
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

7-2014 

User daily activity pattern learning: A multi-memory modeling User daily activity pattern learning: A multi-memory modeling 

approach approach 

Shan GAO 

Ah-hwee TAN 
Singapore Management University, ahtan@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons 

Citation Citation 
GAO, Shan and TAN, Ah-hwee. User daily activity pattern learning: A multi-memory modeling approach. 
(2014). Proceedings of the International Joint Conference on Neural Networks (IJCNN 2014), 6-11 Jul. 
1542-1548. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6562 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6562&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6562&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


User Daily Activity Pattern Learning:
A Multi-memory Modeling Approach

Shan Gao and Ah-Hwee Tan

Abstract— In this paper, we propose a multi-memory model,
ADLART model, to discover the daily activity pattern of a
sensor monitored user from his/her activities of daily living
(ADL). The proposed model mimics the human multiple mem-
ory system which comprises a working memory, an episodic
memory, and a semantic memory. Through encoding user’s
daily activities patterns in episodic memory and extracting
the regularities of activity routines in semantic memory, the
ADLART system is able to learn, recognize, compare, and
retrieve daily ADL patterns of the user. Experiments are
presented to show the performance of the ADLART model using
different parameter settings and its performance is discussed
in details.

I. INTRODUCTION

AGEING of population is now a common issue faced by
major countries all over the world. According to World

Health Organization [1], the proportion of elderly people will
be doubled from 11% to 22% in 2050, and there will be about
2 billion people aged 60 and older by 2050. This situation
will add to the burden of government and society in terms of
healthcare and social welfare, however, it also provides great
opportunities in renovating the existing economy model and
bringing innovations.

Researches, e.g. [2], show that elderly people may have
various problems ranging from sensory loss, reduced speed
and increased variance in moving time, reduced speech
capacity, to reduced information process capacity. The cu-
mulative effect of these problems often leads to more elderly
people move from home to care institutions which usually
adds huge financial pressure to both individual and society.

Smart home is a concept that home could be equipped with
information and communication technologies to relieve the
problems that elderly people have, and assist them to stay in
their own home comfortably over a long period. User activity
pattern learning is one important open problem. The effective
modeling of user’s activity pattern could help in various
applications such as life assistant, physical and mental health
monitoring, financial planning, and product recommendation.

Activities of daily living (ADLs), as used in healthcare
field, refers to daily self care activities performed by an
individual in his place of residence, outdoor, or both. ADLs
are usually used as a measurement of the functional status
of a person, particularly for elderly, children, and disabled
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people. There are two subcategories of ADLs. Basic ADLs
(BADLs) [3] refer to daily activities that people do to main-
tain their wellbeing, such as feeding themselves, bathing, and
dressing. Instrumental ADLs (IADLs) [4] [5] are not neces-
sary for fundamental functions, but they help an individual
to live independently in a community. Examples of IADLs
includes shopping, social activity, and financial management.
Generally speaking, ADLs are important to indicate mental
and body issues, especially for elderly people and disabled
people. Some issues faced by elderly people will be reflected
in their ADLs. For example, if a person is suffering from a
joint disease, he will gradually develop slower motion and
result in longer ADLs lasting time. Monitoring time and
frequency of ADLs together with sufficient knowledge base
will help caregivers to predict health trend of the elderly
people and give advice in advance.

There have been many research work on ADL recognition.
In 2005, Duong et al [6] had a research on ADL recognition
and abnormality detection using switching hidden semi-
Markov Model. In their research, they use camera to capture
users position inside a smart home. They use switching
hidden semi-Markov model to model the transition of posi-
tions in the smart home to classify different ADLs. In 2010,
Fleury, Vacher, and Noury [7] used support vector machine
to classify seven ADLs (hygiene, toilet use, eating, resting,
sleeping, communication, and dressing) from various smart
home sensor ranging from infra-red presence sensors, door
contacts, temperature, micro-phone, to wearable kinematic
sensor.

Compared with ADL recognition, there are few works
tackle the problem of ADL pattern learning. Some re-
searchers, e.g. [8] [9], use topic model approach to discover
activity patterns, wherein topics are pulled from a document
using a bag-of-words approach. In activity pattern learning,
words are corresponding to low level activities, while topics
are corresponding to ADLs (they call it daily routine in the
sense that it is repeated everyday). The word distribution
expected for a set of topics is:

p(w|d) =
T∑

z=1

p(w|z)p(z|d) (1)

Where d denotes documents, w denotes word, and z
denotes topic

Their works study mainly the relationships between low
level activities to ADLs. However, to best of our knowledge,
there is no existing work focusing on a larger scale of activity
pattern learning, for example, daily activity pattern learning.



