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Abstract

There is a discrepancy between CAPM-implied and realized returns. Using the CAPM in capital

budgeting – as recommended in textbooks – should thus have real effects. For instance, low beta

projects should be valued more by CAPM-users than by the market. We test this hypothesis

using M&A data and show that bids for low-beta private targets entail lower bidder returns.

We provide further support by testing several ancillary predictions. Our analyses suggest that

using the CAPM when valuing targets leads to valuation errors (relative to the market’s view)

corresponding on average to 12% to 33% of the deal values.
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1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin (1966) is the pre-

dominant model of risk and return taught by academics in universities and business schools in undergraduate,

MBA, and executive education programs. The CAPM is also widely used in practice, in particular, to esti-

mate firms’ cost of (equity) capital.1 However, it is well known that the CAPM does not fit the data. The

average realized returns of low beta securities are higher and those of high beta securities lower than the

CAPM predicts. In other words, the slope of the empirical security market line (SML) is less steep than

implied by the CAPM (e.g., Black, Jensen, and Scholes, 1972; Fama and French, 2004; Baker, Bradley, and

Wurgler, 2011; Frazzini and Pedersen, 2014).

We show that the widespread use of the CAPM for cost of capital computations has real effects, in par-

ticular, for firms’ capital budgeting decisions and the market’s reaction thereto. The intuition is as follows.

For low beta investments, the cost of capital implied by the CAPM is lower than the cost of capital implied

by the empirical SML. Equivalently, the “CAPM-based valuation” of low beta investments exceeds their

market valuation. Consequently, managers who use the CAPM for capital budgeting are willing to under-

take low beta projects at prices that the market deems too high. The reverse holds for high beta projects. It

follows that the stock market reaction to low beta investments is less favorable than to high beta investments.

To test this prediction, we study mergers and acquisitions. This is a suitable setting because acquisitions

are examples of large-scale investments, and their known announcement dates allow us to observe the stock

market reaction. Further, because standard capital budgeting decisions involve projects that are not publicly

1Among the CFOs of public firms surveyed in Graham and Harvey (2001, p. 201), “the CAPM is by far the most popular method

of estimating the cost of equity capital: 73.5% of respondents always or almost always use the CAPM.” Jacobs and Shivdasani

(2012, p. 120) report that “about 90% of the respondents in a survey conducted by the Association for Financial Professionals use

the capital asset pricing model (CAPM) to estimate the cost of equity.” In a survey among valuation professionals, Mukhlynina and

Nyborg (2016, p. 22) find that “76% of respondents use the CAPM almost always or always” to compute the cost of equity.
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traded, our main test focuses on bids for private targets. In particular, using data from SDC Platinum on

more than 12,000 takeover bids for private targets during the period from 1977 to 2015, we show that bids

for low beta targets entail more negative stock market reactions than bids for high beta targets. To the best

of our knowledge, we are the first to document this relation. Specifically, we find that a difference in target

betas of one interquartile range (0.49) is associated with a difference in bidder cumulative abnormal returns

(CARs) of 0.5 to 1.2 percentage points, corresponding to 6% to 16% of the interquartile range of bidder

CARs. This relation is not explained by any of the CAR determinants that have been documented in the

prior literature and does not depend on the model we use to estimate betas or CARs.

Potential concerns are that our beta estimates may be noisy proxies for the actual beta estimates used by

managers in practice or that target betas may be correlated with unobserved determinants of bidder CARs.

For example, acquisitions of high beta targets may be associated with larger synergies. We mitigate such

concerns by estimating two-stage-least-squares (2SLS) regressions. To do so, we rely on mutual fund fire

sales as a source of non-fundamental variation in realized stock returns (i.e., noise), which in turn translates

into non-fundamental variation in beta estimates (i.e., noise in the coefficient estimates from a regression

of excess stock on excess market returns). Using the scaled in-sample covariance between the estimated

noise components in realized excess stock returns and excess market returns as an instrument for the beta

estimates corroborates our results: We find a positive and statistically significant relation between target

betas and bidder CARs with a magnitude that is similar to the OLS estimates. We also show that high beta

targets have lower bid-implied valuations and receive lower offer premiums, that betas do not predict cash

flows, and that there is no relation between target betas and the combined CARs of bidders and targets. All

of these findings are at odds with the idea that acquisitions of high beta targets are associated with larger

synergies. Further, we show that the discount rates used in fairness opinions on the bids increase with the

targets’ beta, supporting the premise that the CAPM is used to estimate the cost of capital in practice.

We also test several cross-sectional predictions. The positive relation between target betas and bidder

2
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CARs is stronger if the targets’ growth rate and relative size are high. The intuition is that higher growth and

larger size amplify the difference between the CAPM-implied value of a target and the market’s assessment

thereof. The relation, instead, is weaker when the empirical SML has a steeper slope and thus diverges less

from the CAPM-implied SML. We also find that the relation is stronger for bidders that are more likely to

use the CAPM (as proxied by mentioning the CAPM in their SEC filings) and weaker if bidders are more

likely to rely on valuation multiples (as proxied by the availability of publicly listed peers of the target).

When examining bids for public firms, we find a significant relation between target betas and bidder CARs

only for low but not for high beta targets and an insignificant relation for public targets overall. A possible

explanation is that readily available market prices dampen the impact of using the CAPM, in particular for

targets with high betas (and thus low CAPM-implied valuations) because bids below current market prices

are unlikely to be successful. The sum of the cross-sectional patterns is important as it supports the idea that

the positive relation between target betas and bidder CARs is indeed due to bidders’ use of the CAPM. Any

alternative story must explain not only this main finding but also all of the cross-sectional results.

Our contribution is to show that using the CAPM has real effects: CAPM-users are willing to buy (sell)

low (high) beta assets at prices that the market deems too high (low). The resulting valuation discrepan-

cies are economically significant. In the M&A market for private targets, we estimate discrepancies that

correspond, on average, to 23% of the deal values (66 million in U.S. dollar terms, inflation adjusted to De-

cember 2015). This estimation is based on the calibration of a simple model in which corporate managers

use the CAPM whereas the market values targets based on the flatter empirical SML. The model turns out

to match the empirical relation between target betas and bidder CARs reasonably well and, given data on

actual takeovers, allows us to estimate the valuation discrepancy for each deal. The average discrepancy

implied by our regression results is in line with the model-implied estimates and ranges from 12% to 33%

of the deal values. Moreover, the insight that using the CAPM leads to a valuation error (relative to the

market’s view) is not specific to the M&A market but applies to capital budgeting decisions more generally.

3
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New investment projects are typically not publicly traded (as is the case for private targets), and the CAPM

is commonly used to compute the projects’ cost of capital. Our estimate of the valuation error in the M&A

context is thus likely to be a lower bound for the total error due to using the CAPM also in other contexts.

The normative implications of our study ultimately depend on how the debate about the veracity of

the CAPM is settled. One view is that the CAPM holds in the long-run, but that the market is inefficient.

According to this view, our findings reflect temporary mispricing by the market, and managers are right to

use the CAPM. An alternative view is that the market is efficient and the CAPM fails to explain expected

returns, even in the long run. According to that view, our findings reflect valuation mistakes by bidders

and sellers, and managers should not use the CAPM. It is difficult to empirically distinguish these alterna-

tives, but we provide some suggestive evidence that managers should not use the CAPM (at least not in its

simple, text-book form and in an M&A context). First, we do not find any return reversal in the long run,

suggesting long-lasting wealth effects for investors. Second, we find that the relation between target betas

and bidder CARs is weaker for bidders with stronger corporate governance (as proxied by the presence of

institutional investors and a higher wealth-perfomance-sensitivity of the bidder’s CEO) and for bidders with

less entrenched managers (as proxied by the number of anti-takeover provisions). These findings suggest

that managers’ reliance on the CAPM may not be in the interest of shareholders.

Regarding the existing literature, most closely related to our paper is the work of Baker, Hoeyer, and

Wurgler (2019), henceforth BHW, who start from the same observation as we do: The realized returns of

high beta stocks are lower than implied by the CAPM. BHW assume that managers are right to use the

CAPM and focus on the effect on financing decisions: They predict that leverage is a decreasing function of

beta. We instead focus on investment decisions. This distinction is important not only because financing and

investment are two different activities but also because whether and how using the CAPM affects financing

decisions is very different from the effect on investment decisions. As BHW point out, financing decisions

are affected only if there is a risk anomaly in the equity market but not in the debt market (or, at least, if

4
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the risk anomaly in the debt market is weaker). The effect on investment decisions (and the corresponding

market reaction thereto) does instead not depend on market segmentation. In other words, the key condition

for BHW’s prediction that leverage is negatively related to asset risk is that equity and debt markets are

segmented, i.e., that risk is priced differently by equity investors compared to debt investors. In contrast, the

key condition for our prediction that bidder CARs are positively related to target asset betas is that risk is

priced differently by the market compared to corporate managers. Another difference is that we study not

only firms’ decisions (takeover bids) but also their effect on firm value (through bidder CARs). This is a

distinct advantage of the M&A setting: Takeovers constitute large investments with known announcement

dates, allowing us to quantify the value implications of managers’ use of the CAPM – at least, if one accepts

the premise that the stock market is efficient and bidder CARs reflective of value creation or destruction.

Our paper is also related to recent work on the real effects of the practice of capital budgeting. Krüger,

Landier, and Thesmar (2015) assume that firms apply the beta of their core division even to investments with

different risks and hence expect targets to be undervalued by high beta bidders. We instead expect high beta

targets to be undervalued. These are two different mechanisms, but to make sure our findings are not driven

by bidders using their own cost of capital when valuing targets, we check that our results are unchanged when

controlling for the bidders’ beta. Jagannathan, Matsa, Meier, and Tarhan (2016) offer survey evidence that

high beta firms use higher discount rates than low beta firms, which supports the premise that firms use the

CAPM to compute discount rates. Levi and Welch (2017) recommend that betas be computed with a double

shrinkage, which would be consistent with an interpretation of our results whereby managers overestimate

the slope of the true SML. Finally, our paper is related to van Binsbergen and Opp (2019)’s recent study

on the impact of asset pricing anomalies on the real economy. They explore a wider set of anomalies than

we do but perform a very different exercise from ours: They make a model-based quantification of the real

impact of anomalies, while we attempt to trace out the impact of one anomaly on firm behavior in the data.

We proceed as follows. In Section 2, we develop our predictions. In Section 3, we describe the data. In
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Section 4, we present the results. In Section 5, we address alternative explanations. In Section 6, we discuss

possible interpretations (are CAPM-using managers rational or not?) and provide suggestive evidence. We

conclude in Section 7. The appendix contains definitions, derivations, extensions, and robustness tests.

2 Predictions

2.1 Target Betas and Bidder Abnormal Returns Around Bid Announcements

To provide a framework for our analysis, we now introduce a simple model that formalizes our arguments.

As a typical capital budgeting case is arguably an investment in a new project that is not publicly traded

and thus more similar to a bid for a private target, we restrict attention to private targets here and consider

the case of a public target in Appendix III. Acquisitions of private targets are also much more common,

accounting for almost 90% of all M&A transactions by U.S. bidders between 1977 and 2015 in the SDC

Platinum database (including transactions with undisclosed deal values but excluding share repurchases).

There are three players: (1) “the bidder,” a public firm that seeks to acquire a private target;2 (2) “the

seller,” the target’s current owners; and (3) “the market,” other investors in the market place. The bidder and

the seller value assets by discounting expected future cash flows at the cost of capital implied by the CAPM.

The market, instead, values assets in line with the empirical SML (by construction), which may differ from

the CAPM-implied SML.3 This is the only relevant difference between the market and the other two players.

2We consider an acquisition of less than 100% of the target’s equity in Appendix III.

3Our predictions are qualitatively unchanged if the bidder and seller use other methods (e.g., multiples) in addition to a DCF

valuation as long as they place at least some weight on the DCF-implied value. Note further that we do not make any assumption on

the valuation model used by the market except that the empirical SML that it generates may differ from the CAPM-implied SML.
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The value of the target’s equity conditional on an acquisition and as assessed by the bidder and seller is

Et = V A
t + ∆t −Dt + St (1)

=
∞∑

τ=t+1

FCFτ

(1 + rA)τ−t
+

∞∑
τ=t+1

δτ

(1 + r∆)τ−t
−

∞∑
τ=t+1

dτ

(1 + rD)τ−t
+

∞∑
τ=t+1

sτ

(1 + rS)τ−t
, (2)

where V A
t is the stand-alone enterprise value of the target if it were entirely equity financed, ∆t is the net

benefit of leverage (e.g., tax savings minus distress costs), Dt is the value of the target’s debt, and St is the

value of synergies between the bidder and the target.4

The bidder pays a price Bt for the target’s equity that is determined through bilateral Nash bargaining:

Bt = V A
t + ∆t −Dt + αSt, (3)

where α ∈ (0, 1) denotes the seller’s relative bargaining power vis-à-vis the bidder. The seller thus receives

the stand-alone value of the target’s equity plus a fraction α of the synergies.

The cumulative abnormal return of the bidder’s stock in response to the bid (CARBidder
t ) is equal to the

difference between the value of the target’s equity as assessed by the market (Ẽt) and the price paid by the

bidder (Bt), scaled by the bidder’s market capitalization (EBidder
t ), i.e.,5

CARBidder
t =

Ẽt −Bt
EBidder
t

. (4)

For ease of exposition, we now assume the following: (AI) The systematic risk of the synergies, debt,

and net benefits of leverage does not depend on the systematic risk of the target’s operating free cash flows

on a stand-alone basis. (AII) The empirical SML is flat. We relax both assumptions in Appendix III and

show that our key prediction is qualitatively unchanged as long as the empirical SML is not too steep.

4FCFτ are expected operating free cash flows on a stand-alone basis, δτ net benefits of leverage, dτ payments to debt holders,

and sτ synergies in period τ . The corresponding discount rates are rA, r∆, rD , and rS . We assume FCFτ ≥ 0 and sτ ≥ 0 for all

τ > t and FCFτ > 0 for at least one τ > t. We further assume that the target is financed only with equity Et and debt Dt and

does not hold excess cash. Otherwise, Dt should be interpreted as the value of all financing other than Et and net of excess cash.

5We assume that the bidder’s share of the gains or losses from the takeover accrues to the bidder’s shareholders rather than the

bidder’s creditors. Note also that being private does not imply that the market does not form a belief about the target’s value.
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Using rA = rf + βA × µ, the first assumption implies

∂Bt
∂βA

= − ∂rA
∂βA

×
∞∑

τ=t+1

(τ − t)× FCFτ
(1 + rA)τ−t+1 = −µ

∞∑
τ=t+1

(τ − t)× FCFτ
(1 + rf + βA × µ)τ−t+1 < 0, (5)

where rf , βA, and µ denote the risk-free rate, target’s asset beta, and market risk premium.

The second assumption implies that the market’s assessment of the target’s equity value does not depend

on the target’s asset beta, i.e.,

∂Ẽt
∂βA

= 0. (6)

It follows that

∂CARBidder
t

∂βA
=

µ

EBidder
t

∞∑
τ=t+1

(τ − t)× FCFτ
(1 + rf + βA × µ)τ−t+1 > 0, (7)

which motivates our main prediction:

Prediction 1 The bidder’s cumulative abnormal return around the bid announcement is increasing in the

target’s asset beta.

2.2 Additional Predictions

Our framework implies a number of additional predictions. We state each prediction below, together with a

short description of the underlying intuition. Appendix III provides formal derivations.

Prediction 2 The positive relation between the bidder’s CAR and target’s asset beta is stronger if the growth

rate of the target’s expected operating free cash flows on a stand-alone basis is larger.

Higher growth amplifies the difference between the value implied by the CAPM versus the empirical SML.

Prediction 3 The positive relation between the bidder’s CAR and target’s asset beta is stronger if the rela-

tive size of the bid vis-à-vis the bidder’s market capitalization is larger.

Misvaluing a target has a bigger effect if the target is large relative to the bidder.
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Prediction 4 The positive relation between the bidder’s CAR and target’s asset beta is stronger if the bidder

relies more on the CAPM-based valuation of the target (relative to other valuation methods).

Bidders overvalue low- and undervalue high-beta targets relative to the market’s assessment because they

use the CAPM. Consequently, there is more over- or underpayment if bidders rely more on the CAPM.

Prediction 5 The positive relation between the bidder’s CAR and target’s asset beta is weaker if the empir-

ical SML has a steeper slope.

The reason why the CAPM-based value of a target differs from the market’s assessment thereof is that

the empirical SML is less steep than the CAPM-implied SML. Consequently, the difference between the

CAPM-based value and the market value becomes smaller when the empirical SML becomes steeper.

Prediction 6 The positive relation between the bidder’s CAR and target’s asset beta is weaker if the target

is publicly listed, in particular, if its asset beta is high.

As the current market valuations of public targets are observable, bidders are likely to rely relatively less on

the CAPM. Further, owners of public targets can sell their shares at the current price in the stock market.

Bids for high beta public targets (whose market prices exceed their CAPM-based values) must thus reflect

the beta-insensitive market prices. Both effects weaken the relation between bidder CARs and target betas.

3 Data

Data on takeover bids come from Thomson Financial’s SDC Platinum M&A database. We use all obser-

vations between 1977 and 2015 with a public bidder and a deal value of at least USD 50 million (inflation

adjusted to December 2015 terms). Table 1 presents descriptive statistics.6 We distinguish between bids for

private targets (Panel A) and bids for public targets (Panel B).

6All continuous variables are winsorized at the 1st and 99th percentile. Definitions are provided in Appendix I.
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The average cumulative abnormal return of the bidders’ stock around the bid announcements (from

t = −3 to t = +3 for a bid announced on date t = 0) is positive for private targets (2.0%) and negative

for public targets (-0.6%), consistent with the existing literature (e.g., Betton, Eckbo, and Thorburn, 2008;

Schneider and Spalt, 2019). The average deal value is USD 388 million for private and USD 1,258 million

for public targets (inflation-adjusted to December 2015 terms). Bidders offer an all-stock payment in 13%

(33%) of the cases if the target is private (public). The average discount rate used in fairness opinions on the

proposed deals is 14.1% for private and 13.1% for public targets.

The private (public) targets in our sample have an average asset beta of 0.86 (0.82) with a standard

deviation of 0.33 (0.36). The distribution of bidder asset betas is very similar. All betas are computed

as follows: First, for each public firm i in CRSP at the end of each month t, we regress monthly excess

stock returns (RET in CRSP minus the risk-free rate from K. French’s webpage7) during the previous

five years, i.e., from month t − 60 to month t, on the corresponding excess returns of the CRSP value-

weighted portfolio (including dividends). The regression coefficient is the CAPM (equity-)beta βEit .8 To

ensure reasonable precision, we drop estimates based on less than 36 monthly returns. Further, we drop

observations for which the estimated beta is negative, and we drop the same number of observations in the

right tail of the distribution of estimated betas. Our findings are unchanged if we winsorize the estimates at

the 1% level instead. Second, we delever each beta using the formula βAit = βEit / [1 + (1− τ)×Dit/Eit],

where τ is the statutory tax rate in the highest bracket, Dit is total debt at the end of the most recently

completed fiscal year (DLT + DLC in Compustat), and Eit is the market capitalization of firm i at the

end of month t. Third, we compute the equally weighted average of βAit of all public firms in CRSP with

the same three-digit primary SIC code. Finally, we attribute to the target and bidder the equally weighted

average asset beta of their respective industries as of the last completed month before the bid announcement.

7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

8We use sharecodes 10 and 11 and compute the value-weighted average beta in case of multiple securities per firm.
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Hence, if the bidder and target operate in the same industry, they have the same asset beta.

