0.009) (0.022) (0.009) (0.023) (0.002)

Consensus Deviation 0.010** 0.036** 0.069*** 0.070*** 0.001 
(0.004) (0.017) (0.015) (0.018) (0.001)

      
Control variables Yes Yes Yes Yes Yes
      
Observations 529,280 107,712 224,329 196,050 216,613
R-squared 0.128 0.133 0.125 0.137 0.128 
Week cluster Yes Yes Yes Yes Yes
Firm cluster Yes Yes Yes Yes Yes 
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Table 5. 
Analyst Centrality and Hard-to-Value Firms 

This table presents results from OLS regressions. The dependent variable is Normalized Forecast 
Error, defined as Raw Forecast Error scaled by the average forecast error in the firm-year. Raw 
Forecast Error is defined as the absolute difference between an analyst’s last firm-year forecast 
and the actual value. The key independent variable is Analyst Centrality and its interactions with 
High R&D and Firm Complexity. Analyst Centrality is the standardized PCA-extracted factor 
score of 4 network centrality measures – Degree Centrality, Closeness Centrality, Betweenness 
Centrality and Eigenvector Centrality (see Appendix I for details on centrality measures). High 
R&D is an indicator that equates to unity if either 1) R&D expenses are missing, or 2) R&D 
intensity (ratio of R&D to total assets) is above the year median, and equates to zero otherwise. 
To construct Firm Complexity, we compute the Herfindahl index of firm sales across the industry 
segments in which the firm operates (Cohen and Lou, 2012). Firm Complexity is this Herfindahl 
index multiplied by negative one. Therefore, a more positive value of Firm Complexity correspond 
to higher complexity in a firm’s operations. Control variables used in the Column (2) of Table 2 
are also included in the model estimations. However, their estimated coefficients are suppressed 
to facilitate presentation. Robust standard errors are reported in parentheses. ***, **, * represent 
statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 5. (Continued) 
  (1) (2) (3) 

 
OLS: 

Normalized 
Forecast Error

OLS: 
Normalized 

Forecast Error

OLS: 
Normalized 

Forecast Error 

Analyst Centrality [A] -0.009** -0.013*** -0.008* 
(0.004) (0.003) (0.004) 

[A] x High R&D -0.007*  -0.007** 
(0.004) (0.004) 

[A] x Firm Complexity -0.020** -0.022** 
 (0.009) (0.010) 

High R&D -0.009** -0.009** 
(0.004) (0.004) 

Firm Complexity  -0.005 -0.007 
(0.009) (0.009) 

Revision Frequency -0.006*** -0.005*** -0.006*** 
(0.001) (0.001) (0.001) 

Boldness -0.017*** -0.017*** -0.017*** 
(0.006) (0.006) (0.006) 

Horizon 0.003*** 0.003*** 0.003*** 
(0.000) (0.000) (0.000) 

General Experience -0.020*** -0.020*** -0.020*** 
(0.003) (0.003) (0.003) 

Firm Experience 0.003 0.004 0.003 
(0.003) (0.003) (0.003) 

Firm Breadth -0.000 -0.000 -0.000 
(0.000) (0.000) (0.000) 

Industry Breadth 0.005** 0.006** 0.005** 
(0.003) (0.003) (0.003) 

Lowball 0.067*** 0.067*** 0.067*** 
(0.005) (0.005) (0.005) 

Loss -0.009* -0.010** -0.009* 
(0.005) (0.005) (0.005) 

Analyst Coverage -0.003*** -0.003*** -0.003*** 
(0.000) (0.000) (0.000) 

Leverage 0.009 0.010 0.009 
(0.007) (0.007) (0.007) 

Book-to-Market Ratio -0.001 -0.001 -0.001 
(0.002) (0.002) (0.002) 

Total Assets 0.008*** 0.009*** 0.008*** 
(0.001) (0.001) (0.001) 

ROA Volatility -0.000 -0.000 -0.000 
(0.000) (0.000) (0.000) 

  
Observations 274,673 274,673 274,673 
R-squared 0.178 0.178 0.178 
Brokerage-Year fixed effects Yes Yes Yes 
Brokerage-Year cluster Yes Yes Yes 
Analyst-Firm cluster Yes Yes Yes 
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Table 6. 
Learning from Colleagues’ Ex-Post Forecast Errors 

