
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2005

Dynamically-optimized context in recommender systems Dynamically-optimized context in recommender systems

Ghim-Eng YAP

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Hwee-Hwa PANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons

Citation Citation
YAP, Ghim-Eng; TAN, Ah-hwee; and PANG, Hwee-Hwa. Dynamically-optimized context in recommender
systems. (2005). Proceedings of the 6th International Conference on Mobile Data Management
(MDM'05), Ayia Napa Cyprus, May 9 - 13. 265-272.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6567

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6567&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6567&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Dynamically-Optimized Context in Recommender Systems

Ghim-Eng Yap, Ah-Hwee Tan
School of Computer Engineering
Nanyang Technological University

Nanyang Avenue, Singapore 639798

{yapg0001, asahtan}@ntu.edu.sg

Hwee-Hwa Pang
Institute for Infocomm Research

21 Heng Mui Keng Terrace
Singapore 119613

hhpang@i2r.a-star.edu.sg

ABSTRACT
Traditional approaches to recommender systems have not
taken into account situational information when making rec-
ommendations, and this seriously limits the relevance of
the results. This paper advocates context-awareness as a
promising approach to enhance the performance of recom-
menders, and introduces a mechanism to realize this ap-
proach. We present a framework that separates the con-
textual concerns from the actual recommendation module,
so that contexts can be readily shared across applications.
More importantly, we devise a learning algorithm to dy-
namically identify the optimal set of contexts for a specific
recommendation task and user. An extensive series of ex-
periments has validated that our system is indeed able to
learn both quickly and accurately.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—relevance feedback, selection process;
H.1.2 [Models and Principles]: User/Machine Systems—
human information processing; I.5.5 [Pattern Recogni-

tion]: Implementation—interactive systems, special archi-
tectures; H.3.4 [Information Storage and Retrieval]:
Systems and Software—performance evaluation (efficiency
and effectiveness); I.2.6 [Artificial Intelligence]: Learn-
ing—Induction

General Terms
Human Factors, Algorithms, Design, Experimentation, Per-
formance

Keywords
recommender system, machine learning, user feedback, con-
text weight

1. INTRODUCTION
A recommender is a system capable of ranking a list of sim-
ilar items with respect to one or more given criteria. There

MDM 2005 05 Ayia Napa Cyprus (c) 2005 ACM 1-59593-041-
8/05/05....$5.00 Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted withoutfee provided
that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

are many applications of recommender systems, notably in
the information retrieval field, where criteria are submitted
as queries and the most relevant documents are returned.
With the proliferation of mobile E-services, recommenders
in various forms have been the subject of many researches
due to their obvious commercial values (e.g. [23]). The
two main recommendation techniques in use today are the
content-based approach and the collaborative filtering ap-
proach [17].

In content-based recommendation, the system suggests to
users items that best fit a specified set of criteria. The sys-
tem has to understand all the main features describing the
items of interest in order to rank them in terms of their rel-
evance to the criteria. Such systems typically maintain a
notion of user profile that is highly specific to the problem
domain e.g. profiles for research-paper recommenders typi-
cally reflect only the user’s research interests, although the
sharing of profiles among autonomous agents has been sug-
gested [18]. On the other hand, collaborative filtering works
by seeking the opinions of a community of users to assist
individuals in that community to better identify contents
of interest from a potentially overwhelming set of choices
[19]. It relies on majority judgment within the community,
and is largely based upon the notion of stereotypical be-
haviors and common interests. Hybrid systems exist today
that use combinations of these two techniques to improve
performance.

These traditional approaches suffer from a serious shortcom-
ing: the set of features for consideration is static (fixed at
design time) and entirely task-specific in nature. For in-
stance, a user’s query on a restaurant recommender could be
“restaurants with vegetarian food”. A conventional recom-
mender would simply rank all the known restaurants based
on whether vegetarian food is available. Unknown to the
application designer, and hence to the recommender, is that
it is raining outside and the user would have preferred a
nearer eating place. Clearly the system is not able to pro-
vide the best recommendations due to its detachment from
the current situation; what is lacking in these traditional
approaches is an awareness of the contexts. According to
[7],

[Context is] any information that can be used to charac-
terize the situation of an entity, where an entity can be a
person, a place, or an object relevant to the interaction be-
tween the user and application, including the user and ap-

plication themselves. A system is context-aware if it uses
context to provide relevant information and/or services to
the user, where relevancy depends on the user’s task.

