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Countering Attacker Data Manipulation in Security
Games

Andrew R. Butler1, Thanh H. Nguyen1, and Arunesh Sinha2

1 University of Oregon {arbutler, thanhhng}@cs.uoregon.edu
2 Singapore Management University aruneshs@smu.edu.sg

Abstract. Defending against attackers with unknown behavior is an important
area of research in security games. A well-established approach is to utilize his-
torical attack data to create a behavioral model of the attacker. However, this
presents a vulnerability: a clever attacker may change its own behavior during
learning, leading to an inaccurate model and ineffective defender strategies. In
this paper, we investigate how a wary defender can defend against such deceptive
attacker. We provide four main contributions. First, we develop a new technique
to estimate attacker true behavior despite data manipulation by the clever ad-
versary. Second, we extend this technique to be viable even when the defender
has access to a minimal amount of historical data. Third, we utilize a maximin
approach to optimize the defender’s strategy against the worst-case within the
estimate uncertainty. Finally, we demonstrate the effectiveness of our counter-
deception methods by performing extensive experiments, showing clear gain for
the defender and loss for the deceptive attacker.

1 Introduction

Learning adversary behavior from historical attack data is a firmly established method-
ology in adversarial settings, both in academic literature [15,19], and in real world ap-
plications such as wildlife security [4,24]. Herein lies a vulnerability: a clever attacker
may modify its own behavior in order to conceal information or mislead the defender.
This deceptive behavior can influence the defender’s learning process, creating future
gainful opportunities for the attacker. Indeed, such deception has received considerable
attention in security games literature [6,28,18]. However, robustness of the defender to
the adversary’s deceit is much less explored.

In this work, we investigate the defender’s counteraction against attacker deception
in a Stackelberg security game setting. Our work builds upon the partial behavior de-
ception model [16] in which the defender models the behavior of the entire attacker
population using a single Quantal Response (QR) [14] model of which the parameter
λ ∈ R is learned from past attack data. Among the attackers, however, there is a ratio-
nal attacker who can cause harm to the defender by manipulating part of attack data.
Such manipulation makes the defender learn a wrong λ, leading to an ineffective de-
fender strategy. Addressing the attacker deception is still an open problem, which is the
focus of our paper.

As our first contribution, we develop a new technique to estimate the true behavior
of the non-deceptive attackers (represented by a parameter value λtrue of QR), given the
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perturbed training data. Our technique leverages the Karush-Kuhn-Tucker conditions
of the rational attacker’s optimization to formally express the relation between true
behavior of non-deceptive attackers (λtrue) and learning outcome (λlearnt) forced by
the deceptive attacker. Based on this relation, we find that there is an interval of possible
values for λtrue which leads to the same deception outcome λlearnt. Moreover, bounds
of this interval are increasing in λlearnt. We thus propose a binary-search based method
which uses λlearnt to guide the search for these bounds within an ε-error.

As our second contribution, we extend our first contribution, perhaps surprisingly,
to apply in scenarios with small number of attacks. The core issue is that the empirical
attack distribution induced by limited attack samples may be far different from the true
attack distribution induced by λtrue, making it challenging to characterize the relation
between the true behavior and the deceptive outcome. We overcome this challenge by
re-formulating the attack sampling process as choosing random seeds u drawn from the
uniform distribution on [0, 1] followed by a deterministic computation on u.

We first prove that given any fixed u, all mathematical results (from our first con-
tribution) hold for small number of attacks. As the random seed chosen by nature is
unknown, we then leverage the above result to perform binary search for multiple ran-
dom seeds and construct a new interval spanning all found intervals as our final estimate
for the range of λtrue.

As our third contribution, we propose a maximin approach to optimize the defender
strategy against the worst case within the uncertainty interval for λtrue. We formulate
this maximin problem as a multiple non-linear programs, each corresponds to a partic-
ular optimal attack choice of the deceptive attacker. Finally, via extensive experiments,
we show that, even when optimizing against a wide uncertainty interval of λtrue, our
algorithm gives significantly higher utility for the defender, and less benefit for the de-
ceptive attacker.

2 Related Work

Adversarial Learning Adversarial learning is a field within machine learning that has
become increasingly popular [12,23,9,13,29]. The attacker deception here is analogous
to a causative attack (or poisoning attack) in adversarial learning [9]. A significant dif-
ference between our work and adversarial learning is that we seek to maximize defender
utility through predicting the attacker’s behavior, whereas in adversarial learning, the
end goal is prediction accuracy.

Attacker Behavior Inference Learning the behavior of bounded rational attackers is
crucial, and a major area of interest in security games. Various models including QR have
been explored [27,10,28,22,20]. As this learning is used to create a defender strategy,
the training attack pool is vulnerable to manipulation by a clever attacker. This paper
focuses on addressing this challenge in security games. Our work overlaps with settings
in which one or more players has limited information [1].

Deception in Security Games Historically, most work has focused on deception from
the defender side [30,7]. In this scenario, the defender typically exploits information
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asymmetry to fool the attacker (e.g. in network security, concealing some system char-
acteristics). More recently, research has investigated deception from the attacker side
[6,18,28] in SSGs, and the follower side in general Stackelberg games [5]. Much of
this work concentrates on a single attacker whose payoff values are unknown to the
defender. The attacker-deception model we utilize [16], on the other hand, describes
a realistic scenario in which the defender must contend with multiple attackers of un-
known behavior.

3 Preliminaries

3.1 Stackelberg Security Games (SSGs)

In SSGs [24], the defender must protect a set of T targets from one or more attackers.
The defender has a limited number (K < T ) of resources that each can be allocated to
protect a single target. A pure strategy of the defender is defined as a one-to-one allo-
cation of resources to targets. A mixed defense strategy, x, is a probability distribution
over these pure strategies. For the purposes of this paper, we consider no scheduling
constraints to the defender’s strategy, meaning that a mixed strategy can be compactly
represented as a coverage probability vector, given by x = {x1, x2, . . . , xT } where
xi ∈ [0, 1] represents the probability that target i is protected by the defender and∑
i xi ≤ K. We denote by X the set of all feasible defense strategies. In SSGs, the

attacker is fully aware of the defender’s mixed strategy and chooses a target to attack
based on this knowledge.

