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Community Discovery in Social Networks via Heterogeneous Link Association
and Fusion

Lei Meng ∗ Ah-Hwee Tan ∗

Abstract

Discovering social communities of web users through clus-

tering analysis of heterogeneous link associations has drawn

much attention. However, existing approaches typically re-

quire the number of clusters a prior, do not address the

weighting problem for fusing heterogeneous types of links

and have a heavy computational cost. In this paper, we

explore the feasibility of a newly proposed heterogeneous

data clustering algorithm, called Generalized Heterogeneous

Fusion Adaptive Resonance Theory (GHF-ART), for discov-

ering communities in heterogeneous social networks. Differ-

ent from existing algorithms, GHF-ART performs real-time

matching of patterns and one-pass learning which guarantee

its low computational cost. With a vigilance parameter to

restrain the intra-cluster similarity, GHF-ART does not need

the number of clusters a prior. To achieve a better fusion of

multiple types of links, GHF-ART employs a weighting func-

tion to incrementally assess the importance of all the feature

channels. Extensive experiments have been conducted to an-

alyze the performance of GHF-ART on two heterogeneous

social network data sets and the promising results compar-

ing with existing methods demonstrate the effectiveness and

efficiency of GHF-ART.

1 Introduction

Clustering [4] for discovering communities in social net-
works [1], aiming at identifying groups of users with
common interests and behavior, has been an important
task for the understanding of collective social behavior
and associative mining such as social link prediction and
recommendation [2, 3]. However, with the popularity of
social websites such as Facebook, users may communi-
cate and interact with each other easily and diversely,
such as posting blogs and tagging documents. The avail-
ability of those social media data, on one hand, facili-
tates the extraction of rich link information among users
for further analysis. On the other hand, new challenges
have been identified for traditional clustering techniques
on community discovery from heterogeneous social net-
works, such as the scalability to large social networks,
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techniques for link representation and methods for the
fusion of heterogeneous types of links.

In the recent years, many works have been done on
the clustering of heterogeneous data. Existing meth-
ods may be considered in four categories: multi-view
clustering approach [5, 12, 13, 17], spectral clustering
approach [11, 14, 21, 23], matrix factorization approach
[6, 15], aggregation approach [8, 9]. However, they have
several limitations for clustering heterogeneous social
links in practice. Firstly, existing algorithms typical-
ly involve iterative optimization which does not scale
well to big data sets. Secondly, most of them need the
number of clusters a prior, which is hard to decide in
practice. Thirdly, most of those algorithms do not con-
sider the weighting problem when fusing multiple types
of links. Since different types of links have their own
meanings and levels of feature values, equal or empirical
weights for them may bias their importance in similarity
measure and may not yield optimal performance.

In this paper, we explore the feasibility of General-
ized Heterogeneous Fusion Adaptive Resonance Theory
(GHF-ART) for identifying user groups in the heteroge-
neous social networks. GHF-ART [10], extended from
Fusion ART [16], has been proposed for clustering we-
b multimedia data through the fusion of an arbitrary
rich level of heterogeneous data resources such as im-
ages, articles and surrounding text. For clustering data
patterns of social networks, we develop a set of specific
feature representation and learning rules for GHF-ART
to handle various heterogeneous types of social links,
including relational links, textual links in articles and
textual links in short text.

GHF-ART has several key properties different from
existing approaches. First, GHF-ART performs online
and one-pass learning so that the clustering process can
be done in just a single round of pattern presentation.
Second, GHF-ART does not need the number of clus-
ters a prior. Third, GHF-ART globally and locally eval-
uates the similarity between patterns across and in each
feature channel. Fourth, the obtained similarities from
all the feature channels are fused by a weighting func-
tion, termed Robustness Measure (RM ), which adap-
tively tunes the weights of different feature channels.



We analyze the performance of GHF-ART on two
public social network data sets, namely the YouTube
data set [8] and the BlogCatalog data set [7], in terms
of parameter selection, clustering performance compari-
son, performance in Robustness Measure and time cost.
From our experimental results, we analyze the param-
eter selection methods for GHF-ART and show that
GHF-ART outperforms and is much faster than many
existing heterogeneous data clustering algorithms.