This table presents results from OLS regressions. The dependent variable is Analyst Revision. 
Analyst Revision is a signed variable which equates to the difference between the revised forecast 
value and the previous forecast value, scaled by the absolute value of the latter. Hence, a positive 
(negative) value of Analyst Revision reflects an increment (a decline) in the analyst’s forecasted 
value from her previous forecast. The key independent variables are Colleague Optimism, Global 
Optimism, and their respective interactions with Analyst Centrality. For a forecast revision of a 
given analyst, we collect instances of her colleagues’ realized forecast errors that occurred within 
the past 30 days. We only retain the realized forecast errors of 1) colleagues who are directly 
connected to the analyst (i.e. who cover the same industries), and 2) colleagues who cover either 
the major suppliers or major customers of the analyst’s firms. In other words, the firms covered 
by the analyst’s colleagues must have announced their actual earnings in the same 30-day window. 
For each forecast error of the analyst’s colleagues, we classify them as optimistic if the forecasted 
value is above the actual earnings. Colleague Optimism is the proportion of optimistic forecast 
errors in the 30-day window. To construct Global Optimism, we collect all realized forecast errors 
outside of the analyst’s brokerage in the same 30-day window. Following this, Global Optimism is 
the proportion of optimistic forecast errors made by non-colleagues in the 30-day window. Analyst 
Centrality is the standardized PCA-extracted factor score of 4 network centrality measures – 
Degree Centrality, Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see 
Appendix I for details on centrality measures). Detailed definitions of other variables are in 
Appendix II. Robust standard errors are reported in parentheses. ***, **, * represent statistical 
significance at the 1%, 5% and 10% levels respectively. 
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Table 6. (Continued) 

  (1) (2) (3)  
OLS: 

Analyst 
Revision 

OLS: 
Analyst 
Revision 

OLS: 
Analyst 
Revision 

Colleague Optimism [A] -0.848*** -0.819*** -0.462*** 
(0.207) (0.207) (0.173) 

Global Optimism [B]   -7.289*** 
(1.727) 

[A] x Analyst Centrality  -0.402** -0.356** 
(0.159) (0.158) 

[B] x Analyst Centrality   -0.055 
(0.810) 

Analyst Centrality -0.314** -0.168 -0.179 
(0.152) (0.154) (0.300) 

Number of Colleague Forecasts -0.004 -0.005* -0.005* 
(0.003) (0.003) (0.003) 

Number of Global Forecasts   0.000 
(0.000) 

General Experience 0.128 0.123 0.143* 
(0.084) (0.083) (0.083) 

Firm Experience -0.064 -0.065 -0.059 
(0.054) (0.054) (0.054) 

Firm Breadth -0.022** -0.022** -0.021** 
(0.009) (0.009) (0.009) 

Industry Breadth -0.062 -0.072 -0.063 
(0.120) (0.119) (0.119) 

Brokerage Size -0.045 -0.002 -0.042 
(0.126) (0.133) (0.130) 

Analyst Coverage 0.098*** 0.098*** 0.099*** 
(0.009) (0.009) (0.009) 

Abs. CAR [-5, -2] -0.359*** -0.358*** -0.355*** 
(0.031) (0.031) (0.030) 

Observations 698,697 698,697 698,697 
R-squared 0.012 0.012 0.013 
Week cluster Yes Yes Yes 
Firm cluster Yes Yes Yes 
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Table 7. 
Do Analysts Perform Better in Denser Networks? 

This table presents results from Tobit regressions. The dependent variable is Outperformance (%). 
A firm-year forecast is defined as an outperforming forecast if its forecast error is lower than the 
mean forecast error. Outperformance (%) of an analyst is the percentage of her forecasts in a year 
that are categorized as outperforming forecasts. The key independent variables are Analyst 
Centrality and Network Density. Analyst Centrality is the standardized PCA-extracted factor 
score of four network centrality measures – Degree Centrality, Closeness Centrality, Betweenness 
Centrality and Eigenvector Centrality (see Appendix I for details on centrality measures). Network 
Density is a brokerage-level variable that measures the density of the within-brokerage network 
in a year. Refer to Appendix I for details on its construction and working examples. In column 
(4), we exclude brokerages that cover fewer than three 2-digit GICS sectors. Detailed definitions 
of other variables are in Appendix II. Robust standard errors are reported in parentheses. ***, **, 
* represent statistical significance at the 1%, 5% and 10% levels respectively. 

