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Urban Consolidation Center or Peer-to-Peer Platform?

The Solution to Urban Last-Mile Delivery
Qiyuan DENG • Xin FANG • Yun Fong LIM

Lee Kong Chian School of Business, Singapore Management University

December 19, 2019

Abstract

The growing population in cities creates huge demand for urban last-mile delivery. Booming

e-commerce activities further increase this demand, exerting intense pressure on the cities’

well-being. To build a city with congestion and pollution under control, a consolidator

can operate an urban consolidation center (UCC) to bundle shipments from multiple carri-

ers before the last-mile delivery. Alternatively, the consolidator can operate a peer-to-peer

platform for the carriers to share their delivery capacity. Our objective is to compare the

performance of these two business models. Under each business model, we study the in-

teractions between a consolidator and multiple carriers using a two-period game-theoretical

model. In each period, the consolidator first chooses a delivery fee to maximize her expected

profit. Each carrier then observes his task volume, and decides whether to deliver on his own

or use the consolidator’s service to minimize his expected cost. Under the UCC model, the

carriers become more dependent on the UCC to deliver their tasks as their variable delivery

cost increases or their logistics reestablishment cost decreases. Under the platform model,

the carriers generally keep their logistics capability (even if they purchase capacity from the

platform) in equilibrium to ensure their flexibility of selling capacity on the platform. Be-

tween the two business models, it is generally more profitable for the consolidator to operate

the UCC than the platform if the carriers’ fixed delivery cost is large. Furthermore, the

UCC becomes more dominant as there are more carriers. If the number of carriers is large,

it is also more efficient for the consolidator to operate the UCC than the platform to reduce

the expected social-environmental cost. Otherwise, the platform is more efficient.

Keywords: last-mile delivery, collaborative logistics, urban consolidation center, peer-to-

peer platform, game theory

1 Introduction

Last-mile delivery is the last leg of a supply chain that transfers freight or packages from

a distribution center to a receiver. It comprises up to 28% of the total delivery cost of a

supply chain (Lopez, 2017, Wang et al., 2016). Managing last-mile delivery becomes especially

challenging if it is performed in an urban area, where congestion increases fuel consumption,
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causes delay of delivery, and lowers delivery efficiency (Ranieri et al., 2018). In addition, last-

mile delivery is the most expensive and critical operation for companies engaged in e-commerce

(Lee and Whang, 2001). Due to the continuous growth of urban population and e-commerce

activities, last-mile delivery to a city center exerts intense pressure on the city’s economic, social,

and environmental well-being (Quak and Tavasszy, 2011).

The economic impact of urban last-mile delivery includes the waste of resources due to extra

waiting in traffic congestion and low utilization of uncoordinated vehicles transporting freight

to the city center. The large number of small, individual customer orders in e-commerce further

complicates urban last-mile delivery and incurs significant costs. The social-environmental

impact includes the vicious effect of the increasing traffic incidents and pollution due to transport

vehicles, which degrades the quality of life in the city. For example, based on the Beijing

Municipal Environmental Monitoring Center’s statistics, emissions of transport vehicles are the

main source of PM2.5 that causes hazardous haze in Beijing (http://www.bjmemc.com.cn/).

To build a smart city with congestion and pollution under control, an urban consolidation

center (UCC) is a potential solution to mitigate the repercussion of urban last-mile delivery.

Also known as a city distribution center (van Duin et al., 2008) or an urban distribution center

(Boudoin et al., 2014), a UCC consolidates shipments from multiple carriers and then deliv-

ers them to the city center using the UCC’s own fleet of trucks. A consolidator operating a

UCC usually requires a facility to sort the shipments according to their destinations before they

are delivered. As a result of the consolidation with fewer trucks, higher truck utilization can

be achieved, leading to a lower delivery cost. This shipment consolidation not only economi-

cally benefits stakeholders, including the consolidator, the carriers, and the public authorities

(Ambrosini and Routhier, 2004), but also mitigates the social-environmental impact because of

reduced traffic. Ideally, the resultant cost savings can be shared among the carriers, motivating

them to use the UCC’s service.

Despite the potential benefits, many UCC projects in practice are not successful. The UCCs

of the Port Authority of New York and New Jersey were closed after five years of operations

(Doig, 2001). Dablanc (2011) reports that 150 UCC projects were started in Europe during the

last 25 years, but only five projects survive. Even if they survive, they usually have difficulty to

break even and require significant subsidies from the government. For example, it costs a UCC

in La Rochelle 3.8e to deliver a parcel to a customer who is charged only 1.7–3e. A UCC in

Monaco charges her customers 2.30e/100Kg, and receives 2.59e/100Kg as a subsidy from the
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local government (Dablanc, 2005). Many UCC projects failed because the carriers were reluctant

to use their service. This is supported by a survey in the NYC metro, which reveals that less

than 20% of the carriers would like to participate in a UCC project (Holguin-Veras et al., 2008).

Their reluctance to participate is mainly due to a common concern that they may over rely on

the UCCs. Many carriers reduce their own logistics capacity after using a consolidation service

(Snapp, 2012, Vivaldini et al., 2012, Choe et al., 2017). For example, the logistics department of

GOME, a Chinese retailer for electrical appliances, reduces its investment in delivery trucks and

drivers after engaging a consolidation service (National Express, 2010). The substantial cost

of reestablishing the logistics capability, which includes the costs to purchase trucks, recruit

drivers, obtain licenses, and gain knowledge about local clients (Browne et al., 2005), makes the

carriers reluctant to rely on a UCC’s service.

More recently, some peer-to-peer platforms have been established for carriers to share their

delivery capacity. Notable examples include Saloodo! by DHL, Freightos and Convoy in Europe,

Loadsmart in U.S., and Cainiao and Truck Alliance in China. On such a platform, a carrier can

sell his unused capacity to another carrier to fulfill the latter’s delivery needs. It is attractive for

a consolidator to operate a platform because it requires neither a sorting facility nor a fleet of

delivery trucks. The peer-to-peer platform business model typically follows a sharing-economy

approach: The platform takes a revenue share from each transaction of capacity for providing

market access to the carriers and for processing the transaction (Gesing, 2017). In contrast to

the UCCs’ low success rate, the emergence of the capacity sharing platforms motivates us to

investigate whether the latter can be a better alternative for a city to address the challenges of

urban last-mile delivery.

Although bearing the delivery costs, a UCC can achieve a larger economy of scale as each

truck of the UCC may consolidate the tasks of many carriers. In contrast, a capacity sharing

platform does not incur any delivery cost, but each individual carrier on the platform has only

very limited delivery capacity compared to the UCC’s fleet. In this paper, we compare the

above two business models for urban last-mile delivery in terms of the consolidator’s profit

and the social-environmental cost. Specifically, the consolidator can either operate a UCC to

bundle shipments from multiple carriers before the last-mile delivery, or operate a peer-to-peer

platform for the carriers to share their delivery capacity. For each business model, we develop a

two-period game-theoretical model to capture the interactions between the consolidator and the

carriers. In each period, knowing that each carrier has a delivery task with a random volume
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to fulfill, the consolidator first determines the delivery fee to maximize her expected profit.

Then, after knowing his task volume, each carrier decides whether to deliver his task to the city

center on his own or use the consolidator’s service such that his expected cost is minimized. By

identifying subgame perfect Nash Equilibrium with rational expectations, we have obtained the

following insights.

(i) If the consolidator operates a UCC, we observe the trade-off faced by the carriers in

practice: The carriers can potentially save their delivery costs by using the UCC’s service,

while they face the risk of eliminating their logistics capability. As their variable delivery cost

increases, the carriers become more dependent on the UCC to deliver their tasks to the city

center. On the other hand, as the cost to reestablish their logistics capability increases, the

carriers become less dependent on the UCC.

(ii) If the consolidator operates a capacity sharing platform, we find that the carriers gen-

erally have their logistics capability on hand (even if they purchase capacity from the platform)

in equilibrium. This ensures sufficient capacity available on the platform to facilitate successful

transactions. Since the platform can always earn a positive profit from each successful transac-

tion, it can be more financially sustainable in the long run. Our results explain the increasing

popularity of the capacity sharing platforms in practice.

(iii) Comparing the UCC and the platform in terms of the consolidator’s expected profit, we

find that it is generally more profitable for the consolidator to operate the UCC than the platform

if the carriers’ fixed delivery cost is large. Moreover, it is easier for the UCC to dominate as

the number of carriers becomes larger. In terms of reducing the expected social-environmental

cost, our comparison between the UCC and the platform shows that if the number of carriers

is large, then it is more efficient for the consolidator to operate the UCC than the platform.

Furthermore, the condition for the UCC to outperform the platform varies with the distribution

of the carriers’ task volumes.

After reviewing the related literature in §2, we formulate the problem between the consol-

idator and the carriers in §3. We analyze the business models in which the consolidator operates

a UCC and a capacity sharing platform in §4 and §5 respectively. We compare the two business

models in terms of the consolidator’s expected profit and the expected social-environmental cost

in §6. We study two extensions of our models in §7, before we provide concluding remarks in

§8. All proofs are provided in the online supplement.
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2 Related literature

This paper is mainly related to two streams of literature. The first stream consists of papers

on UCCs and the second stream is about peer-to-peer platforms. The majority of studies

on UCCs is conceptual and descriptive. McDermott (1975) shows in a survey conducted in

Columbus, Ohio that operating a UCC could bring substantial benefits to the shippers, carriers,

consumers, society, and government. Based on a program in the European network, Dablanc

(2007) concludes that the provision of urban logistics services emerges slowly despite their

growing demand. Allen et al. (2012) review the feasibility studies, trials, and fully operational

schemes of UCCs in 17 countries in the last 40 years.

Some analytical papers on UCCs focus on planning and allocation of delivery jobs among

the carriers. For example, Crainic et al. (2009) consider a two-tier distribution structure and

propose an optimization model to deal with job scheduling, resource management, and route

selection. Handoko et al. (2016) propose an auction mechanism for last-mile delivery to match

a UCC’s truck capacity to the shipments such that the UCC’s profit is maximized. Wang et

al. (2015) study a rolling-horizon auction mechanism with virtual pricing of shipping capacity.

Wang et al. (2018) consider cost uncertainty in last-mile delivery through a UCC, and propose

approaches to solve the winner determination problem of an auction. Özener and Ergun (2008)

study a logistics network in which shippers collaborate and bundle their shipment requests to

negotiate better rates with a common carrier. They determine an optimal route covering all the

demands such that the total cost is minimized. To the best of our knowledge, no papers have

formally analyzed the stakeholders’ incentives for a UCC project. Our paper fills the gaps in

the literature by providing a game-theoretical analysis of the carriers’ incentive to participate

in a UCC project.

The ideas of the capacity sharing platform relate our paper to the literature on two-sided

markets (Rochet and Tirole, 2006, Weyl, 2010, Hagiu and Wright, 2015). A typical setting of

a two-sided market involves two types of players. On a platform, independent providers (such

as drivers) offer service to consumers (such as riders). See, for example, Cachon et al. (2017),

Bai et al. (2018), Taylor (2018), Bimpikis et al. (2016), Cohen and Zhang (2017), and Hu and

Zhou (2017). In contrast, a carrier on the platform in our paper is flexible to choose either to

sell his remaining capacity like a service provider or to buy capacity like a consumer.

Several papers in operations management deal with peer-to-peer rental platforms, which are

similar to our capacity sharing platform in spirit. For example, Fraiberger and Sundararajan
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(2015) analyze a peer-to-peer rental market where each consumer is either a supplier or a buyer.

Benjaafar et al. (2018) analyze a model where players with different usage levels make decisions

on whether to own a product. Non-owners can access the product through renting from owners

on a needed basis. Jiang and Tian (2016) consider a setting in which consumers who purchased

a product can derive different usage values and generate income by renting out their purchased

product through a third-party sharing platform. Tian and Jiang (2018) further study how this

consumer-to-consumer product sharing affects a distribution channel. Abhishek et al. (2016)

consider a setting in which a consumer decides whether to purchase a durable good and whether

to rent it when the rental market is available. In the stream of literature above, if an owner

decides to rent out his product, he cannot use the product during the rental period. In contrast,

a carrier on our capacity sharing platform does not rent out his entire truck. Instead, he uses his

remaining truck capacity to deliver goods for another carrier to earn extra revenue. Benjaafar

et al. (2017) consider a ride sharing platform on which individuals may rent out empty seats

from their cars or find a ride. However, different from ride sharing, the carriers’ random task

volumes play a significant role in matching supply with demand of capacity on our capacity

sharing platform. Furthermore, the carriers’ task volumes in our paper can change over time,

which also affect their incentive to use the platform.

The collaboration among the carriers considered in our paper shares some similarity with

the paper by Agarwal and Ergun (2010), which considers the alliance formation among carri-

ers. They study the design of large-scale networks and the allocation of limited capacity on a

transportation network among the carriers in the alliance. Our paper is also related to the lit-

erature of inventory transshipment, which typically considers a wholesaler distributes inventory

to multiple retailers and the inventory can be transshipped among the retailers to fulfill de-

mand. Papers most relevant to our work include Rudi et al. (2001) and Dong and Rudi (2004),

where both the wholesaler’s and the retailers’ profits are considered. However, in this stream of

literature, a player with demand must work with another player with supply to generate profits.

