
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2006

Mining RDF metadata for generalized association rules Mining RDF metadata for generalized association rules

Tao JIANG

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Theory and Algorithms Commons

Citation Citation
JIANG, Tao and TAN, Ah-hwee. Mining RDF metadata for generalized association rules. (2006). Database
and Expert Systems Applications: DEXA 2006, September 4-6, Krakow, Poland: Proceedings. 4080,
223-233.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6574

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6574&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Mining RDF Metadata for Generalized
Association Rules

Tao Jiang and Ah-Hwee Tan

School of Computer Engineering
Nanyang Technological University, Nanyang Avenue, Singapore 639798

{jian0006, asahtan}@ntu.edu.sg

Abstract. In this paper, we present a novel frequent generalized pattern
mining algorithm, called GP-Close, for mining generalized associations
from RDF metadata. To solve the over-generalization problem encoun-
tered by existing methods, GP-Close employs the notion of generalization
closure for systematic over-generalization reduction. Empirical experi-
ments conducted on real world RDF data sets show that our method
can substantially reduce pattern redundancy and perform much better
than the original generalized association rule mining algorithm Cumulate
in term of time efficiency.

1 Introduction

Resource Description Framework (RDF)1 is a specification proposed by the
World Wide Web Consortium (W3C) for describing and interchanging semantic
metadata on the Semantic Web [1]. Due to the continual popularity of the Seman-
tic Web, in a foreseeable future, there will be a sizeable amount of RDF-based
content available on the web, offering tremendous opportunities in discovering
useful knowledge from large RDF databases.

The basic element of RDF is RDF statements, each consisting of a subject, a
predicate, and an object. For simplicity, we use a triplet of the form <subject,
predicate, object> to express a RDF statement. Based on RDF, RDF Schema2

(RDFS) is further proposed for defining vocabulary definitions. A RDF vocab-
ulary defines a set of types (RDFS classes) and predicates (RDF properties) for
describing web resources. Taxonomic relations between classes (properties) can
also be defined. Given a set of RDF vocabularies that defines a set of taxonomies
of RDFS classes, generalized association rule mining can be applied to RDF doc-
uments for discovering generalized associations between RDF statements. The
discovered associations may have applications including optimizing RDF storage
and query processing, enhancing information source recommendation in Seman-
tic Web, and association-based classification or clustering of web resources.

Generalized association rule mining (GARM) [2] extends association rule min-
ing [3] by exploiting item taxonomies in the mining task. Given a set of items I
1 http://www.w3.org/RDF/
2 http://www.w3.org/TR/rdf-schema/

S. Bressan, J. Küng, and R. Wagner (Eds.): DEXA 2006, LNCS 4080, pp. 223–233, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 T. Jiang and A.-H. Tan

and a large database of transactions D, where each transaction is a set of items
T ⊆ I with a unique identifier tid, an association rule is an implication of the
form X ⇒ Y , where X, Y ⊆ I (called itemsets or patterns) and X ∩ Y = ∅. A
taxonomy T is defined as an acyclic directed graph on the set of all items I.
An edge in T from i1 to i2 represents an “is-a” relationship. GARM aims to
discover rules spanning items across different levels of taxonomies.

The unique characteristics of RDF data sets lie in the large sizes of RDF doc-
uments and the complex structures of the RDF statement hierarchies wherein
a RDF statement can be generalized in many ways, by generalizing its subject,
object, predicate, or their combinations (see Figure 1(b) in subsection 3.2). In
GARM, frequent pattern mining (FPM) is usually the most time-consuming part.
For RDF data sets, existing GARM algorithms extracting all possible frequent
generalized patterns do not work efficiently due to the fact that a large portion of
the frequent generalized patterns is over-generalized. Processing over-generalized
patterns can seriously increase the computation cost and degrade the perfor-
mance of the mining algorithms. In this paper, we present a novel algorithm,
called GP-Close (Closed Generalized Pattern Mining), for mining frequent gen-
eralized patterns from RDF metadata with full over-generalization reduction.
We employ the notion of generalization closure to formulate over-generalization
reduction as a closed pattern mining problem [4] [5].

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 formalized the problem of mining frequent generalized patterns
from RDF metadata and highlights the over-generalization problem. Section 4
presents the GP-Close algorithm. Section 5 reports our experiments based on
two real world RDF data sets. Concluding remarks are given in the final section.