In this paper we aim to address the user daily activity pattern
learning problem. This level of activity pattern knowledge
provides a higher level understanding of user activity pattern
that could be used to analyze the relationship between user’s
daily activity routine and his health condition. To solve the
daily activity pattern learning problem, we propose a memory
model, called ADLART, to mimics the human multiple
memory system which comprises a working memory, an
episodic memory, and a semantic memory.

Experiments are conducted to test different parameter
settings and show the performance of ADLART. The results
show that ADLART is capable to learn, recognize, and
retrieve daily activities patterns.

The rest of this paper is organized as follows: Section
II describes the problem of user activity pattern learning,
its requirement and design challenges. Section III gives the
foundation ART model Fusion-ART and its episodic memory
variation, EM-ART. IV introduces the proposed episodic
memory inspired fusion ART model ADLART architecture
and algorithms. Experiment is conducted and the results
are presented in Section V to show its functionality and
performance. Finally, Section VI concludes the paper.

II. USER ACTIVITY PATTERN LEARNING ISSUES

A. Data Structure Formation

There are two basic elements in daily ADL routines,
namely the individual ADLs and their sequences. To achieve
efficient encoding of ADLs and their sequences, the data
structure should firstly serve the function of distinguishing
them from each other. Secondly, the data structure should
be able to identify key ADL differences between two ADL
sequences. For example, the user had three meals in one
day, but had no food in another day. Thirdly, the data
structure should be able to give certain tolerance to difference
in different ADL sequences in order to classify them into
clusters. For example, it should not be a major difference
between a day having lunch at 12:10pm and another day
at 12:15pm. The basic challenges in data structure design
is to distinguish ADLs and their sequence, having key
ADL difference identified while tolerating certain level of
variations in ADL orders and happening time.

B. Daily Routine Retrieval

In daily routine retrieval, we have identified some key
tasks to be achieved. First task is ADL sequence formation
that the system should be able to construct ADL sequence
data structures from a series of ADL input with time-stamp.
Second task is ADL sequence recognition that a stored
sequence of ADL could be able to be identified in response to
a incoming ADL sequence data. The recognition mechanism
is preferred to be able to tolerate partial data with auto recall
of missing parts. Lastly, the model should be able to retrieve
all individual ADLs from recognized sequences.

C. Semantic Pattern Learning

People have variations in ADL timing every day, but they
usually have clear routines in different type of days. ADLs in

working day should be more or less the same to each other,
but very different from those in vacation days. The preferred
model should be able to gradually learn semantic patterns of
user’s typical days, like holiday, working days, Fridays, and
sick days. In a case that an input ADL sequence matches
a different type of day, it could be a signal for a abnormal
situation to be noticed. For example, if the people is sick in
a working day, he may wake up and dress up slower than
his normal working days.

III. ADAPTIVE RESONANCE THEORY MODELS

A. Fusion ART

Adaptive Resonance Theory (ART) [10] models are ca-
pable to learn recognition categories of multi-dimensional
mappings of input patterns in an online and incremental
manner. Various models of ART and their supervised learn-
ing versions are used in pattern analysis and recognition
tasks. Within the family of ART models, there is a group
of networks known as Fusion ART [11] or multi-channel
adaptive resonance associative map (multi-channel ARAM)
[12], which formulates cognitive codes associating multi-
modal patterns across multiple input channels. Multi-channel
ARAM structures can also be used for reinforcement learn-
ing, for example, there is a multi-channel ARAM called
FALCON described in [13] [14].

The architecture of a typical Fusion ART model is shown
in Figure 1. The dynamics of Fusion ART are summarized
below.

Input Fields: Let F k
1 denote the input field that holds the

input patterns of channel k.
Input Vectors: Let Ik = (Ik1 , I

k
2 , ..., I

k
n), where Iki ∈ [0, 1],

denote the input vector of channel k, for k = 1,...,n.
Category Field: Let Fi where i > 1 indicate a category

field. In the standard multi-channel ART, there is only one
category field which is F2.

Activity Vectors: Let xk denote the activity vector for
input field F k

1 . And, y = (y1, y2, ..., ym) be the activity vector
of F2. Initially, xk = Ik for k = 1,2, ...,n.