Over the years, many researchers have actively tried to re-
alize the potentials of context-awareness e.g. in the more
recent field of context-based information retrieval [15]. How-
ever, previous work on context-aware computing mostly sup-
port only static context, e.g. [1, 6, 10, 11, 12, 16, 22]. In
all these applications, the composition of context is fixed
at design time and no attempt is made to dynamically re-
duce or expand this set of contexts via learning through
usage. In view of this, we propose a generic framework that
enhances the existing recommender systems with a task-
oriented, context-aware model. Our main contributions are
described as follows.

• We advocate a formal distinction between context in-
stantiation and recommendation. Separation of these
concerns via an interactive, component-oriented de-
sign allows for a greater flexibility and clarity in role-
division. As such, our framework is generic and readily
applicable to diverse problem domains. For example,
an instantiation module can serve multiple different
recommenders simply by plugging in appropriate con-
text taxonomies. This modular design promotes ef-
ficiency and frees developers to focus on the task at
hand.

• We propose the dynamic optimization of contexts for
making recommendations to particular users. Systems
would benefit from an intelligently-selected set of con-
texts in a myriad of ways. For example, the applica-
tion designer may have specified contexts not regarded
as relevant by a user. So our system would prune
away the least relevant contexts while expanding it
with more relevant ones overlooked by the designer.
By instantiating only the most significant set of con-
texts, recommendation resources and time would be
saved and the results would be more accurate.

The remainder of this paper is organized as follows: we
present the details of our generic framework in Section 2,
followed by the description of a sample implementation to
realize this framework in Section 3. Section 4 presents our
findings from experimental evaluations of this implemented
system. In section 5, we compare our research to a number
of related work. A discussion on some possible directions for
future work in Section 6 concludes the paper.

2. CONTEXT-AWARE RECOMMENDER
FRAMEWORK

Figure 1 illustrates our proposed framework for domain-
relevant context-aware recommendation systems. The mod-
ules within the framework are described below.

2.1 External Data Sources for Context
We treat the acquisition of raw context data and the associ-
ated reliability, security, and privacy issues as highly inter-
esting but outside the scope of this paper. As such, we have
modelled the scenario where all contextual information are

World Wide Web

Location Services

Weather Services

Others

Traffic Services

External Context Sources

Context-
Instantiation

Module

User

Recommendation
Module

Task-relevant
Context Taxonomy

Learning Module

Query Engine

Instantiated
Context Values

User FeedbackRelevance

Figure 1: Our Proposed Framework

readily available from external providers, e.g. those services
depicted in Figure 1.

2.2 The Query Engine
With reference to Figure 1, the user directly interacts only
with the recommendation module. In each recommendation
cycle, the user identifies the best recommended item and the
choice is fed back into our learning module. The components
that make up our query engine are namely the context taxon-
omy, the context-instantiation module, the recommendation
module, and the learning module.

Each application is expected to define its own specific tax-
onomy of contexts. For instance, for the task of buying a
car, the specifications of different car models could be con-
sidered as part of the relevant taxonomy. We can then learn
to personalize the relative weights of these context parame-
ters over time, so that eventually we are able to identify the
most significant parameters for that particular user and use
only this optimal set for subsequent recommendations.

The context-instantiation module resolves the contextual
values with external context sources. It is neither concerned
nor involved in the actual ranking of the parameters, but
is entirely responsible for reliably instantiating the contexts
dictated by the learning module and then passing on these
values to the recommendation module. Since different sets
of contexts could be specified as being relevant for each rec-
ommendation, the recommendation module must be able to
reliably act upon any given subset of the complete taxonomy
in making its recommendations.

Our learning module captures the user feedback on the sat-
isfaction level of each recommendation and uses it to fine-
tune the composition of the context set. By examining the
properties of items chosen by a user when different sets of
context values are presented, the learning module can iden-
tify through the actual usage the optimal relative parameter
rankings for that user. This set of most significant contexts
should stabilize over time such that it accurately reflects the
user’s real interests.

3. REALIZING THE FRAMEWORK
We demonstrate our proposed framework via a sample im-
plementation involving the context-based recommendation
of restaurants.

3.1 Realizing theContext Taxonomy
For this sample application, we represent the contextual in-
formation in XML format, and capture the structure of the
context taxonomy in a DTD document type definition. The

C1

C2

C3 R2

R1

d2

d1

Figure 2: A Simple Context Space

communication of contextual data between our context in-
stantiation module and each of the external sources is then
performed based on the definitions in this document. Us-
ing this elegant arrangement, we implement several SOAP
services for providing contextual information including loca-
tion, weather and restaurant-related data on a J2EE server.
Each context is treated as a separate entity that could be
relevant to the recommendation. This makes the application
amenable to future addition and removal of contexts.