The remainder of paper is summarized as follows.
Section 2 reviews existing works on the problem of
heterogeneous data clustering. Section 3 formulates the
problem of community discovery in the heterogeneous
social networks. The technical details of GHF-ART are
described in Section 4. Section 5 presents the analysis
of experimental results and the last section concludes
our work.

2 Related Work

Our work on identifying social groups of users via het-
erogeneous social links is related to the problem of het-
erogeneous data clustering. Considering different mod-
el formulation, existing approaches can be categorized
into four categories: 1) The multi-view clustering
approach [5, 12, 13, 17] considers to use two clustering
models for two types of independent features. Subse-
quently, the learnt parameters of them are further re-
fined by learning from each other iteratively. However,
this approach is restricted to two types of links. 2) The
spectral clustering approach [11, 14, 21, 23] typi-
cally models each feature modality as a graph and uses
different unified objective function to identify an overall
best cut of the graphs, which is typically an embedding
vector and needs traditional clustering algorithms to ob-
tain the final results. 3) The Matrix factorization
approach [6, 15] factorizes a similarity matrix into t-
wo or three matrices and minimize the reconstruction
error objective, which identifies the cluster membership
of patterns by finding a cluster indicator matrix that
contains the projection values of each data pattern to
a pre-defined number of clusters. 4) The aggregation
approach [8, 9] follows the idea of first obtaining the
relational vectors [8] or similarities [9] between patterns
for each type of features and then integrating them to
produce the final results.

3 Problem Statement

The community discovery problem in the heterogeneous
social networks is to identify the user’s social groups
by evaluating different types of links between users
such that group members interact with each other more
frequently and share more common interests than those
outside the group.

Figure 1: The architecture of GHF-ART for integrating
K types of feature vectors.

Considering a set of users U = {u1, . . . , uN} and
their associated multiple types of links L = {l1, . . . , lK},
which, as described in section 1, may be the contact
links, textual links or visual links. Each user un can
be represented by a multi-channel input pattern I =
{x1, . . . ,xK}, where xk is a feature vector extracted
from the k-th link.

The community discovery task, in this work, is to
identify a set of clusters C = {c1, . . . , cJ} according
to the similarities among the user patterns evaluated
within and across different types of links. As a result,
given a user uN ∈ cJ and two users up ∈ cJ and uq 6∈ cJ ,
for ∀p, q such that up, up ∈ U , we have SuN ,up

> SuN ,uq
,

where SuN ,up
denotes the overall similarity between

uN and up. Namely, users in the same cluster may
consistently have a higher degree of similarity in terms
of all types of links than those belonging to the other
clusters.

4 GHF-ART for Clustering Heterogeneous
Social Links

As shown in Fig. 1, GHF-ART consists of K indepen-
dent feature channels in the input field designated to
handle an arbitrarily rich level of heterogeneous links
and a category field. The clustering process of GHF-
ART processes one input pattern at a time, which com-
prises four key steps: 1) Category choice: select a
best-matching cluster, called a winner, across all the
feature channels; 2) Template matching: Evaluate
if the degree of similarity between the input pattern I
and the winner satisfies a threshold, called the vigilance
criteria, for each feature channel; 3) Resonance and
Reset: If the vigilance criteria is violated, a reset oc-
curs so that a new winner is selected from the rest of
the clusters in the category field; Otherwise, a resonance
occurs which leads to the learning of winner from the
input pattern for all the feature channels. 4) Network
Expansion: If no cluster meets the vigilance criteria,
a new cluster is generated to encode the new pattern.
The dynamics of GHF-ART is summarized as follows.

Input vectors: Let I = {xk|Kk=1} denote the multi-
channel input pattern, where xk is the feature vector
for the k-th feature channel. Note that the min-max
normalization should be employed to make sure that the



input values are in the interval [0, 1]. The complement
coding [18] is used to normalize the input feature vector
through which xk is concatenated with its complement
vector x̄k in the input field such that x̄ki = 1− xki .

Weight vectors: Let {wk
j |Kk=1} denote the weight vec-

tors associated with the j-th cluster cj in the category
field F2.