An attack on target i gives each player a reward or a penalty, depending on whether
the defender is currently protecting target i. If i is unprotected, the attacker gains reward
Rai and the defender receives penalty P di . Conversely, if target i is protected, the attacker
takes penalty P ai < Rai and the defender gains reward Rdi > P di . Given coverage
probability xi, the expected utilities for the defender and the attacker for an attack on
target i can be formulated as follows:

Udi (xi) = xiR
d
i + (1− xi)P di

Uai (xi) = xiP
a
i + (1− xi)Rai

Quantal Response Behavior Model (QR). QR is an well-known model describing at-
tacker behavior in SSGs [14,27]. Intuitively, QR provides a mechanism by which higher
expected utility targets are attacked more frequently. Essentially, the probability of at-
tacking target i is given as follows:

qi(x;λ) =
(
eλU

a
i (xi)

)/(∑
j
eλU

a
j (xj)

)
(1)

3.2 Partial Behavior Deception Model

Our work on developing an optimal counter-deception strategy for the defender is built
upon the partial behavior deception model introduced by [16]. In this model, multi-
ple attackers are present, who have the same payoffs but different attack behavior due
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to different rationality levels. Among these attackers, there is a rational attacker who
intends to play deceptively to mislead the defender. The defender, on the other hand,
is aware of the attackers’ payoffs but is uncertain about the behavior of the attackers.
The defender thus attempts to to build a behavior model, i.e., the QR model, to pre-
dict the attack distribution of the entire attacker population. Real-world applications
such as wildlife conservation also use this single-behavior-modeling approach as park
rangers usually cannot differentiate data collected, such as poaching signs, among mul-
tiple sources [10].

Two-phase learning-planning of defender. This model describes a one-shot two-phase
learning-planning problem for the defender, consisting of a learning phase and a plan-
ning phase. This is the typical security game model used in literature [24,27]. Essen-
tially, in the learning phase, the defender uses training attack data to estimate the param-
eter λ of QR using the Maximum Likelihood Estimation method (MLE), as formulated
below:

λlearnt ∈ argmax
λ

∑
m

∑
i

zmi log qi(x
m;λ) (2)

where xmi is the defender’s coverage probability at target i and step m and zmi is the
corresponding number of attacks.

During the planning phase, the defender utilizes the learned λlearnt value to opti-
mize his defense against such an attacker. The optimal strategy, x∗, is given by:

x∗ ∈ argmax
x∈X

∑
i

qi(x;λ
learnt)Udi (xi) (3)

Behavior deception of attacker. [16] Since the (naive) defender uses the entire learning
dataset to construct a single attacker model, a clever attacker might change its own
behavior during the learning phase in order to benefit during the planning phase3. It is
naturally assumed that only perfectly rational attackers display such deceptive behavior.
Therefore, the partial behavior deception model centers on a single perfectly rational
deceptive attacker, amongst the bounded rational attackers, that can alter some fraction
of the training dataset. The bounded rational attackers attack non-deceptively according
to a fixed unknown QR parameter λtrue. Essentially, the deceptive attacker wants to find
the best perturbation of the training data to maximize its utility in the planning phase,

3 In this paper, we focus on the one-shot game which only consists of a learning phase and
planning phase—a commonly-used security game model in literature. Therefore, the deceptive
attacker can simply play perfectly rationally in the planning phase after deceiving the defender
in the learning phase. This model can also serve as the basis for repeated security games which
involve multiple learning-planning rounds where the attacker plays deceptively in all rounds
except the last round.
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denoted by Ua(x∗(z)), as follows:

(DecAlter) : max
z={zmi }

Ua(x∗(z)) (4)

s.t. zmi ≥nmi ,∀m, i (5)∑
i

zmi ≤(f + 1) ·
∑
i

nmi ,∀m. (6)

where x∗(z) is the defender’s strategy determined based on his learning-planning method
in (2–3). In addition, nmi is the number of attacks by the non-deceptive attackers and
f ∈ R is the ratio of deceptive attacks to non-deceptive attacks at each step m. Con-
straints (5–6) guarantee that the deceptive attacker can only control its own attacks. We
denote by z = {zmi } the deception outcome of the deceptive attacker, which includes
the non-deceptive attacks (n = {nmi }). The defender learns a (deceptive) parameter
λlearnt using z.

3.3 Cognitive Hierarchy Approach

In order to determine a counter-deception strategy for the defender, a possible approach
is to compute a fixed point equilibrium of the deception game in which each player
reasons about its opponent’s strategy recursively till infinity. However, finding a fixed
point equilibrium in our game is extremely challenging. This is because the defender has
no information (or prior) about the behavior of the non-deceptive attackers. As a result,
the defender has to relate the equilibrium outcome for every possible true behavior
of these non-deceptive attackers to the observed (manipulated) attacks. This task is
challenging (as well as impractical) given that the behavior space of attackers is infinite.

In real world settings, cognitive hierarchy models have been proven more effective
than equilibrium based approaches at realistically modeling player behavior [3,2,8].
This is because human players do not exhibit infinite level strategic reasoning. Cogni-
tive hierarchy theory states that players in games can be divided into different levels
of thinkers, each assuming that no players are on levels above them [26]. In a mixed
attacker deception setting, we can model the levels as follows:

– Level 1: The rational attacker plays truthfully. The defender follows the two-stage
learning-planning approach to compute a defense strategy.

– Level 2: The rational attacker plays deceptively, assuming the defender is at level 1.
The level 2 defender, on the other hand, attempts to counter the attacker deception,
assuming the attackers are at levels 0, 1, or 2.

– Level l > 2: The strategic reasoning is similar to level 2. Specifically, the attacker
assumes the defender is at level l − 1 while the defender assumes the attackers are
at any one of the levels up to and including l.