(1) (2) (3) 

 
TOBIT: 

Outperformance
(%) 

TOBIT: 
Outperformance

(%) 

TOBIT: 
Outperformance 

(%) 
Exclude brokerages that  
cover less than 3 sectors No No Yes 

Analyst Centrality 0.779*** 0.619*** 0.898*** 
(0.214) (0.225) (0.276) 

Network Density  3.661* 4.644** 
(1.615) (2.307) 

General Experience 0.795*** 0.790*** 0.819*** 
(0.183) (0.183) (0.261) 

Firm Experience 0.375** 0.376** 0.374* 
(0.181) (0.181) (0.223) 

Industry Breadth -2.557*** -2.430*** -2.658*** 
(0.219) (0.226) (0.213) 

Firm Breadth 0.241*** 0.243*** 0.243*** 
(0.025) (0.025) (0.028) 

Brokerage Size 0.029*** 0.030*** 0.030*** 
(0.003) (0.003) (0.005) 

Observations 60,694 60,694 58,826 
Brokerage-year cluster Yes Yes Yes 
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Table 8. 
The Causal Effect of Analyst Centrality on Forecast Accuracy:  

Shocks to Analyst Centrality due to Brokerage Mergers 
This table presents results from a difference-in-difference model with multiple groups, and multiple 
shocks across time. We define shocks as brokerage mergers (Hong and Kacperczyk, 2010; Kelly 
and Ljungqvist, 2012) from years 2000 to 2007. Appendix III contains the list of 17 brokerage 
mergers that we are able to match to our final sample. For each merger event, we track all analysts 
who work at the acquirer before and after the mergers. We further require that each analyst covers 
the same firm before and after the merger. Therefore, our unit of observation in this quasi-natural 
experiment is an analyst-firm. The treatment variables are Increase (Decrease) in Analyst 
Centrality, an indicator variable which equates to unity if the average post-merger Analyst 
Centrality is higher (lower) than the average pre-merger Analyst Centrality, and equates to zero 
otherwise. Since visual inspection to validate the parallel trend assumption is tenuous in a model 
with shocks spread across time, we include temporal leads and lags of the treatment in the model 
to test the assumption econometrically (e.g. Autor (2003)). We use a (-3, +3) year window 
centered on the merger event. The dependent variable in this table is Normalized Forecast Error, 
defined as Forecast Error scaled by the average forecast error in the firm-year. The key 
independent variables are the temporal leads (Pre-Treatment) and lags (Post-Treatment) of the 
treatment. We also include analyst time trends to help control for confounding trends. Analyst 
time trends are General Experience, Brokerage Size, Firm Breadth, and Industry Breadth. Detailed 
definitions of the variables are in Appendix II. To facilitate presentation, coefficient estimates of 
analyst time trends are not presented. Robust standard errors are reported in parentheses. ***, 
**, * represent statistical significance at the 1%, 5% and 10% levels respectively. 
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Table 8. (Continued) 

  (1) (2) 

 
OLS: 

Normalized 
Forecast Error 

OLS: 
Normalized 

Forecast Error 

Treatment indicator 
Increase in

Analyst Centrality 
Decrease in 

Analyst Centrality 

Leads and Lags of Treatment:  

Pre-Treatment (t-3) 0.110 -0.193 
(0.113) (0.120) 

Pre-Treatment (t-2) 0.136 -0.117 
(0.089) (0.077) 

Pre-Treatment (t-1) -0.060 -0.078 
(0.072) (0.070) 

Post-Treatment (t+1) -0.111 0.024 
(0.078) (0.079) 

Post-Treatment (t+2) -0.161* 0.191** 
(0.083) (0.088) 

Post-Treatment (t+3) -0.209** 0.419*** 
(0.094) (0.095) 

Analyst-Firm dummies Yes Yes 
Year dummies Yes Yes 
Analyst time trends Yes Yes 
Analyst-Firm cluster Yes Yes 

Observations 4,515 4,515 
R-squared 0.280 0.285 
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Table 9. 
Analyst Centrality and Analyst Ability 