2 Related Work

Generalized association rule mining was first proposed in [2], where a family
of algorithms, namely Basic, Cumulate, Stratify, Estimate and EstMerge, was
reported. Basic is almost a direct application of Apriori algorithm [6] to the ex-
tended transaction databases. Cumulate extends Basic by employing three opti-
mization strategies: filtering the useless ancestors in transactions, pre-computing
items’ ancestors, and pruning itemsets containing an item and its ancestors.
Based on Cumulate, further optimizations are involved in Stratify, Estimate,
and EstMerge. However, they only perform marginally better than Cumulate.

In [7], Prutax algorithm makes use of tidset-intersection for support count-
ing to avoid multiple database scans. It adopts a right-most and depth-first
search (DFS) strategy for itemset enumeration. Prutax further guarantees that
the generalized itemsets are always generated before their specialized itemsets.
The downward closure property and taxonomy information are also used for
candidate pruning. More recently, an algorithm, SET [8], adopted a tax-based
and join-based strategy for itemset enumeration. Nevertheless, this strategy may
cause problems when the taxonomies used in the mining process are not tree-
structured. In such cases, duplicated patterns may be generated.

Mining RDF Metadata for Generalized Association Rules 225

A common limitation of the above algorithms is that they generate all the
frequent patterns including over-generalized ones. On RDF data sets, most of
the extracted patterns may be over-generalized. Calculation of over-generalized
patterns can seriously increase computation cost. Over-generalization problem is
first identified in [9] when mining generalized substructure in connected graphs.
Though [9] adopted a pruning strategy to remove some over-generalized patterns,
it did not provide a solution for full over-generalization reduction.

3 Mining Frequent Generalized Patterns from RDF Data

3.1 Problem Statement

We define the frequent generalized pattern mining task based on a simplified
view of RDF model as follows.

Definition 1. Let V = {E , P , H, domain, range} defines an RDF vocabu-
lary, where E = {e1, e2, . . ., em} is a set of entity identifiers; P = {p1, p2, . . ., pn}
is a set of predicate identifiers; and H is a directed acyclic graph. An edge in H
represents an is-a relationship between two entities(See Figure 1(a)). If there is
an edge from e1 to e2, we say e1 is a parent of e2 and e2 is a child of e1. We call ê
an ancestor of e, if there is a path from ê to e. The function, domain: P → 2E ,
relates a predicate to a set of entities that can be its subject. The function, range:
P → 2E , relates a predicate to a set of entities that can be its object.

The above definition simplifies the RDF model in two aspects:

– We treat instances and RDF classes both as entities. Correspondingly, we
treat “rdf:type” and “rdfs: subClassOf” predicates as “is-a” relation without
discrimination. By this way, we can integrate instances and RDF classes into
one taxonomy so that the mining task can be simplified.

– We do not consider the hierarchy of RDF properties (predicate hierarchy)
at the current stage. However, the predicate hierarchy can be easily incor-
porated into the generalized association mining framework.

Definition 2. Given a RDF vocabulary V = {E , P , H, domain, range}, we de-
fine a relation (RDF statement) r on V as a triplet <x, p, y>, where x, y ∈ E,
p ∈ P, x ∈ domain(p), and y ∈ range(p). We call x, p, and y the subject, the
predicate, and the object of r. A relation r̂ =<x1, p1, y1> is called a gener-
alized relation (ancestor) of another relation r =<x2, p2, y2>, if and only if:
(1) r̂ �= r, (2) p1 = p2, (3) x1 is an ancestor of x2 or x1 = x2 and (4) y1 is
an ancestor of y2 or y1 = y2. We use RV to denote the set of all relations on
V. Relations in RV and their generalization/specialization relationships form a
relation hierarchy, HV

r (see Figure 1(b)).

