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Abstract 

In this paper, we present a novel method for efficient 3D 
model comparison. The method matches highly deformed 
models by comparing topological and geometric features. 
First, we propose “Bi-directional LSD analysis” to locate 
reliable topological points and rings. Second, based on 
these points and rings, a set of bounded regions are 
extracted as topological features. Third, for each 
bounded region, we capture additional spatial location, 
curvature and area distribution as geometric data. 
Fourth, to model the topological importance of each 
bounded region, we capture its effective area as weight. 
By using “Earth Mover Distance” as a distance measure 
between two models, our method can achieve a high 
accuracy in our retrieval experiment, with precision of 
0.53 even at recall rate of 1.0. 
 
1.  Introduction 
Due to the increasing popularity of 3D graphics and the 
high cost of geometry model creation, there is an 
increasing demand for model sharing. This motivates 
research on matching and retrieval of geometry models. 
Existing methods for model matching can be broadly 
grouped into three categories: geometric-based (GB), 
frequency-based (FB) and topological-based (TB). Unlike 
GB [5] and FB [8], TB is capable of handling deformable 
models, i.e., models representing the same object but in 
different postures. One representative approach in TB is 
MRG [1] which uses geodesic distance to construct a 
multi-resolution reeb graph for 3D objects. However, 
finding good approximation of geodesic distance among 
all pairs of vertices in a model is computationally 
expensive, which causes MRG to be slow in practice. In 
addition, because only area and length are considered in 
each node matching, probability of mismatching different 
models with similar skeleton can be high. 

In this paper, we propose a model matching approach 
that integrates both topological and geometry cues for 
matching deformable models. To represent the skeleton of 
a model, we propose the “Bi-directional LSD Analysis” 
for topological points and rings extraction. To capture 
geometric information, the spatial location and surface 
distributions at topological rings are computed. The main 
contributions of this paper are: 
• Our method analyzes a 3D model’s skeletal 

representation by topological points and rings. This is 
relatively new among existing methods. 

• With particular reference to MRG, our method tries to 
reduce the computation of geodesic by limiting the 
calculation at topologically important locations only. 
Since topological features are invariant to model 
tessellation, the number of geodesic calculations can 
be reduced to around one-third of [1] on average. 

• Apart from skeletal matching, we also use additional 
geometry information to distinguish global surface of 
two models with similar skeleton. This area has not 
been explored in the previous topology methods. 

• The proposed bi-directional LSD analysis, used for 
feature extraction here, can be further extended for 
skeleton extraction and model segmentation more 
efficiently and accurately on general geometry models. 

The rest of the paper is organized as follows. Section 
2 presents our Bi-directional LSD Analysis in detail. 
Sections 3 and 4 present our feature extraction method 
and our similarity measure, respectively. Section 5 
presents and evaluates some experimental results. Finally, 
section 6 briefly concludes our work. 

 
2.  The Bi-directional LSD analysis 
In [3], the “Level Set Diagram” (LSD) algorithm for 
constructing skeletons of geometry models based on 
critical points analysis is presented. There are three types 
of critical points: minima, maxima and saddles. For 
details of the method, we would refer readers to [3]. 

Though LSD is fast and can produce a tree structure to 
represent a 1D axial skeleton, it has two main problems. 
First, LSD performs poorly in identifying critical points 
when it is applied to general geometry models, which 
may have arbitrary curvature and probably noise. Second, 
the use of only one source point in LSD privileges a 
“slicing direction” [4], which may lead to missing of 
critical points. To extract topological points and rings 
reliably for our matching task, we proposed the Bi-
directional LSD Analysis to address the two problems. 

The Bi-directional LSD Analysis consists of two parts: 
Modified LSD and Bi-directional Analysis. The first part 
tries to improve LSD’s performance on general models, 
while the second part tries to solve the “slicing direction” 
problem and prepares the features for model matching. 
 
2.1  Modified LSD 
We have observed that the major problem of LSD is its 
poor saddle identification on general models. To avoid 
such problem, we have developed a topological point 



extraction method, which is a modified version of LSD, 
in our earlier publication. Due to page limitation, we 
would refer readers to [7] for the implementation details. 
 
2.2  Bi-directional Analysis 
After solving the noise problem, our Modified LSD still 
suffers from the “slicing direction” problem [4] because 
only one source point is used. To tackle this, we simply 
apply Modified LSD on the other furthest point to obtain 
the second LSD tree (bi-directional). Since the tree is 
obtained from another source point, the privileged 
“slicing direction” is now reversed and the missing 
vertices can now be found. 

From our observation, Modified LSD works best on 
locating maximum and minimum critical points. In order 
to extract features reliably, we proposed to analyze a 
model from its maximum and minimum points first and 
Bi-directional Analysis is thus designed in a bottom-up 
manner. It consists of three steps: clustering of local 
maximum vertices, protrusion region (PR) extraction, and 
segment region (SR) extraction. 