We have chosen DTD for context representation because
we are looking to structured web services for future data
interactions. This is in line with the rapid emergence of var-
ious standard DTDs for vertical applications, including the
proposals from Open Buying on the Internet (OBI) Consor-
tium, Commerce XML (cXML) group, Microsoft’s BizTalk
Framework, and RosettaNet’s EConcert specifications [20].

3.2 Realizing theRecommendation Module
For ranking restaurants with respect to dynamically chang-
ing sets of contexts, we propose the concepts of rank-conscious
contexts and context space. Each rank-conscious context
maintains an internal logic for computing the rank value of
any restaurant with respect to itself. Whenever a recom-
mendation request arrives at the recommender module, it
would go through each of the contexts to obtain its ranking
value for each known restaurant. The values computed are
represented as a vector of restaurant rankings with respect
to that particular context. This vector is then normalized
and multiplied by the relative context weight. Following
that, a context space is formed with each context as a dis-
tinct dimension, and restaurants are represented as position
vectors in this space. These positions’ distances from the
origin can now be compared meaningfully, with restaurants
closer to the origin being ranked higher since they satisfy
the weighted contextual values better. Figure 2 illustrates
a simple context space with three contexts to be considered
(axes C1, C2, C3) and two restaurants to be ranked (R1 and
R2). d1 and d2 denote the distances of the restaurants to
the origin O.

Our context-based restaurant-ranking mechanism works as
follows: Let K be the number of restaurants, N be the num-
ber of context parameters, Rk denotes restaurant k, and Cn

denotes context n. Let rvk,n be the ranking value of Rk

with respect to Cn and rv
′

k,n ∈ [0, 1] be the correspond-
ing normalized ranking value. Denoting wn as the relative
weight of Cn, the weighted position vector of Rk is given by
~Rk = [w1(rv

′

k,1), w2(rv
′

k,2), · · · , wn(rv
′

k,n), · · · , wN (rv
′

k,N)].
Applying the Euclidean measure with respect to the origin,

the degree to which Rk satisfies the weighted set of the con-
text values is given by

dk = ‖ ~Rk‖ =

rXN

n=1
(wn(rv

′

k,n))2 (1)

We assert that Ri ranks higher than Rj if di < dj .

As mentioned previously, the computation of ranking values
for restaurants is implemented as internal logic within each
context parameter. This escalates individual context from
a passive piece of information to an active entity that can
decide for itself how well each restaurant matches its de-
sired value. Carrying the ranking logic within the contexts
and visualizing the restaurants in a context space allow our
recommendations to be easily made based on different com-
binations of contexts. Two sample predicates employed in
our application are shown below:

Predicate 1 Rank value rvk for Rk w.r.t. Chas toilet

Require: desired : “true”|“indifferent”
if desired = “true” then

if actual = “true” then rvk = 0.0 //smaller, better
else rvk = 1.0

else
rvk = 0.0 //indifferent

Predicate 2 Rank value rvk for Rk w.r.t. Ccleanliness

Require: desired : “good”|“average”
if desired = “actual” then

rvk = 0.0 //perfect fit
else if actual = “bad” then

rvk = 1.0
else if actual = “good” then

rvk = 0.0 //better than expected
else

rvk = 0.5 //not that good, just average

3.3 Realizing theLearning Module
Our learning process involves the extraction of ranking con-
straints from user selections. Let r be the ranked list of
restaurants presented to the user based on the current set
of context values. The learning process requires the user to
make a single selection s from r. In our design, the individ-
ual restaurant’s information is readily available to the users
so that they can make informed choices. Instead of present-
ing all the items in r for users to examine, we note the in-
teresting observation by Silverstein et al [21] that users tend
to scan only the top ten items in a ranked list of links. We
expect a similar user behavior for recommenders in general,
hence we decide to present just the top-k recommendations.

What kind of information can we extract from this single
selection made by the user? Consider the scenario where
three restaurants are recommended and the user makes a
single selection among these three restaurants. Note that we
do not require the user to re-order the presented list, which
means that we do not have the complete relative rankings
of all items presented in r, but simply know that among the
k presented items in the list r, the user has decided that

s best matches the current context values. For example,
if the user has chosen the second restaurant, we know that
this user favors it over the other two restaurants. We cannot,
however, deduce anything about her preference between the
first and third restaurants. In general, we cannot deduce
anything about the user’s preference between any pair of
non-selected items. Denoting the user’s preferences as r∗ =
{(Ri, Rj) : Ri is considered a closer match to the current set
of context values than Rj}, we can deduce in this particular
example that (R2, R1) ∈ r∗ and (R2, R3) ∈ r∗.