Weight Vectors: Let wk
j denote the weight vector associ-

ated with the jth node in F2 for learning the input pattern in
F k
1 . Initially, the F2 nodes are uncommitted and the weight

vectors contain all 1’s.
Parameters: Each field’s dynamics is determined by

choice parameters αk ≥ 0, learning rate parameters βk ∈

Fig. 1. Fusion ART architecture.(adapted from [12]).



[0, 1], contribution parameters γk ∈ [0, 1], and vigilance
parameters ρk ∈ [0, 1].

Code Activation: Given the activity vectors x1, x2, ..., xk,
for each F2 node j, the choice function Tj is calculated as:

Tj =

n∑
k=1

γk
|xk ∧wk

j |
αk + |wk

j |
(2)

where the fuzzy AND operation ∧ is defined by

(p ∧ q)i ≡ min(pi, qi), (3)

and the norm |.| is defined by

|p| ≡
∑
i

pi (4)

for vectors p and q.

Code Competition: The F2 node with the highest choice
function value is selected by a code competition process. The
winner is indexed at J where

TJ = max{Tj : for all F2 node j} (5)

When a category choice is made on node J, yJ = 1; and yj
= 0 for all j ̸= J. This follows the winner-takes-all strategy.

Template matching: After the code competition process,
the template matching takes place to check if resonance
occurs. For each channel k, the match function mk

J of the
chosen node J is checked to see whether it meets a vigilance
criterion.

mk
J =

|xk ∧wk
J |

|xk|
≥ ρk. (6)

If any of the vigilance constraints is violated, mismatch
reset occurs by setting the choice function TJ to 0 for the
duration of the input presentation. The search process will
keep selecting another F2 nodes until a criteria is achieved.
If no node in F2 meets the vigilance, a new node in F2 is
created to represent a new category.

Template Learning: Once a node J is selected for firing,
for each channel k, the weight vector wk

J is updated by the
learning rule.

w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ). (7)

Fusion ART network consists of multiple input and output
fields and a category field. This makes fusion ART structures
flexible to solve a wide range of problems. As the weight
parameter w could be updated with every input pattern,
the fusion ART architecture is suitable for online learning
purpose. Another important feature of fusion ART is when
no existing node is matched, the network could create a new
node to represent the new pattern. This feature makes Fusion
ART structure self-organizing.

Fig. 2. EM-ART architecture.(adapted from [15]).

B. EM-ART

The Episodic Memory ART (EM-ART) [15] is an exten-
sion of fusion ART proposed to model episodic memory. The
proposed architecture of EM-ART is shown in Figure 2.

Since EM-ART is an episodic memory inspired variation
of fusion ART, it could learn episodic traces of sequences of
sensory input and code the patterns into nodes in a higher
category layer. Experiments [15] have shown that EM-ART
is able to achieve a high level of memory performance with
good robustness while managing memory usage over time.

There are three layers F1, F2, and F3 in EM-ART model.
As a result, there are two main mechanisms linking them:
F1 → F2 and F2 → F3

The input data structure for the EM-ART are fixed-length
sequences of sensory pattern inputs: Let E = (S1,S2, ...,St)
denote an episodic input that consists of a sequence of t
instant states S. And each instant state S consists of the
sensory input vectors from all the k channels that S =
(Ik1 , I

k
2 , ..., I

k
n). where Iki ∈ [0, 1] indicates the input i from

channel k.
The operation for F1 → F2 is similar to the standard

fusion ART operation. It goes through the steps of code ac-
tivation, code competition, template matching, and optionally
template learning. For each input pattern in F1 layer, either
an existing code in F2 layer is activated or a new code is
created to represent the new input pattern.

Instead of using learned pattern codes as input, the EM-
ART architecture uses the sequence of code activations in
F2 layer as the input for the second process F2 → F3. To
code the sequence of activations in a single episodic input
vector E, the EM-ART first defines the time length t of each
episode, so that each episodic input vector E consists of t
sequenced input states St. Each time a code in the F2 layer is
activated by a F1 layer input, the system decrease all existing
code values in E and put the index of current activated code
in front of E with value 1. The F2 → F3 mechanism goes
through the standard fusion ART processes same as that of
F1 → F2.