Definition 3. A relationset (pattern) is a set of relations X ⊆ RV (X does
not contain both a relation and its ancestor). We call X a generalized rela-
tionset of another relationset Y and Y a specialized relationset of X, if and

226 T. Jiang and A.-H. Tan

Terrorist Group (ab)

Hamas (a) JI (b)

Terrorist Activity

(cdef)

Financial

Crime

(cd)

Bank Robbery

(c)
Card

Cheating

(d)

Car

Bombing

(e)

Suicide Bombing

(f)

Bombing

(ef)

participate

(p)

(a) A sample RDF vocabulary.
<ab,p,cdef>

<ab,p,cd> <ab,p,ef>

<ab,p,c> <ab,p,d> <ab,p,e> <ab,p,f><a,p,cdef>

<a,p,cd> <a,p,ef>

<a,p,c> <a,p,d> <a,p,e> <a,p,f> <b,p,c> <b,p,d> <b,p,e> <b,p,f>

<b,p,cd> <b,p,ef>

<b,p,cdef>

(b) Generalized relation hierarchy.

Pattern X:

{<Terrorist Group, participate, Financial Crime>, <Terrorist Group, participate, Car Bombing>}

Generalization Closure of X:

{<Terrorist Group, participate, Financial Crime>, <Terrorist Group, participate, Car Bombing>,

<Terrorist Group, participate, Bombing>, <Terrorist Group, participate, Terrorist Activity>}

(c) An illustration of generalization closure.

Fig. 1. Elements of RDF data sets

only if: (1)X �= Y , (2)∀r ∈ X, ∃r∗ ∈ Y such that r = r∗ or r is an ancestor of
r∗ and (3) ∀r∗ ∈ Y, ∃r ∈ X such that r = r∗ or r is an ancestor of r∗. Given
a set of RDF documents D, where each document consists of a set of relations,
the support of a relationset X (supp(X)) is defined as the proportion of RDF
documents containing X or a specialized relationset of X.

Based on the above definitions, given a set of RDF documents, our task of mining
frequent generalized patterns is to extract frequent relationsets (patterns) whose
supports are larger than a predefined minimum support (minsup).

3.2 Over-Generalization and Mining Closed Generalization
Closures

We explain the over-generalization problem using an example. Figure 1(a) shows
a RDF vocabulary V = {E , P , H, domain, range}, where E = {a, b, c, d, e, f, ab,
cd, ef, cdef}, P ={p}, dom(p)={a, b, ab}, and range(p)={c, d, e, f, cd, ef, cdef}.
Figure 1(b) shows the relation hierarchy containing all relations in RV . A sample
RDF database D on V is shown in Table 1. Given minsup = 50%, all frequent

Mining RDF Metadata for Generalized Association Rules 227

Table 1. A sample RDF database

ID RDF Documents
1 <a, p, d> <a, p, e>
2 <b, p, c> <b, p, e>
3 <a, p, f>
4 <b, p, f>

Table 2. Frequent generalized relationsets in sample RDF database

Support Frequent Generalized Relationsets (minsup=50%)

50%
{<a, p, ef>} {<a, p, cdef>} {<ab,p,cd>} {<ab, p, e>} {<ab, p, f>}
{<b, p, ef>} {<b, p, cdef>} {<a, p, cdef> <ab, p, ef>} {<ab, p, cd>
<ab, p, e>} {<ab, p, cd> <ab, p, ef>} {<ab, p, ef> <b, p, cdef>}

100% {<ab, p, ef>} {<ab, p, cdef>}

generalized relationsets are listed in Table 2. Note that some patterns look quite
similar, e.g. {<ab, p, cd>, <ab, p, e>} and {<ab, p, cd>, <ab, p, ef>}. In fact,
the second pattern is a generalization of the first one and they have the same
support (50%). Intuitively, with the same support, a specialized pattern should
be more interesting than its generalizations as the information conveyed by the
specialized pattern is more precise. Therefore, the second pattern is redundant.
Based on this observation, we define over-generalization as follows:

Definition 4. A frequent relationset X is over-generalized if there exists a
specialized relationset Y of X with supp(X) = supp(Y).

In Table 2, six (46%) frequent patterns (underlined) are over-generalized. In real-
world RDF data sets, the proportion of over-generalized patterns may be much
higher than this. For reducing redundant over-generalized patterns, we propose
an innovative approach based on the notion of generalization closures.

Definition 5. Given a RDF vocabulary V = {E , P , H, domain, range} and RV

on V, we define a function ϕgc on 2R
V
: ϕgcX =

⋃
r∈X G(r), where X ⊂ RV and

G(r) is a set of relations that contains r and all its generalized relations. ϕgc is
a closure operator [10], called generalization closure operator. And ϕgcX
is called the generalization closure of X.