We generalize the above process of extracting pairwise pref-
erences from a single user selection as follows: For a pre-
sented ranking, if Ri is chosen, extract pair-wise preferences
r∗ = {(Ri, Rj) ∀j, 1 ≤ j ≤ k, j 6= i}. With this clear idea
of the kind of information that can be extracted from user
feedbacks, we can now state the focus of our work more
concisely as that of investigating the effective learning, mod-
elling and application of relative significance among context
parameters for a typical recommender system. This enables
us to formulate our problem within the class of linear rank-
ing functions as follows:

Given a set S of T training samples each consisting of a set
of context values Pt and its corresponding target ranking r∗t ,
i.e. S = {(P1, r

∗

1), (P2, r
∗

2), · · · , (PT , r∗T)}, learn the relative
weights vector ~w of the contexts such that as many of the
following inequalities are satisfied as possible:

∀(Ri, Rj) ∈ r
∗

1 : ~wφ(P1, Ri) > ~wφ(P1, Rj)

· · ·

∀(Ri, Rj) ∈ r
∗

T : ~wφ(PT , Ri) > ~wφ(PT , Rj)

(2)

where φ(Pt, Rk) is the measure of how closely Rk satisfies
the values of Pt. Using Eq. 1, the similarity value φ(Pt, Rk)
for sample t is computed as 1 − dk with wn = 1.0 ∀n, 1 ≤
n ≤ N . Each of the above inequalities in Eq. 2 is known as
a constraint. We can re-scale ~w and rearrange Eq. 2 as

∀(Ri, Rj) ∈ r
∗

1 : ~w(φ(P1, Ri) − φ(P1, Rj)) > 1

· · ·

∀(Ri, Rj) ∈ r
∗

T : ~w(φ(PT , Ri) − φ(PT , Rj)) > 1

(3)

3.3.1 Learning via Support Vector Machine
We are now in a position to employ any of the available
linear binary classification methods for learning the relative
weights of contexts. Without prejudice to other methods,
we choose the popular support vector machine (SVM) as
our learning approach. The SVM tries to find the optimal
hyperplane that separates positive data points from the neg-
ative ones while maximizing the margin of separation. De-
noting d+ (d−) as the shortest distance from the separating
hyperplane to the closest positive (negative) example (the
support vectors), this margin is defined as d+ +d− [3]. Since
our concern lies not in the design of learning SVM nor the
analysis of any learning method in particular, we adopt the
Ranking SVM built by Joachims [14], and reformulate our
learning problem as a constrained optimization problem:

Find the optimal values of ~w and slack variables ~ξ such that
they minimize the cost function

δ(~w, ~ξ) =
1

2
~w

T
~w + C

XT

t=1
ξt (4)

subject to the constraints

∀(Ri, Rj) ∈ r
∗

1 : ~w(φ(P1, Ri) − φ(P1, Rj)) > 1 − ξ1

· · ·

∀(Ri, Rj) ∈ r
∗

T : ~w(φ(PT , Ri) − φ(PT , Rj)) > 1 − ξT

(5)

and

ξt ≥ 0 ∀t, 1 ≤ t ≤ T (6)

where C is a positive parameter controlling the tradeoff be-
tween the margin width and the training error and r∗t is the
observed partial rankings in sample t.

4. EXPERIMENTAL EVALUATION
Human users make decisions by considering the complex in-
terplay of aspects relevant to situations. Let’s focus on our
sample scenario of choosing restaurants, a typical situation
in which we have to make a best-effort selection among avail-
able choices and a task in which recommenders are meant to
assist us. If the entire set of restaurants is placed before a
user who is required to identify the best choice among them,
s/he would most likely concentrate only on comparing at-
tributes of interest. This optimal set of contexts that is of
real importance to a user is what this part of our work is
trying to learn and model.

Our application scenario involves a total of 64 context para-
meters and 15 restaurants. A typical recommendation round
in our experiments (a sample) involves context values being
generated and presented to a user, who is asked to indicate
the recommended restaurant that best matches these val-
ues. From each sample, we extract the pairwise preference
rankings and employ the SVMlight for learning [13], using
the tool’s default value for tuning parameter C in all our
tests.

4.1 Off-line Learning
We begin with a series of off-line learning experiments to
verify the correct formulation of our learning problem. Be-
sides determining the smallest suitable sample size for re-
liable learning, we also wish to investigate the effects on
our learning of displaying just the top-3 restaurants in each
round. Through this latter set of tests, we aim to confirm
two assertions: (1) user’s opinion on non-displayed restau-
rants is not needed for our learning since what we want to
learn is his contextual preferences when ranking restaurants
and not his preferences among the restaurants, and (2) en-
suring that all restaurants have been unbiasedly presented
is unnecessary for our formulated learning problem.