In the original EM-ART described in [15], the activation
value is decreased exponentially as y

(new)
j = y

(old)
j (1 - τ ),

where yj is the activation value of the jth node in F2 and



Fig. 3. The proposed ADLART model

τ ∈ (1, 0) is the decaying factor. In other words, it forgets
very fast at the beginning and becomes slower later on. This
pattern of activation decay is similar to human forgetting
pattern. One good feature of this decay algorithm is that when
the system performs a code read out operation, the sequence
of states in F2 could be easily retrieved by just looking at the
value order of the F2 codes in the activation vector, that the
indexed code with the highest activation value always means
the most recent event in the episodic. Due to the exponential
decay feature, the decay is faster at the beginning. As a result,
the more recent code activations have higher weighting in
pattern comparison. For many applications, this feature could
be valid as it is consistent to human-like forgetting pattern.
However, it may not fit some other applications. Beside
that, the activation sequence vector cannot represent multiple
occurrence of same event in an episode. The reason is that as
described in the algorithm, the latest occurrence of one state
will overwrite its former occurrence record. There are several
ways to work out of this problem. One possible way is to use
another input channel to separate the possible repeated states
in to many distinct states. Another possible way is to create
another code in F2 layer specially to represent the second
occurrence of a state.

IV. ADLART

In this paper, we propose a multi-memory model, AD-
LART (Activities of Daily Living ART), which is inspired
by human memory system, especially the episodic memory
model, EM-ART, mentioned in the previous section. The
architecture of the proposed ADLART is shown in Figure 3.
The ADLART model contains a working memory component
with two input fields, e.g. date category and ADL sequences.
The working memory communicates with the episodic mem-
ory component to learn the episodic of ADL sequences, at the
same time, it works with the semantic memory component
for semantic extraction.

Inside the episodic memory sub-model (Figure 4), there
are two input channels contributing to the process. The ADL
sequence input field has activation vectors of ADL sequences
of a day.

SADL = (IADL
1 , IADL

2 , ..., IADL
n ). (8)

Value Meaning

1 Monday
2 Tuesday
3 Wednesday
4 Thursday
5 Friday
6 Saturday
7 Sunday
8 Public Holiday
9 Sick Day

10 Vacation
11 Special Days

TABLE I
DATE INFORMATION INPUT

where the value of IADL
i ∈ [0, 1] indicates the order of

ADL sequence within the day and n is the total number of
ADL categories. The ADL recognition and activation process
goes beyond this architecture’s scope and may be realized by
using various ADL recognition algorithms, e.g. [6] [7].

At the same time, the date input field has vectors SDate

indicating the date information as tags.

SDate = (IDate
1 , IDate

2 , ..., IDate
11 ). (9)

In the current research and experiments, We have defined
eleven types of days as listed in Table I.

The output is an ADL day category representation A which
stores instances of categories of SADL with tags of the day
information. Many applications could be made based on A,
and it could be used as the input for higher level analysis.

The mechanic of the ADLART algorithm is summarized
in Algorithm 1.

Algorithm 1 ADL Sequence Coding and Routine Learning
1: for each ADL J in ADL sequence A do
2: let node activation IADL

J ← ADLoccurrence time
Whole day time

3: end for
4: for each ADL sequence vector y containing SADL and

its corresponding Date Information vector SDate do
5: select a resonance node J ′ in F2 based on sequence

vector y
6: learn its associated weight vector as w′(new)

J = y if
A is a novel ADL Sequence

7: end for

Fig. 4. The episodic sub-model



To encode ADL action time information into the input data
structure, we propose to use time of day as the activation
strength of IADL

i ∈ [0, 1]. The time of day is calculated as
ADLoccurrence time

Whole day time . It represents time in minutes. A whole
day has 1440 minutes. For example, if a person dresses up at
8:00am, the activation strength value for dressing up will be
8*60/1440 = 0.333; if he has lunch at 12:25pm, the activation
value for lunch will be (12*60+25)/1440 = 0.517. By using
this representation, the time of day is encoded into the ADL
sequences. Small variations in ADL occurrence time will be
reflected as small difference in activation value, which will
be tolerated in the template matching algorithm mentioned
in the previous section. On the other hand, by using the
activation strength assignment, it is very easy to retrieve the
time of day and the sequence order for each individual ADL.
At the end of a day, the most recent ADLs will have a bigger
activation value, and the earliest ADLs in the morning will
have smaller activation value. This is consistent with episodic
memory forgetting trends. However, one issue in this setting
is that the ADLs happening around the midnight will have
very different values. The ADLs before midnight will have
activation values near 1 while ones just after midnight will
have activation values near 0. We will propose methods to
handling this issue in future work.