 
Notations: To simplify our discussion, we adopt the 
following notations for our analysis. Suppose we have a 
surface mesh G = (V, E), where V is the set of vertices, E 
is the set of edges. Let gv(k, v), gvs(k, R) be the geodesic 
distance of k respect to a vertex v and vertex set R, 
respectively, and path(k, v) be the shortest path, where 

and . Let also two furthest points [3] be 
 and the two corresponding LSD skeletal trees 

be  and , such that T , where  and 
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=  for i=1,2. We define P(v) as the parent of 
vertex v within T , where v . To further simplify our 
analysis, we consider two types of critical points only: 
• Local Maximum M ={maxima and minima in V }, i i

• Saddle Points ={saddles inV },iS i 2,1, ==∪ iVSM iii . 

2.2.1  Clustering of Local Maximum Vertices 
Since Modified LSD is best at locating local maximum, 
most of the vertices in M1 and M2 coincide and can be 
paired locally. We define a mv_cluster = {m, n} where n 
= f(m) and define f(m) as follows: 
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Normally, a mv_cluster contains two vertices m and 

f(m). However, if φ=f(m) , we simply let n = m, for our 
upcoming analysis. 
 
2.2.2  Protrusion Region (PR) Extraction 
After obtaining a series of mv_clusters, we can then 
extract Protrusion Region (PR) for our matching task. A 

PR physically means the mesh region where protrusion 
tip resides. These regions include fingers, toes, ears, etc. 

To define PR, we first find a geodesic limit (l) with 
respect to a starting seed z. Let z  and k , 
we define 
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Using the geodesic limit, we can define a new PR, 
, as the region bounded by a mv_cluster and its 

parent vertices {{m, f(m)}, {P(m), P(f(m))}}: 
newPR

}}\{),,(),(|{ oldvnew PRVtxtlxtgtPR ∪∈≤=  (4) 
where ∪  are all the extracted PR so far and geodesic 
limit l, is defined by letting v , , 

oldPR
)(1 mP= ))((2 mfPv =

{ }))(| 21))(,( xvxvxz mfm += Max pathx∈
, and x is a vertex on 

path(m, f(m)), which denoting the start vertex for the PR 
extraction. Let neigh(t)  be the one-ring neighborhood of t, 
boundary RPR of the PR is then defined as: 

{ } PRPR Rmfmy PR,ytneigh(t), y|tPRR ∈∀∈== )(, ,   ,    \  (5) 
 
2.2.3  Segment Region (SR) Extraction 
After PR extraction, all the remaining regions are 
sequentially extracted as Segment Regions (SR). SR 
physically means the mesh region where significant 
branches occur, such as legs, arms and necks. By 
extending the idea of PR, we can extract SR similarly, 
where SR is defined exactly as PR except for two points: 
1. SR is no longer originated from a start vertex x like 

PR. Instead, it is originated from the boundary of an 
existing PR or SR (RPR or RSR). 

2. Since the starting seed is no longer a point x, but a 
boundary vertex set R, the geodesic distance function 
is also changed from gv(k, v) to gvs(k, R). 

Hence, a new SR, , is defined as follows: newSR
{ }}}{\{  ),,(),(| oldvsnew SRPRVtRtlRtgtSR ∪+∪∈≤=  (6) 

where  are all the regions extracted so far 
and we define geodesic limit l by letting v

oldSRPR ∪+∪

)('1 mP= , 
))(( mf'2 Pv = , Rz = , and  defines the 

ancestor of m which is not yet visited by any PR or SR so 
far. The boundary of the SR, R
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SR, is then defined as: 
}{ y, SRPRySRtneigh(t), y|tSRRSR ∀∪+∪∈∈==   ,    \  (7) 

Eventually, a final mesh region will be left (e.g., the 
body of a human model). This last part is then extracted 
as a final SR, with boundary equals to the union of all the 
existing R adjacent to it. 
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In practice, Max  actually equals to the maximum of 

all G(t) calculated above. To find Min  (i.e., vertex 

o), we have also developed a hierarchical approach which 
takes around 20 iterations to converge. 

)(qGSq∈

)(qGSq∈

Figure 2.  Protrusion and segment regions.  
3.2.2  Surface Distribution – Geometric Surface data Figure 2 shows the results after our extraction process. 

All PR and SR are colored differently. For the raptor and 
dino-pet models, nose, jaw, fingers, toes and tail are PR 
and neck, arms, legs and body are SR. For the female 
model, fingers, toes, ear tips, eye balls and mouth cavity 
are PR and arms, legs, neck, body are SR. 

To describe the global surface change with respect to 
Bb∈ , we use two feature vector K1, K2 (each of them is a 

20-dimension histogram) to store the curvature and area 
information with respect to its topological ring as in 
Figure 3. After grouping all the vertices v V∈  with 
respect to geodesic distance g  into 20 intervals, we 
sum up all the curvature and area in the same interval to 
form the two feature vectors K

R)(vvs ,

1, K2. 