Table 1: Results for Simulated User. “a|b|c”: results are averaged over a sets of b examples, each with c recommendations
displayed; LOO: leave-one-out accuracies from SVMlight; Fm: F-measure

Test Training Acc. (%) CV (%) LOO (%) Fm

Best 2nd 3rd Recall Prec.

12|100|15 83.3 15.8 0.83 76.8 99.1 99.2 0.71
3|1000|15 85.3 14.4 0.37 84.2 99.2 99.5 0.71
12|100|3 90.7 9.00 0.33 80.2 87.8 91.8 0.64
3|1000|3 95.1 4.80 0.10 93.6 95.7 97.2 0.67

startLocation
returnLocation
restaurantCategory
restaurantPaymentAvailableByCash
restaurantCleanliness
restaurantHasVarietyOfFood
restaurantAveragePriceOfAMeal

Figure 3: Specified Contexts of Interest

4.1.1 Learning with a Simulated User
First, we simulate a human user in the sample collection
phase by explicitly specifying the contexts of interest. In
each round, our program simulates the following actions:

Step 1 Request for a new set of context values

Step 2 Choose the best recommended restaurant

Step 3 Generate pair-wise preferences

The main contribution of our simulation comes in step 2.
A human user with the specified context interests would
have had to tediously consider each recommendation and
choose the one best-fitting each set of the context values.
Our program simulates this process by ranking the displayed
restaurants using a context space formed by the contexts of
interest. This simulation enables large data sets to be cre-
ated with ease while maintaining a high consistency in de-
cisions. To make our simulation more meaningful, we asked
the human subject of our real-user tests to specify the set
of interested contexts. We show his choices in Figure 3.

We obtain several data sets based on this simulation process.
For each set, we measure the training accuracies in terms of
the percentage of examples with the desired outcome match-
ing the top-most (Best), 2nd, and 3rd recommendation. In
addition, we obtain the 5 × 2-fold cross-validation (CV) ac-
curacy as well as analyze the predicted relative ordering of
contexts based on the learned weights. Average F-measure
values are then computed in terms of the similarity between
the seven contexts with the largest absolute weights and the
user-specified set of interested features. Our observations
are summarized in Table 1.

We observed that although increasing the sample size to
1000 brought about notable improvements in all the accu-
racies, the average F-measure values showed that the actual
proportion of interested contexts among the top seven con-
texts with the largest learned absolute weights did not im-
prove significantly, regardless of whether all or just the top

Table 2: Results for Human User
Test PFR (% 30 rds) LOO (%) Fm

Recall Prec.

1|100|3 93.3 89.9 91.2 0.57
3|60|3 71.1 89.8 90.3 0.57
3|30|3 68.9 85.3 88.6 0.62
3|10|3 - 83.5 84.6 0.41

three restaurants were presented. These tests clearly show
that our system’s learning ability for a sample size of 100 is
comparable to that for a much larger sample size of 1000,
and that our earlier assertions on not having to present all
available items are empirically sound. We conclude that our
formulation of the learning problem is correct and that our
learning approach is indeed effective.

4.1.2 Learning with a Human User
Next, we investigate whether our proposed learning improves
the recommendations from the perspective of a real user, as
well as whether an even smaller set of learning examples
might be sufficient. Our simulations have shown that 100
samples are sufficient for learning when the user is consistent
in his choices. We now investigate whether such consistency
is reasonable to expect of a real user. For this, 100 ran-
domly generated sets of context values are presented to the
user together with the top-3 recommendations. These form
the base set of examples for our subsequent off-line learning
tests.

We split the set of 100 samples into smaller subsets to an-
alyze if a smaller sample size is sufficient. After learning
off-line from each of these data sets, we make 30 rounds of
recommendations based on just the top-7 contexts with the
largest learned absolute weights. The proportion of these
30 recommendations, for which the user indicated the top-
most recommended restaurant as best-matching the inter-
ested parameters, is the positive feedback ratio (PFR). This
metric gives an indication of how well the learned system
performs from the perspective of the user. The results of
these experiments are presented in Table 2.

Our results show that the average values for all the metrics
dropped as we decreased the sample size. Interestingly, the
F-measure of the learned model remained at around 60% (4
interested among top 7 contexts) as the sample size fell to
30, but plunged to just 40% (3 out of 7) for samples of size
10. We note too that the reduction in size from 100 to 60
caused a 22.2% drop in feedback ratios, but a further cut
to 30 resulted in just a small further drop of 2.2%. These

observations suggest that the smallest sample size allowing a
level of learning comparable to that of 100 samples is around
30.