It is important to note that to test our predictions, we require estimates of the betas used by managers

in practice. Thus, our goal is not to estimate the “true” CAPM-betas but to replicate as closely as possible

the estimation procedure most likely used by the bidders in our sample. Consequently, we follow common

industry practice and rely on five years of monthly returns, use the standard (textbook) delevering formula,

and compute the equally weighted average asset beta of each target’s public peers. Our results, however, are

not materially affected when using alternative methodologies to estimate, delever, or aggregate betas.

4 Results

4.1 Cumulative Abnormal Returns of Bidders’ Stock Around Bid Announcements

We now test our main prediction: The bidder’s cumulative abnormal return around the bid announcement

is increasing in the target’s asset beta (Prediction 1). For the purpose of this analysis, we focus on private

targets. Tests of our model’s differential predictions for public targets are provided in Section 4.5.

We estimate the following OLS regression:

Bidder CAR = α+ β × Target Asset Beta + γ × Beta Spread + δ′Deal Controls (8)

Bidder CAR = α+ η′Target Controls + κ′Bidder Controls + Bidder Industry × Year Fixed Effects + ε

Bidder CAR is the bidder’s cumulative abnormal return during the seven days around the bid announcement

(i.e., from date t− 3 to date t+ 3 for a bid announced on date t = 0).9 Target Asset Beta is the target’s asset

beta. Beta Spread is the difference between the target’s and bidder’s asset beta. We include this variable

to control for the effect of bidders using their own beta rather than the target’s beta to compute the cost of

capital (Krüger, Landier, and Thesmar, 2015). Deal Controls are characteristics that are commonly used

9Our findings are robust to using alternative event windows, e.g., from t− 2 to t+ 2 or from t− 1 to t+ 1.
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as control variables in the M&A literature.10 Specifically, we control for Deal Value (Log), Equity, Cash,

Toehold, Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative Size, and Bidder

Size (Log). Detailed definitions are provided in Appendix I. Target Controls are the target’s market-to-book

ratio, return on assets, and leverage, as well as cash holdings and cash flow (both scaled by assets).11 Bidder

Controls are defined analogously. The standard errors are clustered by target industry.12

Table 2 presents the results.13 In column (1), we do not include any control variables other than fixed

effects. We add the deal controls in column (2), target controls in column (3), and bidder controls in column

(4). In column (5), we also add Beta Spread. To conserve space, we do not report the coefficient estimates

and t-statistics of all control variables. The coefficient estimates on Target Asset Beta are positive and

statistically significant at the 1% level in all five columns.14 The point estimates range from 1.02 in column

(1) to 2.55 in column (5) and imply that an increase in Target Asset Beta by its interquartile range (0.49) is

associated with an increase in Bidder CAR by 0.5 to 1.2 percentage points, corresponding to 6% to 16% of

Bidder CAR’s interquartile range (7.9%).

10See, e.g., Moeller, Schlingemann, and Stulz (2004), Masulis, Wang, and Xie (2007), Golubov, Petmezas, and Travlos (2012),

Harford, Humphery-Jenner, and Powell (2012), and Dessaint, Golubov, and Volpin (2017).

11For private firms, we use the equally weighted average of these variables computed across all public firms that operate in the

same industry (based on the first three digits of the firms’ primary SIC code).

12Our findings are unchanged if we use block bootstrap standard errors instead.

13The reported number of observations refers to the observations that are effectively used in the estimation procedure and varies

between the different columns because some control variables are not available for all observations and cases with only a single

observation for a given fixed effect (“singletons”) are dropped in an iterative procedure. This note applies to all subsequent tables.

14Table A.1 in Appendix II shows that this finding does not depend on the model used to estimate Bidder CAR. Table A.2 shows

that the results are similar when we use the targets’ equity betas instead of their asset betas. When controlling for Bidder Asset Beta

instead of Beta Spread, the coefficient on Target Asset Beta (Bidder Asset Beta) is 1.28 (1.22) with a t-statistic of 3.28 (2.41) in the

full sample and 0.95 (0.79) with a t-statistic of 1.90 (1.27) in the sub-sample where the two betas differ.
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4.2 Instrumental Variable Estimation

Potential concerns regarding our analysis are measurement error and omitted, correlated variables. Specifi-

cally, the procedures and data that managers use in practice to estimate beta may differ from the procedures

and data we use to construct Target Asset Beta. In that case, Target Asset Beta = Beta Actually Used +

Measurement Error, and the OLS estimator would suffer from an attenuation bias. Target betas may also

be correlated with determinants of bidder CARs that are not captured by the control variables and fixed

effects. We control for the determinants that have been documented in the literature (e.g., Golubov, Yaw-

son, and Zhang, 2015; Moeller, Schlingemann, and Stulz, 2004; Masulis, Wang, and Xie, 2007; Harford,

Humphery-Jenner, and Powell, 2012), but we cannot rule out that there might be other, omitted variables that

are (conditionally) correlated with both target asset betas and bidder CARs. As the existing literature does

not provide clear guidance on what these omitted variables may be and how they may be correlated with

target betas, however, we cannot make a clear-cut prediction whether the resulting bias in the OLS estimator

would be positive or negative. For example, if bidder hubris, synergies, or sellers’ relative bargaining power

were correlated with target asset betas, then the OLS estimator could be either upward or downward biased,

depending on the sign of the correlations between these variables and Target Asset Beta.

To mitigate the above-mentioned concerns, we construct an instrument for Target Asset Beta and esti-

mate the effect on bidder CARs in a two-stage-least-squares (2SLS) framework. To do so, we rely on mutual

fund fire sales as a source of non-fundamental variation in realized stock returns (i.e., noise), which in turn

translates into non-fundamental variation in beta-estimates (i.e., noise in the coefficient estimates from a

regression of excess stock on excess market returns). The intuition is as follows.

In practice, a firm’s equity-beta is typically estimated by regressing realized stock returns in excess of a

proxy for the risk free rate on realized excess returns of a market proxy. The beta-estimate is then defined as

β̂ ≡ σ̂r,m
σ̂2
m

, (9)
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where σ̂r,m denotes the in-sample covariance between the excess stock return r and the excess market return

rm, and σ̂2
m denotes the in-sample variance of rm.15

The realized excess stock return can be written as the sum of a fundamental and a noise component,

r = r∗ + u, (10)

where r∗ denotes the fundamental component, and the noise component is defined as u ≡ r− r∗. It follows

that the beta-estimate (β̂) can be decomposed into a “fundamental beta” (β̂∗) and a “noise beta” (β̂u), i.e.,

β̂ =
σ̂r,m
σ̂2
m

=
σ̂r∗,m
σ̂2
m

+
σ̂u,m
σ̂2
m

= β̂∗ + β̂u, (11)

where σ̂r∗,m and σ̂u,m are the in-sample covariances between r∗ and rm and u and rm. This decomposition

suggests that the scaled in-sample covariance (β̂u) between non-fundamental shocks to realized excess stock

returns and excess returns of the market proxy can be used as an instrument for the beta-estimate (β̂).

To implement this strategy, we rely on mutual fund fire sales as a source of non-fundamental variation

in realized returns. Coval and Stafford (2007) show that stock sales by funds that experience large outflows

create large, positive supply shocks for the liquidated stocks and thus have a negative impact on realized re-

turns. Fund managers, however, can exercise discretion when deciding which of their positions to liquidate.

To mitigate the concern that the decision which shares to sell introduces a correlation between fire sales and

fundamentals, we follow Edmans, Goldstein, and Jiang (2012) and rely on hypothetical mutual fund fire

sales (HMFFS) rather than actual sales.16 In particular, for each stock, we compute the total dollar amount

of hypothetical mutual fund fire sales scaled by the total dollar amount of trading in the stock, assuming that

each position in an affected fund’s portfolio is liquidated in proportion to its portfolio weight (so that the

15Some data providers (e.g., Bloomberg) also offer “adjusted beta” estimates that are a weighted average between the “raw beta”

estimate and one (e.g., β̂adj. = 2
3
× β̂ + 1

3
). We abstract away from such adjustments as they complicate the exposition but do not

change the intuition behind our identification strategy.

16See also Lou (2012).
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overall composition of the portfolio remains unchanged).17 This approach ensures that the variable HMFFS

is not affected by fund managers’ discretion regarding which stocks to sell after a large outflow.18

Next, we use HMFFS to estimate the non-fundamental noise component in firms’ stock returns. Specif-

ically, for each public firm in the CRSP database and for each beta-estimation period in our sample, we

regress the firm’s realized excess stock return r on HMFFS,

r = α+ γ × HMFFS + υ. (12)

Importantly, because we estimate this regression separately for each firm and five-year beta-estimation pe-

riod, α in (12) is effectively a firm× estimation-period fixed effect that absorbs all characteristics that do

not vary during the five-year estimation period. The estimated effect of HMFFS is therefore only based on

within-firm, time-series variation during the estimation period but not on cross-sectional variation between

firms. This is worth noting because it mitigates the potential concern that the occurrence and extent of fire

sales may be correlated with the characteristics of the firms whose shares are sold.19

Next, we use the fitted value from (12) – the predicted excess return due to mutual fund fire sales – as

an estimate of the non-fundamental noise component in the return (i.e., û = γ̂ × HMFFS) and define20

β̂û ≡
σ̂û,m
σ̂2
m

, (13)

where σ̂û,m is the in-sample covariance between the estimated noise component and the realized excess

return of the market proxy. Finally, in analogy to the construction of Target Asset Beta, we delever the firm-

17We provide a detailed description of the construction of HMFFS in Appendix IV.

18Wardlaw (2018) argues that scaling the amount of hypothetical mutual fund fire sales by the trading volume may be problematic

because it could lead to a correlation between HMFFS and returns for reasons other than the fire sales. We discuss this concern in

detail in Appendix V and show that our findings are robust to the use of alternative measures that are not subject to this critique.

19Berger (2019, p. 4), for example, argues that “large outflows are more likely among funds that invest in small firms.”

20It is not needed that HMFFS explains the entire noise term. In particular, assume that u is the sum of unexplained noise η and

noise ν due to mutual fund fire sales: r = r∗ + η+ ν. In that case, we have β̂ = β̂∗ + β̂η + β̂ν , so β̂ν can be used to instrument β̂.
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level estimates β̂û and compute the equally-weighted average at the industry level. The resulting variable,

denoted Target Noise Beta, is our instrument for Target Asset Beta.21

To be a valid instrument, Target Noise Beta must satisfy two conditions. First, it must be correlated

with Target Asset Beta. This condition can be tested using the first-stage of the 2SLS procedure. The

results show that the correlation between Target Noise Beta and Target Asset Beta is positive and highly

statistically significant (Table 3, Panel A). With t-statistics above ten, the implied F-statistics are an order

of magnitude larger than the threshold suggested by Stock, Wright, and Yogo (2002) to guard against weak

instruments.22 To mitigate concerns about the robustness of this finding, we explore the correlation between

the two variables in further detail. Figure A.1 in Appendix II shows the estimated coefficients from a

regression of Target Asset Beta on indicators for different ranges of Target Noise Beta. This analysis reveals

a strong and monotone relation that corroborates the first-stage results reported in Table 3, Panel A.

The second condition is that Target Noise Beta must be uncorrelated with the error term in the regression

of Bidder CAR on Target Asset Beta. The key exogeneity assumption in our setting is therefore that the

unexplained part of a bidder’s CAR around the bid for a private target is uncorrelated with the average

covariance between the market return and the estimated noise components in the returns of other, public

firms in the industry during the five years before the takeover bid: cov[Target Noise Beta, ε] = 0, where ε

is the error term in (8). A sufficient condition is that mutual fund fire sales are exogenous and introduce

21To ensure that Target Noise Beta and Target Asset Beta are constructed based on the same sample of observations, we exclude

β̂u-estimates if the corresponding β̂-estimates are missing. Further, we set Target Noise Beta to missing if the average estimated

effect of HMFFS on r at the industry level is in the top or bottom percentile of the sample distribution. This procedure mitigates

the concern that Target Noise Beta may be driven by outliers in the distribution of estimated noise components.

22Target Noise Beta is an estimated quantity, so the first-stage t-statistics may be overstated. Importantly, this does not affect the

asymptotic distribution of the second-stage estimator as long as Target Noise Beta is consistent and the error in the regression of

Bidder CAR on Target Asset Beta has a conditional mean of zero given the data used to estimate Target Noise Beta (Wooldridge,

2002). Both are maintained assumptions in our analysis. Further, note that even if the “true” t-statistics were up to three times

smaller than those reported, the implied F -statistics would still exceed the threshold suggested by Stock, Wright, and Yogo (2002).
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random noise into the public firms’ excess stock returns. The evidence documented by a growing number

of papers supports this premise: Mutual fund fire sales trigger a drop in stock prices that is followed by

subsequent reversal, and corporate insiders trade against these shocks.23 Both findings are consistent with

the notion that mutual fund fire sales represent temporary, non-fundamental supply shocks.24

Importantly, however, this is not a necessary condition. Even if the fire sales were correlated with the

characteristics of the public firms in the funds’ portfolios, it is difficult to argue that this would translate

into a correlation between the average covariance of the market return and the estimated noise compo-

nents in the public firms’ excess returns (Target Noise Beta) and the unexplained part of a bidder’s CAR

around the bid for a different, private target several years after the fire sale – in particular, after condition-

ing on the large number of control variables and fixed effects in the regressions. Our exogeneity assumption

cov[Target Noise Beta, ε] = 0 is thus considerably weaker than the assumption that the mutual fund fire sales

themselves are exogenous. This is another reason why the potential concern that HMFFS may be correlated

with the characteristics of the firms whose shares are sold is unlikely to be important in our setting.

It is also unclear why the realized, in-sample covariance between excess market returns and non-

fundamental noise in the return realizations of public firms during the five years before a deal would affect

a bidder’s CAR around a bid announcement for a different, private firm through any channel other than

the effect on the beta estimate. Taken together, plausibly random assignment and a single channel through

which bidder CARs are affected suggest that Target Noise Beta satisfies the exclusion restriction.

Table 3 displays the results of the 2SLS estimation.25 In Panel A, columns (1) to (4), we present the

results of the first-stage regressions of Target Asset Beta on Target Noise Beta. In columns (5.a) and (5.b),

23Ali, Wei, and Zhou (2011); Goldman (2017); Dessaint, Foucault, Frésard, and Matray (2018); Honkanen and Schmidt (2018).

24Other papers using mutual fund fire sales as non-fundamental shocks to prices/returns include Edmans, Goldstein, and Jiang

(2012), Phillips and Zhdanov (2013), Acharya, Almeida, Ippolito, and Perez (2014), and Eckbo, Makaew, and Thorburn (2017).

25The sample period for this analysis is 1980 to 2015 as data on mutual funds flows is not available prior to 1980.
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we instrument Target Asset Beta and Beta Spread with Target Noise Beta and Bidder Noise Beta.26 The

coefficient estimates on Target Noise Beta in all columns are positive and strongly significant. Similarly, the

coefficient on Bidder Noise Beta in column (5.b) is negative and highly significant.

Panel B shows the second-stage results. The IV estimates of the coefficients on Target Asset Beta

are noisier than the corresponding OLS estimates reported in Table 2 but remain positive and statistically

significant – at the 5% level in columns (1), (3), and (4), at the 1% level in column (2), and at the 10%

level in column (5). Further, while estimated with lower precision, the IV estimates are comparable in

magnitude to the OLS estimates. Indeed, the 10% confidence intervals around the IV estimates include the

corresponding OLS estimates, and Durbin-Hausman-Wu tests indicate that the difference between the IV

and the OLS estimates is not statistically significant. The IV results thus corroborate our earlier findings of

a positive relation between Target Asset Beta and Bidder CAR.

The finding that the 2SLS estimates are a bit larger than (though not statistically different from) the OLS

estimates is consistent with the initially mentioned concern about a potential attenuation bias in the OLS

estimator. It is also worth noting that the IV estimates capture a local average effect that could potentially

differ from the average effect captured by OLS. Specifically, the IV coefficients capture the relation between

Target Asset Beta and Bidder CAR for those acquisitions where the beta estimate used by the managers is

influenced by fire sale induced noise in stock returns. Imagine now that there is heterogeneity in bidder

sophistication: More sophisticated bidders know that simple regression betas can be distorted by noise and

therefore adjust the estimation procedure or put less emphasis on the CAPM-implied value of the target. In

that case, the IV coefficients would primarily reflect the relation between Target Asset Beta and Bidder CAR

for less sophisticated bidders who continue to use the CAPM with simple beta-estimates even when there is

fire sale induced noise. Hence, if less sophisticated bidders rely more on the textbook version of the CAPM

– thus generating a stronger relation between Target Asset Beta and Bidder CAR – then the local average

26We construct Bidder Noise Beta in analogy to Target Noise Beta.
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effect captured by the IV estimation could be larger than the average effect captured by OLS.

4.3 Model Calibration and Implied Valuation Errors

We now explore whether the magnitude of the regression coefficients that we estimate is consistent with the

model of Section 2. For this purpose, we assume that the bidder seeks to acquire a fraction π ∈ [0, 1] of the

target’s equity and that the takeover succeeds with probability ρ ∈ [0, 1].27 In that case, our model implies

CARBidder
t = ρ× πẼt −Bt

EBidder
t

. (14)

We further make three simplifying assumptions: (I) The operating cash flows and synergies have the

same systematic risk and grow at a constant rate g. (II) The level of debt is permanent, and the net benefit of

leverage is equal to the tax shield. (III) The bidder, seller, and market use the book value of debt as a proxy

for the debt’s market value. We show in Appendix III that the bidder’s CAR can then be written as

CARBidder
t =

ρ

EBidder
t

×
{
π (FCFt+1 + st+1)×

[
1

r̃A − g
− 1

rA − g

]
+ (1− α)

st+1

rA − g

}
. (15)

Finally, we assume that the CAPM-implied and empirical SML cross at the average asset beta (βA) and

allow for different degrees of steepness of the empirical SML, so that discount rate used by the market is

r̃A = rf +
[
γ × βA + (1− γ)× βA

]
× µ, (16)

where γ ∈ [0, 1] determines the steepness of the empirical SML (relative to the CAPM). For example, γ = 0

means that the empirical SML is flat, and γ = 1 means that the empirical and CAPM-implied SML coincide.

We then use Equations (15) and (16) to compute CARBidder
t for different values of βA. We assume the

following parameter values: We set ρ equal to 0.92 and EBidder
t equal to USD 10,269 million based on the

average bidder market value and bid acceptance rate in the sample of 12,109 observations used to estimate

column (5) in Table 2. We use the average yield on 20-year U.S. treasury bonds during the sample period

27Unlike in the model in Section 2, some bids in the data fail. We introduce the parameter ρ to capture this empirical pattern.
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(5.0%) as a proxy for rf , the average nominal GDP growth (5.4%) to proxy for g, and we assume a market

risk premium (µ) of 6%. We use the average asset beta of all public firms in Compustat (0.84) to proxy for

βA, set α to 0.5, and consider three different degrees of steepness of the empirical SML: γ = 0, γ = 0.5,

and γ = 1. Finally, we set st+1 and π (FCFt+1 + st+1) to the values implied by st+1 = S̃t (r̃A − g) and 28

π (FCFt+1 + st+1) = Bt [1 + (1− τ)L] (rA − g) + st+1 [1− α+ (1− τ)L (1− π − α)] , (17)

which we compute using the average synergy value (S̃t) of USD 58 million that we estimate based on the

combined CARs of bidders and targets around bids for public firms, the average bid value (Bt) of USD 314

million, average tax rate (τ) of 36%, average ratio of debt to equity (L) of 0.59, and average target asset

beta of 0.9 in the sample used to estimate column (5) in Table 2. All other parameter values are as before.