A sample generalization closure of a pattern X is shown in Figure 1(c). We can
prove that ϕgc is a closure operator and all generalization closures form a closure
system [10] with the three properties: X ⊆ Y ⇒ ϕgcX ⊆ ϕgcY (monotony),
X ⊆ ϕgcX (extensity), and ϕgcϕgcX = ϕgcX (idempotency).

Five useful lemmas related to generalization closures are listed below. The
first three lemmas are intuitive. For the space limitation, we only give the proofs
of Lemma 4 and 5.

Lemma 1. Given a relationset X and a RDF database D, supp(X)=supp(ϕgcX).

228 T. Jiang and A.-H. Tan

Lemma 2. Given X is a generalized relationset of Y , ϕgcX ⊂ ϕgcY holds.

Lemma 3. Given two generalization closures ϕgcX and ϕgcY (X, Y ⊆ RV),
ϕgcX ∪ ϕgcY is also a generalization closure (ϕgc(X ∪ Y)).

Lemma 4. Given a frequent relationset X, if ϕgcX is closed (i.e. there is not
a ϕgcY ⊃ ϕgcX where supp(ϕgcX) = supp(ϕgcY)), X is not over-generalized.

Proof. Suppose X is over-generalized. It follows that there is a specialized pat-
tern Y of X , where supp(Y) = supp(X). According to Lemma 1 and 2, easy to
see that ϕgc(X) ⊂ ϕgc(Y) and supp(ϕgc(X)) = supp(ϕgc(Y)), i.e. ϕgc(X) is not
closed. This is contradictory to the statement that ϕgc(X) is closed.

Lemma 5. The support of all frequent relationsets can be derived from the set
of all frequent closed generalization closures.

Proof. As each relationset X has a generalization closure ϕgc(X) with the same
support, the support of X can be derived from ϕgc(X) by the following ways:

1. If ϕgc(X) is a closed closure, supp(X) = supp(ϕgc(X)).
2. Otherwise, there exists a closed closure ϕgc(Y) ⊃ ϕgc(X) and does not exist

a closed closure ϕgc(Z) with ϕgc(X) ⊂ ϕgc(Z) ⊂ ϕgc(Y). It follows that
supp(X) = supp(ϕgc(X)) = supp(ϕgc(Y)).

Lemma 4 and 5 motivate us to discover all closed generalization closures for
over-generalization reduction.

4 GP-Close Algorithm

Based on Lemma 4 and 5, we propose an algorithm, called GP-Close (Closed
Generalized Pattern Mining), for discovering all closed generalization closures.
Comparing with existing GARM algorithms, such as Cumulate, our algorithm
discover closed generalization closures but not frequent generalized patterns.
However, Lemma 5 shows that all frequent generalized patterns can be easily
derived from the output of the GP-Close algorithm.

4.1 Closure Enumeration and Sorting

Lemma 3 guarantees that we can gradually generate larger closures by merging
smaller ones. Based on this, GP-Close adopts a depth-first closure enumeration
method using an enumeration tree. The pseudo-code of GP-Close algorithm is
presented in Algorithm 1 and 2. GP-Close first calculates all 1-frequent relation-
sets. Then, the generalization closures of the 1-frequent relationsets are created
and sorted (see Algorithm 1). A support-increasing and length-decreasing strat-
egy is adopted for closure sorting. This implies that the specialized closures will
be enumerated first. Later in this section, we will discuss this in more details.

Figure 2 shows the closure enumeration process based on the RDF database
in Table 1. Initially, the enumeration tree contains only the root closure, i.e. the

Mining RDF Metadata for Generalized Association Rules 229

Algorithm 1. GP-Close
Input :