In comparison, the computed PFR for our 100 base sam-
ples with no learning is just 55%, clearly suggesting that
the 68.9% ratio at sample size 30 is a significant improve-
ment. Based on all these observations, we are confident that
our proposed approach of learning the relative significance
among contexts can indeed be applied to significantly im-
prove the quality of recommendations.

4.2 Online Learning
Next, we extend our experiments to an online learning sce-
nario, adapting the ideas from the incremental algorithm of
Domeniconi and Gunopulos [8] for our learning module. Our
algorithm considers the user’s selections for various sets of
context values as a stream of data arriving in intermittent
batches of size b, and performs learning only on the most
recent w batches. At time t, the training set, which can be
viewed as a queue, contains batches Bt

1, Bt
2,· · · , and Bt

w,
where Bt

w is the most recent batch. At time t+1, Bt
1 is dis-

carded and Bt
2 to Bt

w are moved forward to form Bt+1

1 ,· · ·
and Bt+1

w−1. The latest data batch joins the queue as Bt+1
w .

This algorithm ensures a training data set of maximum size
w × b, significantly smaller than the entire history of past
examples. In addition, it captures any shifts in contextual
preferences by discarding old examples and learning only
from the latest batches.

Our learning algorithm is shown in Algorithm 1 below, in
which b denotes the fixed batch size, w denotes the number
of recent batches to be learned, W denotes the desired learn-
ing window size (W = w × b), and S denotes the example
queue, where |S| ≤ (w + 1) × b at any time. For a better
control over the adaptation rate, we introduce a predefined
value abs min as the absolute minimal number of examples
for which the first learning would occur.

Algorithm 1 Incremental Learning

Require: W ≥ abs min, b ≤ abs min
Require: abs min modulo b = 0

loop
gather incoming data batch B, append B to S

3: if first learning not done then
min = abs min

else
6: min = W

if |S| < min then
proceed on to next round

9: prune examples of S until |S| = min, compute current
PFR on S
if current PFR < desired PFR then

if current PFR ≥ previous observed PFR then
12: train on S, rank contexts based on learned

weights, suggest pruning contexts with |weight|
< a × largest |weight|

else
if contexts were removed in a previous round
then

15: suggest restoring these removed contexts
else

suggest restoring to full context set

The best value for pruning coefficient a is observed to be
0.33 from our off-line tests. We recall that the user has a

Table 3: Online Results w=10, b=10, abs min=30

Cycle Sample Size No. of Contexts Observed PFR

1 30 (1-30) 64 0.0
2 100 (1-100) 7 0.7
3 100 (11-110) 5 0.8
4 100 (21-120) 5 0.9
5 100 (31-130) 5 1.0

Table 4: Online Results w=3, b=10, abs min=10

Cycle Sample Size No. of Contexts Observed PFR

1 10 (1-10) 64 0.1
2 30 (1-30) 16 0.6
3 30 (11-40) 11 0.77
4 30 (21-50) 9 0.7
5 30 (31-60) 11 0.7
6 30 (41-70) 7 0.83
7 30 (51-80) 5 0.97

list of interested contexts (Figure 3). We require the user
to always specify that these interested contexts be kept in
consideration, so that we can define the common saturation
point as when the system can no longer trim off any con-
texts other than those interested. Further samples can then
be gathered to see if any of the interested contexts can be
removed to yield the optimal set. Due to space constraints,
we present only two of our online tests in this paper. For
both tests, where only the top-3 recommendations were dis-
played, the user identified restaurantCategory as the most
important context and this yielded some interesting obser-
vations.

Table 3 shows the results of the first test. Our saturation
condition was satisfied at the end of the first learning cycle
involving only 30 samples. The most important context was
correctly identified to be restaurantCategory, and our sys-
tem suggested to remove all the other contexts. Analyzing
his choices for these 30 samples, we found this suggestion to
be sound as the user had mostly chosen a restaurant based
on only its category. At the end of the second learning in-
volving the first 100 cases, the system suggested to remove
two of the interested contexts, namely payment available by
cash and average price of a meal (The user confirmed sub-
sequently that these were not considered at all throughout
the test). Our results show that the user had chosen none
of the top-most recommendations when all contexts were
considered, but had actually selected all of the top-most
recommendations after 30 samples were learned.

We then repeat the experiment with abs min reduced to
10 to improve our online learning’s adaptation rate. Our
results are summarized in Table 4. Our learning on the first
10 samples significantly improved the PFR from 0.1 to 0.6.
A further learning involving the first 30 samples brought
the ratio to 0.77. However, the learning at the end of cycle
3 pruned away more contexts, and this caused the feedback
ratio to fall slightly to 0.7. At this point, our recovery system
kicked in and the last two removed contexts were restored.
Subsequent cycles saw the further trimming of contexts and
we reached our defined saturation point after cycle 5. After
a further learning cycle, the system correctly suggested to

remove the payment available by cash and average price of a
meal contexts, which are in fact the same two that our first
test eliminated from the interested contexts.