Parameters: The GHF-ART’s dynamics is determined
by choice parameter α > 0, learning parameter β ∈
[0, 1], contribution parameters γk ∈ [0, 1] for k =
1, . . . ,K and vigilance parameters ρ ∈ [0, 1].

4.1 Heterogeneous Link Representation

4.1.1 Density-based Features for Relational
Links Relational links, such as contact and co-
subscription links, uses the number of interactions as
the strength of connection between users. Considering a
set of users U = {u1, . . . , uN}, each user un is represent-
ed by a feature vector FDn = [fn,1, . . . , fn,N ], wherein
fn,N reflects the density of interactions between the user
un and the N -th user in the user set U .

4.1.2 Text-similarity Features for Articles
Text-similarity features are used to represent the ar-
ticles of users with long paragraphs such as blogs. Con-
sidering the word list G = {g1, . . . , gM} of all the M
distinct keywords from the articles of a set of users
U = {u1, . . . , uN}, the feature vector of un can be repre-
sented by FAn = [fn,1, . . . , fn,M ], where fn,M indicates
the importance of keyword gM to represent the user un,
which can be valued by the term frequency-inverse doc-
ument frequency (tf-idf).

4.1.3 Tag-similarity Features for Short Text
Tag-similarity features are used to represent short text,
such as tags and comments. The key difference of
short text from article is that short text consists of
few but meaningful words. Considering a set of user
U = {u1, . . . , uN} and the corresponding word list
G = {g1, . . . , gH} of all the H distinct tags, the
feature vector of user un can be expressed by FSn =
[fn,1, . . . , fn,H ]. Following the representation method
for meta-information in [10], fn,h for h = 1, ...,H is
given by

(4.1) fS,h =

{
1, if gh ∈ Gn
0, otherwise

.

4.2 Heterogeneous Link Fusion for Similarity
Measure GHF-ART measures the similarity between
the input pattern and each cluster in the category field
through a two-way similarity measures: a bottom-up

measure to select a winner cluster by considering the
overall similarity across all the feature channels; and a
top-down measure to evaluate if the similarity for each
feature channel meets the vigilance criteria threshold.

4.2.1 Bottom-Up Similarity for Category
Choice In the first step, a choice function is employed
to evaluate the overall similarity between the input
pattern and the template weight of each cluster in the
category field, which is defined by

T (cj , I) =

K∑
k=1

γk
|xk ∧wk

j |
α+ |wk

j |
,(4.2)

where the fuzzy AND operation ∧ is defined by (p ∧
q)i ≡ min(pi,qi), and the `1 norm |.| is defined by |p| ≡∑
i pi. The choice function evaluates the proportion

of intersection between the feature vectors of the input
pattern and the prototypes of the winner across all the
feature channels so that the winner cluster with the best
matching feature distribution in the category field is
identified.

4.2.2 Top-Down Similarity for Template
Matching After identifying the winner cluster, a
match function is used to evaluate if the selected
winner matches the input pattern in terms of each
feature channel. For the k-th feature channel, the
match function is defined by

M(cj∗ ,x
k) =

|xk ∧wk
j∗ |

|xk|
.(4.3)

If the match function values for all the K feature
channels satisfies the vigilance criteria defined by
M(cj∗ ,x

k) > ρ for k = 1, ...K, a resonance occurs so
that the input pattern is categorized into the winner
cluster. Otherwise, a reset occurs to select a new win-
ner from the rest of the clusters in the category field.

4.3 Learning from Heterogeneous Links

4.3.1 Learning from Density-based and Text-
similarity Features Assuming the k-th feature chan-
nel is for the density-based features, the learning func-
tion for the k-th feature channel of the winner cluster
cj∗ is defined by

ŵk
j∗ = β(xk ∧wk

j∗) + (1− β)wk
j∗ .(4.4)

We can observe that the values of the new weight vector
will not be greater than the old ones so that this learning
function may incrementally identify the key features
by preserving the key features which have stably high
values while depressing the features which are unstable
in values.