Next, we compute the implied coefficients in a regression of CARBidder
t on indicator variables for different

ranges of βA, relative to the base case of βA = 0.9. We contrast these model-implied coefficients with the

actual coefficients obtained in our empirical analysis. Figure 1 presents the results. The dashed blue line

shows the model-implied coefficients for a flat empirical SML (γ = 0) and the dashed gray line for an

empirical SML that coincides with the CAPM (γ = 1). The solid blue line corresponds to an empirical

SML that is half as steep as the CAPM-implied SML (γ = 0.5). The solid red line shows the coefficient

estimates from our empirical analysis (using the same controls as in column (5) of Table 2).29 Overall,

except for very low asset betas, the model fits the empirical relation between Bidder CAR and Target Asset

Beta reasonably well. Put differently, our regression estimates are quantitatively consistent with our model.

Our model also allows us to assess the magnitude of the valuation error (relative to the market’s view)

that is due to managers’ reliance on the CAPM. The idea is that we observe the actual bids Bt in the data

and can use the model to back-out the implied counterfactual bids B̃t that would have been made had

the managers relied on the empirical SML instead of the CAPM. The implied valuation error can then be

28We derive this relation in Appendix III.

29We report the numerical values of these coefficient estimates in Table A.3 in Appendix II.
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computed as the absolute value of the difference between the actual and counterfactual bids, where we use

the absolute value because all losses to bidders are gains to targets (and vice versa).

Specifically, for each completed takeover in our sample, we estimate the valuation error as30

|Bt − B̃t| = |(1− α) st+1 − π (FCFt+1 + st+1)| ×
∣∣∣∣ 1

r̃A − g
− 1

rA − g

∣∣∣∣ , (18)

where we use st+1 = S̃t (r̃A − g) and

π (FCFt+1 + st+1) = Bt [1 + (1− τ)L] (rA − g) + st+1 [1− α+ (1− τ)L (1− π − α)] (19)

computed using the bid-specific values of Bt, π, and βA as well as (target SIC3-) industry specific estimates

of S̃t, τ , and L. For all other model parameters, we make the same assumptions as before.

The valuation errors implied by this analysis correspond, on average, to 23% of the deal values (66

million per takeover in U.S. dollar terms, inflation adjusted to December 2015). This model-implied estimate

is in line with the estimates obtained from regressing Bidder Car on Target Asset Beta (Tables 2 and 3),

which provide an alternative way to gauge the valuation errors. Specifically, for each deal, we can compute

the regression-implied valuation error by multiplying the coefficient estimate on Target Asset Beta with

the absolute difference between Target Asset Beta and 0.84 (our estimate of βA) and the bidder’s market

capitalization. Doing so implies average valuation errors of 12% to 33% of the deal values (based on the

coefficient estimates reported in columns (1) to (5) of Table 2).31

30We derive Equation (18) in Appendix III.

31As a robustness check, we have also computed the model-implied valuation errors using equity instead of asset betas. Doing so

yields valuation errors that correspond, on average, to 14% of the deal values (38 million in U.S. dollar terms, inflation adjusted to

December 2015). A point worth noting is that the model-implied estimates correspond to the valuation errors that are due to using

the CAPM in the M&A context, not the total errors due to using the CAPM in general. An implication is that the model-implied

estimates of the valuation errors in the M&A context may understate the total errors from using the CAPM across all contexts.
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4.4 Cross-Sectional Variation

We now test Predictions 2 to 5 regarding cross-sectional variation in the relation between bidder CARs and

target asset betas. To do so, we define five indicators. Target Growth High is equal to one if the growth rate

of aggregate sales in the target’s industry over the past three years is larger than the sample median. Target

Relative Size High is equal to one if the relative size of the bid vis-à-vis the bidder’s market capitalization

is larger than the sample median. Bidder Mentions CAPM is equal to one if the words “CAPM” or “Capital

Asset Pricing Model” occur in the bidder’s 10K, 10Q, and 8K filings during the three years prior to the bid

announcement. Listed Peer Available is equal to one if the target is a U.S. firm, and there is at least one other

publicly listed U.S. firm with the same primary three-digit SIC code whose market capitalization is neither

smaller than 50% nor larger than 150% of the target’s bid-implied equity value. The idea is that a comparable

public peer should come from the same geographic region, operate in the same industry, and have a similar

size. We use Bidder Mentions CAPM and Listed Peer Available as proxies for bidders’ reliance on the

CAPM relative to other valuation methods. The intuition is that bidders who rely on the CAPM should

be more likely to mention the CAPM, and that bidders are more likely to complement a CAPM-based

valuation with a multiple-based valuation if there are comparable, publicly listed peers. Finally, we define

the indicator Steep Empirical SML that is equal to one if, during the month of the bid announcement, the

slope of the empirical SML estimated following Hong and Sraer (2016) is larger than the sample median.32

Next, we estimate OLS regressions in which we interact Target Asset Beta with the above indicators.33

Table 4 presents the results. We find that the relation between bidder CARs and target betas is stronger if

the growth in the target’s industry is high and if the bid is large relative to the bidder’s market capitalization.

Further, the relation is stronger if the bidder is more likely to rely on the CAPM (as proxied by Bidder

Mentions CAPM) and weaker if the bidder is more likely to complement a CAPM-based valuation with a

32We thank David Sraer for sharing the code and data.

33We also interact all controls and fixed effects with the indicators, thus allowing their coefficients to vary with the indicators.
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multiple valuation (as proxied by Listed Peer Available).34 Finally, the relation is weaker when the empirical

SML is steep. All of these findings support the cross-sectional predictions that are implied by our model.35

4.5 Private vs. Public Targets

We now test Prediction 6. Specifically, we consider both private and public targets and examine whether

and how the relation between bidder CARs and target asset betas varies between the two types of targets.

The key difference between a private and a public target in our model is the seller’s outside option when

negotiating with the bidder. The owners of a public target can decide between accepting the bid, keeping the

shares, and selling the shares at their current price in the stock market. The owners of a private target can

only choose between selling to the bidder and retaining the shares. The owners of a public target thus have

a better outside option when bargaining with the bidder, in particular, when the target’s CAPM-beta is high

(i.e., when the market price is larger than the CAPM-implied value). Further, because the market price is

less sensitive to beta than the CAPM-implied value, the relation between the target’s beta and the takeover

price offered by the bidder (and thus ultimately the bidder’s CAR) is weaker for high beta public targets.

Another difference between private and public targets is the ease with which observable prices can be

used to complement a CAPM-based valuation. For a public target, the bidder may consider not only the

CAPM-based value but also the target’s current market capitalization. For a private target, the market prices

of public firms that are deemed “comparable” may play a role (e.g., in the form of valuation multiples).

We consider this possibility in an extension of our model (in Appendix III). In particular, we assume that

34Similarly, we find that the relation is weaker if the fairness opinions on the proposed deals include multiple valuations based

on comparable, traded peers. A caveat is that this information is only available for a very small subsample of the deals.

35The finding that the relation between Bidder CAR and Target Asset Beta is stronger if the relative deal size is larger is consistent

not only with our model but also with alternative models in which bidder CARs and target betas are related for reasons other than

managers’ use of the CAPM. Taken in isolation, this finding does thus not distinguish our model from such alternatives. However,

the sum of our cross-sectional findings, all of which are predicted by our model, is difficult to reconcile with alternative explanations.
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the bidder’s assessment of the target’s equity value is a weighted average of the CAPM-based value and

another, market-based value (e.g., the current market price for a public target and a multiple-implied value

for a private target). As a current market price is arguably considered a more accurate assessment than

a multiple-implied value, we conjecture that the weight given to a public target’s market capitalization is

higher than the weight given to a multiple-implied value for a private target. Thus, because the market-based

value is less sensitive to beta than the CAPM-based value, we expect the takeover bid (and consequently,

the bidder’s announcement CAR) to be less sensitive to the target’s asset beta if the target is public.

To test this prediction, we regress Bidder CAR on Target Asset Beta separately for private and public

targets. Table 5 shows the results for private targets in columns (1) to (3) and for public targets in columns

(4) to (6). Columns (1) and (4) correspond to column (5) of Table 2. We find a positive and statistically

significant relation between bidder CARs and target asset betas for private targets but not for public targets.

Columns (2) and (5) show the coefficient estimates for variables indicating whether a target’s asset beta

falls within the bottom or top quartile of the sample distribution. For both private and public targets, the

results indicate that bids for targets with betas in the bottom quartile of the distribution are associated with

lower bidder CARs (relative to bids for targets with betas in the middle of the distribution). Bids for targets

with betas in the top quartile, however, are associated with higher bidder CARs only for private but not for

public targets. The null-hypothesis that the coefficients on 1 {Target Asset Beta > p75} in columns (2) and

(5) are the same is rejected by a Wald test at the 10% level and at the 5% level by a Fisher non-parametric

permutation test based on 5,000 simulations (see, e.g., Cleary, 1999).

Columns (3) and (6) show the estimated coefficients on indicators for different ranges of asset betas. For

private targets, we find negative and significant coefficients for low asset betas and positive and significant

coefficients for high asset betas (relative to bids for targets with asset betas in the middle of the distribution).

For public targets, the coefficient estimates are negative and significant for low asset betas but not statistically

different from zero for high asset betas. Figure 2 provides a graphical representation of these findings. For
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private targets, the relation between Target Asset Beta and Bidder CAR is positive over the entire range of

asset betas. In contrast, the relation for public targets is only significant if the asset betas are low. For

high-beta public targets, the relation is much flatter and not statistically significant.

Finally, in columns (7) and (8) of Table 5, we pool the bids for private and public targets. The regression

in column (7) corresponds to the one in columns (1) and (4) – except for the indicator Public Target that we

include as an additional control. The estimated coefficient on Target Asset Beta is positive and statistically

significant. This shows that the relation between Target Asset Beta and Bidder CAR is significantly positive

not only in the sample of bids for private targets but also in the pooled sample of all bids. The coefficient

on Public Target is negative and significant, consistent with prior studies that document lower bidder CARs

around bids for public targets (e.g., Betton, Eckbo, and Thorburn, 2008; Schneider and Spalt, 2019). In

column (8), we again use the pooled sample of all bids but interact Target Asset Beta with Public Target,

thus allowing the relation between Target Asset Beta and Bidder CAR to vary with the targets’ listing status.36

We find a positive and statistically significant coefficient estimate on Target Asset Beta and a negative and

significant estimate on the interaction with Public Target.

4.6 Probability of Receiving Takeover Bids

Our model also has implications for the probability with which public firms receive takeover bids. A bid for a

public firm is only made if the firm’s CAPM-implied equity value exceeds its current market capitalization.

Hence, because the CAPM-implied equity value is decreasing in beta (whereas the market capitalization

is less sensitive to beta), a public firm’s probability of receiving a takeover bid should be decreasing in its

36We also interact Public Target with all control variables and fixed effects.
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beta.37 To test this prediction, we estimate the following OLS regression for all public firms in Compustat:38

Bidt = α+ β × Asset Betat−1 + γ′Firm Characteristicst−1 + Year × IPO Cohort Fixed Effects + ε. (20)

We distinguish between two types of bids. Controlling Bid is an indicator equal to one if a firm receives

an offer from a bidder that seeks to acquire a controlling stake. Any Bid is equal to one if a firm receives

any bid (i.e., controlling or not). Asset Beta is our estimate of firms’ asset beta, and Firm Characteristics

is a vector of control variables that have been used in the literature to explain takeover probabilities (e.g.,

Hasbrouck, 1985; Palepu, 1986; Ambrose and Megginson, 1992; Cremers, Nair, and John, 2009): Assets

(Log), ROA, Debt to Assets, Cash to Assets, Cash Flow to Assets, Tobin’s Q, PPE to Assets, and IO Block.39

Each firm’s IPO cohort is defined by the number of years since the firm’s first appearance in CRSP.

Table 6 shows the results. The estimated coefficients on Asset Beta are negative in all four columns and

statistically significant at the 10% level in column (1) and at the 5% level in columns (2) to (4). This finding

supports the prediction that public firms’ probability of receiving bids decreases with their asset beta.40

A closely related prediction is that the average beta of private targets is larger than that of public targets.

The intuition is that the owners of private firms do not have the outside option of selling their shares in the

stock market. Consequently, while public targets tend to have lower average betas as successful bids must

exceed their beta-insensitive market valuations, this effect is less present for private targets. As a result,

private targets tend to have higher betas than public targets. A simple t-test suggests that the average asset

37We provide a formal derivation of this prediction in Appendix III.

38Descriptive statistics for this sample are presented in Table A.4 in Appendix II. The data in SDC are very sparse before 1981,

so we cannot reliably identify the occurrence or absence of bids in earlier years. The sample period is thus 1981 to 2015. Note also

that we cannot examine the relation between private firms’ betas and the probability of receiving takeover bids because we only

observe those private firms that receive bids but not the private firms that do not receive bids and thus do not show up in our data.

39The explanatory variables for a bid in year t are measured at the end of year t−1. The standard errors are clustered by industry.

40An unreported robustness check confirms that the estimated coefficients on Asset Beta are also negative and statistically signif-

icant if we estimate a conditional logit model instead of the linear probability model reported in Table 6.
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beta of the private targets in our data is indeed larger than that of the public targets. When we cluster the

standard errors by target industry, the difference in average asset betas becomes statistically insignificant

if we only consider acquisitions with non-missing deal values of at least USD 50 million (as we do in our

analyses of bidder CARs). However, the difference remains significant if we consider all acquisitions by

U.S. bidders in SDC (excluding share repurchases).

4.7 Method of Payment

We now examine the relation between bidders’ asset betas and the method of payment in takeovers. Bidders

who believe their own stock to be overvalued by the market are more likely to propose payment in stock

than in cash (Shleifer and Vishny, 2003). Hence, if bidders rely on the CAPM when assessing the value

of their own equity, high beta bidders should be more likely than low beta bidders to propose stock as the

method of payment.41 To test this prediction, we estimate the following OLS regression:

100% Stock = α+ β × Bidder Asset Beta + γ × Target Asset Beta + δ′Deal Controls (21)

100% Stock = α+ η′Target Controls + κ′Bidder Controls + Target Industry × Year Fixed Effects + ε,

where 100% Stock is an indicator equal to one if the bidder proposes to pay entirely with stock.42 Bidder

(Target) Asset Beta are the bidder’s and target’s asset beta. All other variables are defined as before. The

standard errors are clustered by bidder industry.

Table 7 presents the results. The estimated coefficients on Bidder Asset Beta are positive and statistically

significant in all five columns, supporting the prediction that high beta bidders are more likely to offer stock

based payment rather than cash. This is consistent with Baker, Hoeyer, and Wurgler’s (2019) finding that

firms’ leverage decreases with beta. In the same spirit, another related prediction would be that, even in the

41An implicit assumption is that bidders do not perceive cash as being equally misvalued as equity.

42Table A.5 in Appendix II shows that our findings are robust to using other variables to capture the propensity to pay with stock,

and Table A.6 shows that using equity betas rather than asset betas does not change the results.
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absence of M&A activity, high beta firms should be more likely to issue equity and less likely to repurchase

shares. We present in Appendix VII empirical evidence that is consistent with this prediction.

5 Alternative Explanations

5.1 Do Managers Really Use the CAPM?

Our prediction of a positive relation between bidder CARs and target betas rests on the premise that man-

agers use the CAPM to compute discount rates. Surveys among corporate executives and valuation profes-

sionals support this assumption: The vast majority of respondents state that they always or almost always

use the CAPM (Graham and Harvey, 2001; Jacobs and Shivdasani, 2012; Mukhlynina and Nyborg, 2016).

To provide further support, we test the basic implication that the discount rate used to value a target is

increasing in its asset beta. To do so, we obtain data on the maximum and minimum discount rates used in

fairness opinions on the proposed takeovers. SDC Platinum provides this information for 1,181 bids in our

sample. For each of these bids, we compute the average of the maximum and minimum discount rate used

in the fairness opinion (Avg. Discount Rate) and estimate by OLS:43

Avg. Discount Rate = α+ β × Target Asset Beta + γ × Beta Spread (22)

α+ δ × Deal Value (Log) + η × Public Target + Year Fixed Effects + ε.

We control for Deal Value (Log) and Public Target because the providers of fairness opinions may adjust

the discount rate upwards for small and private targets due to their lower liquidity.

43We use a simple average of the two discount rates for simplicity. If the providers of the fairness opinions pick the maximum

and minimum discount rate so that the average target value that is implied by the two rates is equal to the actual bid (thereby making

the bid look “fair”), then a simple average overestimates the actual discount rate used for the bid. The reason is Jensen’s inequality:

1
2

(
1
rmax

+ 1
rmin

)
= 1

ractual
⇒ Avg. Discount Rate ≡ rmax+rmin

2
≥ 2

(
1
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+ 1
rmin

)−1

= ractual. An alternative would thus be to use a

harmonic average, i.e., to define Avg. Discount Rate ≡ 2
(

1
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+ 1
rmin

)−1

. Doing so does not qualitatively change our findings.
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Panel A of Table 8 presents the results. In column (1), we only control for year fixed effects. In column

(2), we add Deal Value (Log) and Public Target. In column (3), we add Beta Spread. The standard errors

are clustered by target industry. The coefficient estimate on Target Asset Beta is positive and statistically

significant at the 1% level in all three columns. This finding supports the premise that the CAPM is used

to estimate discount rates in practice. The magnitude of the coefficient estimate (3% to 4%) is likely to be

a lower bound for the market risk premium used in the fairness opinions. One reason is an attenuation bias

due to measurement error: Target Asset Beta may be a noisy estimate of the beta actually used to compute

the discount rate. Another reason is that, for public targets, fairness opinion providers may upward-adjust

(downward-adjust) the market risk premium used to compute the discount rate if the implied value of the

target exceeds (falls short of) its current market capitalization by a sufficiently large amount. Adjusting the

market risk premium – and thus the discount rate – in this manner to bring the fairness opinion closer to the

current market price naturally reduces the coefficient estimate on Target Asset Beta in our regressions.

Another way to assess if the CAPM is used in practice is to examine how closely the cost of capital that

is implied by Target Asset Beta corresponds to the average discount rate that is used in the fairness opinions

(Avg. Discount Rate). In Appendix VI, we thus regress this average discount rate on the cost of capital that

is implied by Target Asset Beta when making the same assumptions regarding all other parameters as in

the model calibration in Section 4.3. We find that the “Target Asset Beta-implied” cost of capital indeed

corresponds closely to the variable Avg. Discount Rate precisely in those cases where the spread between

the maximum and minimum rate in the fairness opinion is small, i.e., if the midpoint between the two rates

is more likely to be an accurate estimate of the discount rate that was actually used by the bidder.

We also test another basic implication of using the CAPM: The bidder’s assessment of the target’s value
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and the takeover premium are decreasing in beta. Specifically, we estimate by OLS:

Bid-Implied Valuation (Premium) = α+ β × Target Asset Beta + γ × Beta Spread (23)

α+ δ′Deal Controls + η′Target Controls + κ′Bidder Controls

α+ Bidder Industry × Year Fixed Effects + ε,

where Bid Implied Valuation and Premium are the value of the target and the takeover premium as implied

by the bid. All other variables are defined as before. The standard errors are clustered by target industry.