In contrast, the carriers on our platform have the option to deliver by themselves and sell their

remaining capacity to the platform, allowing them to be a seller or a buyer. Our platform model

is also related to the literature of secondary markets, where resellers can buy and sell excess

inventory (see, for example, Lee and Whang (2002), Mendelson and Tunca (2007), Milner and

Kouvelis (2007), Broner et al. (2010), and Chen et al. (2013)). This stream of research focuses

on the impact of secondary markets on supply chains’ or firms’ performance. In contrast, our
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paper compares the UCC with the capacity sharing platform. We do not see such a comparison

in this stream of literature.

3 Problem formulation

We consider a consolidator interacts with carriers i = 1, 2, . . . , n in a two-period setting, where

period t = 1 captures the short-term impact of the consolidation in practice, and period t = 2

captures the long-term impact. In period t = 1, 2, carrier i has a delivery task with volume vit.

We assume vit equals vL with a probability λ, or equals vH (> vL) with a probability 1 − λ,

where λ ∈ [0, 1]. All the delivery tasks in each period must be fulfilled within the period. We

assume each carrier is initially equipped with logistics capability that has a limited delivery

capacity sufficient for his own task in each period.

In each period, the consolidator first decides the pricing of the delivery service and each

carrier then decides whether to deliver on his own or outsource his task to the consolidator. If

carrier i delivers on his own, then the carrier incurs a fixed cost c > 0 and a variable cost per

unit volume m > 0. The fixed cost c includes the maintenance cost for the trucks, the license

and permit fees for the trucks, and the salary of drivers. The variable cost includes the fuel cost

and the loading-unloading cost.

In period 1, if a carrier decides to outsource his task, then he can also choose to eliminate or

keep his logistics capability for the future. It incurs a fixed holding cost h ∈ (0, c) to the carrier

if he chooses to keep his logistics capability. The holding cost h includes the costs to maintain

the unused trucks and to keep some relevant staff. In period 2, if a carrier decides to deliver

on his own, then he needs to reestablish his logistics capability if it is eliminated in period 1.

This incurs a reestablishment cost f > 0 which includes the costs to purchase trucks, to recruit

drivers, and to learn about and reconnect with local clients. Let δ ∈ (0, 1) denote a discount

factor across the two periods. To rule out uninteresting cases, such as the carriers never keep

their logistics capability, we assume h < δf and f > c(vH − vL)/vL.

Based on the above problem setting, we analyze and identify the equilibrium decisions of

the consolidator and the carriers under each business model. We first provide the details and

insights of our analyses in §4 and §5 when the consolidator operates a UCC and a capacity

sharing platform respectively. We then compare the two business models in terms of maximizing

the consolidator’s expected profit and minimizing the expected social-environmental cost in §6.
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4 Business model 1: An urban consolidation center

In this section, we consider the consolidator operates a UCC to serve the carriers for their last-

mile deliveries to the city center. We assume that the UCC owns a fleet of vehicles with a total

capacity that is sufficiently large to accommodate all the carriers’ tasks in each period.

The decision process is as follows. At the start of period t = 1, 2, the UCC first decides the

price per unit volume p̄t of her delivery service. After observing p̄t, each carrier i waits until

his delivery task volume is realized. We assume each carrier i only knows his own realized task

volume and decides independently on how to deliver his task to the city center. Let d̄it denote

the decision of carrier i for period t = 1, 2. In period 1, each carrier i has three possible options

defined as follows. (i) d̄i1 = −1: Carrier i delivers on his own. (ii) d̄i1 = 0: Carrier i uses the

UCC’s service and eliminates his logistics capability. (iii) d̄i1 = 1: Carrier i uses the UCC’s

service and keeps his logistics capability. We assume that each carrier’s delivery capacity has

no value after period 2. Thus, each carrier i has only two possible options in period 2 defined

as follows. (i) d̄i2 = −1: Carrier i delivers on his own. (ii) d̄i2 = 0: Carrier i uses the UCC’s

service. As a result, we have d̄i1 ∈ {−1, 0, 1} and d̄i2 ∈ {−1, 0}, for i = 1, . . . , n. Figure 1 shows

the sequence of decisions in the two periods.

Figure 1: The sequence of decisions in the two periods under the UCC business model

Let nt denote the expected number of carriers who use the UCC’s delivery service in period

t. To serve these carriers, the UCC incurs a fixed delivery cost that depends on nt. Taking

economies of scale into consideration, we assume that the fixed delivery cost equals
√
ntC > 0

(Steinerberger, 2015). Furthermore, the UCC also incurs a variable cost per unit volume M > 0.

To be consistent with reality, we assume the UCC receives a subsidy S > 0 per unit volume of

shipments from the local government or authority.

In each period t in Figure 1, the UCC first sets the price per unit volume p̄t for her service to
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maximize her expected profit. Given the price p̄t and the realized task volume vit, each carrier

i determines his decision d̄it to minimize his cost. We solve the problem in Figure 1 backward

by first determining the optimal decisions of the carriers and the UCC in period 2, before we

find their optimal decisions in period 1 in the following sections.

4.1 Analysis

We first find the optimal decision of each carrier i in period 2. Given the decision d̄i1 in period

1 and the price p̄2 in period 2, carrier i determines his optimal decision d̄∗i2 to minimize his cost

in period 2. After that we substitute the optimal responses of all the carriers into the UCC’s

problem to find her optimal price p̄∗2.

Define φ̄i2
(
d̄i2; d̄i1, p̄2

)
as the cost of carrier i in period 2, which is a function of d̄i2 given d̄i1

and p̄2. Each carrier iminimizes his cost φ̄i2
(
d̄i2; d̄i1, p̄2

)
by comparing the following two options:

(i) d̄i2 = −1: Carrier i delivers on his own in period 2, which incurs a cost φ̄i2
(
−1; d̄i1, p̄2

)
=

c+mvi2 −
(∣∣d̄i1∣∣− 1

)
f . (ii) d̄i2 = 0: Carrier i uses the UCC’s service in period 2, which incurs

a cost φ̄i2
(
0; d̄i1, p̄2

)
= p̄2vi2. The following lemma shows the optimal decision of each carrier i

in period 2.

Lemma 1. (Optimal decision of carrier i in period 2)

1. If carrier i delivers on his own or uses the UCC’s service and keeps his logistics capability

in period 1 (d̄i1 = −1 or 1), then in period 2, carrier i uses the UCC’s service (d̄∗i2 = 0) if

p̄2 ≤ m+ c/vi2, or delivers on his own (d̄∗i2 = −1) otherwise.

2. If carrier i uses the UCC’s service and eliminates his logistics capability in period 1 (d̄i1 = 0),

then in period 2, carrier i uses the UCC’s service (d̄∗i2 = 0) if p̄2 ≤ m+ (c+ f)/vi2, or delivers

on his own (d̄∗i2 = −1) otherwise.

Part 1 of Lemma 1 shows that the carriers in period 1 who deliver on their own (d̄i1 = −1),

or who use the UCC’s service and keep their logistics capability (d̄i1 = 1) will make the same

decision in period 2. This is because in both cases, the carriers own their logistics capability

in period 2, leading to the same delivery cost. Furthermore, Lemma 1 also shows that carrier

i is more likely to use the UCC’s service in period 2 if his task volume in the period is smaller

(because p̄2 ≤ m+ c/vi2 and p̄2 ≤ m+ (c+ f)/vi2 are more likely to hold if vi2 is smaller). In

this case, it is not worthwhile to pay the fixed cost c to deliver on his own. It is also worth

noting that if carrier i uses the UCC’s service and eliminates his logistics capability in period
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1 (d̄i1 = 0), then he is more likely to engage the UCC in period 2 because of the additional

reestablishment cost f .

Let V2 denote the expected total task volume of the carriers who use the UCC’s service in

period 2. Given the carriers’ optimal responses in Lemma 1, the UCC chooses the price p̄2 to

maximize her expected profit in period 2:

π̄2 (p̄2) = (p̄2 + S −M)V2 −
√
n2C. (1)

Note that it is non-trivial to optimize p̄2 because it affects not only the unit profit p̄2 + S −M

and volume V2, but also the fixed cost
√
n2C. Although lowering p̄2 will attract more carriers

to use the UCC’s service and increase the volume V2, it will also increase the fixed cost
√
n2C.

Define ne as the number of carriers who use the UCC’s service and eliminate their logistics

capability in period 1 (that is, the carriers with d̄i1 = 0). Note that ne is known in period 2.

The following lemma shows the UCC’s optimal pricing decision in period 2.

Lemma 2. (Optimal decision of the UCC in period 2)

1. If ne > 0, the optimal price of the UCC’s service in period 2 is

p̄∗2 =


m+ (c+ f)/vL, if m < min{b1, b2, b3};
m+ (c+ f)/vH , if b1 ≤ m < min{b4, b5};
m+ c/vL, if max{b2, b4} ≤ m < b6;
m+ c/vH , if m ≥ max{b3, b5, b6}.

2. If ne = 0, the optimal price of the UCC’s service in period 2 is

p̄∗2 =

{
m+ c/vL, if m < b7;
m+ c/vH , if m ≥ b7.

The terms bj , j = 1, . . . , 7, are defined in the proof of Lemma 2 in the online supplement.

Lemma 2 shows that if no carriers eliminate their logistics capability (ne = 0), then the UCC

is forced to charge lower prices to attract the carriers. Note that the proof of Lemma 2 shows

that bj , j = 1, . . . , 7, decrease as the subsidy S increases. Thus, Lemma 2 implies that if the

government provides a higher subsidy to the UCC, the latter can afford to charge a lower price

p̄∗2 for her service.

After obtaining the optimal decisions d̄∗i2 and p̄∗2, we use them to find the carriers’ and the

UCC’s optimal decisions in period 1. Similar to the analysis of period 2, we first determine the

optimal decision of each carrier i in period 1. Given p̄1, each carrier i chooses d̄i1 to minimize his

expected total discounted cost Φ̄i

(
d̄i1; p̄1

)
over the two periods by comparing the three options:

d̄i1 = −1, 0, or 1. Note that, to evaluate Φ̄i

(
d̄i1; p̄1

)
, one needs to form some belief about the

number of carriers who use the UCC’s service and eliminate their logistics capability in period

1 (that is, the value of ne). Following Su and Zhang (2008) and Cachon and Swinney (2009),

we seek to identify a subgame perfect Nash Equilibrium with rational expectations. This means
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that each player (including the carriers and the UCC) chooses their optimal action given their

belief about how the others will play. Furthermore, these beliefs are correct, which are identical

to the corresponding actions in equilibrium. In our context, all the carriers and the UCC form

the same rational belief ñe about ne when they optimize their decisions in period 1, and in

equilibrium, ñe = ne
(
p̄∗1; d̄

∗
i1, i = 1, 2, . . . , n

)
.

For notational convenience, given d̄i1, define φ̄∗i2
(
d̄i1
)

= φ̄i2
(
d̄∗i2
(
d̄i1
)

; d̄i1, p̄
∗
2

(
d̄i1
))

as the

optimal cost of carrier i in period 2. Given p̄1, each carrier i minimizes Φ̄i

(
d̄i1; p̄1

)
by choosing

one of the following options: (i) d̄i1 = −1: Carrier i delivers on his own, which incurs an expected

total discounted cost Φ̄i (−1; p̄1) = c+mvi1 + δφ̄∗i2(−1). (ii) d̄i1 = 0: Carrier i uses the UCC’s

service and eliminates his logistics capability, which incurs an expected total discounted cost

Φ̄i (0; p̄1) = p̄1vi1 +δφ̄∗i2(0). (iii) d̄i1 = 1: Carrier i uses the UCC’s service and keeps his logistics

capability, which incurs an expected total discounted cost Φ̄i (1; p̄1) = p̄1vi1 + h+ δφ̄∗i2(1). The

following lemma shows the optimal decision of carrier i in period 1.

Lemma 3. (Optimal decision of carrier i in period 1)

1. If ñe > 0, the optimal decision of carrier i is determined as follows.

(a) If m < min
{
b̃1, b̃2, b̃3

}
, then

d̄∗i1 =

{
1, if p̄1 ≤ m+ (c− h)/vi1;
−1, otherwise.

(b) If b̃1 ≤ m < min
{
b̃4, b̃5

}
, then

d̄∗i1 =


1, if p̄1 ≤ m+ (c− h)/vi1 and h ≤ δ(c+ f)(λvL/vH + 1− λ)− δc;
0, if p̄1 ≤ m+ (1 + δ)c/vi1 − δ(c+ f)(λvL/vH + 1− λ)/vi1

and h > δ(c+ f)(λvL/vH + 1− λ)− δc;
−1, otherwise.

(c) If max
{
b̃2, b̃4

}
≤ m < b̃6, then

d̄∗i1 =


1, if p̄1 ≤ m+ (c− h)/vi1 and h ≤ δc(λ+ (1− λ)vH/vL)− δc;
0, if p̄1 ≤ m+ (1 + δ)c/vi1 − δc(λ+ (1− λ)vH/vL)/vi1

and h > δc(λ+ (1− λ)vH/vL)− δc;
−1, otherwise.