This table presents results from OLS regressions. Due to data limitations on the identities of All-
American analysts, our sample period ends in 2008. The dependent variables are Normalized 
Forecast Error and Abs. CAR. Normalized Forecast Error is defined as Forecast Error scaled by 
the average forecast error in the firm-year. Abs. CAR is the absolute 3-day market-adjusted 
cumulative abnormal returns, centered on the forecast revision date. The key independent 
variables are All-American, Analyst Centrality, and their interactions with Consensus Deviation. 
All-American is an indicator variable that equates to unity if the analyst belongs to the 
Institutional Investor All-America Research Team in the year, and equates to zero otherwise. 
Analyst Centrality is the standardized PCA-extracted factor score of 4 network centrality 
measures – Degree Centrality, Closeness Centrality, Betweenness Centrality and Eigenvector 
Centrality (see Appendix I for details on centrality measures). Consensus Deviation is the absolute 
difference between an analyst’s revision value and the prevailing consensus, normalized by the 
absolute value of the latter variable. Stock return variables are unitized in percentage points. In 
Panel B, we exclude a forecast revision if the firm either files SEC 8-Ks or has an earnings 
announcement in the (-1, 0) day window of the revision. Robust standard errors are reported in 
parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% levels respectively. 

 

  



 

 
 
 

75 

Table 9. (Continued) 
Panel A. Analyst Centrality, Ability, and Forecast Accuracy 

  (1) (2) 

 
OLS: 

Normalized 
Forecast Error 

OLS: 
Normalized 

Forecast Error 

Analyst Centrality -0.011** -0.010** 
(0.005) (0.005) 

All-American  -0.033*** 
 (0.007) 

Revision Frequency -0.008*** -0.008*** 
(0.001) (0.001) 

Boldness -0.031*** -0.031*** 
(0.010) (0.010) 

Horizon 0.004*** 0.004*** 
(0.000) (0.000) 

General Experience -0.018*** -0.017*** 
(0.004) (0.004) 

Firm Experience 0.006 0.008 
(0.005) (0.005) 

Firm Breadth -0.001 -0.000 
(0.000) (0.000) 

Industry Breadth 0.004 0.004 
(0.004) (0.004) 

Lowball 0.064*** 0.064*** 
(0.008) (0.008) 

Loss -0.036*** -0.036*** 
(0.007) (0.007) 

Analyst Coverage -0.001** -0.001** 
(0.000) (0.000) 

Leverage 0.004 0.005 
(0.012) (0.012) 

Book-to-Market Ratio 0.001 0.001 
(0.006) (0.006) 

Total Assets 0.007*** 0.007*** 
(0.002) (0.002) 

ROA Volatility 0.022 0.021 
(0.016) (0.016) 

 
Observations 166,023 166,023 
R-squared 0.224 0.224 
Brokerage-Year fixed effects Yes Yes 
Brokerage-Year cluster Yes Yes 
Analyst-Firm cluster Yes Yes 
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Table 9. (Continued) 

Panel B. Analyst Centrality, Ability, and Market Reactions 
  (1) (2) 

 
OLS: 

Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

Exclude 8-K events Yes Yes 
Exclude earnings announcements Yes Yes 

Analyst Centrality [A] 0.172*** 0.173*** 
(0.021) (0.021) 

All-American [B] -0.200*** 
 (0.039) 

[A] x Consensus Deviation 0.210*** 0.242*** 
 (0.079) (0.080) 
[B] x Consensus Deviation  0.450** 
 (0.226) 
Consensus Deviation 2.192*** 2.111*** 

(0.113) (0.115) 
General Experience 0.183*** 0.185*** 

(0.019) (0.018) 
Firm Experience -0.042*** -0.040*** 

(0.008) (0.008) 
Firm Breadth -0.015*** -0.014*** 

(0.002) (0.002) 
Industry Breadth -0.149*** -0.151*** 

(0.017) (0.017) 
Brokerage Size 0.182*** 0.207*** 

(0.017) (0.017) 
Number of Forecasts 0.202*** 0.202*** 

(0.008) (0.008) 
Abs. CAR [-5, -2] -0.016*** -0.016*** 

(0.003) (0.003) 
Leverage 0.224*** 0.236*** 

(0.065) (0.065) 
Book-to-Market Ratio 0.164*** 0.163*** 

(0.037) (0.037) 
Total Assets -0.447*** -0.446*** 

(0.008) (0.009) 
ROA Volatility 0.004*** 0.004*** 

(0.001) (0.001) 
  
Firm financial controls Yes Yes 
Observations 364,945 364,945 
R-squared 0.094 0.094 
Week cluster Yes Yes 
Firm cluster Yes Yes 
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Table 10. 
Analyst Centrality and Regulation Fair Disclosure 