4.3.2 Learning from Tag-similarity Features
Assuming the k-th feature channel is for the tag-
sinilarity features of short text, given the k-th feature
vector xk = [xk1 , . . . , x

k
H ] of the input pattern I, the

winner cluster cj∗ with L users and the corresponding
weight vector wk

j∗ = [wkj∗,1, . . . , w
k
j∗,H ] of cj∗ for the

k-th feature channel, the learning function for wkj∗,h is
defined by

ŵkj∗,h =

{
ηwkj∗,h if xkh = 0

η(wkj∗,h + 1
L ) otherwise

,(4.5)

where η = L
L+1 . (4.5) models the cluster prototype for

the tag-similarity features by the probabilistic distribu-
tion of tag occurrences. Thus, the similarity between
tag-similarity features can be considered as the number
of common words. During each round of learning, the
keywords with high frequency to occur in the cluster
are given high weights while those of the noisy words
are incrementally decreased.

4.4 Adaptive Weighting of Heterogeneous
Links GHF-ART employs the Robustness Measure (R-
M ) to adaptively tune γ for different feature channel-
s, which evaluates the importance of different feature
channels by considering the intra-cluster scatters.

Considering a cluster cj with L users, each of which
is denoted by Il = {x1

l , . . . ,x
K
l } for l = 1, . . . , L and the

corresponding weight vectors for the K feature channels
denoted by Wj = {w1

j , . . . ,w
K
j }, the Difference for the

k-th feature channel of cj is defined by

Dk
j =

1
L

∑
l |wk

j − xkl |
|wk

j |
.(4.6)

Considering all the clusters, the contribution parameter
for the k-th feature channel γk is defined by

γk =
exp(− 1

J

∑
j D

k
j )∑K

k=1 exp(− 1
J

∑
j D

k
j )
.(4.7)

The respective incremental update equations for
the contribution parameters are further derived for the
following two cases:

• Resonance in existing cluster: Assuming the
input pattern IL+1 = {x1

L+1, . . . ,x
K
L+1} is assigned

to an existing cluster cj . For the k-th feature
channel, the corresponding update equations for
the density-based and text-similarity features and
tag-similarity features are defined by (4.8) and (4.9)
respectively:
(4.8)

D̂k
j =

η

|ŵk
j |

(|wk
j |Dk

j + |wk
j − ŵk

j |+
1

L
|ŵk

j − xkL+1|)

Algorithm 1 GHF-ART

Input: Input patterns In = {xk|Kk=1}, α, β and ρ.
1: set n = 1.
2: repeat
3: Present In = {xk|Kk=1} into the input field.
4: For ∀cj , calculate the choice function T (cj , In) in

(4.2).
5: Identify the winner cluster cj∗ so that j∗ =

arg maxj:cj∈F2 T (cj , In).
6: Calculate the match function M(cj∗ ,x

k) for k =
1, . . . ,K in (4.3).

7: If ∃k such that M(cj∗ ,x
k) < ρk, set T (cj∗ , In) =

0, go to 5.
8: If cj∗ exists, Update wk

j∗ for k = 1, . . . ,K
according to (4.4) and (4.5) respectively and
update γ according to (4.7)-(4.9).

9: If no cluster meets the vigilance criteria, Create
a new node cJ+1 such that wk

J+1 = xk for k =
1, . . . ,K, update γ according to (4.10)

10: n = n+ 1.
11: until All the input patterns are presented.
Output: Cluster Assignment Array {An|Nn=1}.

(4.9)

D̂k
j =

η

|ŵk
j |

(ηDk
j + |ŵk

j − ηwk
j |+

1

L
|ŵk

j − xkL+1|).

After the update for all feature channels, the new
contribution parameter can then be obtained by
calculating (4.7).

• Generation of new cluster: When generating a
new cluster, the differences of other clusters remain
unchanged. Therefore, it just introduces a propor-
tionally change of the Difference. Considering the
robustness Rk (k = 1, ...,K) for all of the feature
channels, the update equation for the k-th feature
channel is derived as:

(4.10) γ̂k =
R̂k∑K
k=1 R̂

k
=

(Rk)η∑K
k=1(Rk)η

.

4.5 Time Complexity Comparison The time
complexity of GHF-ART with Robustness Measure has
been demonstrated to be O(nincnf ) in [10], where ni
is the number of input patterns, nc is the number of
clusters and nf denotes the number of features across
all of the feature channels.