 
3.  Feature Extraction 
3.1  Topological Information 
After Bi-directional LSD analysis, we obtain a set of local 
maximum clusters, together with a set of bounded regions 

. Since the local maximum clusters are 
located at protrusion tips and the rings of boundary 
vertices (R) of both PR and SR are located at articulated 
joints, their existences actually represent the skeletal 
information of a model. Such features are invariant to 
model deformation. For the following sections, we 
consider the start vertex x in all PR as topological points 
and all vertex boundaries R as topological rings. 

SRPRB ∪+∪= 

 
Figure 3. Vertices, v, of two surface meshes are 
partitioned into 20 bands with respect to  from 
a topological ring R near the dogs’ legs (the dash line). 

R)(vgvs ,

 
 4.  Feature Matching 3.2  Geometric Information 4.1  Distance Measure of Two Bounded Regions To obtain geometric information for a model, we extract 
the following features to describe each bounded region 

. Bb∈

To determine the similarity value of two bounded regions 
b1,b2, we use the following formula  

|)()(|),( 21121 bGbGWbbDist normnorm −×=  
       +  ))(),(( 2111,22 bKbKLW norm× ))(),(( 2212,23 bKbKLW norm×+3.2.1  Effective Area - Weights of Importance 

where W1, W2 and W3 are ratios. As different bounded regions b have different importance, 
it is essential to capture such information in our features. 
We let effective area equals to the area of PR and SR. 

 
4.2  Distance Measure of Two Models 
Since we have a set of bounded regions as model features 
and a distance measure between them, we can use Earth 
Mover Distance (EMD) [6] to compute the distance 
between two feature sets (signatures). Earth Mover 
Distance is a distance measure which calculates minimum 
amount of work that is required to transform one 
signature into another. By letting EMD weight equals to 
the effective area and letting the signature distance be 
Dist( ), we can compute the distance between two models. 

 
3.2.2  Normalized Geodesic Sum - Spatial Information 
To describe the spatial location of b, we use geodesic sum 
G(t) as the spatial information. We compute G(t) of a 
topological point as: G . For a 

topological ring R, G(R) is computed as: 
∫ ∈
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topological point of which R originates. Since all b

w

B∈  
are bounded by topological points and/or topological 
rings, geodesic sum G(b) for B is calculated by averaging 
the surrounding G(t) and/or G(R). Finally, the normalized 
geodesic sum is then calculated as follows: 

5.  Experimental Result 
In our experimental database, there are 140 different 
models which are of different groups and postures. To 
test our method’s invariant properties towards rotation 
and scaling, we prepare 3 additional sets by rotating 
against xy-axis, random scaling between (1.0, 2.0], and 
rotating by yz-axis plus random scaling to produce a total 



of 560 models. We then manually categorize these 
models into 13 groups. 12 of them are shown in Figure 4.  

   
dog boy cat baby 

 
 

  
dino raptor female frog 

  
dino-pet horse dolphin wolf 
Figure 4.  12 model groups in our model database. 

Table 1. Mean Similarity of non-similar skeleton models. 
 Boys Frogs Dolphins 
Boys 1 0.214 0.033 
Frogs 0.214 1 0.134 
Dolphins 0.033 0.134 1 

Table 2. Mean Similarity of similar skeleton models. 
 Boys Girls Babies 
Boys 1 0.850 0.684 
Girls 0.850 1 0.599 
Babies 0.684 0.599 1 

Tables 1 and 2 show some of our matching results. We 
can see that our method can distinguish models based on 
their skeletons and shapes. For example in Table 1, boy, 
frog and dolphin are totally different models in term of 
skeletons. Their similarities are shown to have high 
contrast. In Table 2, boy, girl and baby models are similar 
models in term of skeleton, but different models in term 
of shapes. Our method can still distinguish them but with 
a smaller similarity difference. All these match human 
intuition correctly. Note that the similarity values are 
taken using all models and the value is normalized by 
maximum and minimum work done. Figure 5 shows the 
precision and recall graph of our method. It demonstrates 
that our method outperforms Geometry (D2) [5] and 
Frequency (Fourier) [8] which are shown to have good 
performance in [2]. 
 
6.  Conclusions 
This paper proposes a novel deformable geometry model 
matching method through analyzing models in both 
topological and geometric domains. Unlike existing 
topology methods [1], we use topological points and rings 
to represent skeletal information. As demonstrated in our 
experimental results, our method has a very high accuracy 

in matching highly deformable models, invariant to 
rotation and scaling. 

 
Figure 5.  Precision and recall graph. 

We have also presented our Bi-directional LSD 
analysis for capturing reliable topological points and rings 
in our application. Though it is currently used as a feature 
extraction tool, it can be further extended to drive 
skeleton extraction and model segmentation more 
efficiently and reliably on general 3D models. 
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