(d) If m ≥ max
{
b̃3, b̃5, b̃6

}
, then

d̄∗i1 =

{
0, if p̄1 ≤ m+ c/vi1;
−1, otherwise.

2. If ñe = 0, the optimal decision of carrier i is determined as follows.

(a) If m < b7, then

d̄∗i1 =


1, if p̄1 ≤ m+ (c− h)/vi1 and h ≤ δc(λ+ (1− λ)vH/vL)− δc;
0, if p̄1 ≤ m+ (1 + δ)c/vi1 − δc(λ+ (1− λ)vH/vL)/vi1

and h > δc(λ+ (1− λ)vH/vL)− δc;
−1, otherwise.

(b) If m ≥ b7, then

d̄∗i1 =

{
0, if p̄1 ≤ m+ c/vi1;
−1, otherwise.
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The terms b̃j , j = 1, . . . , 6, are defined in the proof of Lemma 3 in the online supplement.

Lemma 3 shows that if the task volume vi1 of carrier i becomes smaller in period 1, then the

carrier is more likely to use the UCC’s service to avoid the fixed cost c. In case carrier i chooses

to use the UCC’s service in period 1, he will eliminate his logistics capability (d̄∗i1 = 0) if m is

sufficiently large (that is, if m ≥ max
{
b̃3, b̃5, b̃6

}
or m ≥ b7); otherwise, he will keep his logistics

capability (d̄∗i1 = 1) if the holding cost h is sufficiently small.

Let V1 denote the expected total task volume of the carriers who use the UCC’s service in

period 1. Recall that π̄2(p̄
∗
2) is the UCC’s expected profit in period 2 given by Equation (1).

Assuming all the carriers respond optimally according to Lemma 3, the UCC optimizes her

price p̄1 to maximize her expected total discounted profit over the two periods:

Π̄ (p̄1) = (p̄1 + S −M)V1 −
√
n1C + δπ̄2 (p̄∗2 (p̄1)) . (2)

4.2 Equilibrium decisions

The following theorem determines the rational expectation equilibrium. To rule out unin-

teresting cases in which the carriers never keep their logistics capability, we assume h ≤

min{δ(c+ f)(λvL/vH + 1− λ)− δc, δc(λ+ (1− λ)vH/vL)− δc}.

Theorem 1. (Equilibrium decisions of the UCC model) There are three candidates of

the equilibrium characterized as follows.

1. If m < min{b7,m1}, then we have the following candidate of the equilibrium.

Period 1: The UCC’s equilibrium price is p̄∗1 = m + (c − h)/vL. Under this price, each
carrier i uses the UCC’s service and keeps his logistics capability if vi1 = vL, and
delivers on his own otherwise.

Period 2: The UCC’s equilibrium price is p̄∗2 = m+ c/vL. Under this price, each carrier
i uses the UCC’s service if vi1 = vL, and delivers on his own otherwise.

2. If min{b7,m1} ≤ m < b7, then we have the following candidate of the equilibrium.

Period 1: The UCC’s equilibrium price is p̄∗1 = m+ (c− h)/vH . Under this price, all the
carriers use the UCC’s service and keep their logistics capability.

Period 2: The UCC’s equilibrium price is p̄∗2 = m+ c/vL. Under this price, each carrier
i uses the UCC’s service if vi1 = vL, and delivers on his own otherwise.

3. If m ≥ max{m2,m3,m4}, then we have the following candidate of the equilibrium.

Period 1: The UCC’s equilibrium price is p̄∗1 = m+c/vL. Under this price, each carrier i
uses the UCC’s service and eliminates his logistics capability if vi1 = vL, and delivers
on his own otherwise.

Period 2: The UCC’s equilibrium price is p̄∗2 = m + c/vH . Under this price, all the
carriers use the UCC’s service.

The terms mj , j = 1, . . . , 4, are defined in the proof of Theorem 1 in the online supplement. Note

that the three intervals of m in Theorem 1 may overlap. Given a set of parameters (including
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m), the equilibrium is the candidate with the highest expected total discounted profit for the

UCC. According to the proof of Theorem 1, mj , j = 1, . . . , 4, decrease as the subsidy S increases.

Thus, if the government provides a higher subsidy S to the UCC, then the third equilibrium

in Theorem 1 becomes more likely to exist (that is, m ≥ max{m2,m3,m4} becomes easier to

hold). Since all the carriers will use the UCC’s service in period 2 in this equilibrium, the UCC

is more likely to sustain in the long run. This result is aligned with the observation that many

UCC projects require government subsidies in practice.

The equilibrium of the UCC model can be characterized by the reestablishment cost f and

the variable delivery cost m. Figure 2(a) shows the UCC’s equilibrium price in period 1. If

f is sufficiently small (corresponding to the left end of Figure 2(a)), then the UCC’s price p̄∗1

increases as m increases. This is because if m is getting larger, the carriers are more likely to

use the UCC’s service. Anticipating this, the UCC charges a higher price in period 1.

(a) The UCC’s equilibrium pricing strategy (b) The equilibrium decisions of the carriers using
the UCC’s service

Figure 2: The equilibrium decisions in period 1 under the UCC model

Figure 2(b) illustrates the equilibrium decisions of the carriers who use the UCC’s service

in period 1. If f is sufficiently small and m is sufficiently large (corresponding to the top-left

corner of Figure 2(b)), then the carriers who use the UCC’s service will eliminate their logistics

capability. This is because the carriers anticipate that they are likely to continue to use the

UCC’s service in period 2. Even if they need to deliver on their own in period 2, it is affordable

to reestablish their logistics capability. In contrast, if f is sufficiently large and m is sufficiently

small (corresponding to the bottom-right corner of Figure 2(b)), the carriers who use the UCC’s

service will keep their logistics capability. Furthermore, as m increases all the carriers will use

the UCC’s service and keep their logistics capability.

Figures 3(a) and (b) show the UCC’s equilibrium price and the carriers who use the UCC’s

13

 Electronic copy available at: https://ssrn.com/abstract=3509019 



(a) The UCC’s equilibrium pricing strategy (b) Carriers using the UCC’s service in equilib-
rium

Figure 3: The equilibrium decisions in period 2 under the UCC model

service, respectively, in period 2. If f is sufficiently small and m is sufficiently large, all the

carriers will use the UCC’s service (see the top-left corner of Figure 3(b)). However, as f

increases and m decreases, the carriers will keep their logistics capability in period 1 (see the

bottom-right corner of Figure 2(b)), thus fewer carriers will use the UCC’s service in period 2

(see the bottom-right corner of Figure 3(b)).

In general, as m increases, the carriers are more dependent on the UCC to deliver their

tasks. That is, in period 1 the carriers who use the UCC’s service will eliminate their logistics

capability, and in period 2 more carriers will use the UCC’s service. However, as f increases,

the carriers become less dependent on the UCC. That is, in period 1 the carriers who use the

UCC’s service will keep their logistics capability, and in period 2 fewer carriers will use the

UCC’s service.

5 Business model 2: A capacity sharing platform

In this section, instead of having a physical UCC, we consider the consolidator operates a

platform for the carriers to share their delivery capacity. On the platform, a carrier delivering

by himself to the city center can sell his remaining truck capacity to another carrier, so that

the latter can outsource his delivery task by paying a fee. If the transaction is successful,

then the platform retains a portion of this fee as her revenue. Motivated by the fact that the

delivery capacity of each individual carrier is usually very limited compared to the UCC’s fleet,

we assume that a high task volume means a full or nearly-full truckload for a carrier. Thus,

in contrast to the UCC model, if vit = vH , then carrier i has to deliver by himself to the city
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center in period t (the other carriers cannot help him) and his remaining capacity is insufficient

to help any other carrier to deliver. Thus, in each period t, only carrier i with vit = vL will

participate (purchase or sell capacity) in the capacity sharing platform. We assume that each

carrier participating in the platform can serve (or can be served by) at most one other carrier

on the platform. For convenience, define N = {1, 2, . . . , n}, NL,t = {i|vit = vL, i ∈ N}, and

NH,t = {i|vit = vH , i ∈ N}, for t = 1, 2.

The decision process is as follows. At the start of each period t, the platform first decides

the price per unit volume p̂t of the delivery service. After observing the price p̂t, each carrier i

waits until his delivery task volume vit is realized, and decides independently on how to deliver

his task to the city center. Let d̂it denote the decision of carrier i for period t = 1, 2. In period

1, each carrier i ∈ NL,1 has three possible options. (i) d̂i1 = −1: Carrier i delivers on his own

and sells his remaining capacity to the platform. (ii) d̂i1 = 0: Carrier i purchases capacity from

the platform and eliminates his logistics capability. (iii) d̂i1 = 1: Carrier i purchases capacity

from the platform and keeps his logistics capability. In consistent with the UCC model, we

assume that all the delivery capacity has no value after period 2. Thus, in period 2 each carrier

i ∈ NL,2 has only two possible options defined as follows. (i) d̂i2 = −1: Carrier i delivers on his

own and sells his remaining capacity to the platform. (ii) d̂i2 = 0: Carrier i purchases capacity

from the platform. As a result, for i ∈ NL,1, we have d̂i1 ∈ {−1, 0, 1}, and for i ∈ NL,2, we have

d̂i2 ∈ {−1, 0}. Figure 4 shows the sequence of decisions in the two periods.

Figure 4: The sequence of decisions in the two periods under the platform business model

If carrier i ∈ NL,t wants to sell his remaining capacity to the platform, whether his capacity

can be successfully sold depends on the demand and the supply of capacity on the platform.

If the demand is no less than the supply, then all the carriers who wish to sell their remaining

capacity can successfully sell it. However, if the demand is less than the supply, then only a
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subset of these carriers can sell their remaining capacity. In this situation, the platform will

randomly distribute the tasks with an equal probability to the carriers willing to sell their

remaining capacity.

Given that all the delivery tasks must be fulfilled in each period t, if carrier i ∈ NL,t wants

to purchase capacity from the platform, we assume the carrier can always obtain the required

capacity vL. The platform can guarantee this by outsourcing the delivery task of carrier i to

an external party, if necessary. We assume that the platform does not make any profit in this

outsourcing process. If carrier i ∈ NL,t purchases capacity in period t (d̂it = 0 or 1), then he

pays p̂tvL. If there is enough supply on the platform, the platform receives a portion αp̂tvL,

where α ∈ (0, 1) represents the platform’s revenue share. The remaining portion (1 − α)p̂tvL

goes to the other carrier on the platform who serves carrier i. To ensure that selling capacity

on the platform is profitable, we assume (1− α)p̂t > m.

For notational convenience, define ns,t as the expected number of carriers who deliver on

their own and sell their remaining capacity to the platform in period t (that is, the carriers

who choose d̂it = −1). Define np,t as the expected number of carriers who purchase capacity

from the platform in period t (that is, the carriers who choose d̂i1 = 0 or 1 in period 1, and the

carriers who choose d̂i2 = 0 in period 2). Therefore, the supply and the demand of capacity on

the platform in period t are propotional to ns,t and np,t respectively.

For each period t in Figure 4, the platform first sets the price per unit volume p̂t to maximize

her expected profit. Given the price p̂t and the realized task volume vit, each carrier i ∈ NL,t

determines his decision d̂it to minimize his expected cost. We solve the problem in Figure 4

backward by first identifying the optimal decisions of each carrier i ∈ NL,2 and the platform in

period 2, before we find their optimal decisions in period 1 in the following sections.

5.1 Analysis

Given the decision d̂i1 in period 1 and the price p̂2 in period 2, we first determine the optimal

decision d̂∗i2 of each carrier i ∈ NL,2 to minimize his expected cost. After that we substitute the

carriers’ optimal responses into the platform’s problem to find her optimal price p̂∗2.

Each carrier i ∈ NL,2 minimizes his expected cost φ̂i2

(
d̂i2; d̂i1, p̂2

)
in period 2 by comparing

the two options: d̂i2 = −1 or 0. If carrier i delivers by himself and sells his remaining capacity to

the platform (d̂i2 = −1), then the expected revenue generated from selling his remaining capacity

depends on the supply (proportional to ns,2) and the demand (proportional to np,2) of capacity
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on the platform in period 2. Following Su and Zhang (2008) and Cachon and Swinney (2009), we

aim to identify a subgame perfect Nash Equilibrium with rational expectations. We assume all

the carriers in NL,2 form the same rational beliefs ñs,2 and ñp,2 about ns,2 and np,2, respectively,

when they optimize their decisions in period 2. Furthermore, ñs,2 = ns,2

(
d̂∗i2, i ∈ NL,2

)
and

ñp,2 = np,2

(
d̂∗i2, i ∈ NL,2

)
in equilibrium. Define θt = min {ñp,t/ñs,t, 1}, for t = 1, 2.

Specifically, each carrier i ∈ NL,2 minimizes φ̂i2

(
d̂i2; d̂i1, p̂2

)
by comparing the following op-

tions. (i) d̂i2 = −1: Carrier i delivers on his own and sells his remaining capacity to the platform,

which incurs an expected cost φ̂i2

(
−1; d̂i1, p̂2

)
= c+mvL−

(∣∣∣d̂i1∣∣∣− 1
)
f−θ2 [(1− α)p̂2 −m] vL.