Previous work has shown that distributions of human players in normal form games
mostly consist of lower level players [26]. The aforementioned partial behavior decep-
tion model focuses on the deception by a level 2 attacker [16]. Our paper studies the
counter-deception by a level 2 defender.
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4 Finding Non-Deceptive Attacker Behavior

In order to determine an effective defense strategy, we begin our analysis by charac-
terizing the space of possible attack behavior (described by QR) of the non-deceptive
attackers, given the perturbed data z. Recall that the non-deceptive attackers respond
according to a fixed λtrue, unknown to the defender. Instead, the defender obtains a
learning outcome λlearnt given perturbed training data. Our goal is to estimate the pos-
sible values of λtrue given observed learning outcome λlearnt.

4.1 Characterizing Deceptive Attacker’s Behavior

We first analyze the deception possibilities for the deceptive attacker given any value
λtrue of the non-deceptive attackers. The results we establish here help us in our goal
of estimating λtrue. For analysis sake, we assume that the number of attacks is large
enough such that the sampled attacks is close to the actual attack probability distribu-
tions. We will relax this assumption later. Mathematically, we assume:(

nmi
)/(∑

j

nmj
)
≈ qmi (xm, λtrue),∀m (7)

where nmi refers to the number of attacks committed by the non-deceptive attacker at
target i. As shown in (DecAlter), the objective utility function of the deceptive attacker
depends on the strategy of the defender, which in turn is governed by the training data
{zmi }, and the training data contains attacks by the non-deceptive attacker too ({nmi }).
Thus, the outcome of λlearnt depends on the behavior of the non-deceptive attacker
λtrue (or {nmi }). We thus also use the notion DecAlter(λtrue) = λlearnt to represent
the dependence of the learning result (altered by deception) on λtrue.

For this portion of our analysis, we relax the domain of z to be continuous. This
allows our proofs to be simpler and more concise. In practice, this value is limited to
discrete integers; fractional attacks are nonsensical. Later, we will extend the methods to
the discrete z case, and show why they still apply. We exploit the KKT condition for the
optimality of the deceptive λlearnt as the outcome of the defender’s learning, formulated
in optimization (2). Essentially, λlearnt has to satisfy the following KKT condition:∑

m

[∑
i

zmi

][∑
iz
m
i U

a
i (x

m
i )∑

i

zmi
−
∑
i

qi(x
m;λlearnt)Uai (x

m
i )︸ ︷︷ ︸

Attacker utility Ua(xm;λlearnt)

]
=0

where Ua(xm;λlearnt) is the attacker’s expected utility when the defender plays xm

and the attacker plays according to λlearnt. In our theoretical analysis, we leverage the
following important monotonicity property of this utility function:

Observation 1 ([17]). Ua(xm, λ) is an increasing function of λ for any given strategy
xm.

Let’s assume, WLOG, the attacker’s utilities at each target has the following order:
Ua1 (x

m
1 )≤Ua2 (xm2 )≤ . . .≤UaT (xmT ) for all m. Observation 1 aids us in showing that all
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feasible (not necessarily optimal) deceptive λ values form an interval [λlearntmin , λlearntmax ]
with λlearntmin , λlearntmax specified as follows:

Theorem 1 (Characterization of Deception Space). Given λtrue and the attack ra-
tio f , the space of deceptive parameters inducible by the deceptive attacker forms an
interval [λlearntmin , λlearntmax ], where λlearntmax is the unique solution of:∑

m,j

nmj
[
Ua(xm;λtrue)+fUaT (x

m
T )−(f+1)Ua(xm, λlearntmax )

]
=0

and λlearntmin is the unique solution of:∑
m,j

nmj
[
Ua(xm;λtrue)+fUa1 (x

m
1 )−(f+1)Ua(xm, λlearntmin )

]
=0

All formal proofs are in the appendix. Essentially, Theorem 1 states that given some
true behavior of the non-deceptive attacker λtrue, the deceptive attacker can force the
deceptive λ to be any value in [λlearntmin , λlearntmax ]. Further, the deceptive attacker cannot
make the defender learn any λ outside of this range. Based on Theorem 1, we present
the following corollaries which characterize the monotonicity of λlearntmin and λlearntmax ,
as well as the monotonicity of the optimal deception λlearnt = DecAlter(λtrue) ∈
[λlearntmin , λlearntmax ] with respect to the non-deceptive attacker behavior λtrue.

Corollary 1. Consider two different behavior parameters, λtrue1 ≤ λtrue2 . Denote by
[λlearntmin,1 , λ

learnt
max,1] and [λlearntmin,2 , λ

learnt
max,2] the corresponding deceptive parameter ranges,

we have: λlearntmax,1≤λlearntmax,2 and λlearntmin,1≤λlearntmin,2 .

Based on Corollary 1, we obtain Corollary 2 showing the monotonicity relation
between λlearnt and λtrue.

Corollary 2. Consider two different behavior parameters, λtrue1 6= λtrue2 . Then, we
have:

λtrue1 ≤λtrue2 =⇒ DecAlter(λtrue1 )≤DecAlter(λtrue2 ) (8)

DecAlter(λtrue1 )<DecAlter(λtrue2 ) =⇒ λtrue1 <λtrue2 (9)

Corollary 3. Consider two different behavior parameters λtrue1 ≤ λtrue2 . If the corre-
sponding optimal deception solutions: DecAlter(λtrue1 ) = DecAlter(λtrue2 ), then for
any λtrue∈ [λtrue1 , λtrue2 ], we also have its optimal deception solution: DecAlter(λtrue)=
DecAlter(λtrue1 ).

4.2 RaBiS: Characterizing Behavior of Non-Deceptive Attacker

In this section, we attempt to find the range of possible values for λtrue, which is un-
known to the defender, as only the deceptively altered QR parameter λlearnt is observed.
We leverage the results of Corollaries 2 and 3 for this analysis.