A good feature of ADLART model is that it could learn
semantics of the day models. As we propose two input
channels for each daily routine category, the date information
input could be treated as a tag for the routine models
stored inside routine category F2. If the date input vector
is not fuzzy, there are few ways to implement semantic daily
routine formation inside the routine category layer. The first
and simplest way is to store strictly one category for each
date type inside F2 layer. To achieve this, all we need to
do is to prevent new category creation in F2 when no node
meets the vigilance. This is not a good way as it will limit the
categories in F2, and hinder the ability of category learning.
The second way is to tolerate different routine categories
created for each day type, and use an average value (or
weighted average for fuzzy dates) of all these categories to
represent the semantic date type. In addition, each time when
a category is fired, its ADL sequence and occurrence time
could be updated with the new entry. We use a third way that
creates a dedicated semantic component to store the semantic
information.

SSem = (A1, A2, ..., A11). (10)

where An is the semantic routine (ADL sequence) stored
in F2 for date type n.

Each time when a routine category is activated, the seman-
tic ADL sequence value for the same date type is updated
by

Anew
n = (1− βSem

n )Aold
n + βSem

n (SADL ∧Aold
n ) (11)

where the βSem
n ∈ [0, 1] is the semantics update parameter

for date type n.

The algorithm for semantics learning is summarized in
Algorithm 2. The algorithm first select the matching category
in F2, and then update semantic memory according to the
equation 11.

Algorithm 2 Daily Routine activation and Semantics Learn-
ing

1: for each input pattern of ADL sequence as vector
(SADL,SDate) in F1 do

2: Activate every category j in F2 by choice function
Tj =

∑n
k=1 γ

k |xk∧wk
j |

αk+wk
j |

3: select category J such that TJ = max{Tj :
for all F2 node j}

4: set node activation yJ ← 1

5: while match function mk
J =

|xk∧wk
J |

|xk| ≥ ρk. (not in
resonance)

6: or J was selected previously do
7: deselect and reset J by TJ ← 0, yJ ← 0
8: select another node J with TJ = max{Tj :

for all F2 node j}
9: end while

10: if resonance occurs(Routine recognized) then
11: Update episodic category(template learning)

w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ).

12: Update semantic memory by Anew
n = (1 −

βSem
n )Aold

n + βSem
n (SADL ∧Aold

n )
13: else(No matching/resonance)
14: let J ← J0, where J0 is a newly recruited

uncommitted nodes in F2

15: Learn (SADL,SDate) as a novel event with
w

k(new)
J = Sk

16: end if
17: end for

The proposed ADLART model fulfills the design chal-
lenges described in the previous section that the individual
ADL and ADL sequences are represented as single data entry
and data vectors. They have distinct definitions from each
other. The activation strength design makes sure the model
is tolerant to certain level of data variations inside same
cluster, while the choice parameter αk enables ADLART
to differentiate patterns. In FADL

1 , the ADL sequences are
formed and in F2 field, routine recognition takes place which
compares the incoming entry with stored categories. Also, it
could recall the sequence of recognized ADLs. Last but not
least, it maintains a semantic routine memory in F2 field as
well.

There are some other algorithms could learn sequential
patterns, for example Hidden Markov Model (HMM). If we
represent daily ADL sequences using HMM models, the
ADLs will be the HMM states. There is a difficulty to encode
ADL happening time information into HMM model. Without
ADL time, the accuracy of HMM model in solving ADL
daily routine is relatively low compared to ADLART. From
common sense, we could see that some ADL sequences may
be shared by all types of days, e.g. weak up, go toilet, wash



ID ADL

1 Wake Up
2 Wash Up
3 Dress Up
4 Breakfast
5 Entertainment
6 Lunch
7 Social
8 Dinner
9 House Work

10 Sleep

TABLE II
ADLS USED IN EXPERIMENT

ADL Time

Wake up 6:00am - 8:00am
Wash up wake up + 15m±5m
Dress up wake up + 30m±10m
Breakfast 8:00am-9:00am

Entertainment 9:30am-10:30am
Lunch 11:30am-13:30pm
Social no
Dinner 17:00pm - 19:00pm

House Work 14:00pm - 20:00pm
Sleep 21:00pm-23:00pm

TABLE III
SIMULATION STATISTICS: MONDAY

face, dress up, break fast, etc. The only difference of them in
different types of days could be the happening time of such
ADLs.