In comparison with existing heterogeneous data
clustering algorithms, the time complexity of LMF [6] is
O(tninc(nc + nf )), PMM [8] is O(n3i + tncninf )), SRC
[14] is O(tn3i + ncninf )) and NMF [15] is O(tncninf ),
where t is the number of iteration. We can observe that
GHF-ART has a much lower time complexity.



Figure 2: The clustering performance of GHF-ART on
the YouTube data set in terms of SSE-Ratio by varying
the values of α, β and γ respectively.

5 Experiments

5.1 YouTube Data Set

5.1.1 Data Description The YouTube data set 1

is a heterogeneous social network data set, which is o-
riginally used to study the community detection prob-
lem via heterogeneous interactions of users. This data
set contains 15, 088 users from YouTube website and
involves five different types of links, including contact
network, co-contact network, co-subscription network,
co-subscribed network and favorite network. Detailed
descriptions can be found in [8].

5.1.2 Evaluation Measure Since there is no ground
truth labels of users in this data set, we adopt five eval-
uation measures to evaluate cluster quality: 1) Cross-
Dimension Network Validation (CDNV ) [8]; 2) Aver-
age Density (AD) measures the probability if two user-
s have connection in the same cluster which is aver-
aged by the number of clusters and feature modalities;
3) Intra-cluster sum-of-squared error (Intra-SSE ) mea-
sures the weighted average of SSE within clusters across
feature modalities; 4) Between-cluster SSE (Between-
SSE ) measures the average distance between two cluster
centers in a clustering to evaluate how well-separated
the clusters are from each other; and 5) SSE-Ratio =
Intra-SSE/Between-SSE takes both the precision and
recall aspects of the clustering performance.

5.1.3 Parameter Selection Analysis We initial-
ized α = 0.01, β = 0.6 and ρ = 0.6 and studied the
change in performance of GHF-ART in terms of SSE-
Ratio by varying one of them while fixing others, as
shown in Fig. 2. We observe that despite some small
fluctuations, the performance of GHF-ART is roughly
robust to the change in the values of α and β. Re-
garding the vigilance parameter ρ, we find that the per-
formance is improved when ρ increases up to 0.65 and
degrades when ρ > 0.85. To study the reasons, we an-

1http://socialcomputing.asu.edu/datasets/YouTube

Figure 3: The cluster structures generated by GHF-
ART on the Youtube data set in terms of different values
of vigilance parameter ρ.

alyzed the cluster structures generated under different
values ρ, which is shown in Fig. 3. We observe that the
increase of ρ leads to the generation of more clusters,
which may contribute to the compactness of clusters.
At ρ = 0.9, a significant number of small clusters are
generated, which degrades the performance in terms of
recall.

To study the selection of ρ, we analyzed the cluster
structure at ρ = 0.5 and 0.7 in which the best perfor-
mance is obtained. We observe that when ρ increases
from 0.5 to 0.7, the number of small clusters with less
than 100 patterns increases. Therefore, we may assume
that when a suitable ρ is reached, the number of small
clusters starts to increase. In this case, the number of
small clusters is nearly 10% of the total number of clus-
ters. If this idea works, an interesting empirical way to
select a reasonable value of ρ may be tuning the value of
ρ until a small amount of small clusters are identified.

5.1.4 Clustering Performance Comparison We
compared the performance of GHF-ART with four
existing heterogeneous data clustering algorithms as
described in section 2, namely the Spectral Relational
Clustering (SRC) [14], Linked Matrix Factorization
(LMF) [6], Non-negative Matrix Factorization (NMF)
[15] and Principal Modularity Maximization (PMM)
[8]. Since SRC and PMM need K-means to obtain the
final clusters, we also employed K-means with Euclidean
distance metric as a baseline.

To make a fair comparison, since GHF-ART needs
to perform min-max normalization, we applied the
normalized data as input to the other algorithms. For
GHF-ART, we fixed α = 0.01 and β = 0.6. For K-
means, we concatenated the feature vectors of the five
types of links. For SRC, we set them the same values of
GHF-ART. The number of iteration for K-means, SRC,
LMF, NMF and PMM was set by 50.