Lemma 1. Given some learned λlearnt, there exists an interval [λtruemin , λ
true
max] such that

all values λtrue ∈ [λtruemin , λ
true
max] leads to the same outcome λlearnt. In addition, both

bounds λtruemin and λtruemax are increasing in λlearnt.
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Based on the above result, we propose a binary-search based approach, RaBiS
(Range-finding Binary Search), to find the interval [λtruemin , λ

true
max] within an ε-error in

a polynomial time for arbitrary small ε > 0. RaBiS consists of two binary searches: the
first binary search is to find the upper bound λtruemax and the second binary search is to
find the lower bound λtruemin . Both binary searches maintain a pair of bounds for binary
search (lb, ub). While in theory the range of λtrue is [0,∞), in practice, a limited range
of [0,M ], whereM is a very large constant, ensures that the attacker’s QR behavior with
λtrue = M is close enough to λtrue = ∞. Therefore, in our algorithm, we initialize
lb = 0 and ub =M .

At each iteration, we examine the mid-value r = (lb+ub)/2 by comparing the
deception calculation λ′= DecAlter(r) with the actual deception outcome computed
by the defender, λlearnt. In particular, in the binary search for finding λtruemax, if λ′ ≤
λlearnt, there must be a λtruemax ∈ [r, ub] such that DecAlter(λtruemax) = λlearnt and any
λ > λtrue implies DecAlter(λ) > λlearnt. Thus, in order to find λtruemax, we update the
lower bound lb=r. Conversely, if λ′>λlearnt, it means all λtrue∈ [r, ub] will lead to a
deceptive parameter value strictly greater than λlearnt. Therefore, we update the upper
bound ub=r. This process stops when ub−lb<ε. The binary search process for finding
λtruemin is similar.

4.3 Principled Approach for Low-Data Challenge

Thus far, our analysis of the range of the non-deceptive attacker λtrue was performed
under the approximation assumption of Equation 7. However, in practice, this assump-
tion may not hold true. This is because the attacker may conduct a limited number of
attacks, which leads to a substantial difference between the empirical attack distribution
and the true attack distribution, that is:(

nmi
)/(∑

j

nmj
)
6= qmi (xm;λtrue),∀m

To address this challenge, we first investigate the generation of limited attack samples
from the true distribution under a static random seed. We show that our previous theo-
retical results for the ideal scenario still hold in this “limited-attack” scenario. We then
leverage this result for a static random seed to address the general case of unknown
random seed.

Sampling by transformation. Sample generation from certain parameterized distribu-
tions can be split into a two step process by using a transformation of known distri-
butions [21,11]. We show that such split generation is possible for our problem. Let
u be a real valued random variable that is distributed uniformly between 0 and 1.
Given a defense strategy, xm, and QR parameter λ, we define the function fλ such
that P

(
fλ(u) = i

)
= qi(x

m;λ). Note that fλ is a deterministic function dependent
on λ, which we define explicitly next. For any given xm, partition the interval [0, 1]
according to the attack probabilities qi(xm;λ) specified by QR with parameter λ, with
the following partition boundary points: S(0;λ) = 0, S(i;λ) =

∑i
j=1 qj(x

m;λ), and
S(T ;λ) = 1. Figure 1 is an example when the number of targets is T = 3. Given this
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0 1S 1;λ	 S 2;λ

u

Fig. 1: Attack generation by transforming uniform dist.

division, we define fλ(u) = i when u ∈ [S(i− 1;λ), S(i;λ)]; it can be readily verified
that P

(
fλ(u) = i

)
= qi(x

m;λ). In the case of N > 1 attacks, we can view the attack
generation process as N samples of u to get u = {u1, . . . , uN} and then applying fλ
to each of those samples to obtain the targets attacked.

Static random seed generation. For our problem with parameter λtrue, after separating
the randomness (u) and the effect of the parameter (fλtrue ) in attack generation, the main
idea of a static random seed is to assume that the N uniformly sampled values u are
the same for any value of λtrue that we consider in the binary search for λtruemin or λtruemax.
By controlling the randomness, we establish a deterministic baseline to compare the
empirical distribution arising from the different λtrue that we consider. A big advantage
of controlling randomness is that it allows us to carry over all the previous proofs to a
low data setting, as described next.

Let E(u, λtrue) be the empirical distribution when attacks are computed using
fλtrue and the generated N samples u. We can define the attacker expected utility
w.r.t. this distribution, denoted by Ua(xm;E(u, λtrue)), exactly analogously to how
Ua(xm;λtrue) is defined w.r.t. the true distribution. We obtain Lemma 2 which is anal-
ogous to Observation 1.

Lemma 2. For a fixed seed, u, the attacker expected utility computed based on the
corresponding empirical distribution, Ua(xm;E(u, λtrue)), is an increasing function of
λtrue.

In all results previously (including corollaries), we only used the Observation 1
property of Ua(xm;λtrue). With the result above, we can replace Ua(xm;λtrue) by
Ua(xm;E(u, λtrue)) and all proofs still go through. Hence, our Theorem 1 holds with
respect to Ua(xm;E(u, λtrue)) (which replaces Ua(xm;λtrue) in the equations pre-
sented in Theorem 1). This result shows that for a fixed random seed u we can recover
all previous results.

Extension to unknown random seed. The random seed used (by nature) in the genera-
tion of the training data is not known to the defender. To overcome this challenge, we
extend our binary search to consider multiple random seeds. For each random seed,
we run RaBiS to obtain an interval of possible values for λtrue. Taking a worst-case ap-
proach, we consider the smallest interval that spans all of these ranges as the uncertainty
set containing all possible values of λtrue.

5 Maximin to Optimize Defender Utility

After finding the range [λtruemin , λ
true
max], the defender must optimize its strategy accord-

ingly. Essentially, the defender is aware that there are attacks not only from a rational
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(deceptive) attacker (who will act optimally in the defender’s planning phase) but also
from bounded rational attackers (whose λtrue can be any value within [λtruemin , λ

true
max]). In

order to overcome the uncertainty about the behavior of these attackers, we take a max-
imin approach where the defender seeks to maximize its utility against the worst possi-
ble (for the defender) λ value within the calculated range. In practice, to deal with the
computational challenge due to an infinite number of possible values in [λtruemin , λ

true
max],

we break down this range into a set of possible discrete values {λtruemin , λ
1, λ2, . . . , λtruemax}.