This series of experiments show that indeed our system is
able to correctly identify the user’s real interests and hence
find the optimal set of contexts among all available para-
meters. Furthermore, we are able to significantly improve
the adaptation rate of our system without compromising the
effectiveness of learning. We conclude from this extensive se-
ries of both off-line and online experiments that our system
is effective in learning and applying the relative significance
of context parameters within our recommender framework.

5. RELATED WORK
Dunlop et al described in [9] a palmtop application CityGuide
for restaurant recommendation based on the match of restau-
rant types to a user’s past preferences as well as ratings
given by reviewers with similar preferences. They depended
on the two user-specified filters of food type and price for
profiling, and did not employ extensive learning to optimize
the context set as what we have done in this work.

Tung et al demonstrated in [23] a prototype design of a soft-
ware agent that was capable of recommending travel-related
information based on the contexts of a user. Their recom-
mendation procedure involved a dialogue between the user
and the agent for modifying constraints given to the agent.
The initial constraints were entered manually by the user
as his or her preferences (e.g. budget, food-type, atmosphere,
smoking or non-smoking). If a recommendation that fully
satisfied all these constraints did not exist in the system’s
restaurant directory, the agent tried to relax the constraints
one at a time and proposed these changes to the user, who
had a choice of accepting any one of the proposed relax-
ations. The one restaurant in the directory that best fitted
the relaxed set of constraints was then presented. Their
system worked only with a statically defined set of contexts
which could not be altered or optimized through usage.

A separate paper by Brunato et al proposed a middleware
layer that collected a historical database of user position and
URL usage information and then analyzed these to discover
the links’ spatial usage patterns [2]. A preference metric
that reflected where and how often each link had been ac-
cessed by previous users was then computed. URLs were
then ranked and recommended to the users based on their
current location. Like us, they suggested the implicit gath-
ering of usage feedback through user behaviors, e.g. whether
any link was clicked, and which link was clicked. However,
they considered only the current user location for recommen-
dation, unlike our work which is much more comprehensive
and can be readily applied to any contexts that are relevant
to the recommendation task.

To the best of our knowledge, the only research that explic-
itly attempted to employ user modelling techniques within
the domain of context-aware computing were the recent se-
ries of works by Byun and Cheverst [4, 5]. They argued
that the user’s preferences could be readily induced from the
context history using user modelling and machine learning
techniques, and that these modelled behaviors could be used
together with the current contexts in supporting proactive

environmental adaptations. In [5], the authors described
an experiment to demonstrate the learning of user’s prefer-
ences from the context history for controlling an office en-
vironment. They defined a small static set of contexts, and
collected the changes in these contexts as a time-stamped
context history. From this history, they induced rules for
representing the user’s preferences regarding the status of
window in various situations. They however did not make
any attempt to dynamically optimize the user contexts as
what we have proposed and extensively investigated.

6. CONCLUSION AND FUTURE WORK
Conventional recommender systems do not consider situ-
ational information and this seriously limits the relevance
of their results. This paper advocates context-awareness
as a promising approach to enhance recommenders’ per-
formance. We present a framework that separates contex-
tual concerns from recommendation, so that contexts can
be readily shared across applications. More importantly, we
devise a learning algorithm that dynamically optimizes the
context set for a specific recommendation task and user, and
validate through extensive experiments that our system is
capable of learning quickly and accurately.

We are extending this work in several directions. Firstly,
we would like to investigate the possibilities of meaningfully
applying a user’s contextual preferences learned for a par-
ticular recommender to diverse problem domains in other
systems. Along this line, we consider the extension of our
approach to modelling groups of users instead of just indi-
viduals as an interesting direction.

Secondly, the issue of interdependencies among contexts should
be resolved. The status of certain contexts may affect the
importance of other contexts during decision-making. For
example, the location of a restaurant should gain a greater
importance when the weather is bad.

Thirdly, our restaurant recommender has been implemented
as a desktop application. We would like to experiment with
deployment on a mobile platform like the Smartphone and
the PDA in order to study the user interaction issues.

Finally, we have investigated the dynamic reduction of the
context set for recommendation considerations. It would
be useful to be able to also dynamically expand the set of
contexts for improving the recommendation performance.