We obtained the clustering results of GHF-ART
with different values of ρ ranging from 0.3 to 0.9 and
those of K-means, SRC, LMF, NMF and PMM with
different pre-defined number of clusters ranging from



Table 1: The clustering Results of GHF-ART, K-means, SRC, LMF, NMF and PMM under the best setting of
pre-defined number of clusters (“k”) (ρ = 0.6 and 0.65 when k = 35 and 37 respectively for GHF-ART) in terms
of CDNV , Average Density (AD), Intra-SSE, Between-SSE and SSE-Ratio on the YouTube data set.

CDNV AD Intra-SSE Between-SSE SSE-Ratio
value k value k value k value k value k

K-means 0.2446 43 0.0572 40 7372.4 41 9.366 40 774.14 41
SRC 0.2613 37 0.0691 35 6593.6 36 10.249 35 652.34 36
LMF 0.2467 39 0.0584 38 6821.3 41 9.874 37 694.72 40
NMF 0.2741 36 0.0766 35 6249.5 36 10.746 34 591.57 35
PMM 0.2536 36 0.0628 37 6625.8 37 9.627 34 702.25 35

GHF-ART 0.2852 37 0.0834 37 5788.6 37 10.579 35 563.18 37

20 to 100. The best performance of each algorithm for
each evaluation measure is reported in Table 1. We
observe that the best performance of each algorithm
is typically achieved with 34 − 41 clusters. GHF-ART
usually achieves the best performance with ρ = 0.65
which is more consistent than other algorithms. GHF-
ART outperforms other algorithms in terms of all the
evaluation measures except between-SSE, in which the
result of GHF-ART is still competitive to the best one.

5.1.5 Correlation Analysis of Heterogeneous
Networks We first ran GHF-ART under α = 0.01,
β = 0.6 and ρ = 0.65 and showed the track of contribu-
tion parameters for each type of links during clustering
in Fig. 4. We observed that the weights for all types of
features begin with 0.2. The sudden change at n = 1500
is due to the the incrementally presenting of new pat-
terns. After n = 12000, the weight values of all types of
features become stable.

We further analyzed the probability that pairs
of connected patterns fall into the same cluster to
study how each type of relational network affects the
clustering results, which is shown in Fig. 5. We observe
that the order of relational networks is consistent with
the results shown in Fig. 4, which demonstrates the
performance of Robustness Measure. Contact network
achieves much higher probability than other relational
networks. This may be due to that the contact network
is much sparser than the other four networks. As thus,
the links of contact network are more representative and
less links of patterns exist between clusters.

5.2 BlogCatalog Data Set

5.2.1 Data Description The BlogCatalog data set
2 is crawled in [7] and used for discovering the over-
lapping social groups of users. It consists of the raw
data of 88, 784 users, each of which involves the friend-
ship to other users and the published blogs. Each blog

2http://dmml.asu.edu/users/xufei/datasets.html#Blogcatalog

Figure 4: Track of contribution parameters for five
types of links during clustering with the increase in the
number of input patterns.

Figure 5: The probability that pairs of patterns fall
into the same cluster if connected in each of the five
relational networks.

of a user is described by several pre-defined categories,
user-generated tags and six snippets of blog content.

We extracted three types of links, including a
friendship network and two textual similarity networks
in terms of blog content and tags. By filtering infrequent
words from tags and blogs, we obtained 66, 418 users,
6, 666 tags and 17, 824 words from blogs. As suggested
in [7], we used the most frequent category in the blogs
of a user as the class label and got 147 class labels.

5.2.2 Evaluation Measure With the ground truth
labels, we used Average Precision, Cluster Entropy and
Class Entropy [22], Purity [19] and Rand Index [20]



Table 2: The clustering Results of GHF-ART, K-means, SRC, LMF, NMF and PMM under the best setting of
pre-defined number of clusters (“k”) (ρ = 0.15, 0.2 and 0.25 when k = 158, 166 and 174 respectively for GHF-
ART) on the BlogCatalog data set in terms of Average Precision(AP), Cluster Entropy (Hcluster), Class Entropy
(Hclass), Purity and Rand Index (RI ).