Furthermore, since the rational attacker will choose an optimal target to attack in the
planning phase, we decompose our defense problem into multiple non-linear programs,
each corresponds to a particular optimal target to attacker for the rational attacker. In
particular, our non-linear program corresponding to an optimal target j can be formu-
lated as follows:

maxx f · Udj (xj) + Udworst-case (10)

s.t. Uaj (xj) ≥ Uai (xi),∀i (11)

Udworst-case ≤
∑

i
qi(x;λ)U

d
i (xi), (12)

∀λ ∈ {λtruemin , λ
1, λ2, . . . , λtruemax}∑

i
xi ≤ K,xi ∈ [0, 1],∀i (13)

The objective (line 10) balances optimization against the fully rational attacker,Udj (xj),
and the worst possible bounded rational attacker, Udworst-case, with multiplier f corre-
sponding to the ratio of deceptive to non-deceptive attacks. Constraint (11) ensures that
the target chosen by the fully rational attacker, j, is indeed the highest-utility target.
Constraint (12) effectively iterates through the λ range, setting Udworst-case equal to the
lowest defender utility value among all possible lambdas. In a zero sum game, these
lines could be replaced by simply setting λ = λtruemax. Lastly, constraint (13) provides
logical bounds to the defender’s strategy: the total coverage percentage of all targets
cannot exceed the number of resources, and all targets have coverage probability be-
tween 0 and 1.

6 Experiments

In our experiments, we analyze: (i) the defender’s utility gain by addressing deception,
and (ii) the loss of utility for the devious attacker. The training data includes attacks
from both the fully rational deceptive attacker and a boundedly rational attacker whose
behavior is described by QR. We use 5 defender training strategies (M = 5) each with
50 non-deceptive attacks (

∑
i n

m
i = 50) sampled from the QR distribution with λtrue

of the bounded rational attacker. Each data point is averaged over 200+ games, gen-
erated using GAMUT (http://gamut.stanford.edu). For our trials, we vary (i) the true
non-deceptive lambda λtrue value and (ii) the fraction f of attacks done by the devious
adversary. Due to limited space, we will only highlight important results. Additional
results are included in our appendix. All utility results are statistically significant under
bootstrap-t (α=0.05) [25].
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(a) Vary % of dec. attacks (b) Vary λtrue (c) Vary % of dec. attacks (d) Vary λtrue

Fig. 2: Players Utility Evaluation

(a) Binary Search Runtime (b) Maximin Runtime (c) Binary Search Runtime (d) Maximin Runtime

Fig. 3: Runtime Evaluation

Figures 2a and 2b display the defender’s utility in two cases: (i) Addressed — the
defender addresses the attacker’s deception using our counter-deception algorithm; and
(ii) Unaddressed — the defender simply does not take the attacker’s deception into
account. In these two figures, the y-axis represents the defender’s expected utility on
average. Both figures show that the defender can significantly increase his utility for
playing our maximin counter-deception strategy. In Figure 2a we observe that, when
deception is unaddressed, the defender’s utility decreases exponentially as the deceptive
attack ratio increases. On the other hand, when the defender does address deception, the
slope is far more gradual. Figure 2b shows how defender utility increases as the non-
deceptive λtrue value does. This effect tapers off on the upper end of the spectrum.
This result is expected because the non-deceptive attacker gets more rational as λtrue

increases, leading to less changes in the defender’s maximin strategy. Furthermore, in
Figure 2b, the lowest utility point for the defender is when λtrue gets to zero. This makes
sense: as the non-deceptive attackers become completely non-strategic (i.e., λtrue = 0),
the non-deceptive attackers will have less influence on the training data, or equivalently,
the deceptive attacker has more power to manipulate the data.

Naturally, we observe an opposite trend in the attacker-utility graphs shown in Fig-
ures 2c and 2d. That is, the utility of the attacker reduces substantially when the de-
fender addresses the attacker deception. Figure 2c shows that when the defender plays
our maximin strategy, the attacker’s utility actually decreases w.r.t. the percentage of
attacks controlled by the deceptive attacker. This result appears to be counter-intuitive
at first glance. However, it’s logical: our maximin algorithm knows the attack ratio so
it tailors more of the defense strategy towards a fully rational attacker (the actual ratio-
nality of the deceptive attacker).

Lastly, we analyze runtime performance of both portions of the algorithm in Fig-
ure 3. For the binary search, runtime is high across the board due to the sheer number
of partial deception games (DecAlter) solved in each search. However, this runtime
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scales linearly w.r.t. the number of targets (Figure 3a), implying that the algorithm can
be scaled to large games. Furthermore, when varying the attack percentage (Figure 3c),
we see that the runtime peaks with a percentage around 0.3. This peak is shifted com-
pared to the runtime for solving (DecAlter) only, which peaks around 0.5 [16]. This
is because the range, [λtruemin , λ

true
max] increases as the deceptive attack percentage does,

meaning the total search time decreases as RaBiS exits earlier.
Figure 3b shows how the maximin runtime increases w.r.t. the number of targets.

This is expected since the number of non-linear programs involved is equal to the num-
ber of targets. The maximin optimization can scale to large games: 500 target games are
solved in less than 10 minutes. Observe that we examine a larger spread of targets here
than for the binary search portion of the algorithm; the binary search runtime is orders
of magnitude higher, reaching our 100 minute cut-off with far fewer targets. Figure 3d
shows that maximin runtime initially increases as the percentage of attacks that are de-
ceptive does, reflecting the wider range of possible values for λtrue. At higher values
this effect diminishes and runtime ends up decreasing at the 0.9 marker, indicating that
it is easier to optimize a strategy against mostly rational attacks.