(ii) d̂i2 = 0: Carrier i purchases capacity from the platform, incurring a cost φ̂i2

(
0; d̂i1, p̂2

)
=

p̂2vL. Note that for both periods 1 and 2, if the cost of delivering by himself is identical to the

cost of purchasing capacity from the platform, we assume that carrier i will choose either option

with an equal probability. This random tie-breaking rule is to avoid the extreme situation where

the carriers with identical costs choose the same option on the platform.

After we determine the optimal decision d̂∗i2 of carrier i ∈ NL,2, we can substitute it into the

platform’s problem to find her optimal price in period 2. The platform chooses p̂2 to maximize

her expected profit in period 2:

π̂2 (p̂2) = αp̂2vL min {ns,2, np,2} . (3)

After obtaining the optimal decisions d̂∗i2 and p̂∗2 in period 2, we use them to find the carriers’

and the platform’s optimal decisions in period 1.

Each carrier i ∈ NL,1 in period 1 minimizes his expected total discounted cost Φ̂i

(
d̂i1; p̂1

)
over the two periods by comparing the three options: d̂i1 = −1, 0, or 1. If d̂i1 = −1, then the

expected cost of carrier i in period 1 depends on ns,1 and np,1. Similar to period 2, we assume all

the carriers in NL,1 form the same rational beliefs ñs,1 and ñp,1 about ns,1 and np,1 respectively.

Furthermore, ñs,1 = ns,1

(
d̂∗i1, i ∈ NL,1

)
and ñp,1 = np,1

(
d̂∗i1, i ∈ NL,1

)
in equilibrium. For

notational convenience, given d̂i1, define φ̂∗i2

(
d̂i1

)
= φ̂i2

(
d̂∗i2

(
d̂i1

)
; d̂i1, p̂

∗
2

(
d̂i1

))
as the optimal

expected cost of carrier i in period 2. Given p̂1, carrier i ∈ NL,1 minimizes Φ̂i

(
d̂i1; p̂1

)
by

choosing one of the following options:

(i) d̂i1 = −1: Carrier i delivers on his own and sells his remaining capacity to the platform, which

incurs an expected total discounted cost Φ̂i (−1; p̂1) = c+mvL−θ1 [(1− α)p̂1 −m] vL+δφ̂∗i2(−1).

(ii) d̂i1 = 0: Carrier i purchases capacity from the platform and eliminates his logistics capability,

which incurs an expected total discounted cost Φ̂i (0; p̂1) = p̂1vL + δφ̂∗i2(0).

(iii) d̂i1 = 1: Carrier i purchases capacity from the platform and keeps his logistics capability,
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which incurs an expected total discounted cost Φ̂i (1; p̂1) = p̂1vL + h+ δφ̂∗i2(1).

We then substitute all the carriers’ optimal responses d̂∗i1 into the platform’s problem to find

her optimal price p̂∗1 that maximizes her expected total discounted profit:

Π̂ (p̂1) = αp̂1vL min {ns,1, np,1}+ δπ̂2 (p̂∗2 (p̂1)) , (4)

where π̂2 (p̂∗2 (p̂1)) represents the platform’s optimal expected profit in period 2 given p̂1 (see

Equation (3)).

5.2 Equilibrium decisions

The following theorem summarizes the platform’s and the carriers’ decisions for each period

in the equilibrium with rational expectations. Define f =
(2−2λ+αλ2

4
)mvL+(1− 3λ

2
+
λ(λ+α)

4
)c

(2−α)λ
2
(1−λ

4
)

and

f ′ =
(2−3λ+αλ2

2
)mvL+(1− 5λ

2
+λ2+

αλ(2−λ)
4

)c

(2−α)λ
2
(2−λ) .

Theorem 2. (Equilibrium decisions of the platform model)

1. If f ≥ h
δ(1−λ) , then we have the following results.

Period 1: The platform’s equilibrium price is p̂∗1 = (c + 2mvL − h)/[(2 − α)vL]. Under this

price, each carrier i ∈ NL,1 chooses d̂∗i1 = −1 or d̂∗i1 = 1 with an equal probability.

Period 2: The platform’s equilibrium price is p̂∗2 = (c + 2mvL)/[(2 − α)vL]. Under this price,

each carrier i ∈ NL,2 chooses d̂∗i2 = −1 or d̂∗i2 = 0 with an equal probability.

2. If f < min
{

h
δ(1−λ) , f , f

′
}

, then we have the following results.

Period 1: The platform’s equilibrium price is p̂∗1 = [c+ 2mvL − δ(1− λ)f ]/[(2− α)vL]. Under

this price, each carrier i ∈ NL,1 chooses d̂∗i1 = −1 or d̂∗i1 = 0 with an equal probability.

Period 2: The platform’s equilibrium price is p̂∗2 = (c + 2mvL)/[(2 − α)vL]. Under this price,

carrier i ∈ NL,2 chooses d̂∗i2 = −1 or d̂∗i2 = 0 with an equal probability, if d̂∗i1 = −1; or

chooses d̂∗i2 = 0, if d̂∗i1 = 0.

Theorem 2 shows that, in general, the platform sets the prices to match the supply and

demand of capacity so that a carrier chooses to sell or purchase capacity from the platform

with an equal probability. Theorem 2 is illustrated by Figures 5 and 6. Figure 5(a) shows the

platform’s equilibrium price in period 1. Figure 5(b) shows that each carrier i ∈ NL,1 sells or

purchases capacity on the platform in period 1 with an equal probability. If the reestablishment

cost f is sufficiently large (f ≥ h/[δ(1− λ)]), then the carriers who purchase capacity from the

platform should keep their logistics capability. Otherwise, these carriers should eliminate their

logistics capability.

Figures 6(a) and (b) show the equilibrium decisions of the platform and each carrier i ∈ NL,2,

respectively, in period 2. Figure 6(b) shows that if f ≥ h/[δ(1 − λ)], then each carrier i sells
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(a) The platform’s equilibrium pricing strategy (b) The equilibrium decision of each carrier

Figure 5: The equilibrium decisions of the platform and each carrier i in period 1

or purchases capacity on the platform in period 2 with an equal probability. Otherwise, the

carrier’s decision depends on his decision in period 1. If he delivers on his own in period 1 (that

is, d̂∗i1 = −1), then he sells or purchases capacity on the platform in period 2 with an equal

probability. On the other hand, the carriers who purchase capacity and eliminate their logistics

capability in period 1 (that is, d̂∗i1 = 0) will continue to purchase capacity from the platform in

period 2. In this situation, although the reestablishment cost f is affordable, but with a large

variable delivery cost m, it is expensive to make their own delivery.

(a) The platform’s equilibrium pricing strategy (b) The equilibrium decision of each carrier

Figure 6: The equilibrium decisions of the platform and each carrier i in period 2

6 Comparing the UCC and the capacity sharing platform

We compare the performance of the UCC and the capacity sharing platform in terms of the

expected profit and the expected social-environmental cost. We focus on three regions where

the equilibria exist in both models: (i) When f is sufficiently small and m is sufficiently large:
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f < min
{

h
δ(1−λ) , f1, f2

}
and m > max{b7,m4,m5,m6}. (ii) When f is sufficiently large and

m is intermediate: f > max
{

h
δ(1−λ) , f1, f2, f3, f4

}
and min{b7,m1} ≤ m < b7. (iii) When

f is sufficiently large and m is sufficiently small: f > max
{

h
δ(1−λ) , f1, f2, f3, f4

}
and m <

min{b7,m1}. The terms m5,m6, and fj , j = 1, . . . , 4 are defined in the proof of Theorem 3 in

the online supplement.

6.1 Expected profit

Between the UCC and the platform, which business model is more profitable for the consolida-

tor? As discussed in Section 1, it is important to make the consolidator financially sustainable

in order to achieve the benefits of consolidation. We determine the consolidator’s preference by

comparing the equilibrium profits Π̄ (p̄∗1) of the UCC in §4 and Π̂ (p̂∗1) of the capacity sharing

platform in §5. The following theorem identifies the conditions under which the UCC (or the

platform) is more profitable for the consolidator.

Theorem 3. (Comparing the UCC’s and the platform’s profits) In each region, the

UCC is more profitable than the platform (Π̄ (p̄∗1) > Π̂ (p̂∗1)) if and only if

Region (i): c > c1;

Region (ii): one of the following conditions holds: (a) c > c2 and δ > δ1, (b) c < c2 and δ < δ1;

Region (iii): one of the following conditions holds: (a) c > c3, (b) h < h1.

In Region (i), the UCC is more profitable than the platform if the carriers’ fixed delivery cost

c > c1. This is because when c is large, the carriers are more likely to outsource their delivery

tasks to avoid the fixed cost. This will benefit the consolidator if she operates a UCC because

there will be many carriers using her service. On the other hand, if the consolidator operates

a platform, there will not be many successful transactions because the supply of capacity is

low. This reduces her profit. Furthermore, the proof of Theorem 3 shows that c1 decreases

with n and S. As n increases, the carriers enjoy more savings by using the UCC because of

the economies of scale in shipment consolidation, making the UCC more likely to outperform

the platform. The UCC also becomes more dominant as the government subsidy S increases.

If c < c1, then the carriers are more likely to deliver on their own. Thus, more capacity will be

available on the platform, making the platform more profitable than the UCC.

In Region (ii), the UCC is more profitable than the platform if both the fixed delivery cost

c and the discount factor δ are large (c > c2 and δ > δ1). A large c pushes more carriers

to outsource their delivery tasks. Furthermore, a large reestablishment cost f persuades the
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carriers who eliminate their logistics capability to continue outsourcing the delivery in the long

run. A large δ magnifies this effect. Under the platform model, these carriers are less likely to

supply capacity in period 2. This creates excessive demand for capacity on the platform, leading

to a severe imbalance of supply and demand, which yields a lower profit for the platform. On

the other hand, if δ is small (c > c2 and δ < δ1), the carriers are less sensitive to their costs in

period 2 and become more likely to do their own delivery. This mitigates the supply-demand

imbalance on the platform, making the platform more profitable than the UCC.

In contrast, if both c and δ are small (c < c2 and δ < δ1), the affordable delivery costs (small

c and intermediate m) attract more carriers to deliver on their own. This is especially so for

a small δ, which encourages the carriers, who eliminate their logistics capability in period 1,

to deliver on their own in period 2. This creates excessive supply of capacity on the platform,

which reduces the number of successful transactions, making the platform less profitable than

the UCC. However, if δ is large (c < c2 and δ > δ1), the large f makes the carriers, who eliminate

their logistics capability in period 1, to outsource their delivery tasks in period 2. This increases

the demand for capacity on the platform, which mitigates the imbalance of supply and demand,

leading to a higher profit for the platform than the UCC.

Lastly, in Region (iii), the UCC is more profitable than the platform if c > c3 because of the

same reason mentioned in Region (i). The second condition (h < h1) for the UCC to outperform

the platform needs more explanations. We first consider the opposite case with h > h1. If the

holding cost h is large, the carriers are less likely to hold their logistics capability in period 1.

Meanwhile, the large f deters the carriers from eliminating their logistics capability. Therefore,

more carriers will deliver on their own to avoid these large costs, reducing the UCC’s profit.

However, if h is small, then the carriers can always use the UCC’s service and hold their logistics

capability in period 1, avoiding a costly reestablishment in the next period. This makes the

UCC more profitable than the platform. Furthermore, the proof of Theorem 3 shows that c3

decreases and h1 increases with n, making it easier for the UCC to dominate as n increases.

6.2 Expected social-environmental cost

Between the UCC and the platform, which business model is more efficient for the consolidator

to reduce the social-environmental cost? As a result of the consolidation, both the UCC and

the platform yield higher truck utilization with fewer trucks used. This not only economically

benefits the consolidator and the carriers, but also mitigates the social-environmental impact
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(in terms of reduced congestion and pollution) because of reduced traffic to the city center. In

this section, we compare the UCC and the platform with respect to their impact to the society

and the environment.

To quantify the impact, define ψ as the social-environmental cost associated with a carrier’s

delivery to the city center. This includes, for example, the cost to the society due to congestion

and the cost to the environment due to pollution. Define ∆̄ψ and ∆̂ψ as the expected total

social-environmental cost reduction achieved by the UCC and the platform respectively. Under

the UCC model, although additional trucks are required, each UCC’s truck can potentially

consolidate multiple tasks. In contrast, under the platform model, although no additional

trucks are required, each carrier can at most serve one other carrier’s task. It is unclear that

which business model is more effective in reducing the social-environmental cost.

We first analyze the expected total social-environmental cost reduction achieved by the UCC.

Recall that nt represents the expected number of carriers served by the UCC in period t = 1, 2.

Using the same setup cost’s formula due to the consolidation by the UCC in §4, the expected

total social-environmental cost in each period t is reduced from nψ to
√
ntψ + (n− nt)ψ. This

leads to ∆̄ψ = nψ − [
√
n1ψ + (n− n1)ψ] + nψ − [

√
n2ψ + (n− n2)ψ].