AP Hcluster Hclass Purity RI
value k value k value k value k value k

K-means 0.6492 185 0.5892 185 0.5815 165 0.6582 185 0.5662 170
SRC 0.7062 175 0.5163 175 0.4974 160 0.7167 175 0.6481 170
LMF 0.6626 175 0.5492 175 0.5517 155 0.6682 175 0.6038 165
NMF 0.7429 175 0.4836 175 0.4883 155 0.7791 175 0.6759 165
PMM 0.6951 170 0.5247 170 0.5169 165 0.6974 170 0.6103 165

GHF-ART 0.7884 174 0.4695 174 0.4865 158 0.8136 174 0.6867 166

Figure 6: The clustering performance of GHF-ART on
the BlogCatalog data set in terms of Rand Index by
varying the values of α, β and γ respectively.

Figure 7: The cluster structures generated by GHF-
ART on the BlogCatalog data set in terms of different
values of vigilance parameter ρ.

as clustering evaluation measures. Average Precision,
Cluster Entropy and Purity evaluate the intra-cluster
compactness. Class Entropy evaluates how well the
classes are represented by the minimum number of clus-
ters. Rand Index considers both cases. In our exper-
iments, Average Precision is defined by the weighted
sum of precision of all the clusters.

5.2.3 Parameter Selection Analysis We studied
the influence of parameters to the performance of GHF-
ART on the BlogCatalog data set with initial settings
α = 0.01, β = 0.6 and ρ = 0.2, as shown in Fig. 6.
We observed that, consistent with those in Fig. 2, the
performance of GHF-ART is robust to the change in
the choice and learning parameters. As expected, the

performance of GHF-ART varies a lot due to the change
in ρ. This curve may also be explained by the same
reason for that in Fig. 2.

To validate our findings to select a suitable ρ
in section 5.1.3, we analyzed the cluster structures
corresponding to the four key points of ρ, as shown
in Fig. 7. At ρ = 0.2, we observe that nearly 20
small clusters with less than 100 patterns are generated.
Interestingly, we find that the number of small clusters
is also around 10% of the total number of clusters, which
fits the findings that we observed on the YouTube data
set in section 5.1.3. This demonstrates the feasibility of
the empirical way to select ρ: Run GHF-ART several
times by tuning the value of ρ until 10% of the identified
clusters are small clusters having less than 100 patterns.

5.2.4 Clustering Performance Comparison We
compared the performance of GHF-ART on the Blog-
Catalog data set with the same set of algorithms com-
pared in the YouTube data set under the same param-
eter settings as mentioned in section 5.1.4, except the
number of clusters. We varied the value of ρ from 0.1 to
0.4 with an interval of 0.05 and the number of clusters
from 150-200 with an interval of 5. The best perfor-
mance for each algorithm with the number of clusters
is shown in Table 2. We observe that GHF-ART ob-
tained much better performance (at least 4% improve-
ment) than other algorithms in terms of Average Pre-
cision, Cluster Entropy and Purity. This indicates that
GHF-ART may well identify similar patterns and pro-
duce more compact clusters. Competitive performance
is obtained by SRC and NMF in terms of Class Entropy.
Considering the number of clusters under the best set-
tings, we find that GHF-ART identifies a similar num-
ber of clusters to other algorithms, which demonstrates
the effectiveness of GHF-ART.

5.2.5 Case Study We further studied the identified
communities by GHF-ART. First, we listed the discov-
ered five biggest clusters, as shown in Table 3. We ob-



Table 3: The five biggest clusters identified by GHF-ART with class labels, top tags, cluster size and Precision.
Cluster Rank Class Label Top Tags Cluster Size Precision

1 Personal music, life, art, movies, Culture 2692 0.7442
2 Blogging news, blog, blogging, SEO, Marketing 2064 0.8166
3 Health health, food, beauty, weight, diet 1428 0.7693
4 Personal life, love, travel, family, friends 1253 0.6871
5 Entertainment music, movies, news, celebrity, funny 1165 0.6528

Figure 8: Time cost of GHF-ART, K-means, SRC,
LMF, NMF and PMM on the BlogCatalog Dataset with
the increase in the number of input patterns.