7. ACKNOWLEDGMENTS
The reported work is partially supported by an A*Star SERC
TSRP Grant No. 042-111-0061 and an A*Star Graduate
Scholarship (PhD) to Ghim-Eng Yap.

8. REFERENCES
[1] J. E. Bardram. Applications of context-aware

computing in hospital work - examples and design
principles. In Procs of the ACM Symposium on
Applied Computing, pages 1574–1579, March 2004.

[2] M. Brunato, R. Battiti, A. Villani, and A. Delai. A
location-dependent recommender system for the web.
Technical report, DIT-02-0093, University of Trento,

Dept of Information and Communication Technology,
November 2002.

[3] C. J. C. Burges. A tutorial on support vector
machines for pattern recognition. Data Mining and
Knowledge Discovery, pages 121–167, 1998.

[4] H. E. Byun and K. Cheverst. Exploiting user models
and context-awareness to support personal daily
activities. Workshop in UM2001 on User Modeling for
Context-Aware Applications, 2001.

[5] H. E. Byun and K. Cheverst. Utilising context history
to provide dynamic adaptations. Journal of Applied
AI, to appear early 2004.

[6] J. D. Carswell, K. Gardiner, and M. Neumann.
Wireless spatio-semantic transactions on multimedia
datasets. In Procs of ACM Symposium on Applied
Computing (SAC), pages 1201–1205, March 2004.

[7] A. K. Dey and G. D. Abowd. Towards a better
understanding of context and context-awareness.
Technical report, GIT-GVU-99-22, June 1999.

[8] C. Domeniconi and D. Gunopulos. Incremental
support vector machine construction. In IEEE
International Conference on Data Mining (ICDM),
pages 589–592, 2001.

[9] M. Dunlop, A. Morrison, S. McCallum, and et al.
Focussed palmtop information access combining
starfield displays with profile-based recommendations.
Mobile and Ubiquitous Information Access Workshop
2003, pages 79–89, 2004.

[10] K. Fujinami, T. Yamabe, and T. Nakajima. “Take me
with you!”: A case study of context-aware application
integrating cyber and physical space. In Procs of the
2004 ACM Symposium on Applied Computing (SAC
2004), pages 1607–1614, March 2004.

[11] D. Goren-Bar and T. Kuflik. Don’t miss-r -
recommending restaurants through an adaptive mobile
system. In Procs of IUI’04, pages 250–252, January
2004.

[12] R. Hexel, C. Johnson, B. Kummerfeld, and A. Quigley.
“Powerpoint to the people”: Suiting the word to the
audience. In Procs of the 5th Conf on Australasian
User Interface, volume 28, pages 49–56, 2004.

[13] T. Joachims. Making large-scale svm learning
practical. Advances in Kernel Methods - Support
Vector Learning, 1999.

[14] T. Joachims. Optimizing search engines using
clickthrough data. In Procs ACM SIGKDD Int Conf
Knowledge Discovery and Data Mining (KDD’02),
pages 133–142, 2002.

[15] G. J. F. Jones and P. J. Brown. Context-aware
retrieval for ubiquitous computing environments.
Mobile and Ubiquitous Information Access Workshop
2003, pages 227–243, 2004.

[16] N. Kern, B. Schiele, H. Junker, and et al. Wearable
sensing to annotate meeting recordings. Personal and
Ubiquitous Computing, 7(5):263–274, October 2003.

[17] P. Massa and B. Bhattacharjee. Using trust in
recommender systems: An experimental analysis. In
iTrust2004 International Conference, pages 221–235,
2004.

[18] S. E. Middleton, N. R. Shadbolt, and D. C. De-Roure.
Ontological user profiling in recommender systems.
ACM Transactions on Information Systems,
22(1):54–88, January 2004.

[19] P. Resnick and H. R. Varian. Recommender systems.
Commun. ACM, 40:56–58, 1997.

[20] G. Shankar. The xml standards landscape: Xml holds
promise for better business-to-business
communication. http://www.infoworld.com/.

[21] C. Silverstein, M. Henzinger, H. Marais, and et al.
Analysis of a very large altavista query log. Technical
report, SRC 1998-014, Digital Systems Research
Center, 1998.

[22] L. Terrenghi and A. Zimmermann. Tailored audio
augmented environment for museums. In Procs of the
9th International Conference on Intelligent User
Interface, pages 334–336, 2004.

[23] H. W. Tung and V. W. Soo. A personalized restaurant
recommender agent for mobile e-service. In Procs of
the 2004 IEEE International Conference on
e-Technology, e-Commerce and e-Service (EEE’04),
pages 259–262, 2004.

	Dynamically-optimized context in recommender systems
	Citation

	dynOptCtxInRecSys.dvi