Panel B of Table 8 presents the results. In column (1), we use the natural logarithm of the value of the bid

(in USD million) as the dependent variable.44 In column (2), we us the bid-implied firm value (FV) scaled

by the target’s sales. In column (3), we scale the firm value by EBIT.45 In column (4), we use the bid-implied

premium relative to the target’s market capitalization six months prior to the bid announcement.46

The coefficient estimates on Target Asset Beta are negative and statistically significant at the 1% level in

all four columns. This is important for three reasons. First, it corroborates the premise that the CAPM is used

to compute discount rates. Second, it supports the basic prediction that a bidder’s assessment of a target’s

value is decreasing in the target’s asset beta. Third, it suggests that acquisitions of high beta targets do not

generate larger synergies than acquisitions of low beta targets. Otherwise, one would expect the bid-implied

valuations and premiums to be increasing in beta. This last point is important as it implies that the positive

relation between bidder CARs and target asset betas is unlikely to be driven by a positive correlation between

the targets’ asset betas and the value of synergies. The findings in Table 8 also give additional credibility

to our measure Target Asset Beta. Although this measure may be noisy, it is strongly correlated with the

average discount rate used in fairness opinions and the bid-implied valuations and takeover premiums.

44As a consequence, we do not include Deal Value (Log) as a control variable in column (1).

45Information on sales and EBIT is missing for non-U.S. targets in our sample. The indicator for cross-boarder bids (Crossborder)

is therefore not included in columns (2) and (3).

46Our findings are robust to using the 1-day, 1-month, 3-month, or 9-month premium instead.
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5.2 Do CAPM-Betas Correlate with Future Cash Flows or Synergies?

A potential concern regarding the interpretation of our findings is that firms’ asset betas may be correlated

with the firms’ expected free cash flows or the synergies that can be generated by a takeover. In that case,

bids for high beta targets may entail higher bidder CARs because acquisitions of high beta firms create

more value. Our IV analysis suggests that such biases cannot be too large (as the IV estimates are not

statistically different from the OLS estimates) but to double check, we now examine the relation between

firms’ asset betas and future (realized) free cash flows as well as the relation between targets’ asset betas

and the combined cumulative abnormal returns of bidders and targets.

We begin with the relation between asset betas and future (realized) free cash flows and estimate the

following OLS regression for all public firms in Compustat between 1977 and 2015:

FCF
Assets

= α+ β × Asset Beta + γ′Firm Characteristics + Year Fixed Effects + ε. (24)

FCF/Assets is free cash flows scaled by total assets.47 Firm Characteristics comprises the following

variables: Market Capitalization (Log), Market-to-Book, Cash to Assets, Debt to Assets, ROA, and Cash

Flow to Assets. All variables are defined as before. The standard errors are clustered by industry.

Table 9 presents the results. We do not find any evidence of a relation between asset betas and future

free cash flows. This result suggests that the relation between bidder CARs and target asset betas is unlikely

to be driven by a correlation between asset betas and free cash flows.

Next, we assess the relation between synergies and asset betas by regressing the combined CARs of

47FCF/Assets is [EBIT× (1− τ) + D&A− CAPEX−∆NWC] /ASSETS, where τ is the tax rate, D&A depreciation and

amortization, CAPEX capital expenditures, ∆NWC the increase in net working capital, and ASSETS the book value of total assets.
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bidders and targets (Combined CAR) on the targets’ asset betas.48 Specifically, we estimate by OLS:

Combined CAR = α+ β × Target Asset Beta + γ × Beta Spread + δ′Deal ControlsXXXXXXXX (25)

+η′Target Controls + κ′Bidder Controls + Bidder Industry × Year Fixed Effects + ε

All variables are defined as before. The standard errors are clustered by target industry.

Table 10 presents the results. We do not find any evidence of a relation between Target Asset Beta and

Combined CAR. This result is another piece of evidence suggesting that the relation between bidder CARs

and target asset betas is not driven by unobserved differences in synergies.

6 Are CAPM-Using Managers Rational?

6.1 Why Do Managers Use the CAPM?

Our findings raise the question why managers use the CAPM in the first place. We do not take a strong

stance on this issue. Instead, based on existing survey evidence and the CAPM’s prominent role in major

textbooks, we take the use of the CAPM as given and focus on the consequences thereof.49 Nonetheless, we

now delineate a number of potential explanations for the widespread use of the CAPM in practice.

One possibility is that the CAPM is the true model of the relation between risk and expected returns

in the long run, but that the stock market is inefficient. In that case, using the CAPM can be optimal for

rational managers that seek to maximize the long-term value of financially unconstrained firms – even if

returns deviate from the CAPM in the short run (Stein, 1996).50 Another possibility is that the CAPM is

48A caveat is that we can compute the combined CAR of bidders and targets only if the targets are public.

49E.g., Berk and DeMarzo (2017), Brealy, Myers, Allen (2016), Graham and Harvey (2001), Jacobs and Shivdasani (2012),

Mukhlynina and Nyborg (2016), and Ross, Westerfield, Jaffe, and Jordan (2016).

50It is further possible that the CAPM is the correct model of the relation between risk and expected returns for firms’ individual

investment projects but not for the firms’ shares, which are backed not only by the firms’ projects but also by the real options to

start, modify, or abandon these projects (Berk, Green, and Naik, 1999; Da, Guo, and Jagannathan, 2012).
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not the true model but that managers are not aware of this. In particular, corporate managers and their

M&A advisors may not be aware of the relation between target betas and bidder CARs. Learning about this

relation may be difficult because most managers experience only a limited number of takeovers and thus

receive only infrequent feedback on their M&A decisions. M&A advisors experience a larger number of

deals but are typically organized in sector teams and specialize on particular industries. As a result, they

may not experience sufficient variation in target betas to learn about the relation to bidder CARs. It is also

possible that managers and their advisors are aware of the divergence between CAPM-implied and realized

returns but that they underestimate the extent to which the CAPM fails empirically or the importance of using

accurate discount rates. In that case, they may prefer to use the CAPM instead of alternative models that are

more accurate but also more difficult to implement or communicate to clients, colleagues, or superiors.

Related to the question why corporate managers and their M&A advisors use the CAPM is the question

why other investors (e.g., traders in the stock market) use different models. One possibility are differences in

rationality: Corporate managers and their M&A advisors may be irrational while market traders are rational

or vice versa. Differences in beliefs may then lead to differences in model usage. Another possibility is that

corporate managers, M&A advisors, and market traders are constrained (e.g., in terms of time, attention, or

resources) and in response focus on what they believe to be their relative advantage: Managers may believe

that they create value through real actions (e.g., choosing a better corporate strategy or developing better

products) rather than identifying undervalued assets. Consequently, they may be willing to rely on of-the-

shelve valuation techniques, including the CAPM, even though they know that these techniques are not

perfect. M&A advisors may see their competitive advantage in negotiating takeovers and deal management,

not in estimating discount rates.51 Market traders, instead, who focus on identifying misvalued assets, may

51Consistent with this view, Mukhlynina and Nyborg (2016, p. 1) quote one of the respondents to their survey as saying: “There

seem to be lots of academics asking how analysts in the real world use CAPM or calculate the cost of capital. The answer is, people

don’t waste time on this. No one ever lost/made money because they calculated the WACC better than consensus.”
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see their edge in using better valuation models than the CAPM.

6.2 Should Managers Use the CAPM?

Closely related to the question why managers use the CAPM is the normative question if they should use

the CAPM. The answer depends crucially on the question of market efficiency. One possibility is that the

stock market is efficient in the sense that prices reflect fundamentals and expected returns compensation

for risk only. This would imply that the difference between the empirical SML and the CAPM-implied

SML reflects compensation for risk, and the higher (lower) bidder CARs around bids for higher (lower) beta

targets are due to valuation mistakes by CAPM-using managers. This view would be consistent with the

lack of conclusive evidence in favor of the CAPM in the existing asset pricing literature. In that case, the

normative implication is that managers should not use the CAPM but instead rely on whatever statistical

model provides the best estimate of the relation between project risk and expected returns (Stein, 1996).

The other possibility is that the market is inefficient, and the higher (lower) bidder CARs around bids

for higher (lower) beta targets are due to temporary mispricing by the market. In that case, managers should

use the model that correctly maps risk to expected returns in the long run – even if it has no predictive power

in the short run (Stein, 1996).52 That is, if the market is inefficient, managers should use the CAPM if it is

the “true” model of the relation between risk and expected returns.53 This would be consistent with Cohen,

Polk, and Vuolteenaho’s (2009) finding that betas based on accounting cash flows forecast long-term returns.

The answer to the question “Should managers use the CAPM?” thus depends on the answer to (1) “Is the

stock market efficient in the sense that prices reflect fundamentals and expected returns compensation for

52We assume here that the objective is to maximize the long-term value of financially unconstrained firms. If firms are financially

constrained or managers interested in maximizing short-term stock prices, it can be optimal to rely on whatever statistical model

produces the best prediction of returns in the short run – even if the predictability is due to mispricing (Stein, 1996).

53This poses the well-known conundrum that it is difficult to empirically validate the CAPM with data generated in an inefficient

market, i.e., if realized prices and returns may reflect mispricing rather than fundamentals and compensation for risk.
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risk only?” and, if not, (2) “Is the CAPM the true model of the relation between risk and expected returns?”54

We (and the existing asset pricing literature) cannot provide a definitive answer to these questions. However,

in what follows, we present some suggestive evidence that managers should not use the CAPM (at least not

in its simple, text-book form and in an M&A context).

6.3 Some Suggestive Evidence

We first examine bidders’ abnormal returns in the long run. The idea is as follows. If the CAPM is a good

model of expected returns in the long run, then the relation between bidder abnormal returns and target asset

betas observed during short periods around bid announcements should disappear over longer horizons as the

market eventually learns that managers were right to use the CAPM. We thus compute the bidders’ buy-and-

hold abnormal returns (Bidder BHAR) over different horizons and estimate the following OLS regression:

Bidder BHAR = α+ β × Target Asset Beta + γ × Beta Spread + δ′Deal Controls + η′Target Controls

α+ κ′Bidder Controls + Bidder Industry × Year Fixed Effects + ε. (26)

All explanatory variables are defined as before. The standard errors are clustered by target industry.

Table A.8 shows the results. Column (1) mirrors the findings of Table 2. The bidders’ buy-and-hold

abnormal returns during the seven-days around the bid announcements are increasing in the targets’ asset

betas. Columns (2) to (5) show no evidence of subsequent reversal: The abnormal buy-and-hold returns are

not statistically different from zero starting from four trading days after the bid announcements. The positive

and statistically significant coefficient estimates in columns (6) to (9) corroborate this result: Bidder BHARs

from three trading days before the bid announcements up to 400 trading days after the announcements are

positively related to target asset betas. This finding suggests that bidders’ use of the CAPM has long-lasting

wealth effects for investors. A caveat is that this test lacks power (as do most long-run return studies).

54The well-documented discrepancy between the empirical SML and the CAPM-implied SML is inconsistent with the hypothesis

that the market is efficient and the CAPM true, so we do not consider this alternative.
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As a second test, we examine if the relation between bidder CARs and target asset betas depends on

bidders’ corporate governance and managerial entrenchment. The idea is rooted in bounded rationality:

Using a more accurate model than the CAPM is cognitively costly, so managers only do it when they have

something to gain from it. Assuming that better governance and lower entrenchment make managers act

more in line with what shareholders want, bidders with better corporate governance and less entrenched

managers should thus be less likely to use the CAPM if shareholders believe that doing so is “wrong.”

To test this prediction we estimate OLS regressions in which we interact Target Asset Beta with prox-

ies for bidder governance and entrenchment:55 Institutional Ownership is the fraction of shares owned

by institutional investors. Insider Ownership is the fraction of shares owned by the five highest paid ex-

ecutives. Wealth Performance Sensitivity is the performance sensitivity measure of Edmans, Gabaix, and

Landier (2009). Board Independence is the fraction of independent directors. Anti Takeover Index is the anti

takeover index of Bebchuk, Cohen, and Ferell (2004). The standard errors are clustered by target industry.

Table 12 presents the results. We find that the relation between bidder CARs and target betas is signif-

icantly weaker if the bidders have higher institutional ownership, if the bidder CEOs’ wealth-performance-

sensitivity is higher, and if the bidders’ management is less entrenched through anti-takeover provisions.

The coefficient estimates on the interaction terms between Target Asset Beta and Insider Ownership and

Board Independence are also negative, but not statistically significant.

In sum, the results indicate that better governance and lower entrenchment make bidders less likely to use

the CAPM. One possible explanation for this finding is that shareholders know that the CAPM is “wrong”

but that using a more accurate model is cognitively costly, so that managers only do so if governance is

good or entrenchment low. Another possibility, however, is that shareholders merely believe that the CAPM

is “wrong” – even though it is not. Consequently, the results of Table 12 cannot conclusively rule out the

possibility that the CAPM is “right.”

55We also interact all controls and fixed effects.
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As using the CAPM appears not be what shareholders want, a natural question is what should be done

instead. Ultimately, managers of unconstrained firms with long horizons should use the model that correctly

describes the true relation between risk and expected returns (Stein, 1996). The problem is that there is no

agreement in the existing asset pricing literature on what this model is. This lack of consensus prevents us

from providing a clear-cut prescription which model should be used. A pragmatic approach might be to start

with the CAPM, which is appealing for both its simplicity and theoretical foundation, but to shrink the beta

estimates as suggested in Levi and Welch (2017). This would be consistent with an interpretation of our

results whereby managers overestimate the slope of the true SML. The results could then be complemented

with estimates from multi-factor or characteristics based models, models that exploit information in option

prices, and valuations based on multiples, so as to produce a valuation range for a potential takeover target.56

7 Conclusion

The CAPM is the predominant model of risk and return taught by academics and used by practitioners to

estimate the cost of capital. However, the CAPM does not fit the data: The empirical SML is flatter than

the CAPM implies. We show that the widespread use of the CAPM has real effects, in particular, for firms’

capital budgeting decisions and the market’s reaction thereto. Using M&A data on bids for private targets,

we show that acquirers experience significantly lower cumulative abnormal returns when announcing bids

for low rather than high beta targets and estimate that using the CAPM in this context leads to valuation

errors (relative to the market’s view) that correspond, on average, to 12% to 33% of the deal values.

The normative implications of our study ultimately depend on how the debate about the veracity of

the CAPM is settled. One view is that the CAPM holds in the long-run, but that the market is inefficient.

According to this view, our findings reflect temporary mispricing by the market, and managers are right to

56E.g., Carhart (1997), Daniel, Grinblatt, Titman, and Wermers (1997), Daniel and Titman (1997), Fama and French (1993), Liu,

Nissim, and Thomas (2002), and Martin and Wagner (2018).
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use the CAPM. An alternative view is that the market is efficient and the CAPM fails to explain expected

returns, even in the long run. According to that view, our findings reflect valuation mistakes by bidders

and sellers, and managers should not use the CAPM. While it is difficult to empirically distinguish the two

alternatives, our analyses provide some suggestive evidence that managers should not use the CAPM (at

least not in its simple, text-book form and in an M&A context).
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Figure 1: Model Calibration

This figure shows the model-implied coefficients from a regression of CARBidder
t on indicator variables for different ranges of target

asset betas (βA), relative to the base case of βA = 0.9, for different degrees of steepness of the empirical SML. The different

model parameters are chosen to match the average values of the corresponding proxy variables in our sample of bids made by

public bidders for private targets between 1977 and 2015. We consider three different degrees of steepness of the empirical SML:

γ = 0 (blue dashed line), γ = 0.5 (blue solid line), and γ = 1 (gray dashed line). The figure also shows the OLS coefficient

estimates of indicator variables for different ranges of βA (relative to the base case of βA = 0.9, the average asset beta of the private

targets in the sample) as reported in Table A.3 in Appendix II (red solid line).
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Figure 2: Private vs. Public Targets

This figure shows the OLS coefficient estimates of indicator variables for different ranges of βA (relative to the base case of

βA = 0.9, the average asset beta of the private targets in the sample) for the sample of private targets (left panel) and the sample of

public targets (right panel) as reported in columns (3) and (6) of Table 5. The sample period is 1977 to 2015.
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Table 1: Descriptive Statistics

This table presents descriptive statistics for our sample of bids for private (Panel A) and public (Panel B) targets between 1977 and 2015. Bidder CAR is the bidder’s cumulative

abnormal return around the bid announcement. Target (Bidder) Asset Beta is the target’s (bidder’s) asset beta. Beta Spread is the difference between the target’s and bidder’s asset

beta. Deal Value is the value of the bid (in $M). 100% Stock is an indicator for all-stock offers. Avg. Discount Rate is the midpoint between the maximum and minimum discount rate

used in M&A fairness opinions. All continuous variables are winsorized at the 1st and 99th percentile. Detailed definitions are provided in Appendix I.

Panel A – Private Targets (1) (2) (3) (4) (5) (6) (7) (8)

Sample: Bids for Private Targets with a CPI-Adjusted Deal Value ≥ $50M, 1977-2015
Variable: Observations Mean SD Min. p25 p50 p75 Max.

Bidder CAR 14,744 2.0% 8.2% -20.5% -2.3% 1.1% 5.6% 27.9%
Target Asset Beta 17,885 0.86 0.33 0.17 0.62 0.86 1.11 1.55
Bidder Asset Beta 18,163 0.87 0.32 0.20 0.64 0.84 1.11 1.54
Beta Spread 17,707 -0.01 0.25 -0.74 -0.06 0.00 0.03 0.76
Deal Value (Log) 18,485 4.91 1.07 3.29 4.09 4.70 5.52 9.08
Deal Value (in $M) 18,485 297 699 27 60 110 250 8,799
Deal Value (in $M, CPI-Adjusted) 18,485 388 882 51 82 148 334 11,437
100% Stock 18,482 0.13 0.33 0 0 0 0 1
Avg. Discount Rate 117 14.1% 4.9% 7.0% 11.0% 13.0% 15.0% 30.0%

Panel B – Public Targets (1) (2) (3) (4) (5) (6) (7) (8)

Sample: Bids for Public Targets with a CPI-Adjusted Deal Value ≥ $50M, 1977-2015
Variable: Observations Mean SD Min. p25 p50 p75 Max.

Bidder CAR 7,296 -0.6% 7.7% -20.5% -4.6% -0.7% 3.1% 27.9%
Target Asset Beta 7,879 0.82 0.36 0.17 0.53 0.82 1.11 1.55
Bidder Asset Beta 7,932 0.81 0.34 0.20 0.55 0.80 1.09 1.54
Beta Spread 7,794 0.01 0.21 -0.74 0.00 0.00 0.00 0.76
Deal Value (Log) 8,095 5.59 1.49 3.29 4.38 5.33 6.55 9.08
Deal Value (in $M) 8,095 921 1,852 27 80 206 699 8,799
Deal Value (in $M, CPI-Adjusted) 8,095 1,258 2,430 51 121 307 1,019 11,437
100% Stock 8,091 0.33 0.47 0 0 0 1 1
Avg. Discount Rate 1,064 13.1% 3.9% 7.0% 10.5% 12.3% 14.5% 30.0%
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Table 2: Bidder Cumulative Abnormal Returns Around Bid Announcements

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s asset beta. The sample period is 1977 to 2015. Only bids for

private targets are included. Target (Bidder) Controls is a vector of target (bidder) characteristics: Market-to-Book, ROA, Cash Flow

to Assets, Debt to Assets, and Cash to Assets. For private targets, these variables are average values of the corresponding variables

across all public firms in Compustat with the same three-digit primary SIC code. All other variables are defined as in Table 1.