This table presents results from OLS regressions. The dependent variable in Columns (1) and (2) 
is Normalized Forecast Error, defined as Raw Forecast Error scaled by the average forecast error 
in the firm-year. Raw Forecast Error is defined as the absolute difference between an analyst’s 
last firm-year forecast and the actual value. The dependent variable in Columns (3) and (4) is the 
3-day market-adjusted cumulative abnormal returns, centered on the forecast revision date and 
unitized in percentage points. The key independent variable is Analyst Centrality – the 
standardized PCA-extracted factor score of 4 network centrality measures – Degree Centrality, 
Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see Appendix I for 
details on centrality measures). The pre-Regulation Fair Disclosure sample period is from 1995 to 
2000 (based on the fiscal year ends of firms). The post-Regulation Fair Disclosure sample period 
begins from 2001. Control variables used in the Column (2) of Table 2 or Column (3) of Table 3 
are also included in the model estimations. However, their estimated coefficients are suppressed 
to facilitate presentation. Robust standard errors are reported in parentheses. ***, **, * represent 
statistical significance at the 1%, 5% and 10% levels respectively. 

  (1) (2) (3) (4) 

 
OLS: 

Normalized  
Forecast Error

OLS: 
Normalized  

Forecast Error

OLS: 
Abs. CAR  
[-1, +1] 

OLS: 
Abs. CAR  
[-1, +1] 

Sample period Pre-RegFD Post-RegFD Pre-RegFD Post-RegFD 
Exclude 8-K events - - Yes Yes 
Exclude earnings announcements - - Yes Yes 

  
Analyst Centrality [A] -0.001 -0.017*** 0.212*** 0.188***

(0.008) (0.004) (0.034) (0.024) 
[A] x Consensus Deviation 0.020* 0.017**

  (0.011) (0.008) 
Consensus Deviation 0.081*** 0.009**

  (0.017) (0.004)  
 

Control variables Yes Yes Yes Yes

Welch-Satterthwaite t-test between [A] in Col. (1) and (2): t-stat: 1.79
    df: 78,564 
Welch-Satterthwaite t-test between [A] x Consensus Deviation in Col. (3) and (4): t-stat: 0.22
    df: 355,333 

Observations 50,999 223,643 167,135 469,857 
R-squared 0.206 0.172 0.111 0.139
Brokerage-Year fixed effects Yes Yes No No 
Brokerage-Year cluster Yes Yes No No
Analyst-Firm cluster Yes Yes No No 
Week cluster No No Yes Yes
Firm cluster No No Yes Yes 
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Internet Appendix Table 1. 
Additional Results: Analyst Centrality and Market Reactions to Forecasts 

This table supplements the main results in Table 3. The dependent variable in this table is the 
absolute 3-day market-adjusted cumulative abnormal returns, centered on the forecast revision 
date. The key independent variable is Analyst Centrality and its interactions with Consensus 
Deviation and Self Deviation. Analyst Centrality is the standardized PCA-extracted factor score 
of 4 network centrality measures – Degree Centrality, Closeness Centrality, Betweenness 
Centrality and Eigenvector Centrality (see Appendix I for details on centrality measures). 
Consensus Deviation is the absolute difference between an analyst’s revision value and the 
prevailing consensus, normalized by the absolute value of the latter variable. Self Deviation is the 
absolute difference between an analyst’s revision value and his prior forecast value, normalized by 
the absolute value of the latter variable. Stock return variables are unitized in percentage points. 
Detailed definitions of other variables are in Appendix II. We exclude a forecast revision if the 
firm files SEC 8-Ks in the (-1, 0) day window of the revision or has an earnings announcement in 
the (-1, 0) day window of the revision. Robust standard errors are reported in parentheses. ***, 
**, * represent statistical significance at the 1%, 5% and 10% levels respectively. 