In contrast, the task of a carrier who purchases capacity from the platform is fulfilled by

another carrier, leading to a social-environmental cost reduction ψ. In case the platform does not

have sufficient supply of capacity, we assume that the unmatched delivery tasks are outsourced

to a third party without incurring any additional social-environmental cost. Recall that np,t

represents the expected number of carriers who purchase capacity from the platform in period

t. The expected total social-environmental cost reduction in each period t is np,tψ. Thus, we

have ∆̂ψ = np,1ψ + np,2ψ.

The following theorem compares ∆̄ψ and ∆̂ψ. We focus on the same three regions in Theorem

3 where the equilibria exist in both models.

Theorem 4. (Comparing the UCC’s and the platform’s social-environmental cost

reductions) In each region, the UCC is more efficient than the platform in reducing the expected

total social-environmental cost (∆̄ψ > ∆̂ψ) if and only if

Region (i): n >
(

1+
√
λ

1−λ/4

)2
;

Region (ii): n >
(

1 +
√
λ
)2

;

Region (iii): n > 4/λ.

Theorem 4 shows that if the number of carriers n is large, then the UCC is more efficient
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in reducing the social-environmental cost than the platform. This is because if n is large, the

UCC’s trucks (each can serve multiple tasks) can achieve a larger economy of scale in shipment

consolidation. This significantly reduces the traffic congestion and pollution caused by the

last-mile delivery. On the other hand, if n is small, the UCC may not be efficient in reducing

the social-environmental cost. In contrast, the platform, which matches a carrier’s task with

another carrier without employing any additional trucks, becomes more efficient.

(i) (ii) (iii)

Figure 7: Thresholds of n in Regions (i), (ii), and (iii)

Figure 7 shows how the threshold of n in each region varies with the probability of low

task volume λ. In Regions (i) and (ii), as λ increases, the thresholds
(

1+
√
λ

1−λ/4

)2
and

(
1 +
√
λ
)2

also increase, making the platform more likely to outperform the UCC in reducing the social-

environmental cost. As λ increases, more carriers will engage the platform. Many of these carri-

ers want to purchase capacity from the platform because of the large and intermediate variable

delivery cost m in Regions (i) and (ii). This significantly reduces the social-environmental cost,

making the platform more efficient than the UCC.

In Region (iii), as λ increases, the threshold 4/λ decreases, making the UCC more likely

to outperform the platform in reducing the social-environmental cost. This is because as λ

increases, more carriers will engage the platform. However, the large f and small m in Region

(iii) make the carriers more likely to deliver on their own. This is especially so under the

platform model because the carriers can earn extra revenue by selling their remaining capacity.

In contrast, the UCC can achieve a larger scale of shipment consolidation, which reduces the

social-environmental cost more efficiently than the platform.

Table 1 shows the consolidator’s preferred business model with respect to the profit and the

social-environmental impact. To maximize the expected profit, the consolidator should choose

the UCC if the carriers’ fixed delivery cost c is large in general. Otherwise, the capacity sharing

platform is preferred. To minimize the expected social-environmental cost, the UCC is preferred
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if the number of carriers n is large. Otherwise, the consolidator should choose the platform.

Table 1: The preferred business model of the consolidator

small c small c large c large c

small n large n small n large n

To maximize

expected profit platform platform UCC UCC

To minimize expected

social-environmental cost platform UCC platform UCC

7 Extensions

7.1 A hybrid model

We consider the consolidator operates a hybrid business model that combines the ideas of both

the UCC and the capacity sharing platform. In this hybrid model, the consolidator simultane-

ously operates a UCC, which fulfills the carriers’ delivery tasks, and a platform, which matches

supply and demand for capacity among the carriers. This hybrid model is inspired by Amazon

that sells products to consumers by itself, and also allows peer-to-peer selling on its platform.

For analytical tractability, we consider a one-period model in which the consolidator operates

both the UCC and the platform. Through the UCC, the consolidator charges the carriers for

her delivery service. Through the platform, the consolidator receives a revenue share α ∈ (0, 1)

from each successful transaction of capacity. The consolidator first chooses the prices p̄ and p̂

per unit volume of delivery service for the UCC and the platform, respectively, to maximize her

expected profit.

After observing the prices p̄ and p̂, each carrier i waits until his delivery task volume vi is

realized. Depending on vi, each carrier i has different options to fulfill his task. If vi = vL

(which occurs with a probability λ), then carrier i has three possible options: (i) He delivers on

his own and sells his remaining capacity to the platform. (ii) He uses the UCC’s service. (iii)

He purchases capacity from the platform. If vi = vH (which occurs with a probability 1 − λ),

then carrier i has two possible options: (i) He delivers on his own. (ii) He uses the UCC’s

service. Each carrier independently decides how to fulfill his task to minimize his expected

cost. To ensure that selling capacity on the platform is profitable and the options do not always

dominate each other, we assume m < (1 − α)p̂ < (1/vL − 1/vH) c. The following theorem

summarizes the consolidator’s and the carriers’ equilibrium decisions.
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Theorem 5. (Equilibrium decisions of the hybrid model)

1. If m < min{m7,m8}, then it is optimal for the consolidator to charge any p̄∗ > (c +

2mvL)/((2 − α)vL) and p̂∗ = (c + 2mvL)/((2 − α)vL). Under these prices, each carrier i with

vi = vH delivers on his own, and each carrier i with vi = vL delivers on his own (and sells

his remaining capacity to the platform) or purchases capacity from the platform with an equal

probability.

2. If m7 ≤ m < m9, then it is optimal for the consolidator to charge p̄∗ = m + c/vL and any

p̂∗ ≥ m + c/vL. Under these prices, each carrier i with vi = vH delivers on his own, and each

carrier i with vi = vL uses the UCC’s service.

3. If m ≥ max{m8,m9}, then it is optimal for the consolidator to charge p̄∗ = m + c/vH and

any p̂∗ ≥ m+ c/vL. Under these prices, all the carriers use the UCC’s service.

The terms mj , j = 7, . . . , 9, are defined in the proof of Theorem 5 in the online supplement.

The conditions of the above equilibrium result determine the source from which the consol-

idator generates her profit. If the carriers’ variable delivery cost m is small (m < min{m7,m8}),

then the consolidator will generate profit from the platform. This is because the affordable de-

livery cost m makes it difficult to attract the carriers to use the UCC’s service. However, as

m becomes moderate or large (m7 ≤ m < m9 or m ≥ max{m8,m9}), more carriers would like

to outsource their delivery tasks. Specifically, if m7 ≤ m < m9, then only the carriers with a

high task volume will deliver on their own. If m ≥ max{m8,m9}, then no carriers will make

their own delivery. Both cases eliminate the supply of capacity on the platform. Thus, the

consolidator will optimize her prices to induce the carriers to engage the UCC (rather than the

platform), such that her expected profit is maximized. In both cases, the consolidator generates

profit from the UCC.

Note that some equilibrium in Theorem 5 leads to a lower social-environmental cost than

the others. For example, it is straightforward to show that if n > 1/(1− λ/2)2, then the third

equilibrium (when m ≥ max{m8,m9}) results in the lowest expected total social-environmental

cost. In this equilibrium, all the carriers use the UCC’s service. The government can promote

the third equilibrium by increasing the variable delivery cost m, such as imposing variable tax

to the carriers who deliver on their own. Furthermore, the proof of Theorem 5 shows that

m7,m8, and m9 decrease with the government subsidy S for the UCC’s service. Thus, to make

the third equilibrium more achievable, the government can provide a higher subsidy to the

consolidator for the UCC’s service. Conversely, if n ≤ 1/(1 − λ/2)2, then the first equilibrium
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(when m < min{m7,m8}) yields the lowest social-environmental cost. In this equilibrium, all

the carriers with a low task volume sell or purchase capacity on the platform. In this situation,

the government can act in a reverse manner to make the first equilibrium more attainable.

7.2 Demand correlation

In the UCC and the platform models, some carriers are reluctant to eliminate their logistics

capability in period 1 because of the reestablishment cost f . This decision depends on the

carrier’s delivery task volume in the next period. In practice, each carrier’s demands across the

periods are sometimes correlated such that the carriers can roughly predict their task volumes

in the near future. This helps them plan ahead with their logistics requirement.

In this section, we analyze the UCC model with correlated demands for each carrier between

the two periods. Specifically, we assume the demands for each carrier in the two periods are

positively correlated. That is, if the carrier’s task volume is low (high) in period 1, then his

task volume is also low (high) in period 2. The rest of the model is identical to that of §4. The

following theorem summarizes the equilibrium results.

Theorem 6. (Equilibrium decisions of the UCC model with correlated demands)

Assume h ≤ min{δ(c+ f)vL/vH − δc, δc(vH/vL − 1)}. There are three cases:

1. If max{m11,m12} ≤ m < min{m4,m10}, then we have the following results.

Period 1: The UCC’s equilibrium price is p̄∗1 = m+c/vL. Under this price, each carrier i
uses the UCC’s service and eliminates his logistics capability if vi1 = vL, and delivers
on his own otherwise.

Period 2: The UCC’s equilibrium price is p̄∗2 = m+ c/vL. Under this price, each carrier
i uses the UCC’s service if vi1 = vL, and delivers on his own otherwise.

2. If max{m10,m11,m12} ≤ m < m4, then we have the following results.

Period 1: The UCC’s equilibrium price is p̄∗1 = m + (c − h)/vH . Under this price, each
carrier i uses the UCC’s service and eliminates his logistics capability if vi1 = vL,
and uses the UCC’s service and keeps his logistics capability otherwise.

Period 2: The UCC’s equilibrium price is p̄∗2 = m+ c/vL. Under this price, each carrier
i uses the UCC’s service if vi1 = vL, and delivers on his own otherwise.

3. If m ≥ max{m2,m3,m4}, then we have the following results.

Period 1: The UCC’s equilibrium price is p̄∗1 = m+c/vL. Under this price, each carrier i
uses the UCC’s service and eliminates his logistics capability if vi1 = vL, and delivers
on his own otherwise.

Period 2: The UCC’s equilibrium price is p̄∗2 = m + c/vH . Under this price, all the
carriers use the UCC’s service.

The terms mj , j = 10, . . . , 12, are defined in the proof of Theorem 6. Note that the carriers

eliminate their logistics capability in period 1 if they will continue to use the UCC’s service in

period 2. On the other hand, the carriers keep their logistics capability in period 1 if they will
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deliver on their own in period 2. This is because in period 1 the carriers already know their

task volumes in the future, so they can plan ahead with their logistics capability.

We also analyze the platform model with positively correlated demands across the two

periods for each carrier. We find that there is no Nash Equilibrium with rational expectations

in that model. This is because if the expected number of carriers who eliminate their logistics

capability in period 1 is small, then the carriers anticipate that the platform will charge a low

price in period 2. This in turn encourages the carriers to eliminate their logistics capability

in period 1, leading to deviations. Similar deviations exist if the expected number of carriers

eliminating their logistics capability in period 1 is large. Therefore, there is no equilibrium.

We have also obtained the equilibrium results for the UCC and the platform models for a case

where each carrier’s task volumes across the two periods are negatively correlated. Compared

to Theorem 6, the negative demand correlation induces more carriers to use the UCC’s service.

We omit the details here.

8 Conclusion

We study how a consolidator can make urban last-mile delivery more economically and social-

environmentally sustainable. Specifically, the consolidator can choose to operate a UCC or a

capacity sharing platform. Under the UCC business model, the consolidator requires a sorting

facility and a fleet of trucks to deliver the tasks of carriers. The consolidator bears the delivery

costs, but charges the carriers a service fee for the last-mile delivery. Under the capacity sharing

platform business model, the consolidator operates a platform for the carriers to share their

delivery capacity. The consolidator does not need a facility and trucks. There is no delivery

cost incurred to the consolidator, who receives a revenue share from each successful transaction

of capacity on the platform.

For each business model, we develop a two-period game-theoretical model capturing the

interactions between the consolidator and the multiple carriers. In each period, the consolidator

first determines the delivery fee per unit volume to maximize her expected profit. Then, after

knowing his task volume, each carrier minimizes his expected cost by choosing to (i) deliver on

his own, (ii) use the consolidator’s service and eliminate his own logistics capability, or (iii) use

the consolidator’s service but keep his own logistics capability.

In practice, the carriers under the UCC business model face the following trade-off: They can

potentially save their delivery costs by using the UCC’s service, but they are subject to the risk
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of eliminating their logistics capability. Our game-theoretical model delicately demonstrates this

trade-off through its equilibrium results (see Figures 2 and 3). As the carriers’ variable delivery

cost m increases, they become more dependent on the UCC: In period 1 the carriers who use

the UCC’s service will eliminate their logistics capability, and in period 2 more carriers will use

the UCC’s service. On the other hand, as the carriers’ logistics reestablishment cost f increases,

they become less dependent on the UCC: In period 1 the carriers who use the UCC’s service

will keep their logistics capability, and in period 2 fewer carriers will use the UCC’s service. We

also find that if the UCC receives a sufficient government subsidy, then all the carriers will use

the UCC’s service in period 2, making the UCC more sustainable in the long run. This echoes

the phenomenon in practice that many UCC projects rely on government subsidies.