RDF database: D
Generalized relation lookup table: GRT
Support Threshold: minsup

Output :
The set of all closed frequent generalization closures: C

1: ce tree.root = ∅ //initialize closure enumeration tree
2: ce tree.root.supp = 1
3: ce tree.gc list = {ϕgc{r}|r ∈ RV ∧ supp(r) � minsup} ////Constructing child

closure set of ce tree.root from 1-frequent RDF statements by looking up GRT
4: Sort(ce tree.gc list) //sort closures (length-decreasing/support-increasing)
5: Closure-Enumeration(ce tree, C = ∅)
6: return C

empty set with the support of 100%, and a set of closures of 1-frequent relation-
sets as children of the root (see Algorithm 1). Then, for each child of the root
closure, we can expand it by merging it with other child closures. For example, in
Figure 2, the closure {<ab, p, f>, <ab, p, ef>, <ab, p, cdef>} is combined with
the closure {<ab, p, cd>, <ab, p, cdef>} to generate a larger closure {<ab, p, f>,
<ab, p, ef>, <ab, p, cd>, <ab, p, cdef>}. Using this child closure as the root and
the newly generated closures as its children, a sub closure enumeration tree is
constructed (Algorithm 2 line 7 - 22). We can see that all descendants of a (sub)
enumeration tree are expansions of the tree root. If a (sub) tree root can be
subsumed by a discovered closed closure, i.e. it is not closed, traversing this
(sub) tree cannot generate new closed generalization closures. Therefore, the
(sub) tree can be pruned (Algorithm 2 line 1). For example, in Figure 2, the clo-
sure {<ab, p, cd>, <ab, p, cdef>} is subsumed by the closed closure {<ab, p, f>,
<ab, p, ef>, <ab, p, cd>, <ab, p, cdef>}. As a result, the corresponding sub clo-
sure enumeration tree is pruned. The following are three cases in which one
closure can subsume another:

1. A specialized closure can subsume a generalized closure.
2. A closure can be subsumed by one of its super relationsets (closures).
3. A closure can be subsumed by a super set of its specialized closures.

Our specialization-first sorting strategy increases the occurrences of subsump-
tion cases (1) and (3), i.e. there is a larger probability that a later constructed
enumeration tree can be pruned.

The function Prune (Algorithm 2 line 2) performs two tasks. One is removing
infrequent closures. Another is checking the subsumption among children of the
current enumeration tree root and eliminating the closures that can be subsumed.
In Figure 2, {<b, p, cdef>, <ab, p, cdef>} can be subsumed by {<b, p, ef>,
<b, p, cdef>, <ab, p, ef>, <ab, p, cdef>}. Thus it can be pruned.

The function Closed-Closure (Algorithm 2 line 3) generates the closed gen-
eralization closure. It finds all child closures that have the same support as the

230 T. Jiang and A.-H. Tan

Algorithm 2. Closure-Enumeration
Input :

Closure enumeration tree: ce tree
A set of discovered closed frequent generalization closures: C

Output :
The expanded set of closed frequent generalization closures: C

1: If ∃c∗ ∈ C where c∗ subsumes n, return C. //Subtree Pruning
2: Prune(ce tree.gc list)
3: c = Closed-Closure(ce tree)
4: C = C ∪ {c} //if c is not subsumed by another closed closure c∗ ∈ C
5: candidates = ∅
6: for each closure gci ∈ ce tree.gc list do
7: ce tree∗.root = gci; ce tree∗.gc list = ∅ //initialize a sub enumeration tree
8: for each gcj ∈ ce tree.gc list, with i < j do
9: gc∗ = gci ∪ gcj

10: if gci.tidset �= null and gcj .tidset �= null then
11: tidset = gci.tidset ∩ gcj .tidset
12: if tidset-buffer is not overflow then
13: gc∗.tidset = tidset; gc∗.supp = |tidset|
14: else
15: gc∗.supp = |tidset|
16: end if
17: else
18: candidates = candidates ∪ {gc∗}
19: end if
20: ce tree∗.gc list = ce tree∗.gc list ∪ {gc∗}
21: end for
22: If candidates �= ∅, perform hash-counting(candidates).
23: Closure-Enumeration(ce tree∗, C)
24: end for
25: return C

root of current closure enumeration tree. We call such child closures support-
undescending expansions of the root closure (or simply undescending ex-
pansions). Then, these undescending expansions are merged to form a closed
closure. In Figure 2, there exist two undescending expansions {<ab, p, ef>,
<ab, p, cdef>} and {<ab, p, cdef>} of root closure {}, so that {<ab, p, ef>,
<ab, p, cdef>} is extracted as a closed closure. If there is no such undescending
expansion, the root will be extracted as a closed closure.