 
  



 

 
 
 

79 

Internet Appendix Table 1. (Continued) 
Analyst Centrality and Market Reactions to Forecasts 

  (1) (2) (3) (4) 

 
OLS: 

Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

OLS: 
Abs. CAR 
[-1, +1] 

Exclude 8-K events No No Yes Yes 
Exclude earnings announcements No No Yes Yes 
Standalone forecasts only No No No Yes 

Analyst Centrality [A] 0.337*** 0.289*** 0.210*** 0.157***
(0.022) (0.023) (0.021) (0.023) 

[A] x Self Deviation 0.012 0.008* 0.015** 0.005 
(0.007) (0.005) (0.007) (0.008) 

Self Deviation 0.012 0.008 0.008** 0.003 
(0.008) (0.005) (0.003) (0.004) 

General Experience 0.113*** 0.050*** 0.029 
 (0.017) (0.017) (0.021) 

Firm Experience -0.063*** -0.049*** -0.016 
 (0.009) (0.009) (0.012) 

Firm Breadth -0.027*** -0.021*** -0.019***
 (0.002) (0.002) (0.002) 

Industry Breadth -0.139*** -0.142*** -0.091***
 (0.021) (0.018) (0.023) 

Brokerage Size 0.225*** 0.231*** 0.177***
 (0.020) (0.019) (0.023) 

Number of Forecasts 0.206*** 0.308***  
 (0.008) (0.014)  

Abs. CAR [-5, -2] -0.022*** -0.028*** -0.030***
 (0.005) (0.004) (0.006) 

Leverage 0.723*** 0.565*** 0.461***
 (0.135) (0.121) (0.139) 

Book-to-Market Ratio 0.390*** 0.351*** 0.307***
 (0.091) (0.085) (0.109) 

Total Assets -0.784*** -0.632*** -0.600***
 (0.020) (0.017) (0.019) 

ROA Volatility 0.001 0.004* 0.007 
 (0.002) (0.002) (0.005) 

Observations 1,211,243 1,211,243 637,010 130,626
R-squared 0.004 0.125 0.126 0.093 
Week cluster Yes Yes Yes Yes 
Firm cluster Yes Yes Yes Yes 
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Internet Appendix Table 2. 
Additional Results: Learning from Colleagues’ Ex-Post Forecast Errors 

This table supplements the main results in Table 4. The dependent variable is Analyst Revision. 
Analyst Revision is a signed variable which equates to the difference between the revised forecast 
value and the previous forecast value, scaled by the absolute value of the latter. Hence, a positive 
(negative) value of Analyst Revision reflects an increment (a decline) in the analyst’s forecasted 
value from her previous forecast. The key independent variables are Colleague Optimism, Global 
Optimism, and their respective interactions with Analyst Centrality. For a forecast revision of a 
given analyst, we collect instances of her colleagues’ realized forecast errors that occurred within 
the past 60 days. We only retain the realized forecast errors of 1) colleagues who are directly 
connected to the analyst (i.e. who cover the same industries), and 2) colleagues who cover either 
the major suppliers or major customers of the analyst’s firms. In other words, the firms covered 
by the analyst’s colleagues must have announced their actual earnings in the same 60-day window. 
For each forecast error of the analyst’s colleagues, we classify them as optimistic if the forecasted 
value is above the actual earnings. Colleague Optimism is the proportion of optimistic forecast 
errors in the 60-day window. To construct Global Optimism, we collect all realized forecast errors 
outside of the analyst’s brokerage in the same 60-day window. Following this, Global Optimism is 
the proportion of optimistic forecast errors made by non-colleagues in the 60-day window. Analyst 
Centrality is the standardized PCA-extracted factor score of 4 network centrality measures – 
Degree Centrality, Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see 
Appendix I for details on centrality measures). Detailed definitions of other variables are in 
Appendix II. Robust standard errors are reported in parentheses. ***, **, * represent statistical 
significance at the 1%, 5% and 10% levels respectively. 
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Internet Appendix Table 2. (Continued) 
Learning from Colleagues’ Ex-Post Forecast Errors 

  (1) (2) (3) 
OLS: 

Analyst 
Revision 

OLS: 
Analyst 
Revision 

OLS: 
Analyst 
Revision 

Colleague Optimism [A] -0.287*** -0.276** -0.155 
(0.109) (0.109) (0.096) 

Global Optimism [B]   -3.362** 
(1.351) 

[A] x Analyst Centrality  -0.205* -0.191* 
(0.109) (0.108) 

[B] x Analyst Centrality   -0.072 
(0.615) 

Analyst Centrality -0.319*** -0.249** -0.251 
(0.111) (0.118) (0.246) 

Number of Colleague Forecasts -0.002 -0.002 -0.001 
(0.003) (0.003) (0.002) 

Number of Global Forecasts   -0.000 
(0.000) 