Under the capacity sharing platform model, the carriers generally have their logistics capa-

bility on hand in equilibrium (even if they purchase capacity from the platform). This ensures

sufficient capacity available on the platform to facilitate successful transactions. Since the plat-

form can always earn a positive profit (revenue share) from each successful transaction, our

equilibrium results partially explain the increasing popularity of the capacity sharing platforms

in practice. Only if f is sufficiently small and m is sufficiently large, the carriers who purchase

capacity from the platform in period 1 will eliminate their logistics capability, and will purchase

capacity again from the platform in period 2 (see Figures 5(b) and 6(b)).

We investigate which business model is more profitable for the consolidator. In general, the

UCC is more profitable than the platform if the carriers’ fixed delivery cost c is large. If c is

large, the carriers are more likely to outsource their delivery service, leading to a low supply

of capacity on the platform. Thus, there will not be sufficiently many successful transactions

on the platform, causing it to be less profitable than the UCC. Moreover, it is easier for the

UCC to dominate as the number of carriers n becomes larger because of her economy of scale

in shipment consolidation. However, there is an exception if f is sufficiently large and m is

intermediate (Region (ii) of §6.1). In this situation, the platform outperforms the UCC if the

discount factor δ is small. Since the carriers are less sensitive to their costs in period 2, they

become more likely to do their own delivery (and sell their remaining capacity to the platform).

This mitigates the imbalance of supply and demand on the platform, and makes the platform

more profitable than the UCC.

We also determine which business model is more efficient for reducing the social-environmental

cost. Although additional trucks are required by the UCC model, each truck of the UCC can
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potentially consolidate multiple carriers’ tasks. In contrast, no additional trucks are required by

the platform model, but each carrier on the platform can only serve at most one other carrier

because of his limited capacity. We find that if n is large, then the UCC is more efficient in

reducing the expected social-environmental cost than the platform. This is because the UCC’s

trucks (each can serve multiple tasks) can achieve a larger economy of scale in shipment con-

solidation when n is large. This significantly reduces the traffic congestion and pollution of the

last-mile delivery. Note that this is non-trivial because we have observed that the threshold of

n for the UCC to outperform the platform varies with the probability λ of a low task volume

in different manners under different situations (see Figure 7).

We study two extensions of our models. The first extension considers a hybrid model in which

the consolidator concurrently operates a UCC and a platform. We also analyze an extension

with correlated demands between two periods for each carrier. Other future research directions

include endogenizing the government subsidy S and considering the construction costs of the

UCC and the platform.

References

Abhishek V, Guajardo JA, Zhang Z (2016) Business models in the sharing economy: Manufacturing
durable goods in the presence of peer-to-peer rental markets. Working paper, Carnegie Mellon Uni-
versity.
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A Online supplement

Proof of Lemma 1. By solving φ̄i2(0; d̄i1, p̄2) ≤ φ̄i2(−1; d̄i1, p̄2) for vi2, we obtain that
1. p̄2 ≤ m+ c

vi2
if d̄i1 = −1 or 1. Thus, d̄∗i2 = 0 if p̄2 ≤ m+ c

vi2
, and d̄∗i2 = −1 otherwise.

2. p̄2 ≤ m+ c+f
vi2

if d̄i1 = 0. Thus, d̄∗i2 = 0 if p̄2 ≤ m+ c+f
vi2

, and d̄∗i2 = −1 otherwise.

Proof of Lemma 2. Define b1 = M − S +
(
√
ne−
√
λne)C+

(
λ
(
1− vL

vH

)
−(1−λ)

)
(c+f)ne

(1−λ)nevH ,

b2 = M−S+

(√
λ(n−ne)+ne−

√
λne

)
C+λnef−

(
(1−λ)ne

vH
vL

+λ(n−ne)
)
c

(1−λ)nevH+λ(n−ne)vL , b3 = M−S+
(
√
n−
√
λne)C+λ(c+f)ne−

(
λ
vL
vH

+(1−λ)
)
cn

(1−λ)nvH+λ(n−ne)vL ,

b4 = M − S +

(√
λ(n−ne)+ne−

√
ne
)
C+
(
λ
vL
vH

+(1−λ)
)
(c+f)ne−

(
λn+(1−λ)ne

vH
vL

)
c

λ(n−ne)vL ,

b5 = M − S +
(
√
n−√ne)C+

(
λ
vL
vH

+(1−λ)
)
(c+f)ne−

(
λ
vL
vH

+(1−λ)
)
cn

λ(n−ne)vL+(1−λ)(n−ne)vH ,

b6 = M−S+

(√
n−
√
λ(n−ne)+ne

)
C+
(
λn
(
1− vL

vH

)
+(1−λ)ne

vH
vL
−(1−λ)n

)
c

(1−λ)(n−ne)vH , and b7 = M−S+
(
√
n−
√
λn)C+

(
λ
(
1− vL

vH

)
−(1−λ)

)
nc

(1−λ)nvH .

To derive V2 and n2 in the UCC’s expected profit function in Equation (1), we need to distinguish
the following four types of carriers:
Type 1 (d̄i1 = −1 or 1, and vi2 = vL): Each carrier i of this type uses the UCC’s service and eliminates
his logistics capability in period 2 (d̄∗i2 = 0) if p̄2 ≤ m + c

vL
. The expected number of carriers of this

type is λ(n−ne), and if those carriers use the UCC’s service in period 2, then the expected task volumes
served by the UCC are λ(n− ne)vL.
Type 2 (d̄i1 = −1 or 1, and vi2 = vH): Each carrier i of this type uses the UCC’s service and eliminates
his logistics capability in period 2 (d̄∗i2 = 0) if p̄2 ≤ m + c

vH
. The expected number of carriers of this

type is (1 − λ)(n − ne), and if those carriers use the UCC’s service in period 2, then the expected task
volumes served by the UCC in period 2 are (1− λ)(n− ne)vH .
Type 3 (d̄i1 = 0, and vi2 = vL): Each carrier i of this type uses the UCC’s service in period 2 (d̄∗i2 = 0)
if p̄2 ≤ m+ c+f

vL
. The expected number of carriers of this type is λne, and if those carriers use the UCC’s

service in period 2, then the expected task volumes served by the UCC in period 2 are λnevL.
Type 4 (d̄i1 = 0, and vi2 = vH): Each carrier i of this type uses the UCC’s service in period 2 (d̄∗i2 = 0)
if p̄2 ≤ m+ c+f

vH
. The expected number of carriers of this type is (1− λ)ne, and if those carriers use the

UCC’s service in period 2, then the expected task volumes served by the UCC in period 2 are (1−λ)nevH .
Note that the expected number of Type 3 and Type 4 carriers will be 0 if ne = 0. We first analyze

the UCC’s optimal decision in the case that ne > 0, before we analyze the case that ne = 0. According

to the assumption f > c(vH−vL)
vL

, we can derive m+ c+f
vL

> m+ c+f
vH

> m+ c
vL

> m+ c
vH

, so the optimal
choice of the UCC is among the following four:

1. Choose a price p̄2 ∈
(
m+ c+f

vH
,m+ c+f

vL

]
to attract type 3 carriers only, then n2 and V2 equal to

the expected number and expected task volumes of type 3 carriers, that is n2 = λne and V2 = λnevL.
Substituting them into Equation (1), the UCC’s expected profit is

π̄2(p̄2) = (p̄2 + S −M)λnevL −
√
λneC, (5)

which increases in p̄2, so it is optimal for the UCC to choose p̄∗2 = m+ c+f
vL

to maximize profit. Substituting

p̄∗2 = m+ c+f
vL

into Equation (5), we obtain that π̄2

(
m+ c+f

vL

)
=
(
m+ c+f

vL
+ S −M

)
λnevL−

√
λneC.

2. Choose a price p̄2 ∈
(
m+ c

vL
,m+ c+f

vH

]
to attract type 3 and type 4 carriers, then n2 and V2 equal

to the total expected number and expected task volumes of those carriers, that is n2 = λne + (1− λ)ne
and V2 = λnevL + (1− λ)nevH . Substituting them into Equation (1), the UCC’s expected profit is

π̄2(p̄2) = (p̄2 + S −M)(λnevL + (1− λ)nevH)−
√
λne + (1− λ)neC, (6)

which increases in p̄2, so it is optimal for the UCC to choose p̄∗2 = m+ c+f
vH

to maximize profit. Substituting

p̄∗2 = m + c+f
vH

into Equation (6), we obtain that π̄2

(
m+ c+f

vH

)
=
(
m+ c+f

vH
+ S −M

)
(λnevL + (1 −

λ)nevH)−√neC.

3. Choose a price p̄2 ∈
(
m+ c

vH
,m+ c

vL

]
to attract type 3, type 4, and type 1 carriers, then

n2 and V2 equal to the total expected number and expected task volumes of those carriers, that is
n2 = λne + (1− λ)ne + λ(n− ne) and V2 = λnevL + (1− λ)nevH + λ(n− ne)vL. Substituting them into
Equation (1), the UCC’s expected profit is

π̄2(p̄2) = (p̄2 + S −M)(λnevL + (1− λ)nevH + λ(n− ne)vL)−
√
λne + (1− λ)ne + λ(n− ne)C, (7)

which increases in p̄2, so it is optimal for the UCC to choose p̄∗2 = m+ c
vL

to maximize profit. Substituting

p̄∗2 = m+ c
vL

into Equation (7), we obtain that π̄2

(
m+ c

vL

)
=
(
m+ c

vL
+ S −M

)
(λnvL+(1−λ)nevH)−
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√
λ(n− ne) + neC.

4. Choose a price p̄2 ∈
(

0,m+ c
vH

]
to attract all types of carriers, then n2 = n and V2 equals to the

total expected task volumes of all the carriers, that is V2 = λnevL + (1− λ)nevH + λ(n− ne)vL + (1−
λ)(n− ne)vH = λnvL + (1− λ)nvH . Substituting them into Equation (1), the UCC’s expected profit is

π̄2(p̄2) = (p̄2 + S −M)(λnvL + (1− λ)nvH)−
√
nC, (8)

which increases in p̄2, so it is optimal for the UCC to choose p̄∗2 = m+ c
vH

to maximize profit. Substituting

p̄∗2 = m+ c
vH

into Equation (8), we obtain that π̄2

(
m+ c

vH

)
=
(
m+ c

vH
+ S −M

)
(λnvL+(1−λ)nvH)−

√
nC.

By comparing the profits of the UCC under choices 1, 2, 3, and 4, we can obtain that π̄2

(
m+ c+f

vL

)
is the maximum if m < min{b1, b2, b3}; π̄2

(
m+ c+f

vH

)
is the maximum if b1 ≤ m < min{b4, b5};

π̄2

(
m+ c

vL

)
is the maximum if max{b2, b4} ≤ m < b6; and π̄2

(
m+ c

vH

)
is the maximum if m ≥

max{b3, b5, b6}. Therefore, the corresponding prices p̄∗2 under those choices are optimal for the UCC, and
the results in Lemma 2 follow.

Similarly, we analyze the case that ne = 0. Since there is only type 1 and type 2 carriers, the optimal
decision of the UCC is among the following two:

1. Choose a price p̄2 ∈
(
m+ c

vH
,m+ c

vL

]
to attract type 1 carriers only, then n2 and V2 equal to

the expected number and expected task volumes of type 1 carriers, that is n2 = λ(n − ne) = λn and
V2 = λ(n− ne)vL = λnvL. Substituting them into Equation (1), the UCC’s expected profit is

π̄2(p̄2) = (p̄2 + S −M)λnvL −
√
λnC, (9)

which increases in p̄2, so it is optimal for the UCC to choose p̄∗2 = m+ c
vL

to maximize profit. Substituting

p̄∗2 = m+ c
vL

into Equation (9), we obtain that π̄2

(
m+ c

vL

)
=
(
m+ c

vL
+ S −M

)
λnvL −

√
λnC.

2. Choose a price p̄2 ∈
(

0,m+ c
vH

]
to attract both types of carriers, then n2 = n and V2 equals

to the total expected task volumes of all the carriers, that is V2 = λ(n − ne)vL + (1 − λ)(n − ne)vH =
λnvL + (1− λ)nvH . Substituting them into Equation (1), the UCC’s expected profit is

π̄2(p̄2) = (p̄2 + S −M)(λnvL + (1− λ)nvH)−
√
nC, (10)

which increases in p̄2, so it is optimal for the UCC to choose p̄∗2 = m+ c
vH

to maximize profit. Substituting

p̄∗2 = m + c
vH

into Equation (10), we obtain that π̄2

(
m+ c

vH

)
=
(
m+ c

vH
+ S −M

)
(λnvL + (1 −

λ)nvH)−
√
nC.

By comparing the profits of the UCC under choices 1 and 2, we can obtain that π̄2

(
m+ c

vL

)
>

π̄2

(
m+ c

vH

)
if m < b7. Therefore, it is optimal for the UCC to choose p̄∗2 = m + c

vL
if m < b7, and

p̄∗2 = m+ c
vH

otherwise. The results in Lemma 2 thus follow.