7 Conclusion

We successfully addressed attacker deception in security games, showing both theoreti-
cally and experimentally the value of our approach. Through mathematical analysis we
explored the characteristics of deception and defense and developed effective counter-
measures: RaBiS allowed the defender to see through the deceptively altered historical
attack data, after which a maximin approach yielded a robust strategy. Our experiments
showed the wary defender receiving much higher utility than its naive counterpart.

Acknowledgement: This work was supported by ARO grant W911NF-20-1-0344 from
the US Army Research Office.
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Appendix

7.1 Proof of Theorem 1

In order to prove this theorem, we introduce a series of lemmas (3–6). For the sake of
analysis, we denote by:

ymi =
zmi∑
j z

m
j

cm =
1∑
j z

m
j

Intuitively, ymi is the empirical attack distribution estimated from the perturbed training
data D̂ = {xmi , zmi } and cm is the normalization term. Also, {ymi , cm} and {zmi } are
interchangeable. That is, given {ymi , cm}, we can determine zmi =

ymi
cm . We first present

the Lemma 1 which determines the deception capability of the deceptive attacker:

Lemma 3. Given the true behavior λtrue of the non-deceptive attackers and the attack
ratio f , the deceptive space for the deceptive attacker is specified as follows:∑

m

1

cm

[∑
i
ymi U

a
i (x

m
i )− Ua(xm, λ)

]
= 0 (14)

ymi
cm
≥ nmi ,∀m, i (15)

cm ≥ 1

(f + 1)
∑
i n

m
i

,∀m (16)

ymi ∈ [0, 1],
∑

i
ymi = 1,∀m, i (17)

That is, any deceptive λ that the defender learns has to be a part of a feasible solution
(λ, ymi , c

m) of the system (14–17). Conversely, given any feasible (λ, ymi , c
m) satisfying

(14–17), the deceptive attacker can make the defender learn λ by inducing the following
perturbed data:

zmi =
ymi
cm

Proof. Equation (14) is simply the KKT condition presented in the previous section with
ymi and cm substituted in. Similarly, the constraints (15–16) correspond to the con-
straints for the deception capability of the deceptive attacker in (5–6). Finally, the con-
straint (17) follows from the definition of ymi and ensures that

∑
i

zmi∑
j z

m
j

= 1 and
zmi∑
j z

m
j
≤ 1.
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According to Lemma 3, we now can prove Theorem 1 based on the characterization
of the feasible solution domain of λ for the system (14–17). We denote by:

F(λ, {ymi , cm}) =
∑
m

1

cm

[∑
i

ymi U
a
i (x

m
i )− Ua(xm, λ)

]
the LHS of (14). In addition, we denote by S = {(ymi , cm) : conditions (15–17) are satisfied}
the feasible region of (ymi , c

m) which satisfy the conditions (15-17). In the following,
we provide Lemmas 4 and 5 which specify the range of F as a function of λ. Essen-
tially, if the value of F contains the point zero, then λ is a feasible solution of the
system (14–17). We will use this property to characterize the feasible region of λ.

Lemma 4. Assume that, WLOG, Ua1 (x
m
1 ) ≤ Ua2 (x

m
2 ) ≤ · · · ≤ UaT (x

m
T ) for all m.

Given a λ, the optimal solution to

Fmax(λ) = max
{ymi ,cm}∈S

F(λ, {ymi , cm}) (18)

is determined as follows:

cm =
1

(f + 1)
∑
i n

m
i

(19)

ymi = nmi c
m, when i < T (20)

ymi = 1− cm
T−1∑
i=1

nmi when i = T (21)

Proof. First, F(λ, {ymi , cm}) can be reformulated as:

∑
m

1

cm

[
UaT (x

m
T )+

T−1∑
i=1

ymi [Uai (x
m
i )−UaT (xmT )]−Ua(xm, λ)

]
Under our assumption that Ua1 (x

m
1 ) ≤ Ua2 (x

m
2 ) ≤ · · · ≤ UaT (x

m
T ), we know that

[Uai (x
m
i ) − UaT (xmT )] is a strictly non-positive term for all i. Thus, maximizing F in-

volves minimizing ymi when i < T . From constraint (15), the minimum ymi for all i is
nmi c

m. This gives us ymi = nmi c
m when i < T . From constraint (17), we know that

this leaves us with ymi = 1− cm
∑T−1
i=1 nmi when i = T .

Finally, given this specification of {ymi }, the optimization problem (18) is reduced
to:

max
cm

∑
m

∑
i<T

nmi [Uai (x
m
i )−UaT (xmT )]+

UaT (x
m
T )−Ua(xm, λ)

cm

s.t. cm ≥ 1

(f + 1)
∑
i n

m
i

and cm ≤ 1∑
i n

m
i

,∀m

in which the objective function comprises of two terms: the first term does not de-
pend on {cm} and the second term is a decreasing function of cm (since UaT (x

m
T )−

Ua(xm, λ) > 0). Therefore, it is maximized when cm is minimized, which is cm =
1

(f+1)
∑

i n
m
i

, concluding the proof.
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Lemma 5. Assume that, WLOG, Ua1 (x
m
1 ) ≤ Ua2 (x

m
2 ) ≤ · · · ≤ UaT (x

m
T ) for all m.

Given a λ, the optimal solution to

Fmin(λ) = min
{ymi ,cm}∈S

F(λ, {ymi , cm}) (22)

is determined as follows:

cm =
1

(f + 1)
∑
i n

m
i

(23)

ymi = nmi c
m, when i > 1 (24)

ymi = 1− cm
T∑
i=2

nmi when i = 1 (25)

The proof of Lemma 5 is similar. Finally, using Lemmas (4–5) and the approxima-
tion in Eq. 7, we obtain:

Fmax(λ) =
∑
m

∑
j

nmj

[Ua(xm, λtrue)
+ fUaT (x

m
T )− (f + 1)Ua(xm, λ)

]
(26)

Fmin(λ) =
∑
m

∑
j

nmj

[Ua(xm, λtrue)
+ fUa1 (x

m
1 )− (f + 1)Ua(xm, λ)

]
(27)

Observe that, given λ, F(λ, ·) is continuous in {ymi , cm}. Therefore, given a λ′, if
Fmax(λ′)≥0≥Fmin(λ′), there must exist {ymi , cm} ∈ S such thatF(λ′, {ymi , cm})=
0. In other words, λ′ is a part of a feasible solution for (14–17). Conversely, ifFmax(λ′) <
0 or Fmin(λ′) > 0, it means λ′ is not feasible for (14–17). Moreover, using Observa-
tion 1, we can infer that both Fmax and Fmin are continuous and decreasing in λ. We
obtain Lemma 6 which states that feasible solutions of (14–17) form an interval.