Detailed definitions are provided in Appendix I. t-statistics based on standard errors clustered by the target’s (SIC3-) industry are

reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta 1.02*** 1.34*** 1.73*** 1.49*** 2.55***
(3.02) (4.20) (4.72) (4.14) (5.06)

Beta Spread -1.36***
(-2.60)

Deal Value (Log) 0.66*** 0.65*** 0.59*** 0.59***
(7.37) (7.34) (6.82) (6.69)

Equity 0.59** 0.60** 0.57* 0.51*
(2.24) (2.26) (1.87) (1.69)

Cash 0.30 0.28 0.48 0.44
(1.07) (0.98) (1.45) (1.34)

Toehold -0.08 -0.15 -0.11 -0.10
(-0.20) (-0.36) (-0.26) (-0.24)

Hostile -2.26** -2.44** -2.82** -3.22***
(-2.19) (-2.26) (-2.26) (-2.76)

Same Industry 0.11 0.12 0.12 0.14
(0.65) (0.71) (0.82) (0.96)

Crossborder -0.14 -0.14 -0.06 -0.09
(-0.63) (-0.61) (-0.26) (-0.37)

Poison -0.60 -0.66 -0.51 -0.47
(-0.87) (-0.90) (-0.49) (-0.45)

Tender -0.30 -0.36 -0.57 -0.72
(-0.29) (-0.34) (-0.49) (-0.63)

Multiple Bidders -0.40 -0.38 0.07 0.03
(-0.54) (-0.51) (0.09) (0.04)

Relative Size -0.06*** -0.06*** -0.06*** -0.06***
(-7.25) (-7.20) (-7.51) (-7.59)

Bidder Size (Log) -0.94*** -0.94*** -0.96*** -0.96***
(-12.40) (-12.33) (-12.50) (-12.56)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes
Target Controls No No Yes Yes Yes
Bidder Controls No No No Yes Yes
Observations 13,916 13,599 13,486 12,209 12,109
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Table 3: Two-Stage-Least-Squares (2SLS) Instrumental Variable Estimation

This table presents 2SLS estimates of the sensitivity of Bidder CAR to Target Asset Beta. The sample period is 1980 to 2015. Only bids for private targets are included. Deal Controls

is a vector comprising all deal-level controls included in columns (2) to (4) of Table 2: Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry, Crossborder, Poison, Tender,

Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I. t-statistics based on standard

errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A – 1st Stage of 2SLS (1) (2) (3) (4) (5.a) (5.b)

Sample: Private Targets
Dependent Variable: Target Target Target Target Target Beta

Asset Beta Asset Beta Asset Beta Asset Beta Asset Beta Spread

Target Noise Beta 3.35*** 3.32*** 2.06*** 2.06*** 2.09*** 2.22***
(10.38) (10.74) (14.44) (14.22) (13.61) (12.14)

Bidder Noise Beta -0.10 -2.45***
(-0.67) (-11.63)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes Yes
Target Controls No No Yes Yes Yes Yes
Bidder Controls No No No Yes Yes Yes
Observations 13,360 13,062 12,953 11,720 11,719 11,719

Panel B – 2nd Stage of 2SLS (1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta (Instrumented) 2.09** 2.27*** 3.60** 3.38** 4.70*
(2.26) (2.55) (2.25) (1.98) (1.77)

Beta Spread (Instrumented) -1.92
(-0.92)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes
Target Controls No No Yes Yes Yes
Bidder Controls No No No Yes Yes
Observations 13,360 13,062 12,953 11,720 11,719
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Table 4: Cross-Sectional Variation

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s asset beta as function of cross-sectional characteristics. The

sample period is 1977 to 2015. Only bids for private targets are included. Target Growth High is an indicator equal to one if the

compound annual growth rate of aggregate sales in the target’s (SIC3-) industry during the three years preceding the takeover bid

is larger than the sample median. Target Relative Size High is an indicator equal to one if Relative Size is larger than the sample

median. Bidder Mentions CAPM is an indicator equal to one if the bidder’s 10K, 10Q, or 8K filings of the three years prior to the

bid announcement contain the words “CAPM” or “Capital Asset Pricing Model.” Listed Peer Available is an indicator equal to one

if, at the time of the acquisition, there is at least one U.S. listed firm in the target’s (SIC3-) industry whose market capitalization is

larger than 50% but smaller than 150% of the target’s equity value as reported in SDC. Steep Empirical SML is an indicator equal to

one if the slope of the empirical SML during the month of the bid announcement is larger than the sample median. Deal Controls is

a vector comprising all deal-level controls included in column (5) of Table 2: Beta Spread, Deal Value (Log), Equity, Cash, Toehold,

Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables

are defined as in Table 2. Detailed definitions are provided in Appendix I. (Interacted) indicates that all control variables and fixed

effects are interacted with the cross-sectional characteristic of interest, allowing their coefficients to depend on the value of Target

Growth High, Target Relative Size High, Bidder Mentions CAPM, Listed Peer Available, and Steep Empirical SML. t-statistics

based on standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%,

5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta × Target Growth High 2.71**
(2.08)

Target Asset Beta × Target Relative Size High 2.86**
(2.31)

Target Asset Beta × Bidder Mentions CAPM 10.95**
(2.03)

Target Asset Beta × Listed Peer Available -2.63**
(-1.99)

Target Asset Beta × Steep Empirical SML -2.03*
(-1.70)

Target Asset Beta 1.44* 1.39** 2.37*** 4.11*** 3.43***
(1.93) (2.07) (4.24) (4.10) (3.80)

Bidder SDC Industry × Year FE (Interacted) Yes Yes Yes Yes Yes
Deal Controls (Interacted) Yes Yes Yes Yes Yes
Target Controls (Interacted) Yes Yes Yes Yes Yes
Bidder Controls (Interacted) Yes Yes Yes Yes Yes
Observations 11,518 11,503 12,109 10,716 10,823
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Table 5: Private vs. Public Targets

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s asset beta. The sample period is 1977 to 2015. Public Target

is an indicator for public targets. 1 {Target Asset Beta < p25(> p75)} is an indicator equal to one if the target’s asset beta is

in the bottom (top) quartile of the distribution of asset betas in the sample. 1 {a < Target Asset Beta ≤ b} is an indicator equal

to one if the target’s asset beta is larger than a but smaller than (or equal to) b. Deal Controls is a vector comprising all deal-

level controls included in column (5) of Table 2: Beta Spread, Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry,

Crossborder, Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables are defined as in Table

2. Detailed definitions are provided in Appendix I. (Interacted) indicates that all control variables and fixed effects are interacted

with the indicator Public Target, allowing their coefficients vary with the listing status of the target. t-statistics based on standard

errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is

indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)

Sample: Private Targets Public Targets All Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta 2.55*** 0.40 1.57*** 2.55***
(5.06) (0.32) (3.34) (5.00)

Target Asset Beta × Public Target -2.15*
(-1.75)

Public Target -2.84***
(-12.20)

1 {Target Asset Beta < p25} -0.59** -1.20**
(-2.09) (-2.36)

1 {Target Asset Beta > p75} 0.88*** -0.04
(3.27) (-0.07)

1 {−∞ < Target Asset Beta ≤ 0.25} -2.25*** -1.75*
(-4.19) (-1.88)

1 {0.25 < Target Asset Beta ≤ 0.48} -1.16*** -1.74***
(-3.27) (-2.69)

1 {0.48 < Target Asset Beta ≤ 0.71} -0.50* -0.52
(-1.88) (-0.94)

1 {0.94 < Target Asset Beta ≤ 1.17} 0.54* -0.72
(1.91) (-1.32)

1 {1.17 < Target Asset Beta ≤ 1.40} 1.22*** 0.00
(3.53) (0.00)

1 {1.40 < Target Asset Beta <∞} 1.29*** -1.10
(3.04) (-0.89)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes Yes Yes Yes Yes
Target Controls Yes Yes Yes Yes Yes Yes Yes Yes
Bidder Controls Yes Yes Yes Yes Yes Yes Yes Yes
Public Target (Interacted) No No No No No No No Yes
Observations 12,109 12,109 12,109 3,894 3,894 3,894 16,547 16,003
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Table 6: Probability of Receiving Takeover Bids

This table presents OLS estimates of the sensitivity of public firms’ propensity to receive a controlling takeover bid (Controlling

Bid) or any bid (Any Bid) to the firms’ asset beta. All reported coefficient estimates have been multiplied with 100 to improve

readability. The sample period is 1981 to 2015. All public firms in Compustat are included. Detailed definitions of all variables

are provided in Appendix I. Year × IPO Cohort fixed effects are based on the year of the observation and the IPO cohort of the

firm, defined by the number of years since the firm’s first appearance in CRSP. t-statistics based on standard errors clustered by the

firms’ (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and

***, respectively.

(1) (2) (3) (4)

Sample: Public Firms in Compustat
Dependent Variable: Controlling Bid Any Bid

Asset Beta -1.30* -1.26** -1.47** -1.39**
(-1.78) (-2.18) (-2.06) (-2.18)

Assets (Log) 0.09** 0.33***
(2.11) (4.96)

ROA -6.57*** -11.05***
(-2.70) (-3.61)

Debt to Assets 0.11 2.49***
(0.24) (3.97)

Cash to Assets 0.39 1.49
(0.43) (1.54)

Cash Flow to Assets 6.22** 9.91***
(2.48) (3.20)

Tobin’s Q -0.32*** -0.39***
(-6.82) (-7.19)

PPE to Assets -1.62*** -2.09***
(-2.83) (-3.02)

IO Block 1.37*** 1.89***
(7.57) (8.43)

Year × IPO Cohort FE Yes Yes Yes Yes
Observations 154,788 139,517 154,788 139,517
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Table 7: Method of Payment

This table presents OLS estimates of the sensitivity of the propensity to offer an all-stock payment to the bidder’s asset beta (Bidder

Asset Beta). The sample period is 1977 to 2015. 100% Stock is an indicator equal to one if the proposed payment is 100% stock.

All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I. t-statistics based on standard errors

clustered by the bidder’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is

indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5)

Sample: Private and Public Targets
Dependent Variable: 100% Stock

Bidder Asset Beta 9.50*** 13.58*** 8.20*** 7.95*** 8.26***
(4.01) (6.60) (5.23) (4.65) (4.61)

Target Asset Beta -1.22
(-0.53)

Deal Value (Log) 3.41*** 3.47*** 3.47*** 3.49***
(7.00) (7.04) (7.05) (7.10)

Toehold -7.11*** -6.22*** -6.38*** -6.41***
(-2.93) (-2.64) (-2.67) (-2.69)

Hostile -7.57*** -8.48*** -8.84*** -8.75***
(-3.99) (-3.65) (-3.79) (-3.75)

Same Industry 0.39 0.09 0.04 -0.02
(0.30) (0.11) (0.04) (-0.02)

Crossborder -5.55*** -5.45*** -5.33*** -5.15***
(-5.47) (-5.58) (-5.58) (-5.59)

Poison 15.91*** 16.16*** 16.18*** 15.94***
(8.71) (8.81) (9.10) (9.23)

Tender -16.92*** -16.05*** -15.75*** -15.81***
(-10.28) (-10.52) (-10.55) (-10.60)

Multiple Bidders -0.37 -0.42 -0.43 -0.39
(-0.28) (-0.27) (-0.28) (-0.25)

Relative Size -0.14*** -0.11*** -0.12*** -0.12***
(-3.57) (-3.00) (-3.13) (-3.17)

Bidder Size (Log) -1.52*** -1.26*** -1.27*** -1.28***
(-4.97) (-4.44) (-4.40) (-4.41)

Target SDC Industry × Year FE Yes Yes Yes Yes Yes
Bidder Controls No No Yes Yes Yes
Target Controls No No No Yes Yes
Observations 25,772 21,063 18,762 18,423 18,348
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Table 8: Discount Rates Used in Fairness Opinions, Bid-Implied Valuations, and Takeover Premiums

This table presents OLS estimates of the sensitivity of the average discount rate (Avg. Discount Rate) used in fairness opinions on

M&A bids (Panel A) as well as bid-implied target valuations and takeover premiums (Panel B) to the target’s asset beta. The sample

period is 1977 to 2015. Public Target is an indicator for public targets. FV/Sales and FV/EBIT are the ratios of the bid-implied target

values to sales and EBIT. Premium the percentage premium of the bid-implied equity value over the target’s market capitalization

six month prior to the bid. As pre-bid market prices are available only for public targets, Premium is missing for private targets.

Deal Controls comprises Beta Spread, Deal Value (Log) (omitted in column (1) of Panel B), Equity, Cash, Toehold, Hostile, Same

Industry, Crossborder (omitted in columns (2) and (3) of Panel B), Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size

(Log). Detailed definitions are provided in Appendix I. All other variables are defined as in Table 2. t-statistics based on standard

errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is

indicated by *, **, and ***, respectively.

Panel A (1) (2) (3)

Sample: Private and Public Targets
Dependent Variable: Avg. Discount Rate Used in Fairness Opinion DCF (in Percentage Points)

Target Asset Beta 3.03*** 3.69*** 3.99***
(5.76) (12.92) (11.19)

Beta Spread -1.81**
(-2.46)

Deal Value (Log) -1.30*** -1.30***
(-8.90) (-9.17)

Public Target -0.88*** -0.94***
(-2.85) (-2.99)

Year FE Yes Yes Yes
Observations 1,174 1,174 1,171

Panel B (1) (2) (3) (4)

Sample: Private and Public Targets
Dependent Variable: Deal Value (Log) FV/Sales FV/EBIT Premium

Target Asset Beta -0.20*** -2.58*** -8.47*** -0.49***
(-2.63) (-2.72) (-2.66) (-2.51)

Bidder SDC Industry × Year FE Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes
Target Controls Yes Yes Yes Yes
Bidder Controls Yes Yes Yes Yes
Observations 18,370 4,196 3,116 3,935
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Table 9: Future Realized Free Cash Flows

This table presents OLS estimates of the sensitivity of a firm’s realized free cash flows in future periods scaled by total assets

(FCF/Assets) to the firm’s lagged asset beta. All reported coefficient estimates have been multiplied with 100 to improve readability.

The sample period is 1977 to 2015. All public firms in Compustat are included. Detailed definitions of all variables are provided in

Appendix I. t-statistics based on standard errors clustered by (SIC3-) industry are reported in parentheses. Statistical significance

at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Public Firms in Compustat

Dependent Variable: FCFt
Assetst

FCFt+1

Assetst+1

FCFt+2

Assetst+2

FCFt+3

Assetst+3

Asset Betat−1 -0.32 -0.10 -0.34 -0.43
(-0.20) (-0.06) (-0.22) (-0.29)

Market Capitalizationt−1 (Log) 1.06*** 1.29*** 1.45*** 1.47***
(4.42) (4.94) (5.87) (6.16)

Market-to-Bookt−1 -0.42*** -0.40*** -0.34*** -0.29***
(-6.22) (-5.58) (-4.81) (-3.66)

Cash to Assetst−1 -17.14*** -16.07*** -15.04*** -14.30***
(-6.50) (-4.65) (-3.88) (-3.50)

Debt to Assetst−1 5.18*** 4.67*** 3.80** 3.28**
(3.22) (2.78) (2.21) (1.98)

ROAt−1 -4.84 4.09 2.81 7.43
(-0.51) (0.41) (0.36) (0.89)

Cash Flow to Assetst−1 36.21*** 24.57** 22.96*** 15.86*
(3.54) (2.33) (2.83) (1.88)

Year FE Yes Yes Yes Yes
Observations 208,399 187,045 168,898 152,541
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Table 10: Combined CARs of Bidders and Targets

This table presents OLS estimates of the sensitivity of the combined cumulative abnormal returns of the bidder’s and target’s stock

during the seven-day window around the bid announcement (Combined CAR) to the target’s asset beta. The sample period is 1977

to 2015. Only public targets are included. Deal Controls is a vector comprising all deal-level controls included in columns (2) to

(4) of Table 2: Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders,

Relative Size, and Bidder Size (Log). All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I.

t-statistics based on standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at

the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Public Targets
Dependent Variable: Combined CAR (in Percentage Points)

Target Asset Beta -0.60 -0.85 -0.76 0.21
(-1.07) (-1.29) (-1.04) (0.18)

Beta Spread -1.29
(-1.17)

Bidder SDC Industry × Year FE Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes
Target Controls No Yes Yes Yes
Bidder Controls No No Yes Yes
Observations 5,079 4,261 3,992 3,949
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Table 11: Bidder Buy-and-Hold Abnormal Returns (BHAR)

This table presents OLS estimates of the sensitivity of the buy-and-hold abnormal return of the bidder’s stock over different event windows (Bidder BHAR) to the target’s asset beta.

[x,y] denotes an event window from t = x to t = y for a bid announced on date t = 0. The sample period is 1977 to 2015. Only bids for private targets are included. Deal Controls

is a vector comprising all deal-level controls included in column (5) of Table 2: Beta Spread, Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry, Crossborder, Poison,

Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I. t-statistics based on

standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sample: Private Targets
Dependent Variable: Bidder BHAR (in Percentage Points)
Event Window: [-3,+3] [+4,+100] [+4,+200] [+4,+300] [+4,+400] [-3,+100] [-3,+200] [-3,+300] [-3,+400]

Target Asset Beta 2.75*** 0.42 2.82 4.50 6.47 3.63* 6.21** 7.49* 8.95*
(4.29) (0.22) (0.96) (1.09) (1.35) (1.75) (2.08) (1.88) (1.88)

Bidder SDC Ind. × Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Target Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Bidder Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 10,281 10,220 10,038 9,817 9,578 10,219 10,037 9,816 9,577
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Table 12: Variation in Corporate Governance and Managerial Entrenchment

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s asset beta as function of the bidder’s corporate governance and

managerial entrenchment. The sample period is 1977 to 2015. Only bids for private targets are included. Institutional Ownership

is the percentage of outstanding shares of the bidder that are owned by institutional investors. Insider Ownership is the percentage

of outstanding shares of the bidder that are owned by the five highest paid executives of the bidder. Wealth Performance Sensitivity

is the performance sensitivity measure of Edmans, Gabaix, and Landier (2009) for the bidder’s CEO. Board Independence is the

percentage of independent directors on the bidder’s board. Anti Takeover Index is the anti takeover index of Bebchuk, Cohen,

and Ferell (2004) for the bidder. Deal Controls is a vector comprising all deal-level controls included in column (5) of Table 2:

Beta Spread, Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders,

Relative Size, and Bidder Size (Log). All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I.

(Interacted) indicates that all control variables and fixed effects are interacted with the governance or entrenchment characteristic

of interest. t-statistics based on standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical

significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta × Institutional Ownership -7.46***
(-2.56)

Target Asset Beta × Insider Ownership -3.30
(-1.25)

Target Asset Beta ×Wealth-Performance Sensitivity -0.02**
(-2.25)

Target Asset Beta × Board Independence -1.92
(-1.05)

Target Asset Beta × Anti-Takeover Index 1.07**
(1.96)

Target Asset Beta 7.51*** 2.88* 2.46*** 2.96** -1.66
(3.70) (1.93) (3.56) (2.09) (-0.97)

Bidder SDC Industry × Year FE (Interacted) Yes Yes Yes Yes Yes
Deal Controls (Interacted) Yes Yes Yes Yes Yes
Target Controls (Interacted) Yes Yes Yes Yes Yes
Bidder Controls (Interacted) Yes Yes Yes Yes Yes
Observations 11,784 1,942 7,017 4,467 5,561

56

 Electronic copy available at: https://ssrn.com/abstract=3050928 



Appendix to
“CAPM-Based Company (Mis)valuations”
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Appendix I – Variable Definitions

Variable Definition

Above 50% Stock Indicator equal to one if the proposed payment consists of more than 50% stock.

Anti Takeover Index Anti takeover index of Bebchuk, Cohen, and Ferell (2004).