Proof of Lemma 3. Define b̃1 = M − S +
(
√
ñe−
√
λñe)C+

(
λ
(
1− vL

vH

)
−(1−λ)

)
(c+f)ñe

(1−λ)ñevH ,

b̃2 = M−S+

(√
λ(n−ñe)+ñe−

√
λñe

)
C+λñef−

(
(1−λ)ñe

vH
vL

+λ(n−ñe)
)
c

(1−λ)ñevH+λ(n−ñe)vL , b̃3 = M−S+
(
√
n−
√
λñe)C+λ(c+f)ñe−

(
λ
vL
vH

+(1−λ)
)
cn

(1−λ)nvH+λ(n−ñe)vL ,

b̃4 = M − S +

(√
λ(n−ñe)+ñe−

√
ñe
)
C+
(
λ
vL
vH

+(1−λ)
)
(c+f)ñe

λ(n−ñe)vL −
(
λn+(1−λ)ñe

vH
vL

)
c

λ(n−ñe)vL ,

b̃5 = M − S +
(
√
n−
√
ñe)C+

(
λ
vL
vH

+(1−λ)
)
(c+f)ñe−

(
λ
vL
vH

+(1−λ)
)
cn

λ(n−ñe)vL+(1−λ)(n−ñe)vH ,

and b̃6 = M − S +

(√
n−
√
λ(n−ñe)+ñe

)
C−
(
λn
(
1− vL

vH

)
+(1−λ)ñe

vH
vL
−(1−λ)n

)
c

(1−λ)(n−ñe)vH .

We first determine a carrier’s optimal decision when ñe > 0. Note that ñe is rational and hence is
equal, in equilibrium, to the corresponding actual value ne. Thus, according to case 1(a) of Lemma 2, if

m < min
{
b̃1, b̃2, b̃3

}
, then p̄∗2 = m + c+f

vL
. Given p̄∗2, each carrier i minimizes his total discounted cost

Φ̄i(d̄i1; p̄1) by comparing the following 3 options:
1. d̄i1 = −1: In this case, according to Lemmas 1 and 2, carrier i will deliver on his own in period

2. This incurs an expected cost Φ̄i(−1; p̄1) = c+mvi1 + δ(λ(c+mvL) + (1− λ)(c+mvH)).
2. d̄i1 = 0: In this case, according to Lemmas 1 and 2, carrier i will use the UCC’s service in period 2

if vi2 = vL and deliver on his own otherwise. This incurs an expected cost Φ̄i(0; p̄1) = p̄1vi1 + δ(λp̄∗2vL +
(1− λ)(c+mvH + f)) = p̄1vi1 + δ(λ(c+mvL) + (1− λ)(c+mvH) + f).

3. d̄i1 = 1: In this case, according to Lemmas 1 and 2, carrier i will deliver on his own in period 2.
This incurs an expected cost Φ̄i(1; p̄1) = p̄1vi1 + h+ δ(λ(c+mvL) + (1− λ)(c+mvH)).
By comparing the above three options, we obtain that d̄∗i1 = 1 if p̄1 ≤ m+ c−h

vi1
, and d̄∗i1 = −1 otherwise.

This proves case 1(a) of Lemma 3. Next we determine the carrier’s optimal decision in case 1(b) of
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Lemma 3. Similarly, according to case 1 of Lemma 2, if b̃1 ≤ m < min
{
b̃4, b̃5

}
, then p̄∗2 = m + c+f

vH
.

Given p̄∗2, each carrier i minimizes his total discounted cost Φ̄i(d̄i1; p̄1) by comparing the following three
options:
1. d̄i1 = −1: In this case, according to Lemmas 1 and 2, carrier i will deliver on his own in period 2.
This incurs an expected cost Φ̄i(−1; p̄1) = c+mvi1 + δ(λ(c+mvL) + (1− λ)(c+mvH)).
2. d̄i1 = 0: In this case, according to Lemmas 1 and 2, carrier i will use the UCC’s service in period 2. This

incurs an expected cost Φ̄i(0; p̄1) = p̄1vi1+δ(λp̄∗2vL+(1−λ)p̄∗2vH) = p̄1vi1+δ
(
m+ c+f

vH

)
(λvL+(1−λ)vH).

3. d̄i1 = 1: In this case, according to Lemmas 1 and 2, carrier i will deliver on his own in period 2. This
incurs an expected cost Φ̄i(1; p̄1) = p̄1vi1 + h+ δ(λ(c+mvL) + (1− λ)(c+mvH)).
By comparing the above three options, we obtain that d̄∗i1 = 1 if p̄1 ≤ m + c−h

vi1
and h ≤ δ(c +

f)
(
λ vLvH + 1− λ

)
−δc, d̄∗i1 = 0 if p̄1 ≤ m+ (1+δ)c

vi1
−
δ(c+f)

(
λ
vL
vH

+1−λ
)

vi1
and h > δ(c+f)

(
λ vLvH + 1− λ

)
−δc,

and d̄∗i1 = −1 otherwise. This proves case 1(b) of Lemma 3. The proofs of cases 1(c) and 2(a) are similar
to the proof of case 1(b), and the proofs of cases 1(d) and 2(b) are similar to the proof of case 1(a), and
thus omitted.

Proof of Theorem 1. Define m1 = M − S +
(
√
n−
√
λn)C+

(
λ
(
1− vL

vH

)
−(1−λ)

)
n(c−h)

(1−λ)nvH ,

m2 = M−S+
(1−λ)

√
nC+λ2nf−

(
λ
vL
vH

+(1−λ)2
)
nc

(1−λ)nvH+λ(1−2λ)nvL , m3 = M−S+
(
√
n−
√
λn)C+

(
λ
vL
vH

+1−λ
)
(c+f)λn−

(
λ
vL
vH

+1−λ
)
nc

(1−λ)(λnvL+(1−λ)nvH) ,

and m4 = M − S +

(√
n−
√
λ(1−λ)n+λn

)
C+
(
λ
(
1− vL

vH

)
−(1−λ)

(
1−λ vHvL

))
nc

(1−λ)2nvH .

The UCC’s expected profit Π̄(p̄1) in Equation (2) depends on V1 and n1. The different cases in
Lemma 3 corresponding to different decisions of each carrier will lead to different values of V1 and n1. In
the following, we analyze each case of Lemma 3 to derive V1 and n1 and obtain the UCC’s expected total
discounted profit and then determine the equilibrium price. To derive V1 and n1, we need to distinguish
the following two typs of carriers:
Type A (vi1 = vL): The expected number of carriers of this type is λn.
Type B (vi1 = vH): The expected number of carriers of this type is (1− λ)n.
We first analyze the cases that ñe > 0 of Lemma 3, that is cases 1(a), 1(b), 1(c), and 1(d). Note that ñe is
rational and hence equal to to the corresponding actual value in equilibrium, and thus ñe = ne(p̄

∗
1, p̄
∗
2) > 0,

b̃1 = b1, b̃2 = b2, b̃3 = b3, b̃4 = b4, b̃5 = b5, and b̃6 = b6.

In case 1(a) (ñe > 0 and m < min
{
b̃1, b̃2, b̃3

}
), d̄∗i1 = 1 if p̄1 ≤ m + c−h

vi1
, or d̄∗i1 = −1 otherwise.

Thus, type A carriers use the UCC’s service and keep their logistics capability if p̄1 ≤ m + c−h
vL

, and

type B carriers use the UCC’s service and keep their logistics capability if p̄1 ≤ m + c−h
vH

. In this case,
no carrier will use the UCC’s service and eliminate logistics capability, which means ne = 0, and thus
cannot happen in equilibrium.

In cases 1(b) (ñe > 0 and b̃1 ≤ m < min
{
b̃4, b̃5

}
) and 1(c) (ñe > 0 and max

{
b̃2, b̃4

}
≤ m < b̃6),

since we focus on the case that h ≤ min
{
δ(c + f)

(
λ vLvH + 1− λ

)
− δc, δc

(
λ+ (1− λ)vHvL

)
− δc

}
, thus

d̄∗i1 = 1 if p̄1 ≤ m + c−h
vi1

, or d̄∗i1 = −1 otherwise. Similar to the above case 1(a), these cases will never
happen in equilibrium.

In case 1(d) (ñe > 0 and m ≥ max
{
b̃3, b̃5, b̃6

}
), d̄∗i1 = 0 if p̄1 ≤ m + c

vi1
, or d̄∗i1 = −1 otherwise.

Thus, type A carriers use the UCC’s service and eliminate their logistics capability if p̄1 ≤ m+ c
vL

, and
type B carriers use the UCC’s service and eliminate their logistics capability if p̄1 ≤ m + c

vH
. In case

1(d), we have obtained that p̄∗2 = m + c
vH

according to Lemma 2. The optimal choice of the retailer in
period 1 is among the following two:

1. Choose a price p̄1 ∈
(
m+ c

vH
,m+ c

vL

]
to attract type A carriers only, then n1 and V1 equal to

the expected number and task volumes of type A carriers, that is n1 = λn and V1 = λnvL. Since type A
carriers use the UCC’s service and eliminate their logistics capability, thus ne = n1 = λn. Substituting
them into Equation (2), the UCC’s expeted total discounted profit is

Π̄(p̄1) = (p̄1 + S −M)λnvL −
√
λnC + δπ̄2

(
m+ c

vH

)
= (p̄1 + S −M)λnvL −

√
λnC + δ

[(
m+ c

vH
+ S −M

)
(λnvL + (1− λ)nvH)−

√
nC
]
,

(11)
which increases in p̄1, so it is optimal for the UCC to choose p̄∗1 = m + c

vL
to maximize profit. This

could be in equilirbium only if ne = λn satisfies the conditions that ne > 0 (which is satisfied) and
m ≥ max{b3, b5, b6}. Substituting ne = λn into b3, b5, and b6, we can rewrite the latter conition as
m ≥ max{m2,m3,m4}. This leads to the results in case 3 of Theorem 1.

2. Choose a price p̄1 ∈
(

0,m+ c
vH

]
to attract both types of carriers, then n1 = n and V1 equals to
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the total expected task volumes of all the carriers, that is V1 = λnvL + (1−λ)nvH . Since all the carriers
use the UCC’s service and eliminate their logistics capability, thus ne = n1 = n. Substituting them into
Equation (2), the UCC’s expeted total discounted profit is

Π̄(p̄1) = (p̄1 + S −M)(λnvL + (1− λ)nvH)−
√
nC + δπ̄2

(
m+ c

vH

)
= (p̄1 + S −M)(λnvL + (1− λ)nvH)−

√
nC + δ

[(
m+ c

vH
+ S −M

)
(λnvL + (1− λ)nvH)−

√
nC
]
,

(12)
which increases in p̄1, so it is optimal for the UCC to choose p̄∗1 = m + c

vH
to maximize profit. This

could be in equilirbium only if ne = n satisfies the conditions that ne > 0 (which is satisfied) and
m ≥ max{b3, b5, b6}. Substituting ne = n into b3, b5, and b6, we find that the latter condition can never
be satisfied as b5 and b6 go to infinity.

Next we analyze the cases that ñe = 0 of Lemma 3, that is cases 2(a) and 2(b). Similarly, since ñe is
rational and hence equal to the corresponding actual value in equilibrium, and thus ne(p̄

∗
1, p̄
∗
2) = ñe = 0.

In case 2(a) (ñe = 0 and m < b7, since we focus on the case that h ≤ min
{
δ(c+ f)

(
λ vLvH + 1− λ

)
−

δc, δc
(
λ+ (1− λ)vHvL

)
− δc

}
, thus d̄∗i1 = 1 if p̄1 ≤ m+ c−h

vi1
, or d̄∗i1 = −1 otherwise. Thus, type A carriers

use the UCC’s service and keep their logistics capability if p̄1 ≤ m + c−h
vL

, and type B carriers use the

UCC’s service and eliminate their logistics capability if p̄1 ≤ m + c−h
vH

. In case 2(a), we have obtained
that p̄∗2 = m + c

vL
according to Lemma 2. The optimal choice of the retailer in period 1 is among the

following two:

1. Choose a price p̄1 ∈
(
m+ c−h

vH
,m+ c−h

vL

]
to attract type A carriers only, then n1 and V1 equal

to the expected number and task volumes of type A carriers, that is n1 = λn and V1 = λnvL. Since
no carrier will use the UCC’s service and keeplogistics capability, thus ne = 0. Substituting them into
Equation (2), the UCC’s expeted total discounted profit is

Π̄(p̄1) = (p̄1 + S −M)λnvL −
√
λnC + δπ̄2

(
m+ c

vL

)
= (p̄1 + S −M)λnvL −

√
λnC + δ

[(
m+ c

vL
+ S −M

)
λnvL −

√
λnC

]
,

(13)

which increases in p̄1, so it is optimal for the UCC to choose p̄∗1 = m + c−h
vL

to maximize profit. This
could be in equilirbium only if ne = 0 satisfies the conditions that ne = 0 (which is satisfied) and

m− (M − S) < m1. Substituting p̄∗1 = m+ c−h
vL

into Equation (13), we can obtain that Π̄
(
m+ c−h

vL

)
=

(1 + δ)(m+ S −M)λnvL + ((1 + δ)c− h)λn− (1 + δ)
√
λnC.