Lemma 6. Let us assume λ1 < λ2 are two feasible solutions of (14–17). Then any
λ ∈ [λ1, λ2] is also a feasible solution of the system.

Proof. Since λ1 and λ2 are feasible solutions of (14–17), we obtain the inequalities:

Fmax(λ1)≥0≥Fmin(λ1)

Fmin(λ2)≥0≥Fmin(λ2)

For any λ ∈ [λ1, λ2], since Fmax and Fmin are decreasing functions in λ, the following
inequality holds true:

Fmax(λ) ≥ Fmax(λ2)≥0≥Fmin(λ1) ≥ Fmin(λ)

which implies that λ is also a feasible solution for (14–17), concluding the proof.
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Lemma 7 specifies the interval [λlearntmin , λlearntmax ] of feasible λ values for (14–17).

Lemma 7. There exist λlearntmax ≥ λlearntmin such that:

Fmax(λlearntmax ) = Fmin(λlearntmin ) = 0,

which means λlearntmin and λlearntmax are feasible solutions for (14–17) and any λ /∈ [λlearntmin , λlearntmax ]
is not a feasible solution for (14–17).

Proof. As noted before, Fmax(λ) is a continuous and decreasing function in λ. On the
other hand, we have:

Fmax(λ=+∞)=
∑
m

∑
j

nmj

[Ua(xm, λtrue)− UaT (xmT )

]
≤0

Fmax(λ=−∞)=
∑
m

∑
j

nmj

[Ua(xm, λtrue)
+fUaT (x

m
T )−(f + 1)Ua1 (x

m
1 ))

]
≥ 0

for all λtrue since Ua(xm, λtrue = +∞) = UaT (x
m
T ) and Ua(xm, λtrue = −∞) =

Ua1 (x
m
1 ) is the highest and lowest expected utilities for the attacker among all tar-

gets , respectively, and by Observation 1, Ua(xm, λtrue) is increasing in λtrue. Since
Fmax(λ) is continuous, there must exist a value of λlearntmax ∈ (−∞,+∞) such that
Fmax(λlearntmax ) = 0. The proof for λlearntmin is similar.

Finally, for any λ < λlearntmin , we have Fmin(λ) > Fmin(λlearntmin ) = 0 since Fmin is
decreasing in λ. Similarly, for any λ > λlearntmax , we have Fmax(λ) < Fmax(λlearntmax ) =
0. Both imply that λ is not feasible, concluding our proof.

By combining Lemmas 3,6, and 7, we obtain Theorem 1.

Proof of Corollary 1

Proof. Corollary 1 is deduced based on the monotonicity property of the attacker’s util-
ity (Observation 1). When λtrue1 ≤ λtrue2 , we have Ua(xm;λtrue1 ) ≤ Ua(xm;λtrue2 ) for
allm. Based on the relationship between Ua(xm;λtrue) and Ua(xm;λlearntmax ) presented
in Theorem 1, we readily obtain λlearntmax,1 ≤ λlearntmax,2. Similarly, we have: λlearntmin,1 ≤ λlearntmin,2 .

Proof of Corollary 2

Proof. We first prove (8). Let’s consider the true behavior parameters λtrue1 ≤ λtrue2 .
Based on Corollary 1, the corresponding optimal deception solutions have to belong
to the deception ranges: DecAlter(λtrue1 ) ∈ [λlearntmin,1 , λ

learnt
max,1] and DecAlter(λtrue2 ) ∈

[λlearntmin,2 , λ
learnt
max,2] where λlearntmin,1≤λlearntmin,2 and λlearntmax,1≤λlearntmax,2. We have two cases:

The first case is when the deception ranges do not overlap, i.e., (λ1max <λ
2
min). In

this case, it is apparent that DecAlter(λtrue1 )<DecAlter(λtrue2 ).
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The other case is when the ranges overlap (i.e., λmax1 ≥λmin2 ). If the optimal decep-
tive value for one or both does not belong to the overlap, i.e., DecAlter(λtrue1 )<λlearntmin,2

and/or DecAlter(λtrue2 )>λlearntmax,1), the result is clearly the same as in our previous case
(DecAlter(λtrue1 )<DecAlter(λtrue2 )). On the other hand, if both values fall within the
overlap, that is λlearntmin,2 ≤ DecAlter(λtrue1 ), DecAlter(λtrue2 ) ≤ λlearntmax,1, both will take
on the same value (DecAlter(λtrue1 ) = DecAlter(λtrue2 )). This is true because both
deceptive values DecAlter(λtrue1 ) and DecAlter(λtrue2 ) are being optimized to maxi-
mize the same objective: the utility of the deceptive attacker (as shown in DecAlter).

Finally, (9) can be easily deduced based on (8). Let’s consider DecAlter(λtrue1 ) <
DecAlter(λtrue2 ). We can prove λtrue1 < λtrue2 by contradiction. That is, we assume
λtrue1 ≥ λtrue2 . According to (8), it means DecAlter(λtrue1 ) ≥ DecAlter(λtrue2 ), which
is a contradiction.