Asset Beta Equally weighted average asset beta of all public firms in CRSP with the same three-digit
primary SIC code. Asset betas are computed as βA = βE/ [1 + (1− τ)×D/E], where βE
is the equity beta, τ is the statutory tax rate in the highest bracket, D is total debt (dltt+ dlc),
andE is the market value of equity. Using alternative methodologies to delever the equity betas
does not materially affect the results. Equity betas are estimated by regressing five years of
monthly excess returns (ret minus the risk-free rate obtained from Kenneth French’s webpage,
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html) on excess returns of
the CRSP value-weighted portfolio (including dividends). We use CRSP sharecodes 10 and 11
and compute the value-weighted average beta in case of multiple securities per firm. We drop
estimates based on less than 36 months of return data. Further, we drop observations for which
the estimated beta is negative, and we drop the same number of observations in the right tail of
the distribution of estimated betas.

Assets (Log) Natural logarithm of the book value of assets in USD million.

Beta Spread Target Asset Beta minus Bidder Asset Beta.

Beta Spread (Equity) Target Equity Beta minus Bidder Equity Beta.

Bidder Asset Beta Equally weighted average asset beta of all public firms in CRSP with the same three-digit
primary SIC code as the bidder, estimated one month prior to the bid announcement. (See
Asset Beta for details of the estimation of individual betas.)

Bidder BHAR Buy-and-hold abnormal return of the bidder’s stock. [x,y] denotes an event window from t = x
to t = y for a bid announced on date t = 0. The buy-and-hold abnormal return for bidder i is
given by BHARi ≡ BHi − BHMatch

i , where BHi is the buy-and-hold return of bidder i (during
the event window from t = x to t = y), and BHMatch

i is the buy-and-hold return on a portfolio
of firms matched to bidder i based on industry, size, and Tobin’s Q (e.g., Savor and Lu, 2009).
We first match bidder i to all public firms in CRSP with the same three-digit primary SIC
code. Next, we compute the Mahalanobis distance to all matched firms in terms of size and
Tobin’s Q to identify the ten closest industry peers. BHMatch

i is then computed as the weighted
average buy-and-hold return of these ten closest industry peers, where the weights are chosen
such that closer peers receive greater weight. If there are less than ten peers (because there are
not enough firms in the same industry), the matched portfolio contains less than ten firms. The
weight assigned to peer j of bidder i is wi,j = K (di,j/hi) /

∑Ni
k=1 K (di,k/hi), where Ni is

the number of peers matched to bidder i, di,j is the Mahalanobis distance between bidder i and
peer j, K (·) is the Gaussian density function, and hi is equal to the Mahalanobis distance to
the nearest matched peer (see, e.g., Todd, 1999).

Bidder CAR Cumulative abnormal return of the bidder’s stock over the seven-day window around the bid
announcement (i.e., from t = −3 to t = +3 for a bid announced on date t = 0). Abnormal
returns are market adjusted returns of CRSP sharecodes 10 and 11, using the CRSP value-
weighted portfolio as the market proxy. Outliers are dropped by trimming the final distribution
of CARs at the 0.5% level in each tail.

Bidder Equity Beta Equally weighted average equity beta of all public firms in CRSP with the same three-digit
primary SIC code as the bidder, estimated one month prior to the bid announcement. (See
Asset Beta for details of the estimation of individual betas.)

Bidder Mentions CAPM Indicator equal to one if the bidder’s 10K, 10Q, or 8K filings of the three years prior to the bid
announcement contain the words “CAPM” or “Capital Asset Pricing Model.”
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Variable Definition

Bidder Noise Beta Equally weighted average noise beta of all public firms in CRSP with the same three-
digit primary SIC code as the bidder, estimated one month prior to the bid announce-
ment. (See Noise Beta for details of the estimation of individual betas.)

Bidder Size (Log) Natural logarithm of the market capitalization of the bidder in USD million four days
prior to the bid announcement.

Board Independence Percentage of independent directors on the board.

Cash Indicator equal to one if the proposed payment includes cash.

Cash Flow to Assets Net income (ib) + D&A (dp) / total assets (at).

Cash to Assets Total cash and cash equivalents (che) / total assets (at).

Combined CAR Weighted average of the cumulative abnormal returns of the bidder’s and target’s
stock over the seven-day window around the bid announcement. (See Bidder CAR
for details of the estimation of the cumulative abnormal returns.)

Crossborder Indicator equal to one if the target’s and bidder’s headquarters are located in different
countries.

Deal Value (Log) Natural logarithm of the value of the takeover bid in USD million.

Deal Value (in $M) Value of the takeover bid in USD million.

Deal Value (in $M, CPI-Adjusted) Inflation-adjusted value of the takeover bid in USD million (in December 2015
terms).

Debt to Assets Total debt (dlc + dltt) / total assets (at).

Equity Indicator equal to one if the proposed payment includes stock.

FCF/Assets [EBIT× (1− τ) + D&A− CAPEX−∆NWC] /ASSETS, where EBIT is earnings
before interest and taxes (Compustat item ebit, or oiadp if ebit is missing, or pi +
xint − spi − nopi if both ebit and oiadp are missing), τ is the statutory tax rate in the
highest bracket, D&A is depreciation and amortization (Compustat item dp, or xdp if
dp is missing, or dpc if both dp and xdp are missing), CAPEX is capital expenditures
(Compustat item capx, or capxv if capx is missing), ∆NWC is the increase in net
working capital (Compustat items recch + invch + apalch + aoloch, or if missing: −
(rect − rectt−1) − (invt − invtt−1 ) + ( ap − apt−1) − (aco − lco − acot−1 +
lcot−1)), and ASSETS is the book value of total assets (Compustat item at).

FV Bid-implied firm value of the target, defined as EV+ASSETS−BVE. EV is the bid-
implied equity value of the target, defined as the equity value indicated in SDC, or the
deal value divided by the percentage of equity acquired if the equity value is missing
but the deal is completed, or the deal value divided by the percentage of equity sought
if the equity value is missing and the deal is withdrawn. ASSETS is the book value
of total assets (Compustat item at), and BVE is the book value of equity (Compustat
item ceq).

FV/EBIT Bid-implied firm value of the target divided by the target’s EBIT.

FV/Sales Bid-implied firm value of the target divided by the target’s sales.

HMFFS Dollar amount of hypothetical mutual fund fire sales, assuming that each position in
an affected fund’s portfolio is liquidated in proportion to its portfolio weight, scaled
by the dollar volume of trading in the stock.
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Variable Definition

HMFFS∗ Variant of HMFFS where the dollar amount of trading used to scale the dollar amount of
hypothetical fire sales is computed using the share price at the beginning of the quarter.

HMFFS∗∗ Number of shares sold in hypothetical mutual fund fire sales, assuming that each position
in an affected fund’s portfolio is liquidated in proportion to its portfolio weight.

HMFFS∗∗∗ Dollar value of hypothetical mutual fund fire sales, assuming that each position in an af-
fected fund’s portfolio is liquidated in proportion to its portfolio weight.

Hostile Indicator equal to one if the initial bid is hostile.

Insider Ownership Percentage of outstanding shares of the bidder that are owned by the five highest paid exec-
utives of the bidder.

Institutional Ownership Percentage of outstanding shares of the bidder that are owned by institutional investors.

IO Block Indicator equal to one if an institutional investor owns more than 5% of the firm’s outstand-
ing shares.

Listed Peer Available Indicator equal to one if the target is a U.S. firm and, at the time of the acquisition, there
is at least one other publicly listed U.S. firm with the same primary three-digit SIC code
whose market capitalization is neither smaller than 50% nor larger than 150% of the target’s
bid-implied equity value reported in SDC.

Market Capitalization (Log) Natural logarithm of the market value of equity in USD million.

Market-to-Book Market capitalization (prc × csho) / shareholders’ equity (ceq).

Multiple Bidders Indicator equal to one if there is more than one bidder.

Noise Beta In-sample covariance between the estimated noise component in a firm’s realized excess
stock returns and the realized excess returns on the market proxy, scaled by the in-sample
variance of the excess market returns. The noise components are estimated as the fitted
values from a regression of realized excess returns on hypothetical mutual fund fire sales.
Individual firms’ noise betas are delevered and aggregated at the industry level in analogy
to the construction of Asset Beta.

Poison Indicator equal to one if the target uses a defense mechanism.

PPE to Assets Property, plant, and equipment (ppent) / total assets (at).

Predicted WACC Weighted average cost of capital implied by Target Asset Beta and the same assumptions as
in the model calibration in Section 4.3.

Premium Percentage premium of the bid-implied equity value over the target’s market capitalization
six months prior to the bid.

Public Target Indicator equal to one if the target is listed.

Relative Size Deal value divided by the market capitalization of the bidder four days prior to the bid
announcement.

Repurchase Indicator equal to one if a firm repurchases shares.

ROA Return on assets (ib / at).

Same Industry Indicator equal to one if the bidder and target operate in the same industry as defined by the
first three digits of their primary SIC codes.
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Variable Definition

SEO Indicator equal to one if a firm does a seasoned equity offering.

Steep Empirical SML Indicator equal to one if the slope of the empirical SML (estimated following Hong
and Sraer, 2016) during the month of the bid announcement is larger than the sample
median.

Stock vs. Cash Indicator equal to one (zero) if 100% of the proposed payment is in stock (cash). Deals
for which the proposed payment comprises both stock and cash are excluded.

Target Asset Beta Equally weighted average asset beta of all public firms in CRSP with the same three-
digit primary SIC code as the target, estimated one month prior to the bid announcement.
(See Asset Beta for details of the estimation of individual betas.)

Target Equity Beta Equally weighted average equity beta of all public firms in CRSP with the same three-
digit primary SIC code as the target, estimated one month prior to the bid announcement.
(See Asset Beta for details of the estimation of individual betas.)

Target Growth High Indicator equal to one if the compound annual growth rate of aggregate sales in the
target’s (SIC3-) industry during the three years preceding the takeover bid is larger than
the sample median.

Target Noise Beta Equally weighted average noise beta of all public firms in CRSP with the same three-
digit primary SIC code as the target, estimated one month prior to the bid announcement.
(See Noise Beta for details of the estimation of individual betas.)

Target Relative Size High Indicator equal to one if Relative Size is larger than the sample median.

Tender Indicator equal to one if the bid is a tender offer.

Tobin’s Q [Assets (at) + market capitalization (prc × csho) − equity (ceq)] / assets (at).

Toehold Fraction of the target’s equity held by the bidder before the bid.

Avg. Discount Rate Average of the maximum and minimum discount rate (SDC items FO DCF RATE HI
and FO DCF RATE LOW) used for discounted cash flow analyses in M&A fairness
opinions.

100% Stock Indicator equal to one if 100% of the offered payment is in stock.

Wealth Performance Sensitivity Performance sensitivity measure of Edmans, Gabaix, and Landier (2009).

1 {a < Target Asset Beta ≤ b} Indicator equal to one if the target’s asset beta is larger than a but smaller than (or equal
to) b.

1 {Target Asset Beta < p25} Indicator equal to one if the target’s asset beta is in the bottom quartile of the distribution.

1 {Target Asset Beta > p75} Indicator equal to one if the target’s asset beta is in the top quartile of the distribution.
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Appendix II – Robustness Tests

Figure A.1: Non-Parametric Regression of Target Asset Beta on Target Noise Beta

This figure shows the coefficient estimates from an OLS regression of Target Asset Beta on indicator variables for different ranges

of Target Noise Beta. The sample period is 1980 to 2015.

-.2

-.1

0

.1

.2

.3

.4

Ta
rg

e
t A

ss
e

t B
e

ta

-.15 -.1 -.05 0 .05 .1 .15
Target Noise Beta

90% confidence interval

62

 Electronic copy available at: https://ssrn.com/abstract=3050928 



Table A.1: Alternative CAR Models

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s asset beta. The sample period is 1977 to 2015. Only bids for

private targets are included. In column (1), Bidder CAR is defined as the return of the bidder’s stock minus the return of the CRSP

value-weighted portfolio. In column (2), Bidder CAR is defined as the return of the bidder’s stock minus the expected return implied

by the CAPM. In columns (3) and (4), Bidder CAR is defined as the return of the bidder’s stock minus the expected return implied

by the Fama-French three factor model (Fama and French, 1993) and Carhart four factor model (Carhart, 1997), respectively. Deal

Controls is a vector comprising all deal-level controls included in column (5) of Table 2: Beta Spread, Deal Value (Log), Equity,

Cash, Toehold, Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All

other variables are defined as in Table 2. Detailed definitions are provided in Appendix I. t-statistics based on standard errors

clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is

indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)
CAR Model: Market Adjusted Market Model 3 Factors 4 Factors

Target Asset Beta 2.55*** 2.19*** 2.13*** 2.23***
(5.06) (4.61) (4.43) (4.66)

Bidder SDC Industry × Year FE Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes
Target Controls Yes Yes Yes Yes
Bidder Controls Yes Yes Yes Yes
Observations 12,109 12,061 12,061 12,060
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Table A.2: Sensitivity of Bidder CAR to Target Equity Beta

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s equity beta. The sample period is 1977 to 2015. Only bids for

private targets are included. Target Equity Beta is the equity beta of the target. Beta Spread (Equity) is the difference between the

target’s and the bidder’s equity beta. Deal Controls is a vector comprising all deal-level controls included in columns (2) to (4) of

Table 2: Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative

Size, and Bidder Size (Log). All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I. t-statistics

based on standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%,

5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Equity Beta 1.41*** 1.64*** 1.37*** 2.16***
(4.95) (5.24) (4.38) (4.69)

Beta Spread (Equity) -1.06**
(-2.27)

Bidder SDC Industry × Year FE Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes
Target Controls No Yes Yes Yes
Bidder Controls No No Yes Yes
Observations 13,610 13,490 12,211 12,112
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Table A.3: Non-Parametric Estimation of the Sensitivity of Bidder CAR to Target Asset Beta

This table presents OLS estimates of the sensitivity of the cumulative abnormal return of the bidder’s stock during the seven-day

window around the bid announcement (Bidder CAR) to the target’s asset beta. The sample period is 1977 to 2015. Only bids for

private targets are included. 1 {a < Target Asset Beta ≤ b} is an indicator equal to one if the target’s asset beta is larger than a but

smaller than (or equal to) b. Deal Controls is a vector comprising all deal-level controls included in column (5) of Table 2: Beta

Spread, Deal Value (Log), Equity, Cash, Toehold, Hostile, Same Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative

Size, and Bidder Size (Log). All other variables are defined as in Table 2. Detailed definitions are provided in Appendix I. t-statistics

based on standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%,

5%, and 1% level is indicated by *, **, and ***, respectively.

(1)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

1 {−∞ < Target Asset Beta ≤ 0.20} -2.66***
(-2.83)

1 {0.20 < Target Asset Beta ≤ 0.32} -1.67***
(-2.87)

1 {0.32 < Target Asset Beta ≤ 0.44} -0.88*
(-1.74)

1 {0.44 < Target Asset Beta ≤ 0.56} -0.58
(-1.47)

1 {0.56 < Target Asset Beta ≤ 0.68} -0.30
(-0.88)

1 {0.68 < Target Asset Beta ≤ 0.80} -0.13
(-0.44)

1 {0.92 < Target Asset Beta ≤ 1.04} 0.55*
(1.68)

1 {1.04 < Target Asset Beta ≤ 1.16} 0.39
(1.00)

1 {1.16 < Target Asset Beta ≤ 1.28} 1.21***
(2.64)

1 {1.28 < Target Asset Beta ≤ 1.40} 1.21***
(2.66)

1 {1.40 < Target Asset Beta <∞} 1.25***
(2.84)

Bidder SDC Industry × Year FE Yes
Deal Controls Yes
Target Controls Yes
Bidder Controls Yes
Observations 12,109
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Table A.4: Descriptive Statistics – Public Firms in Compustat (Bid Probability Sample)

This table presents descriptive statistics for all public firms in Compustat considered when estimating the sensitivity of public firms’ propensity to receive takeover bids to the firms’

asset beta (Table 6). The sample period is 1981 to 2015. All continuous variables are winsorized at the 1st and 99th percentile. Detailed definitions are provided in Appendix I.

(1) (2) (3) (4) (5) (6) (7) (8)

Sample: Public Firms in Compustat
Variable: Observations Mean SD Min. p25 p50 p75 Max.

Controlling Bid 154,831 0.05 0.22 0 0 0 0 1
Any Bid 154,831 0.08 0.28 0 0 0 0 1
Asset Beta 154,831 0.85 0.34 0.17 0.60 0.86 1.11 1.55
Assets (Log) 152,023 5.27 2.31 -2.06 3.59 5.21 6.87 10.76
ROA 151,848 -0.07 0.42 -9.03 -0.03 0.02 0.06 0.30
Debt to Assets 150,928 0.23 0.25 0.00 0.04 0.18 0.35 4.15
Cash to Assets 151,567 0.17 0.21 0.00 0.02 0.08 0.23 0.95
Cash Flow to Assets 147,434 -0.02 0.42 -9.30 0.00 0.06 0.11 0.37
Tobin’s Q 151,898 1.95 2.47 0.54 1.02 1.29 1.99 62.40
PPE to Assets 150,803 0.26 0.24 0.00 0.06 0.18 0.38 0.91
IO Block 147,780 0.61 0.49 0 0 1 1 1
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Table A.5: Alternative Method of Payment Definitions

This table presents OLS estimates of the sensitivity of the propensity to offer different types of payment to the bidder’s asset beta

(Bidder Asset Beta). The sample period is 1977 to 2015. Equity is an indicator equal to one if the proposed payment includes

stock. Above 50% Stock is an indicator equal to one if the proposed payment consists of more than 50% stock. Stock vs. Cash is an

indicator equal to one if 100% of the proposed payment is in stock and zero if 100% of the proposed payment is in cash. Deals for

which the proposed payment comprises both stock and cash are excluded from column (3). Deal Controls is a vector comprising

all deal-level controls included in column (2) to (4) of Table 7: Deal Value (Log), Toehold, Hostile, Same Industry, Crossborder,

Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables are defined as in Table 7. Detailed

definitions are provided in Appendix I. t-statistics based on standard errors clustered by the bidder’s (SIC3-) industry are reported

in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3)

Sample: Private and Public Targets
Dependent Variable: Equity Above 50% Stock Stock vs. Cash

Bidder Asset Beta 10.18*** 8.50*** 10.78***
(4.81) (4.73) (5.41)

Target Asset Beta -0.19 -0.95 -0.86
(-0.06) (-0.31) (-0.28)

Target SDC Industry × Year FE Yes Yes Yes
Deal Controls Yes Yes Yes
Target Controls Yes Yes Yes
Bidder Controls Yes Yes Yes
Observations 18,348 17,631 13,237
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Table A.6: Method of Payment and Target Equity Beta

This table presents OLS estimates of the sensitivity of the propensity to offer an all-stock payment to the bidder’s equity beta. The

sample period is 1977 to 2015. Bidder (Target) Equity Beta are the bidder’s and target’s equity beta, respectively. Deal Controls

is a vector comprising all deal-level controls included in columns (2) to (4) of Table 7: Deal Value (Log), Toehold, Hostile, Same

Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables are defined as

in Table 7. Detailed definitions are provided in Appendix I. t-statistics based on standard errors clustered by the bidder’s (SIC3-)

industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Private and Public Targets
Dependent Variable: 100% Stock

Bidder Equity Beta 7.61*** 7.62*** 5.54*** 5.52***
(3.86) (3.90) (3.54) (3.47)

Target Equity Beta 0.01
(0.00)

Target SDC Industry × Year FE Yes Yes Yes Yes
Deal Controls Yes Yes Yes Yes
Target Controls No Yes Yes Yes
Bidder Controls No No Yes Yes
Observations 21,082 20,471 18,428 18,354
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Appendix III – Model Extensions and Derivations

Model Extension: Relaxing Assumptions (AI) and (AII)

We consider a bidder that seeks to acquire a fraction π ∈ (0, 1] of a private firm’s equity. If acquired, the

value of the equity stake as assessed by the bidder and seller is57

πEt = π ×
[
V A
t + ∆t −Dt + St(π)

]
. (A1)

In exchange for the fraction π ∈ (0, 1] of the target’s equity, the bidder offers an amountBt. The seller’s

outside option is to reject the bidder’s offer and retain an equity stake valued at

V A
t + ∆t −Dt. (A2)

Alternatively, the seller can accept the offer and retain an equity stake valued at

(1− π)×
[
V A
t + ∆t −Dt + St(π)

]
. (A3)

The Nash bargaining solution implies that the bidder’s offer must satisfy

V A
t + ∆t −Dt + αSt(π) = (1− π)×

[
V A
t + ∆t −Dt + St(π)

]
+Bt (A4)

⇔

Bt = π ×
[
V A
t + ∆t −Dt

]
+ αSt(π)− (1− π)× St(π). (A5)

The bid corresponds to the stand-alone value of the equity stake, plus a fraction α of the synergies, minus

the increase in value of the seller’s remaining equity stake that is due to the synergies.58

57We allow the value of the synergies to depend on the fraction of equity acquired by the bidder to capture the notion that the

size of the stake may affect the bidder’s ability and incentives to unlock synergies.