General Experience 0.283*** 0.283*** 0.293*** 
(0.063) (0.063) (0.064) 

Firm Experience -0.159*** -0.159*** -0.156*** 
(0.035) (0.035) (0.035) 

Firm Breadth -0.002 -0.002 -0.001 
(0.006) (0.006) (0.006) 

Industry Breadth -0.056 -0.060 -0.051 
(0.089) (0.089) (0.088) 

Brokerage Size -0.103 -0.102 -0.133 
(0.096) (0.096) (0.092) 

Analyst Coverage 0.087*** 0.087*** 0.088*** 
(0.009) (0.009) (0.009) 

Abs. CAR [-5, -2] -0.337*** -0.337*** -0.338*** 
(0.022) (0.022) (0.022) 

Observations 698,697 698,697 698,697 
R-squared 0.010 0.010 0.011 
Week cluster Yes Yes Yes 
Firm cluster Yes Yes Yes 
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Internet Appendix Table 3. 
Diffusion of Revision Activity within Brokerage Networks 

This table presents results from negative binomial regressions. The dependent variable is Revision 
Count. For each analyst-brokerage pair, we find her earliest and latest forecast announcement 
dates. In between these two dates, we divide the analyst’s tenure at the brokerage by months. We 
exclude the first and last months of her tenure from our sample to avoid truncation issues. In each 
month, Revision Count is the total number of forecast revisions made by the analyst. The key 
independent variable is Closeness-weighted Revision Activity. For a given analyst, we find the 
shortest-path length between her and her brokerage colleagues. For example, if analyst A is 
directly connected to analyst B, and analyst C is in turn connected to analyst B, the shortest-
path length between analysts A and C is two. Using the reciprocals of shortest-path lengths as 
weights, Closeness-weighted Revision Activity of an analyst is the weighted sum of her colleague’s 
Revision Count in the previous month. In Column (2), we adopt a normalized measure of 
Closeness-weighted Revision Activity where the Revision Count in each of the analyst’s distance 
tier is scaled by the number of colleagues. In Column (3), Distance1 Revision Activity of an 
analyst is the total Revision Count of her colleagues who are separated by a shortest-path length 
of one, normalized by the number of such colleagues. In Column (4), we define Distance2 Revision 
Activity analogously. Estimated coefficients are inflated by 100 to facilitate presentation. Detailed 
definitions of other variables are in Appendix II. Robust standard errors are reported in 
parentheses. ***, **, * represent statistical significance at the 1%, 5% and 10% levels respectively. 
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Internet Appendix Table 3. (Continued) 

  (1) (2) (3) (4) 

 

N-BINOM:
Revision 
Count 

N-BINOM:
Revision 
Count 

N-BINOM: 
Revision 
Count 

N-BINOM:
Revision 
Count 

Closeness-weighted Revision Activity [A] 0.014***  
(0.003)    

Size-Normalized [A] 1.865***  
 (0.076)   

Distance1 Revision Activity [B[ 3.235*** 
  (0.116)  

Distance2 Revision Activity [C]  1.164***
   (0.113) 

General Experience 1.489*** 1.042*** 1.092*** 1.339***
(0.170) (0.169) (0.169) (0.171) 

Industry Breadth -12.582*** -11.897*** -12.274*** -12.348***
(0.169) (0.167) (0.166) (0.167) 

Brokerage Size 0.076*** 0.090*** 0.094*** 0.091***
(0.004) (0.003) (0.003) (0.003) 

Global Revision Activity 24.140*** 22.783*** 22.825*** 23.803***
(0.170) (0.172) (0.169) (0.170) 

  
Calendar month indicators Yes Yes Yes Yes 
  
Exposure variable: Firm Breadth (coefficient constrained to 1)   
Welch-Satterthwaite t-test between estimated coefficients [B] and [C]: t-stat: 12.79 
   df: 956,311  

Observations 478,485 478,485 478,485 478,485
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Internet Appendix Table 4. 
Do Central or Peripheral Analysts Drive the Findings?  