serve that those clusters are well formed to reveal the
user communities since more than 1000 patterns are
grouped with a reasonable level of precision. We al-
so observe that most of the top tags discovered by the
cluster weight values are semantically related to their
corresponding classes. Interestingly, the clusters ranked
1 and 4 belong to the class “Personal”. This may be
because, according to our organized statistics, “Person-
al” is much larger than other classes. However, in the
top 5 tags, only “life” is shared by them. To have an in-
sight of the relation between these two clusters, we plot
the tag clouds for them. As shown in Fig. 9, we ob-
serve that the two clusters share more key tags such as
“love”, “travel”, “personal” and “film”. Furthermore,
when looking into the large amount of smaller tags in
the clouds, we find that such tags in Fig. 9(a) are more
related to “music” and enjoying “life”, such as “game”,
“rap” and “sport”, while those in Fig. 9(b) are more
related to “family” life, such as “kids”, “parenting” and
“wedding”. Therefore, although the shared key tags
indicate their strong relations to the same class “Per-
sonal”, they are separated into two communities due to
the difference in the potential trends of sub-key tags.

5.2.6 Time Cost Analysis To evaluate the efficien-
cy of GHF-ART on big data, we further analyzed the
time cost of GHF-ART, K-means, SRC, LMF, NMF and
PMM with the increase in the number of input pattern-
s. To make a fair comparison, we set the number of
clusters k = 166 for K-means, SRC, LMF, NMF and
PMM and set ρ = 0.2 for GHF-ART so that the num-

Figure 9: The tag clouds generated for the (a) 1st and
(b) 4th biggest clusters. A larger font of tag indicates a
higher weight in the cluster

bers of the generated clusters for all the algorithms are
the same. In Fig. 8, we can observe that GHF-ART
runs much faster than the other algorithms. Where-
as the other algorithms incur a great increase of time
cost with the increase in the number of input patterns,
GHF-ART maintains a relatively small increase. This
demonstrates the scalability of GHF-ART to big data.

6 Conclusion

In this paper, we explored the feasibility of GHF-ART
for the community discovery problem in the heteroge-
neous social networks. Comparing with existing hetero-
geneous data clustering algorithms [6, 8, 14, 15], as men-
tioned in section 2, for clustering heterogeneous social
networks, GHF-ART has several advantages including:
1) Scalability to big data: GHF-ART performs real-
time matching of patterns and one-pass learning which
guarantee the low computational cost; 2) No need of
the number of clusters a prior: GHF-ART employs a
vigilance parameter to restrain the intra-cluster simi-
larity so that clusters may be incrementally identified;
3) Considering heterogeneity of links: GHF-ART con-



siders different representation of learning functions for
heterogeneous types of links, which is flexible and may
produce better representation for heterogeneous links;
4) Incorporating global and local similarity evaluation;
and 5) Weighting algorithm for heterogeneous link fu-
sion.

We have analyzed the performance of GHF-ART
in terms of parameter selection, clustering performance
comparison, performance in Robustness Measure, time
cost and case studies. We show that, although GHF-
ART needs to set three parameters, the performance
of GHF-ART is robust to the choice and learning
parameters. We have further illustrated an empirical
way to select a suitable value for the vigilance parameter
which has been demonstrated to be feasible on both the
YouTube and BlogCatalog data sets. The experimental
results also demonstrate the effectiveness of Robustness
Measure and show that GHF-ART outperforms existing
heterogeneous data clustering algorithms and has a
much lower computational cost.

Although our work has so far obtained encourag-
ing experimental results, there are several directions for
further investigation. Firstly, as GHF-ART uses feature
vectors to represent social links, the dimension of those
for relational networks are the number of users, which
results in a high space complexity. Therefore, feature
reduction techniques or hashing methods are preferred
to be employed to reduce computer consumption. Sec-
ondly, visual data such as images and videos are becom-
ing more important in our social life and should also be
considered as an important social link between users.
Thus, identifying a social network data set with visual
links and studying the feasibility of GHF-ART for effec-
tive fusion of visual links together with relational and
textual links will be included into our future work.
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