4.2 Hybrid Support Counting

Some existing association rule mining algorithms propose to use the transaction
ID set (tidset) for itemset support counting [5]. However, in real life applications,
tidsets may not be able to fit into the physical memory. A hybrid counting
strategy is thus designed in GP-Close for handling data sets under different
circumstances. It allows users to define a tidset buffer with a maximum buffer
size. The support counting is initially performed by scanning databases (DB).
During DB scans, the algorithm tries to build tidsets for candidate closures if
these tidsets can fit into the pre-located buffer. The constructed tidsets are then
used for subsequent tidset based support counting (Algorithm 2 line 10-17).

Mining RDF Metadata for Generalized Association Rules 231

{<a,p,ef>,

<a,p,cdef>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

{}

supp=100

%

{<a,p,cdef>,

<ab,p,cdef>}

supp=50%

{<ab,p,ef>,

<ab,p,cdef>}

supp=100%

{<ab,p,cdef>}

supp=100%

{<ab,p,cd>,

<ab,p,cdef>}

supp=50%

{<ab,p,e>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

{<ab,p,f>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

{<b,p,ef>,

<b,p,cdef>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

{<b,p,cdef>,

<ab,p,cdef>}

supp=50%

{<ab,p,ef>,

<ab,p,cdef>}

supp=100%

Generating a closed closure

Generating larger frequent closures

No frequent

expansion.

Closed generalization closure

{<a,p,ef>,

<a,p,cdef>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

No frequent

expansion.

{<b,p,ef>,

<b,p,cdef>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

No frequent

expansion.

{<ab,p,f>,

<ab,p,cd>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

No

Expansion

{<ab,p,f>,

<ab,p,cd>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

Closure merging

Undescending expansion

{<ab,p,e>,

<ab,p,ef>,

<ab,p,cdef>}

supp=50%

Tree

Pruning

Fig. 2. Closure Enumeration

5 Experiments

The GP-Close algorithm was implemented using Java (JDK 1.4.2). GP-Close
with different sizes of tidset buffer were used in our experiments, namely GP-
Close-0, GP-Close-500, and GP-Close-50000, with a tidset buffer of 0 KB, 500
KB, and 50,000 KB respectively. We also implemented the Cumulate algo-
rithm [2] as a reference of performance comparison.

5.1 Data Sets

Our experiments are conducted on two real world RDF data sets, namely the
foafPub data set provided by the UMBC eBiquity Research Group and the ICT-
CB data set extracted from an online database of International Policy Institute
for Counter-Terrorism. foafPub is a set of RDF files that describes peoples and
their relationships with the use of the FOAF vocabulary3. ICT-CB documents
are descriptions of car bombing events. The statistics of the RDF vocabularies
and RDF documents in the two data sets are summarized in Table 3.

5.2 Performance Study

Figure 3(a) and 3(d) show the computation time of the algorithms with respect
to minimum support. We find that Cumulate can work properly only with high
minsup. When the minsup is high, the performance of the algorithms are com-
parable. The GP-Close-0 is slightly slower than other versions of GP-Close due
3 http://xmlns.com/foaf/0.1/

232 T. Jiang and A.-H. Tan

Table 3. Statistics of the foafPub and ICT-CB Data Sets. Nd - number of RDF
documents, Nr - number of RDF relations, N∗

r - number of distinct RDF relations, Ngr

- number of distinct generalized relations.

RDF
Data set

RDF
property

RDF
class

Instance
Avg.

Fanout
Nd Nr N∗

r Ngr
Min
len.

Max
len.

Avg.
len.

foafPub 36 6801 66613 13 6170 85778 83759 207119 1 3188 14
ICT-CB 53 1806 2546 3 127 2224 1814 175020 1 104 17

0246810
10

1

10
2

10
3

10
4

minsup(%)

T
im

e
(s

ec
)

foafPub

Cumulate
GP−Close−0
GP−Close−500
GP−Close−50000

(a) Exec time on foafPub

0246810
10

0

10
1

10
2

10
3

foafPub

minsup (%)

N
um

be
r

of
 D

B
 S

ca
ns

Cumulate
GP−Close−0
GP−Close−500
GP−Close−50000

(b) DB scans on foafPub

0246810
10

1

10
2

10
3

10
4

foafPub

minsup (%)