58The derivation assumes that the bidder does not have a toehold in the target when making the bid. If the bidder has a toehold

ω ∈ (0, 1), then the seller must decide between rejecting the bid and retaining a stake valued at (1− ω) ×
[
V At + ∆t −Dt

]
or

accepting the bid and retaining a stake valued at (1− π − ω) ×
[
V At + ∆t −Dt + St(π)

]
. In that case, the bidder’s offer must

satisfy Bt = π ×
[
V At + ∆t −Dt

]
+ αSt(π)− (1− π − ω)× St(π).
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The cumulative abnormal return of the bidder’s stock in response to the bid announcement is given by

CARBidder
t =

πẼt −Bt
EBidder
t

, (A6)

where

πẼt = π ×
[
Ṽ A
t + ∆̃t − D̃t + S̃t(π)

]
(A7)

is the value of the equity stake (conditional on its acquisition by the bidder) as assessed by the market, and

EBidder
t is the bidder’s market capitalization. Equations (A5) and (A7) can be written as

Bt = π

∞∑
τ=t+1

[
FCFτ

(1 + rA)τ−t
+

δτ

(1 + r∆)τ−t
− dτ

(1 + rD)τ−t

]
− (1− π − α)

∞∑
τ=t+1

sτ (π)

(1 + rS)τ−t
(A8)

and

πẼt = π
∞∑

τ=t+1

[
FCFτ

(1 + r̃A)τ−t
+

δτ

(1 + r̃∆)τ−t
− dτ

(1 + r̃D)τ−t

]
+ π

∞∑
τ=t+1

sτ (π)

(1 + r̃S)τ−t
. (A9)

The appropriate discount rates as assessed by the bidder and market are given by

ri = rf + βi × µ for i ∈ {A,∆, D, S} (A10)

and

r̃A = rf +
[
γ × βA + (1− γ)× βA

]
× µ, (A11)

where rf is the risk-free rate, µ the market risk premium, and βA the average asset beta in the economy.59

That is, we assume that the empirical SML has a slope of γ × µ for some γ ∈ [0, 1] and crosses the CAPM-

implied SML at the average asset beta (βA).

We assume that the systematic risk of the net benefits of leverage, debt, and synergies is weakly increas-

ing in the systematic risk of the target’s operating free cash flows on a stand-alone basis, i.e.,

∂βi
∂βA

≥ 0 and
∂β̃i
∂βA

≥ 0 for i ∈ {∆, D, S} . (A12)

59If the portfolio of all assets in the economy constitutes the true (CAPM-)market portfolio, then the average asset beta is equal

to one (by construction). Note, however, that our predictions do not depend on βA = 1, so we do not impose this condition.
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We further assume

∂

∂βA

(
V A
t + ∆t −Dt

)
< 0, (A13)

which rules out that an increase in the systematic risk of the operating free cash flows increases the stand-

alone value of the target’s equity (all else equal), and

α+ π ≥ 1, (A14)

which implies that the bid is at least equal to the stand-alone value of the acquired stake, i.e.,

Bt ≥ π ×
(
V A
t + ∆t −Dt

)
. (A15)

This would be the case, for example, if any synergies are split evenly between the bidder and the seller

(α = 0.5) but can only be achieved if the bidder acquires a majority stake (π > 0.5).

Given the above assumptions, we have

∂CARBidder
t

∂βA
= − 1

EBidder
t

×
[
π × ∂

∂βA

(
V A
t + ∆t −Dt

)
− (1− π − α)

∂St
∂βA

]
> 0 if γ = 0, (A16)

and

∂CARBidder
t

∂βA
=

1− α
EBidder
t

× ∂St
∂βA

≤ 0 if γ = 1. (A17)

Continuity in γ thus implies that a γ∗ ∈ (0, 1) exists, such that

∂CARBidder
t

∂βA
> 0 for γ < γ∗. (A18)

That is, the bidder’s cumulative abnormal return
(
CARBidder

t

)
around the bid announcement is increasing in

the target’s asset beta (βA) as long as the empirical SML is not too steep (γ < γ∗ < 1).

71

 Electronic copy available at: https://ssrn.com/abstract=3050928 



Model Extension: Public Target

We assume that the key difference compared to a private target is that the seller of a public target can sell the

shares at the prevailing market price Êt instead of selling them to the bidder at price Bt.60 Consequently,

the seller’s outside option when negotiating with the bidder depends on the target’s current market price Êt.

Specifically, if the target’s stand-alone value as assessed by the bidder and seller is higher than the

current market price (V A
t + ∆t −Dt ≥ Êt), then bilateral Nash bargaining implies

Bt = V A
t + ∆t −Dt + αSt, (A19)

which in turn implies61

∂CARBidder
t

∂βA
=

µ

EBidder
t

∞∑
τ=t+1

(τ − t)× FCFτ
(1 + rf + βA × µ)τ−t+1 > 0. (A20)

If, instead, the market price is higher than the stand-alone value but lower than the value including synergies

(V A
t + ∆t −Dt < Êt ≤ V A

t + ∆t −Dt + St), then the bidder pays

Bt = (1− α)× Êt + α×
(
V A
t + ∆t −Dt + St

)
, (A21)

and we have

∂CARBidder
t

∂βA
= α× µ

EBidder
t

∞∑
τ=t+1

(τ − t)× FCFτ
(1 + rf + βA × µ)τ−t+1 > 0. (A22)

If the target’s current market price exceeds the equity value including synergies as assessed by the bidder

and seller (Êt > V A
t + ∆t −Dt + St), then no bid is made because the seller’s outside option dominates

any bid that the bidder would be willing to make.

60Note that Êt denotes the market’s assessment of the target’s equity value on a stand-alone basis, whereas Ẽt denotes the

market’s assessment of the target’s equity value conditional on an acquisition by the bidder (i.e., including synergies).

61To derive Equation (A20), we assume (AI) and (AII) as in Section 2.
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Derivations of Additional Predictions

Derivation of Predictions 2 and 3: We assume FCFt+1 > 0 and that the expected operating free cash

flows on a stand-alone basis grow at a constant rate g < rA thereafter. This implies

∂CARBidder
t

∂βA
=

µ

EBidder
t

× FCFt+1

(rf + βA × µ− g)2 > 0, (A23)

which can be rewritten as

∂CARBidder
t

∂βA
=

µ

rf + βA × µ− g
×
(
R− ∆t −Dt + αSt

EBidder
t

)
, (A24)

where R ≡ Bt/EBidder
t is the relative size of the bid vis-à-vis the bidder. We thus have

∂2CARBidder
t

∂βA∂g
=

2µ

EBidder
t

× FCFt+1

(rf + βA × µ− g)3 > 0 (A25)

and

∂2CARBidder
t

∂βA∂R
=

µ

rf + βA × µ− g
> 0. (A26)

Derivation of Prediction 4: We assume that the bidder’s and seller’s assessment of the target’s equity

value is a weighted average of the CAPM-based value and a market-based (i.e., non-CAPM-based) value,

Et = ω × ECAPM-based
t + (1− ω)× EMarket-based

t , (A27)

where ω ∈ [0, 1] is the weight on the CAPM-based value. EMarket-based
t could be the current market price for

a public target and a multiple-implied price for a private target (e.g., based on listed peers). Assuming

∂EMarket-based
t

∂βA
>
∂ECAPM-based

t

∂βA
(A28)

(e.g., ∂EMarket-based
t /∂βA = 0) then implies

∂2CARBidder
t

∂βA∂ω
> 0. (A29)
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Derivation of Prediction 5: We assume that the empirical SML is given by

r̃i = rf +
[
γ × βi + (1− γ)× βA

]
× µ, (A30)

for some γ ∈ [0, 1], and that the bidder seeks to acquire a fraction π ∈ (0, 1] of the target’s equity. Given

∂CARBidder
t

∂βA
= − 1

EBidder
t

×
[
π × ∂

∂βA

(
V A
t + ∆t −Dt

)
− (1− π − α)

∂St
∂βA

]
> 0 if γ = 0, (A31)

and

∂CARBidder
t

∂βA
=

1− α
EBidder
t

× ∂St
∂βA

≤ 0 if γ = 1, (A32)

continuity in γ implies that two cutoffs γ and γ with 0 < γ ≤ γ < 1 exist such that ∂CARBidder
t /∂βA is

larger for all γ < γ than for all γ > γ.

Derivation of Prediction 6: Assuming α < 1, Equations (A20) and (A22) imply that the relation between

a bidder’s CAR and target’s asset beta is weaker for a public than for a private target if the public target’s

stand-alone value as assessed by the bidder and seller
(
V A
t + ∆t −Dt

)
is lower than its current market

price (Êt). This condition is more likely to be satisfied for high than for low beta public targets because

∂
(
V A
t + ∆t −Dt

)
∂βA

<
∂Êt
∂βA

. (A33)

Further, assuming that the weight given to a public target’s market capitalization in Equation (A27) is greater

than the weight given to a multiple-implied value for a private target (e.g., because the current market price

is considered a more accurate assessment than a multiple-implied value), Prediction 4 also implies that the

relation between bidder CARs and target asset betas is weaker for public than for private targets.

Derivation of the Prediction Regarding the Probability of Receiving a Takeover Bid: We assume that

organizing a takeover costs c > 0 and that the value of synergies as assessed by the bidder and seller is a

random variable with cumulative distribution function F and density function f > 0 for St ∈ R+. To avoid

a mechanical relation between a firm’s asset beta and the probability of receiving a takeover bid, we assume
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that F does not depend on βA.62 Differences in beta thus do not imply differences in potential synergies

(and thus attractiveness as a takeover target) per se.

For a private firm, a bidder makes a bid if the present value of the synergies exceeds the costs of orga-

nizing the takeover (St > c). Hence, the probability of a bid does not depend on the firm’s asset beta:

Pr (Bid) = Pr (St > c) = 1− F (c) . (A34)

For a public firm, a bid is made if the value of the synergies exceeds the costs of organizing the takeover

(St > c) and the firm’s current market price is lower than its equity value including synergies as assessed by

the bidder and seller (Êt < V A
t + ∆t −Dt + St). The bid probability is therefore

Pr (Bid) = Pr
(
St > max

{
c; Êt − V A

t −∆t +Dt

})
(A35)

= 1− F
(

max
{
c; Êt − V A

t −∆t +Dt

})
≤ 1− F (c) , (A36)

Assuming (AI) and (AII) as in Section 2, we further obtain63

∂ Pr (Bid)

∂βA
=



−f
(
Êt − V A

t −∆t +Dt

)
×µ
∑∞

τ=t+1
(τ−t)×FCFτ

(1+rf+βA×µ)
τ−t+1

if c < Êt − V A
t −∆t +Dt

0 if c > Êt − V A
t −∆t +Dt,

(A37)

implying that a public firm’s probability of receiving a takeover bid is weakly decreasing in its asset beta.

Derivation of the Prediction Regarding the Average Asset Betas of Private vs. Public Targets: The

derivation of prediction regarding the probability of receiving a takeover bid implies that the expected asset

62As long as the value of the synergies is not increasing in the firm’s asset beta, our prediction would not qualitatively change

even if F depends on βA. In that case, however, the probability 1−F (x) that St exceeds some cutoff x justifying a takeover – and

hence the probability of a bid – would depend on βA even if the empirical SML and the CAPM-implied SML coincide.

63(AI) and (AII) are not necessary (but sufficient) to obtain ∂ Pr (Bid) /∂βA ≤ 0. The (weaker) necessary and sufficient

condition is that an increase in the asset beta entails a smaller reduction in the market’s than the bidder’s assessment of the target’s

equity value on a stand-alone basis, so that ∂
∂βA

(
Êt − V At −∆t +Dt

)
> 0.

75

 Electronic copy available at: https://ssrn.com/abstract=3050928 



beta in a sample of private targets is equal to the average asset beta in the population of private firms. The

reason is that each private firm’s probability of receiving a takeover bid is 1 − F (c), irrespective of its

asset beta. It follows that the sample of private targets constitutes a random draw from the population of

private firms. For public firms, instead, the probability of receiving a takeover bid is weakly decreasing in

the asset beta. Consequently, because public firms with a higher asset beta have a weakly lower probability

of receiving a takeover bid, the expected asset beta in a sample of public targets is weakly smaller than the

average asset beta in the population of public firms. Hence, if the average asset beta in the population of

private firms is the same as in the population of public firms, then the expected asset beta in a sample of

private takeover targets is weakly larger than the expected asset beta in a sample of public takeover targets.
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Derivation of Equations (15), (17), and (18)

We build on the model extension introduced at the beginning of this appendix and use a tilde (x̃) to indicate

the market’s beliefs and assessments. L = Dt/E
s
t denotes the target’s book leverage and τ the tax rate. We

assume: (I) The operating cash flows and synergies have the same systematic risk and grow at a constant

rate (g). (II) The level of debt is permanent and the net benefit of leverage is equal to the tax shield. (III)

The bidder, seller, and market use the book value of debt (Dt) as a proxy for the debt’s market value.

Derivation of Equation (15):

CARBidder
t × EBidder

t

ρ
= πẼt −Bt (A38)

= π
(
Ṽ A
t + ∆̃t − D̃t + S̃t

)
− π

(
V A
t + ∆t −Dt + St

)
+ (1− α)St (A39)

= π

(
FCFt+1 + st+1

r̃A − g
+
δt+1 − dt+1

r̃D

)
− π

(
FCFt+1 + st+1

rA − g
+
δt+1 − dt+1

rD

)
+ (1− α)

st+1

rA − g
(A40)

= π

(
FCFt+1 + st+1

r̃A − g
+
τdt+1 − dt+1

r̃D

)
− π

(
FCFt+1 + st+1

rA − g
+
τdt+1 − dt+1

rD

)
+ (1− α)

st+1

rA − g
(A41)

= π

(
FCFt+1 + st+1

r̃A − g
− (1− τ)

dt+1

r̃D

)
− π

(
FCFt+1 + st+1

rA − g
− (1− τ)

dt+1

rD

)
+ (1− α)

st+1

rA − g
(A42)

= π

(
FCFt+1 + st+1

r̃A − g
− (1− τ) D̃t

)
− π

(
FCFt+1 + st+1

rA − g
− (1− τ)Dt

)
+ (1− α)

st+1

rA − g
(A43)

= π

(
FCFt+1 + st+1

r̃A − g
− (1− τ)Dt

)
− π

(
FCFt+1 + st+1

rA − g
− (1− τ)Dt

)
+ (1− α)

st+1

rA − g
(A44)

= π (FCFt+1 + st+1)

(
1

r̃A − g
− 1

rA − g

)
+ (1− α)

st+1

rA − g
(A45)

⇔

CARBidder
t =

ρ

EBidder
t

×
{
π (FCFt+1 + st+1)×

[
1

r̃A − g
− 1

rA − g

]
+ (1− α)

st+1

rA − g

}
(A46)
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Derivation of Equation (17):

Bt = π
(
V A
t + ∆t −Dt + St

)
− (1− α)St = π

[
V A
t − (1− τ)Dt + St

]
− (1− α)St (A47)

with

Dt = L× Est = L×
[
V A
t + ∆t −Dt

]
=
L

π
× [Bt + (1− π − α)St] (A48)

implies

Bt = π
[
V A
t − (1− τ)Dt + St

]
− (1− α)St (A49)

= π
(
V A
t + St

)
− (1− τ)L [Bt + (1− π − α)St]− (1− α)St (A50)

⇔

Bt [1 + (1− τ)L] = π
(
V A
t + St

)
− St [1− α+ (1− τ)L (1− π − α)] (A51)

= π
FCFt+1 + st+1

rA − g
− st+1

rA − g
[1− α+ (1− τ)L (1− π − α)] (A52)

⇔

π (FCFt+1 + st+1) = Bt [1 + (1− τ)L] (rA − g) + st+1 [1− α+ (1− τ)L (1− π − α)] (A53)

Derivation of Equation (18):

Bt − B̃t = π ×
[
V A
t + ∆t −Dt + St

]
− (1− α)St − π ×

[
Ṽ A
t + ∆̃t − D̃t + S̃t

]
+ (1− α) S̃t (A54)

= −π (FCFt+1 + st+1)×
[

1

r̃A − g
− 1

rA − g

]
+ (1− α) st+1 ×

[
1

r̃A − g
− 1

rA − g

]
(A55)

= [(1− α) st+1 − π (FCFt+1 + st+1)]×
[

1

r̃A − g
− 1

rA − g

]
(A56)

⇔∣∣∣Bt − B̃t∣∣∣ = |(1− α) st+1 − π (FCFt+1 + st+1)| ×
∣∣∣∣ 1

r̃A − g
− 1

rA − g

∣∣∣∣ (A57)
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Appendix IV – Construction of Hypothetical Mutual Fund Fire Sales

The following description is based on Dessaint, Foucault, Frésard, and Matray (2018). For each stock i, we

construct HMFFSi,q,t, a measure of hypothetical sales of stock i during quarter q of year t that are due to

large outflows in mutual funds owning the stock. Our approach follows the three-step approach proposed

by Edmans, Goldstein, and Jiang (2012).

First, in each year t, we estimate quarterly mutual fund flows for all U.S. funds that are not specialized

in a given industry using CRSP mutual funds data. For every fund, CRSP reports the monthly return and the

total net assets (TNA) by asset class. The average return of fund j during month m of year t is given by

RETURNj,m,t =

∑
k(TNAk,j,m,t × RETURNk,j,m,t)∑

k TNAk,j,m,t
, (A58)

where k indexes asset classes. We compound monthly fund returns to estimate average quarterly returns and

aggregate TNAs across asset classes in March, June, September, and December to obtain the TNA of fund

j at the end of every quarter in each year.

An estimate of the net inflow experienced by fund j during quarter q of year t is then given by

FLOWj,q,t =
TNAj,q,t − TNAj,q−1,t × (1 + RETURNj,q,t)

TNAj,q−1,t
, (A59)

where TNAj,q,t is the total net asset value of fund j at the end of quarter q of year t, and RETURNj,q,t is the

return of fund j during quarter q of year t. FLOWj,q,t is therefore an estimate of the net inflow experienced

by fund j during quarter q of year t as a percentage of its net asset value at the beginning of the quarter.