Proof of Corollary 3

Proof. Corollary 3 is a direct result of Corollary 2. Indeed, since λtrue1 ≤ λtrue ≤
λtrue2 , we obtain the inequality among optimal deception solutions DecAlter(λtrue1 ) ≤
DecAlter(λtrue) ≤ DecAlter(λtrue2 ) as a result of Corollary 2. Therefore if
DecAlter(λtrue1 )=DecAlter(λtrue2 ), we obtain the optimal deception solution:
DecAlter(λtrue)=DecAlter(λtrue1 ).

Proof of Lemma 1

Proof. Corollary 2 says that the deception outcome λlearnt = DecAlter(λtrue) is an
increasing (not strict) function of λtrue, and additionally using Corollary 3, we can say
that given some deception outcome λlearnt, there exists (unknown) λtruemin , λ

true
max such

that any λtrue ∈ [λtruemin , λ
true
max] leads to the same outcome λlearnt = DecAlter(λtrue).

Any λ outside of the range [λtruemin , λ
true
max] cannot lead to the deception outcome λlearnt.

Corollary 2 further implies that λtruemin and λtruemax are increasing functions of λlearnt.

Proof of Lemma 2

Proof. Assume WLOG,Ua1 (x
m
1 ) ≤ Ua2 (xm2 ) ≤ · · · ≤ UaT (xmT ). We claim that S(i, λtrue) =∑i

j=1 qj(x
m;λtrue) for T > i ≥ 1 is decreasing (not strictly) in λtrue, or in other

words, the upper bound of the ith segment is decreasing (not strictly) for all i except
i = T . This means that for any single fixed u value, increasing λtrue implies that
fλtrue(u) is also increasing (or stays same) because the upper bound of the interval
that u lies in shifts downwards as λtrue increases. fλtrue(u) increasing means a higher
value target is chosen for attack. Thus, for fixed u, a higher λtrue implies that the em-
pirical distribution places more (or equal) attacks on higher utility targets and hence
Ua(xm, E(u;λtrue)) increases (not strictly) with λtrue. Finally, to prove our claim at
the start of the proof, we show that the derivative of S(i, λtrue) is non-positive every-
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where. Indeed, its derivative is computed as follows:

i∑
j=1

qj(x
m;λtrue)Uaj (x

m
j )− S(i, λtrue)Ua(xm;λtrue)

= S(i, λtrue)
[ i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j )− Ua(xm;λtrue)

]
(28)

decomposing the attacker utility function Ua(xm;λtrue), as follows:

S(i, λtrue)

i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j )+

( T∑
j=i+1

qj(x
m;λtrue)

) T∑
j=i+1

qj(x
m;λtrue)∑T

j=i+1 qj(x
m;λtrue)

Uaj (x
m
j )

As we know that Ua1 (x
m
1 ) ≤ Ua2 (xm2 ) . . . ≤ UaT (xmT ), the following inequality holds:

T∑
j=i+1

qj(x
m;λtrue)∑T

j=i+1 qj(x
m;λtrue)

Uaj (x
m
j ) ≥ Uai (xmi ) ≥

i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j )

Using this we get:

Ua(xm;λtrue) ≥
(
S(i, λtrue)+

T∑
j=i+1

qj(x
m;λtrue)

) i∑
j=1

qj(x
m;λtrue)

S(i,λtrue)
Uaj (x

m
j )

= 1 ·
i∑

j=1

qj(x
m;λtrue)

S(i, λtrue)
Uaj (x

m
j )

Using the above in the derivative Eq. 28, we get that the derivative of S(i, λtrue) is
non-positive, hence it is decreasing w.r.t. λ, concluding our proof.

Supplemental Experiments First, in Figure 4, we examine the range [λtruemin , λ
true
max]

that the defender learns. Figure 4a shows that the range increases w.r.t. the percentage
of attacks controlled by the deceptive attacker. This is intuitive, as more manipulation
gives more power to the deceptive attacker. Figure 4b displays how this range also
increases with the ground truth λtrue value of the non-deceptive attackers. As λtrue

increases, the deceptive attacker produces a larger uncertainty range.
Lastly, Figures 6 through 5 are for 30-target games, and each corresponds to a pre-

viously discussed 20-target figure. We observe the same trends in both cases.

Experimental Details All experiments were run on the same HPC cluster, on in-
stances using dual E5-2690v4 processors (28 cores). Each process was allocated 16000
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(a) Vary % of dec. attacks (b) Vary λtrue

Fig. 4: Lambda Range Evaluation with 20 Targets

(a) Vary % of dec. attacks (b) Vary λtrue (c) Vary % of dec. attacks (d) Vary λtrue

Fig. 5: Utility Evaluation with 30 Targets

(a) Binary Search Runtime (b) Minimax Runtime (c) Vary % of dec. attacks (d) Vary λtrue

Fig. 6: Runtime and λ Evaluation with 30 Targets

megabytes of RAM. Instances run Red Hat Enterprise Linux Server, version 7.8. The
Matlab version used was R2018b.

All experiments used the L-Infinity norm with a value of 2 as a rejection threshold
for non-deceptive attack samples. This is done to prevent outlying samples from com-
promising the binary search. Values between .5 and 5 for this metric were tested, along
with the same value ranges for the L1 and L2 norms. This norm and value were shown
to produce the best results, without drastically increasing the runtime of the algorithm.

Additionally, all experiments used a value of 0.05 as a tolerance multiplier within
the binary search itself. This prevents the inherent inaccuracy of discrete attack samples
from ruining binary search. For the sake of consistency, an initial random number gen-
eration seed of 1 was used across all experiments. After defender strategy generation
and solving (DecAlter), the binary search is run 10 times, each with a different random
seed. The superset of all resulting ranges forms our final uncertainty set for λtrue.

The trials shown in Figures 4a, 2a, 2c, 3, 6c, 5a, 5c, and 6 were conducted using
a true lambda value of 0.4 and a resource/target ratio of 0.2. Those in Figures 4b, 2b,
2d, 6d, 5b, and 5d utilized a deceptive attack percentage of 0.3, and a resource/target
ratio of 0.2. Experiments in Figures 3 and use deceptive attack percentage of 0.1, a true
lambda value of 0.4, and a resource/target ratio of 0.2.
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