N
um

be
r

of
 G

en
er

al
iz

ed
 P

at
te

rs

Cumulate
GP−Close

(c) Patterns from foafPub

0 10203034
10

1

10
2

10
3

10
4

minsup (%)

T
im

e
(s

ec
)

ICT−CB

Cumulate
GP−Close−0
GP−Close−500

(d) Exec time on ICT-CB

0 10203034
10

0

10
1

10
2

ICT−CB

minsup (%)

N
um

be
r

of
 D

B
 S

ca
ns

Cumulate
GP−Close−0
GP−Close−500

(e) DB scans on ICT-CB

0 10203034
10

0

10
2

10
4

10
6

ICT−CB

minsup (%)

N
um

be
r

of
 G

en
er

al
iz

ed
 P

at
te

rn
s

Cumulate
GP−Close

(f) Patterns from ICT-CB

Fig. 3. Performance of GP-Close compared with Cumulate

to the fact that it involves more IO accesses. When the minsup is low, all three
versions of GP-Close algorithm perform more than an order of magnitude faster
than Cumulate. This is because the CPU computation becomes the bottleneck
of the algorithms as the number of frequent patterns increases.

Figure 3(b) and 3(e) show the number of DB scans performed by the algo-
rithms. The overall trend is that the number of DB scans increases when minsup
decreases. For GP-Close-50000, the tidsets can always fit in the tidset buffer af-
ter two DB scans. The number of DB scans performed by GP-Close-0 increases
rapidly as more branches of the enumeration tree are constructed when minsup
decreases. However, for low minsup, though GP-Close-0 and GP-Close-500 scan
for many more times than Cumulate, the performance of the two algorithms is
still more than one order of magnitude better than Cumulate. This further re-
flects the fact that when minsup is low, the bottleneck of the algorithms lies in
CPU computation instead of IO access.

Figure 3(c) and 3(f) show that the number of closed generalization closures is
almost one to two orders of magnitude smaller than the number of all frequent

Mining RDF Metadata for Generalized Association Rules 233

relationsets discovered by Cumulate. This is despite the fact that all frequent
relationsets can be derived from the set of closed generalization closures. Note
that a scale is used in Figure 3(c). Therefore, the stable margin between the
two curves actually implies an exponential growth in the difference between the
number of frequent generalized patterns and the number of closed closures.

6 Conclusion

This paper has presented an innovative approach for mining frequent generalized
patterns from RDF metadata with over-generalization reduction. We presented
the GP-Close algorithm which efficiently discovers a small set of closed fre-
quent generalization closures from which all frequent generalized patterns can
be derived. Extensive experiments show that our proposed method can substan-
tially reduce the pattern redundancy and perform much better than the original
GARM algorithm Cumulate in term of time efficiency.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: Semantic web. Scientific American 284(5)
(2001) 35–43

2. Srikant, R., Agrawal, R.: Mining generalized association rules. In: VLDB ’95, San
Francisco (1995) 407–419

3. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD Conference. (1993) 207–216

4. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent
patterns with counting inference. SIGKDD Explorations 2(2) (2000) 66–75

5. Zaki, M.J., Hsiao, C.J.: Charm: An efficient algorithm for closed itemset mining.
In: SDM. (2002)

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of VLDB’94, Santiago de Chile. (1994) 487–499

7. Hipp, J., Myka, A., Wirth, R., Güntzer, U.: A new algorithm for faster mining of
generalized association rules. In: PKDD. (1998) 74–82

8. Sriphaew, K., Theeramunkong, T.: A new method for finding generalized frequent
itemsets in generalized association rule mining. In: ISCC. (2002) 1040–1045

9. Inokuchi, A.: Mining generalized substructures from a set of labeled graphs. In:
ICDM. (2004) 415–418

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (1997)

	Mining RDF metadata for generalized association rules
	Citation

	Introduction
	Related Work
	Mining Frequent Generalized Patterns from RDF Data
	Problem Statement
	Over-Generalization and Mining Closed Generalization Closures

	GP-Close Algorithm
	Closure Enumeration and Sorting
	Hybrid Support Counting

	Experiments
	Data Sets
	Performance Study

	Conclusion