Second, we calculate the dollar value of fund’s j holdings of stock i at the end of every quarter using

data from CDA Spectrum/Thomson. CDA Spectrum/Thomson provides the number of stocks held by all

U.S. funds at the end of every quarter. The total value of the participation held by fund j in firm i at the end

of quarter q of year t is

SHARESi,j,q,t × PRCi,q,t, (A60)
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where SHARESj,i,q,t is the number of shares i held by fund j at the end of quarter q of year t, and PRCi,q,t

is the price of stock i at the end of quarter q of year t.

For all mutual funds for which FLOWj,q,t ≤ −0.05, we then compute

HMFFSUSD
i,q,t =

∑
j

(FLOWj,q,t × SHARESj,i,q−1,t × PRCi,q−1,t). (A61)

This variable corresponds to the hypothetical net selling of stock i, in U.S. dollars (USD), by all mutual

funds subject to extreme outflows (i.e., outflows greater or equal to 5%). We also compute the dollar volume

of trading in stock i during quarter q of year t (VOLi,q,t) as64

VOLi,q,t =
∑
m

Shares Tradedi,m,q,t × PRCi,m,q,t (A62)

where Shares Tradedi,m,q,t is the total number of shares i traded during month m in quarter q of year t, and

PRCi,m,q,t is the price of the shares at the end of month m.

Finally, we define the measure of hypothetical mutual fund fire sales (HMFFS) as

HMFFSi,q,t ≡
HMFFSUSD

i,q,t

VOLi,q,t
=

∑
j(FLOWj,q,t × SHARESj,i,q−1,t × PRCi,q−1,t)

VOLi,q,t
. (A63)

64An alternative is to compute the total dollar volume of trading in stock i during quarter q of year t as VOLi,q,t =

Total Number of Shares Tradedi,q,t × PRCi,q,t. Doing so does not qualitatively change the results.
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Appendix V – Robustness of IV Estimation to Critique by Wardlaw (2018)

Wardlaw (2018) argues that using the dollar volume of trading during quarter q when computing HMFFSi,q,t

may be problematic if HMFFSi,q,t is subsequently used as an instrument for stock i’s return. For example,

using VOLi,q,t = Total Number of Shares Tradedi,q,t × PRCi,q,t implies

HMFFSi,q,t ≡
∑

j(FLOWj,q,t × SHARESj,i,q−1,t × PRCi,q−1,t)

VOLi,q,t

=

∑
j(FLOWj,q,t × SHARESj,i,q−1,t)

Total Number of Shares Tradedi,q,t
× PRCi,q−1,t

PRCi,q,t
, (A64)

where the last term, PRCi,q−1,t/PRCi,q,t, is equal to the inverse of the stock’s realized gross return, so that

there is a “mechanical” relation between the return and HMFFSi,q,t.65

This concern can be addressed by computing the dollar volume of trading using the price at the beginning

of the quarter, i.e., VOL∗i,q,t = Number of Shares Tradedi,q,t × PRCi,q−1,t, and defining

HMFFS∗i,q,t ≡
∑

j(FLOWj,q,t × SHARESj,i,q−1,t × PRCi,q−1,t)

VOL∗i,q,t
=

∑
j(FLOWj,q,t × SHARESj,i,q−1,t)

Total Number of Shares Tradedi,q,t
,

(A65)

so that the term PRCi,q−1,t/PRCi,q,t is no longer present. Panels A.1 and B.1 of Table A.7 show that our

results are robust to using HMFFS∗i,q,t instead of HMFFSi,q,t in the IV analysis.66

Wardlaw (2018) also argues that the total number of shares traded during the quarter could be correlated

with the return, so that scaling by Total Number of Shares Tradedi,q,t may be problematic, too. To address

this concern, we define two alternative measures that do not include Total Number of Shares Tradedi,q,t:

HMFFS∗∗i,q,t ≡
∑
j

(FLOWj,q,t × SHARESj,i,q−1,t) (A66)

HMFFS∗∗∗i,q,t ≡
∑
j

(FLOWj,q,t × SHARESj,i,q−1,t × PRCi,q−1,t). (A67)

Panels A.2, B.2, A.3, and B.3 of Table A.7 show that our results are also robust to using ln(1 + HMFFS∗∗i,q,t)

and ln(1 + HMFFS∗∗∗i,q,t) instead of HMFFSi,q,t in the IV analysis.

65Using VOLi,q,t =
∑
m Shares Tradedi,m,q,t×PRCi,m,q,t as we do complicates the exposition without changing the intuition.

66It is also worth noting that the correlation between the original measure HMFFSi,q,t and the new measure HMFFS∗
i,q,t is 0.975.
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Table A.7: Two-Stage-Least-Squares (2SLS) IV Estimation using HMFFS∗, ln(1 + HMFFS∗∗), and ln(HMFFS∗∗∗) instead of HMFFS

This table presents 2SLS estimates of the sensitivity of Bidder CAR to Target Asset Beta. For Panels A.1 and B.1, we use HMFFS∗ instead of HMFFS to construct Target Noise Beta

and Bidder Noise Beta. For Panels A.2 and B.2, we use ln(1 + HMFFS∗∗). For Panels A.3 and B.3, we use ln(1 + HMFFS∗∗∗). The sample period is 1980 to 2015. Only bids for

private targets are included. Deal Controls is a vector comprising all deal-level controls included in columns (2) to (4) of Table 2: Deal Value (Log), Equity, Cash, Toehold, Hostile,

Same Industry, Crossborder, Poison, Tender, Multiple Bidders, Relative Size, and Bidder Size (Log). All other variables are defined as in Table 2. t-statistics based on standard errors

clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

Panel A.1 – 1st Stage of 2SLS (1) (2) (3) (4) (5.a) (5.b)

Sample: Private Targets
Dependent Variable: Target Target Target Target Target Beta

Asset Beta Asset Beta Asset Beta Asset Beta Asset Beta Spread

Target Noise Beta 3.77*** 3.73*** 2.34*** 2.36*** 2.34*** 2.40***
Constructed Using HMFFS∗ (9.34) (9.46) (11.92) (11.67) (10.89) (9.75)
Bidder Noise Beta 0.06 -2.56***
Constructed Using HMFFS∗ (0.30) (-8.84)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes Yes
Target Controls No No Yes Yes Yes Yes
Bidder Controls No No No Yes Yes Yes
Observations 13,334 13,048 12,939 11,707 11,706 11,706

Panel B.1 – 2nd Stage of 2SLS (1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta (Instrumented) 2.29* 2.58*** 3.99** 3.72** 5.15*
(1.92) (2.31) (2.15) (1.93) (1.91)

Beta Spread (Instrumented) -2.07
(-0.95)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes
Target Controls No No Yes Yes Yes
Bidder Controls No No No Yes Yes
Observations 13,334 13,048 12,939 11,707 11,706
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Panel A.2 – 1st Stage of 2SLS (1) (2) (3) (4) (5.a) (5.b)

Sample: Private Targets
Dependent Variable: Target Target Target Target Target Beta

Asset Beta Asset Beta Asset Beta Asset Beta Asset Beta Spread

Target Noise Beta 3.23*** 3.21*** 1.97*** 1.99*** 1.98*** 2.00***
Constructed Using ln(1 + HMFFS∗∗) (10.63) (10.78) (11.61) (11.76) (10.62) (9.39)
Bidder Noise Beta 0.05 -2.20***
Constructed Using ln(1 + HMFFS∗∗) (0.28) (-9.04)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes Yes
Target Controls No No Yes Yes Yes Yes
Bidder Controls No No No Yes Yes Yes
Observations 13,358 13,051 12,942 11,708 11,707 11,707

Panel B.2 – 2nd Stage of 2SLS (1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta (Instrumented) 3.69** 3.75*** 5.95** 5.67** 6.49**
(2.67) (2.76) (2.44) (2.25) (2.01)

Beta Spread (Instrumented) -1.22
(-0.51)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes
Target Controls No No Yes Yes Yes
Bidder Controls No No No Yes Yes
Observations 13,358 13,051 12,942 11,708 11,707
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Panel A.3 – 1st Stage of 2SLS (1) (2) (3) (4) (5.a) (5.b)

Sample: Private Targets
Dependent Variable: Target Target Target Target Target Beta

Asset Beta Asset Beta Asset Beta Asset Beta Asset Beta Spread

Target Noise Beta 3.23*** 3.21*** 2.04*** 2.07*** 2.06*** 2.08***
Constructed Using ln(1 + HMFFS∗∗∗) (12.33) (12.53) (12.85) (13.12) (11.66) (10.42)
Bidder Noise Beta 0.05 -2.26***
Constructed Using ln(1 + HMFFS∗∗∗) (0.28) (-10.06)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes Yes
Target Controls No No Yes Yes Yes Yes
Bidder Controls No No No Yes Yes Yes
Observations 13,353 13,052 12,943 11,715 11,714 11,714

Panel B.3 – 2nd Stage of 2SLS (1) (2) (3) (4) (5)

Sample: Private Targets
Dependent Variable: Bidder CAR (in Percentage Points)

Target Asset Beta (Instrumented) 2.70** 2.90*** 4.43** 4.58** 5.20*
(2.20) (2.38) (2.09) (2.06) (1.69)

Beta Spread (Instrumented) -0.93
(-0.42)

Bidder SDC Industry × Year FE Yes Yes Yes Yes Yes
Deal Controls No Yes Yes Yes Yes
Target Controls No No Yes Yes Yes
Bidder Controls No No No Yes Yes
Observations 13,353 13,052 12,943 11,715 11,714
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Appendix VI – Reconciling Target Asset Beta and Avg. Discount Rate

To examine how well the cost of capital implied by Target Asset Beta lines up with Avg. Discount Rate (the

midpoint between the maximum and minimum rate in fairness opinions), we estimate the OLS regression

Avg. Discount Rate = α+ β × Predicted WACC + ε, (A68)

where Predicted WACC is the cost of capital implied by Target Asset Beta and the same assumptions as in

the model calibration in Section 4.3. Specifically, we estimate regression (A68) for various sub-samples

based on the spread between the maximum and minimum rate used in the fairness opinions, defined as

∆ ≡ rmax − rmin
Avg. Discount Rate

. (A69)

The reason for this approach is as follows. Avg. Discount Rate is not the actual discount rate used by the

bidder (which is unobserved) but only a proxy thereof. However, assuming that the discount rate used by the

bidder lies between the maximum and minimum discount rate used in the fairness opinion, Avg. Discount

Rate should be a more accurate proxy if the spread between the maximum and minimum rate is small.

Table A.8 displays the results of this analysis. In column (1), we include all fairness opinions. In

columns (2) to (11) we impose increasingly tight restrictions on the spread ∆ between the maximum and

minimum discount rate. For example, in column (6), we only use cases were ∆ < 0.2. In column (11), we

only use cases were ∆ < 0.1. We find that the coefficient estimate (β̂) on Predicted WACC approaches one

as the spread between the maximum and minimum discount rate in the fairness opinion decreases. Similarly,

the estimated regression constant (α̂) approaches zero. Indeed, in columns (7) to (11), one cannot reject the

hypotheses that the coefficient on Predicted WACC is equal to one and that the regression constant is zero.

That is, as the range of discount rates used in the fairness opinion becomes increasingly tight – so that the

variable Avg. Discount Rate becomes more likely to be an accurate estimate of the discount rate that was

actually used by the bidder – one cannot reject the hypothesis that the discount rate implied by Target Asset

Beta is equal to Avg. Discount Rate.
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Table A.8: Relation Between the Predicted WACC and the Midpoint Between the Maximum and Minimum Discount Rate Used in Fairness Opinions

This table presents results from the OLS regression Avg. Discount Rate = α + β × Predicted WACC + ε, where Avg. Discount Rate = (rmax + rmin) /2 and rmax and rmin are

the maximum and minimum discount rate used for DCF valuations provided in fairness opinions on takeover bids. Predicted WACC is the weighted average cost of capital for the

target that is implied by Target Asset Beta and the same assumptions that we make for the model calibration in Section 4.3. ∆ is the difference between rmax and rmin scaled by the

midpoint between rmax and rmin. t-statistics based on standard errors clustered by the target’s (SIC3-) industry are reported in parentheses. Statistical significance at the 10%, 5%,

and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Sample: Fairness Opinions on Bids for Private and Public Targets
Dependent Variable: Midpoint Between Maximum and Minimum Discount Rate Used in Fairness Opinion DCF (in Percentage Points)
Restriction: None ∆ < 1

1 ∆ < 1
2 ∆ < 1

3 ∆ < 1
4 ∆ < 1

5 ∆ < 1
6 ∆ < 1

7 ∆ < 1
8 ∆ < 1

9 ∆ < 1
10

Predicted WACC 0.61*** 0.64*** 0.62*** 0.64*** 0.74*** 0.69*** 0.76*** 1.04*** 1.08*** 0.98*** 1.01***
(4.20) (4.44) (4.32) (5.42) (5.65) (4.92) (5.38) (6.24) (5.00) (3.95) (4.70)

Constant 0.07*** 0.07*** 0.07*** 0.06*** 0.05*** 0.05*** 0.05*** 0.02 0.02 0.03 0.03
(5.06) (4.77) (4.93) (5.33) (3.94) (4.02) (3.41) (1.29) (0.88) (1.27) (1.39)

Observations 1,174 1,162 1,121 1,022 768 607 426 266 207 161 112
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Appendix VII – Share Repurchases and Seasoned Equity Offerings

Our results on the relation between bidders’ asset betas and the method of payment extend beyond takeover

bids. We have shown that high beta bidders are more likely to use equity to pay for the target, but if our

framework is correct, then the propensity to issue equity should be higher for high beta firms whether they

make acquisitions or not. To a CAPM-using manager of a high beta firm, raising funds by issuing equity

at the market price looks like a positive-NPV transaction – irrespective of the planned use of these funds

(M&A, capital expenditures, other investments, capital structure changes, or even payouts). Repurchasing

shares at the market price, on the other hand, looks like a negative-NPV investment.

Thus, we now move away from the setting of takeover bids and examine the relation between firms’

asset betas and their propensity to repurchase shares or conduct seasoned equity offerings. The intuition is

as follows. Firms that believe to be overvalued by the market are more likely to issue equity and less likely

to repurchase shares (Baker and Wurgler, 2013). Indeed, two-thirds of CFOs state that “the amount by

which our stock is undervalued or overvalued by the market” is an important or very important determinant

of the decision to issue equity (Graham and Harvey, 2001, p. 2016). More than 85% of financial executives

state that the “market price of our stock (if our stock is a good investment, relative to its true value)” is an

important or very important determinant of the decision to repurchase shares (Brav, Graham, Harvey, and

Michaely, 2005, p. 496). Hence, we predict a negative relation between a firm’s asset beta and Repurchase

– an indicator equal to one if a firm repurchases shares – and a positive relation between a firm’s asset beta

and SEO – an indicator equal to one if a firm conducts a seasoned equity offering.

To test this prediction we estimate the following OLS regression for all public firms in Compustat:67

Repurchaset (SEOt) = α+β×Asset Betat−1+γ′Firm Characteristicst−1+Industry × Year FE+ε. (A70)

Firm Characteristics is a vector of control variables commonly used in the literature on firms’ share repur-

67The sample period is 1977 to 2015.
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chase or equity issuance decisions (e.g., Dittmar, 2000; Alti and Sulaeman, 2012; Baker and Xuan, 2016):

the natural logarithm of the firm’s market capitalization, the firm’s market-to-book ratio, and the ratios of

cash holdings, debt, and cash flows to assets. The standard errors are clustered by industry. Table A.9

presents the results. As predicted, we find a negative and highly significant relation between Asset Beta and

Repurchase and a positive and highly significant relation between Asset Beta and SEO. Table A.10 shows

that the results are similar when we use firms’ equity betas instead of their asset betas.

Table A.9: Share Repurchases and Seasoned Equity Offerings

This table presents OLS estimates of the sensitivity of the propensity to repurchase shares (Repurchase) and to conduct seasoned

equity offerings (SEO) to the firm’s asset beta (Asset Beta). The sample period is 1977 to 2015. All public firms in Compustat

are included. t-statistics based on standard errors clustered by the firm’s (SIC2-) industry are reported in parentheses. Statistical

significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Public Firms in Compustat
Dependent Variable: Repurchase SEO

Asset Beta -10.95*** -11.01*** 18.33*** 17.07***
(-5.45) (-6.49) (10.68) (10.56)

Market Capitalization (Log) 4.86*** 4.91***
(21.74) (18.33)

Market-to-Book -0.42*** 0.38***
(-6.79) (3.81)

Cash to Assets -2.72 1.43
(-0.79) (0.53)

Debt to Assets -10.77*** -3.37
(-5.30) (-1.09)

ROA 2.60 9.25**
(0.77) (2.46)

Cash Flow to Assets 4.12 -13.70***
(1.19) (-3.24)

SIC2 Industry × Year FE Yes Yes Yes Yes
Observations 319,143 219,486 318,771 219,162
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Table A.10: Share Repurchases, Seasoned Equity Offerings, and Equity Beta

This table presents OLS estimates of the sensitivity of the propensity to repurchase shares (Repurchase) and to conduct seasoned

equity offerings (SEO) to the firm’s equity beta (Equity Beta). The sample period is 1977 to 2015. All public firms in Compustat

are included. t-statistics based on standard errors clustered by the firm’s (SIC2-) industry are reported in parentheses. Statistical

significance at the 10%, 5%, and 1% level is indicated by *, **, and ***, respectively.

(1) (2) (3) (4)

Sample: Public Firms in Compustat
Dependent Variable: Repurchaset SEOt

Equity Betat−1 -6.60** -9.73*** 15.50*** 11.18***
(-2.29) (-6.08) (5.07) (6.41)

Market Capitalizationt−1 (Log) 4.85*** 4.92***
(21.53) (18.35)

Market-to-Bookt−1 -0.44*** 0.40***
(-7.09) (3.89)

Cash to Assetst−1 -3.10 2.50
(-0.90) (0.92)

Debt to Assetst−1 -9.94*** -4.68
(-5.04) (-1.48)

ROAt−1 2.81 8.51**
(0.82) (2.18)

Cash Flow to Assetst−1 3.90 -12.97***
(1.11) (-2.96)

SIC2 Industry × Year FE Yes Yes Yes Yes
Observations 333,001 219,584 332,629 219,260

89

 Electronic copy available at: https://ssrn.com/abstract=3050928 


	CAPM-based company (mis)valuations
	Citation

	Introduction
	Predictions
	Target Betas and Bidder Abnormal Returns Around Bid Announcements
	Additional Predictions

	Data
	Results
	Cumulative Abnormal Returns of Bidders' Stock Around Bid Announcements
	Instrumental Variable Estimation
	Model Calibration and Implied Valuation Errors
	Cross-Sectional Variation
	Private vs. Public Targets 
	Probability of Receiving Takeover Bids 
	Method of Payment

	Alternative Explanations
	Do Managers Really Use the CAPM?
	Do CAPM-Betas Correlate with Future Cash Flows or Synergies?

	Are CAPM-Using Managers Rational?
	Why Do Managers Use the CAPM?
	Should Managers Use the CAPM?
	Some Suggestive Evidence

	Conclusion
	References
	Figures
	Tables
	Appendix
	Appendix I – Variable Definitions
	Appendix II – Robustness Tests
	Appendix III – Model Extensions and Derivations
	Appendix IV – Construction of Hypothetical Mutual Fund Fire Sales
	Appendix V – Robustness of IV Estimation to Critique by Wardlaw (2018)
	Appendix VI – Reconciling Target Asset Beta and Avg. Discount Rate
	Appendix VII – Share Repurchases and Seasoned Equity Offerings