This table presents results from OLS regressions. The dependent variable in Column (1) is Normalized Forecast Error, defined as Raw 
Forecast Error scaled by the average forecast error in the firm-year. Raw Forecast Error is defined as the absolute difference between 
an analyst’s last firm-year forecast and the actual value. The key independent variables are indicators constructed based on Analyst 
Centrality. Analyst Centrality is the standardized PCA-extracted factor score of 4 network centrality measures – Degree Centrality, 
Closeness Centrality, Betweenness Centrality and Eigenvector Centrality (see Appendix I for details on centrality measures). In each 
year, we sort analysts by their Analyst Centrality scores into either quartiles or terciles. Low Centrality is an indicator that equates to 
unity if Analyst Centrality is less than the 25th (or 33rd) percentile value of the distribution, and equates to zero otherwise. High 
Centrality is an indicator that equates to unity if Analyst Centrality is more than the 75th (or 33rd) percentile value of the distribution, 
and equates to zero otherwise. In Columns (1) through (3), we sort Analyst Centrality into quartiles. In Columns (4) through (6), we 
sort Analyst Centrality into terciles. Detailed definitions of other variables are in Appendix II. In all specifications, we include control 
variables from Column (2) of Table 2. Robust standard errors are reported in parentheses. ***, **, * represent statistical significance 
at the 1%, 5% and 10% levels respectively. 
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Internet Appendix Table 4. (Continued) 
Central and Peripheral Analysts 

 
(1) (2) (3) (4) (5) (6)  

OLS:
Normalized 

Forecast Error

OLS:
Normalized 

Forecast Error

OLS:
Normalized 

Forecast Error 

OLS:
Normalized 

Forecast Error

OLS:
Normalized 

Forecast Error

OLS:
Normalized 

Forecast Error

Sort analyst centrality Quartiles Quartiles Quartiles Terciles Terciles Terciles 
Benchmark category Above p25 Below p75 p25 to p75 Above p33 Below p66 p33 to p66 

Low Centrality 0.011**  0.011** 0.012***  0.010** 
(0.005) (0.005) (0.004) (0.004)

High Centrality  -0.016*** -0.016***  -0.019*** -0.017*** 
(0.006) (0.006) (0.005) (0.005)

       
Control variables Yes Yes Yes Yes Yes Yes
       
Observations 274,673 274,673 274,673 274,673 274,673 274,673
R-squared 0.177 0.177 0.177 0.177 0.177 0.177 
Brokerage-Year fixed effects Yes Yes Yes Yes Yes Yes
Brokerage-Year cluster Yes Yes Yes Yes Yes Yes 
Analyst-Firm cluster Yes Yes Yes Yes Yes Yes
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Internet Appendix Table 5. 
Forecast Outcomes in 2-digit SIC Brokerage Networks 

This table presents results from OLS regressions. The dependent variable in Column (1) is 
Normalized Forecast Error, defined as Raw Forecast Error scaled by the average forecast error 
in the firm-year. Raw Forecast Error is defined as the absolute difference between an analyst’s 
last firm-year forecast and the actual value. The dependent variable in Column (2) is the 3-day 
market-adjusted cumulative abnormal returns, centered on the forecast revision date and unitized 
in percentage points. The key independent variable is Analyst Centrality and its interaction with 
Consensus Deviation. Analyst Centrality is the standardized PCA-extracted factor score of 4 
network centrality measures – Degree Centrality, Closeness Centrality, Betweenness Centrality 
and Eigenvector Centrality (see Appendix I for details on centrality measures). Consensus 
Deviation is the absolute difference between an analyst’s revision value and the prevailing 
consensus, normalized by the absolute value of the latter variable. Detailed definitions of other 
variables are in Appendix II. In Column (1), we include control variables from Column (2) of 
Table 2. In Column (2), we include control variables from Column (3) of Table 3. Robust standard 
errors are reported in parentheses. ***, **, * represent statistical significance at the 1%, 5% and 
10% levels respectively. 

(1) (2) 
OLS:

Normalized 
Forecast Error 

OLS: 
Abs. CAR 
[-1, +1] 

Exclude 8-K events - Yes 
Exclude earnings announcements - Yes 

Analyst Centrality (SIC-2d) [A] -0.014*** 0.225*** 
(0.003) (0.019) 

[A] x Consensus Deviation  0.023** 
(0.010) 

Consensus Deviation  0.012** 
(0.005) 

   
Control variables Yes Yes 
   
Observations 267,353 612,422 
R-squared 0.177 0.130 
Brokerage-Year fixed effects Yes No 
Brokerage-Year cluster Yes No 
Analyst-Firm cluster Yes No 
Week cluster No Yes 
Firm cluster No Yes 
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