V. EXPERIMENTS

A. Experiment Settings

To test the performance of the proposed ADLART ar-
chitecture, we designed a simulation environment. We first
interviewed five people for their daily routine on different
type of days. Based on their ADL time ranges, we write a
programme to automatically generate data entries with some
random variations. For example, a person has a standard
morning routine, no social activities, and has an entertain-
ment ADL in the evening for working days. At the same
time, he has a delayed morning routine with both social and
entertainment ADLs possibly ranging for the whole day in
weekend and public holidays.

For the day category, as mentioned in the previous section,
we have eleven types of days including Monday to Friday,
weekends, sick days, public holidays, and vacations. For the
ADL category, in the experiment we use a simplified version
which consists of ten types of ADLs listed in the Table II.

B. Vigilance Parameter

In the first part of the experiment, we test the influence of
different vigilance parameter values in creating new category
codes for a given type of day. We use Monday as an example,
of which the activities are listed in Table III.

As we are looking at the ADL patterns, the day category
is used as tags by setting the vigilance parameter ρDate to 0.

Fig. 5. Vigilance parameter vs. categories created in 100 samples

We use the simulation programme to generate 100 samples of
Monday routine according to the variance mentioned in Table
III. The relationship between the vigilance parameter ρADL

and the number of categories created is plotted in figure 5.
We could see that when ρADL is smaller than 0.95 there
are only one or two categories created. This is not a good
setting as one category could not represent the variation and
distribution of the day type. When ρADL increases towards
1, the number of categories created accelerates towards the
number of samples. When ρADL is set to 0.98 to 0.99, there
are about 10 categories created. We prefer this number of
categories as they could reasonably represent the variations
of the day type, and at the same time avoid overfitting. When
ρADL increases over 0.99, there are more than 40 categories
created, in other words, a higher risk of overfitting.

C. Combined day type experiment

In this experiment, we used five types of days to show
the performance of the ADLART model: Monday, Tuesday,
sick day, vacation, and Sunday. We specially designed their
relationships as follows: The Monday and Tuesday routines
are similar to each other that they are basically weekdays.
They have starting time differences in ADLs but they have
heavy overlap to each other. The Sunday, vacation, and sick
Day are quite similar to each other that they have a delayed
morning routine, vacation and sick day do not have breakfast,
social, and house work. Besides, in sick days, the person
sometime do not dress up (stay on bed). In the training
phase, we use simulation generator generates 100 samples
for each type of days. The vigilance parameter ρADL is set
at 0.99. The training sequence is Monday, Tuesday, Sunday,
vacation, and sick days. After training, we use the same
simulation generator generates another 100 samples for each
type of days. We use the correctly recognized days over the
100 samples as the accuracy (recall). We run 10 times the
experiment. The average result is summarized in Table IV.
The result is as expected. Monday and Tuesday generators
use similar sample distribution to generate data, and the
model learn Monday first. As a result, Monday has a higher
accuracy whereas the model sometimes mistake Tuesday data
for Monday. The Sunday, Sick day, and vacation are well



ADL Recall Accuracy

Monday 98.4%
Tuesday 66.4%
Sunday 100%

Sick Day 98%
Vacation 100%

TABLE IV
ACCURACY IN COMBINED EXPERIMENTS

ADL Monday sick day

Wake Up 7:14 11:52
Wash Up 7:29 12:51
Dress Up 7:46
Breakfast 8:38

Entertainment 10:4
Lunch 12:45 12:52

House Work 17:49
Dinner 18:07 18:20
Sleep 22:18 23:13

TABLE V
SEMANTIC MEMORY LEARNING

distinguished from other days.

D. Semantic Routine Learning

As mentioned in the previous section, we have learned a
semantic memory of the daily routine in ADLART. In this
experiment, we generated 200 samples of Monday routine
and 200 samples of sick day routine. After training the
system, the content of the semantic memory is listed in the
Table V. The results satisfy the design requirement that over
the time the system has learnt semantic pattern of a typical
day of the user, e.g. compare Table III and Table V. At the
same time, the most recent user activities contribute more on
the semantics pattern which is very helpful for user health
trend monitoring.

VI. CONCLUSIONS

In this paper we address a new problem of user daily
activity pattern learning, and propose a multi-memory model
called ADLART to attempt to solve this problem. Having
an episodic memory component and a semantic memory
component, ADLART is able to learn, recognize, and retrieve
episodic and semantic patterns of user activities for different
date types. Simulation experiments are conducted to show
the functionality and performance of the proposed ADLART
model. In the future, we will look at the issues in the current
work, and at the same time, looking for other modeling
alternatives to improve performance.
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