2. Choose a price p̄1 ∈
(

0,m+ c−h
vH

]
to attract both types of carriers, then n1 = n and V1 equals to

the total expected task volumes of all the carriers, that is V1 = λnvL + (1− λ)nvH . Since no carrier will
use the UCC’s service and eliminate logistics capability, thus ne = 0. Substituting them into Equation
(2), the UCC’s expeted total discounted profit is

Π̄(p̄1) = (p̄1 + S −M)(λnvL + (1− λ)nvH)−
√
nC + δπ̄2

(
m+ c

vL

)
= (p̄1 + S −M)(λnvL + (1− λ)nvH)−

√
nC + δ

[(
m+ c

vL
+ S −M

)
λnvL −

√
λnC

]
,

(14)
which increases in p̄1, so it is optimal for the UCC to choose p̄∗1 = m + c−h

vH
to maximize profit. This

could be in equilirbium only if ne = 0 satisfies the conditions that ne = 0 (which is satisfied) and m < b7.

Substituting p̄∗1 = m + c−h
vH

into Equation (14), we can obtain that Π̄
(
m+ c−h

vH

)
= (m + S −M)((1 +

δ)λnvL + (1− λ)nvH) + δλcn+ (c− h)n
(
λ vLvH + 1− λ

)
−
(√

n+ δ
√
λn
)
C.

By comparing Π̄
(
m+ c−h

vL

)
and Π̄

(
m+ c−h

vH

)
with respect to m, we obtain that Π̄

(
m+ c−h

vL

)
>

Π̄
(
m+ c−h

vH

)
if m < m1. Therefore, we have p̄∗1 = m + c−h

vL
if m < min{b7,m1}, and p̄∗1 = m + c−h

vH
if

min{b7,m1} ≤ m < b7. This leads to the results in cases 1 and 2 of Theorem 1.
In case 2(b) (ñe = 0 and m− (M − S) ≥ b7), d̄∗i1 = 0 if p̄1 ≤ m+ c

vi1
, or d̄∗i1 = −1 otherwise. Thus,

type A carriers use the UCC’s service and eliminate their logistics capability if p̄1 ≤ m + c
vL

, and type
B carriers use the UCC’s service and eliminate their logistics capability if p̄1 ≤ m + c

vH
. In this case,

ne = 0 will never happen which indicates that it will never be in equilibrium.

Lemma 4. (Optimal decision of carrier i ∈ NL,2 in period 2)

1. If d̂i1 = −1 or 1, then in period 2 carrier i purchases capacity from the platform and eliminates his

logistics capability (d̂∗i2 = 0) if p̂2 <
c+(1+θ2)mvL
[1+θ2(1−α)]vL , or delivers on his own (d̂∗i2 = −1) if p̂2 >

c+(1+θ2)mvL
[1+θ2(1−α)]vL .

2. If d̂i1 = 0, then in period 2, carrier i purchases capacity from the platform (d̂∗i2 = 0) if p̂2 <
c+f+(1+θ2)mvL
[1+θ2(1−α)]vL , or delivers on his own (d̂∗i2 = −1) if p̂2 >

c+f+(1+θ2)mvL
[1+θ2(1−α)]vL .
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Proof of Lemma 4. By solving φ̂i2(0; d̂i1, p̂2) ≤ φ̂i2(−1; d̂|i1, p̂2) for vi2, we obtain that

1. p̂2 < (c + 2mvL)/((2 − α)vL) if d̂i1 = −1 or 1. Thus, d̂∗i2 = 0 if p̂2 < (c + 2mvL)/((2 − α)vL), and

d̂∗i2 = −1 if p̂2 > (c+ 2mvL)/((2− α)vL).

2. p̂2 < (c + 2mvL + f)/((2 − α)vL) if d̂i1 = 0. Thus, d̂∗i2 = 0 if p̂2 < (c + 2mvL + f)/((2 − α)vL), and

d̂∗i2 = −1 if p̂2 > (c+ 2mvL + f)/((2− α)vL).

Lemma 5. (Optimal decision of the platform in period 2) Define ne as the number of carriers
who purchase capacity on the platform and elimate their logistics capability in period 1.
1. If ne > n/2, the optimal price of the platform in period 2 is as follows. If (c + f)[2(n − ne)(2n −
αne)− (2− α)(2n− ne)ne] ≤ 2mvL[(2− α)nne − 2(n− ne)(2n− αne)], then p̂∗2 = (2n−ne)(c+f)+2nmvL

(2n−αne)vL ;

if (c + f)[2(n − ne)(2n − αne) − (2 − α)(2n − ne)ne] > 2mvL[(2 − α)nne − 2(n − ne)(2n − αne)], then
p̂∗2 = c+2mvL+f

(2−α)vL − ε.

2. If ne ≤ n/2, the optimal price of the UCC’s service in period 2 is as follows. If (c + f)[2(n −
ne)(2n − αne) − (n − αne)(2n − ne)] ≤ 2mvL[n(n − αne) − n(2n − αne)] and (c + f)(2 − α)(2n −
ne)ne− (2n−αne)(n−ne)c > 2mvL[(2n−αne)(n−ne)− (2−α)nne], then p̂∗2 = (2n−ne)(c+f)+2nmvL

(2n−αne)vL ; if

(c+f)[2(n−ne)(2n−αne)−(n−αne)(2n−ne)] > 2mvL[n(n−αne)−n(2n−αne)] and 2(c+f)(2−α)(n−
ne)ne − (n−αne)(n− ne)c > 2mvL[(n−αne)(n− ne)− (2−α)nne], then p̂∗2 = (c+f)(n−ne)+nmvL

(n−αne)vL − ε; if

2(c+ f)(2−α)(n− ne)ne− (n−αne)(n− ne)c ≤ 2mvL[(n−αne)(n− ne)− (2−α)nne] and (c+ f)(2−
α)(2n− ne)ne − (2n− αne)(n− ne)c ≤ 2mvL[(2n− αne)(n− ne)− (2− α)nne], then p̂∗2 = c+2mvL

(2−α)vL .

Proof of Lemma 5. To derive ns,2 and np,2 in the platform’s expected profit function in Equation (3),
we need to distinguish the following two types of carriers:
Type 1 (d̂i1 = −1 or 1): Each carrier i of this type purchases capacity from the platform and eliminates

his logistics capability in period 2 (d̂∗i2 = 0) if p̂2 <
c+2mvL
(2−α)vL , or delivers on his own and sell capacity on

the platform (d̂∗i2 = 1) if p̂2 >
c+2mvL
(2−α)vL , or chooses either option with same probability if p̂2 = c+2mvL

(2−α)vL .

The expected number of carriers of this type is λ(λn− ne) + λ(1− λ)n.

Type 2 (d̂i1 = 0): Each carrier i of this type purchases capacity from the platform and eliminates his

logistics capability in period 2 (d̂∗i2 = 0) if p̂2 <
c+2mvL+f
(2−α)vL , or delivers on his own and sell capacity on the

platform (d̂∗i2 = 1) if p̂2 >
c+2mvL+f
(2−α)vL , or chooses either option with same probability if p̂2 = c+2mvL+f

(2−α)vL .

The expected number of carriers of this type is λne.
To maximize her profit, the optimal choice of the platform is among the following three:
1. Choose a price p̂2 = c+2mvL+f

(2−α)vL to incentivize type 1 carriers to sell capacity, and type 2 carriers to

purchase or sell capacity with same probability. Then we can obtain that ns,2 = λ(λn − ne) + λ(1 −
λ)n+ λne/2 , and np,2 = λne/2. Substituting them into Equation (3), the platform’s expected profit is

π̂2
(
c+2mvL+f
(2−α)vL

)
= α c+2mvL+f

(2−α)vL min{[λ(λn− ne) + λ(1− λ)n+ λne/2]vL, λnevL/2}
= λα(c+2mvL+f)

2−α min{n− ne/2, ne/2}
= λα(c+2mvL+f)ne

2(2−α) .

2. Choose a price p̂2 = c+2mvL+f
(2−α)vL − ε to incentivize type 1 carriers to sell capacity, and type 2 carriers

to purchase capacity from the platform. Then we can obtain that ns,2 = λ(λn − ne) + λ(1 − λ)n , and
np,2 = λne. Substituting them into Equation (3), the platform’s expected profit is

π̂2
(
c+2mvL+f
(2−α)vL − ε

)
= α( c+2mvL+f

(2−α)vL − ε) min{[λ(λn− ne) + λ(1− λ)n]vL, λnevL}
= λα(c+2mvL+f)

2−α min{ne, n− ne} − ε

=

{
λα(c+2mvL+f)ne

2−α − ε, if ne < n/2;
λα(c+2mvL+f)(n−ne)

2−α − ε, if ne ≥ n/2.
3. Choose a price p̂2 = c+2mvL

(2−α)vL to incentivize type 1 carriers to sell or purchase capacity with same

probability, and type 2 carriers to purchase capacity from the platform. Then we can obtain that
ns,2 = [λ(λn−ne) + λ(1− λ)n]/2 , and np,2 = [λ(λn−ne) + λ(1− λ)n]/2 + λne. Substituting them into
Equation (3), the platform’s expected profit is

π̂2
(
c+2mvL
(2−α)vL

)
= α c+2mvL

(2−α)vL min{[λ(λn− ne) + λ(1− λ)n]vL/2, λnevL}
= λα(c+2mvL)

2−α min{(n− ne)/2, (n+ ne)/2}
= λα(c+2mvL)(n−ne)

2(2−α) .

By comparing the profits of the platform under choices 1, 2 and 3, we can obtain that π̂2
(
c+2mvL+f
(2−α)vL

)
is

the maximum if ne ≥ 2n
3 ; π̂2

(
c+2mvL+f
(2−α)vL − ε

)
is the maximum if (c+2mvL)n

2(c+2mvL)+f
≤ ne < 2n

3 ; and π̂2
(
c+2mvL
(2−α)vL

)
is the maximum if ne <

(c+2mvL)n
2(c+2mvL)+f

. Therefore, the results in Lemma 5 follow.
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Lemma 6. (Optimal decision of carrier i in period 1) Assume all carriers and the capacity sharing
platform have a common rational belief ñe about ne.
1. If ñe > n/2; or ñe ≤ n/2, (c+f)[2(n−ne)(2n−αne)−(2−α)(2n−ne)ne] ≤ 2mvL[(2−α)nne−2(n−
ne)(2n−αne)], and (c+f)(2−α)(2n−ne)ne−(2n−αne)(n−ne)c > 2mvL[(2n−αne)(n−ne)−(2−α)nne];
or ñe ≤ n/2, (c+f)[2(n−ne)(2n−αne)− (2−α)(2n−ne)ne] > 2mvL[(2−α)nne−2(n−ne)(2n−αne)],
and 2(c+ f)(2−α)(n−ne)ne− (n−αne)(n−ne)c > 2mvL[(n−αne)(n−ne)− (2−α)nne], the optimal

decisions of carrier i are as follows. If p̂1 <
c+2mvL−h
(2−α)vL , then d̂∗i1 = 1; if p̂1 >

c+2mvL−h
(2−α)vL , then d̂∗i1 = −1;

if p̂1 = c+2mvL−h
(2−α)vL , then d̂∗i1 = 1 or −1 with an equal probability.

2. If ñe ≤ n/2, 2(c+ f)(2−α)(n−ne)ne− (n−αne)(n−ne)c ≤ 2mvL[(n−αne)(n−ne)− (2−α)nne],
and (c + f)(2 − α)(2n − ne)ne − (2n − αne)(n − ne)c ≤ 2mvL[(2n − αne)(n − ne) − (2 − α)nne], the
optimal decisions of carrier i are as follows.
(a) If h ≤ δ(1 − λ)f , then if p̂1 <

c+2mvL−h
(2−α)vL , d̂∗i1 = 1; if p̂1 >

c+2mvL−h
(2−α)vL , d̂∗i1 = −1; if p̂1 = c+2mvL−h

(2−α)vL ,

d̂∗i1 = 1 or −1 with an equal probability.

(b) If h > δ(1 − λ)f , then if p̂1 < c+2mvL−δ(1−λ)f
(2−α)vL , d̂∗i1 = 0; if p̂1 > c+2mvL−δ(1−λ)f

(2−α)vL , d̂∗i1 = −1; if

p̂1 = c+2mvL−δ(1−λ)f
(2−α)vL , d̂∗i1 = 0 or −1 with an equal probability.

Proof of Lemma 6. We first determine a carrier’s optimal decision when ñe ≥ 2n
3 . Note that ñe is rational

and hence is equal, in equilibrium, to the corresponding actual value ne. Thus, according to Lemma 5,
if ñe = ne ≥ 2n

3 , then p̂∗2 = c+2mvL+f
(2−α)vL . Each carrier i minimizes his total discounted cost Φ̂i1(d̂i1; p̂1, p̂2)

by comparing the following three options:
1. d̂i1 = −1: In this case, according to Lemma 5, carrier i will deliver on his own and sell capacity in
period 2 (if he has low task volume in period 2, i.e., vi2 = vL). This incurs an expected total discounted
cost Φ̂i1(−1; p̂1, p̂2) = c+mvL− [(1−α)p̂1−m]vL+δ(λ(c+mvL− [(1−α)p̂∗2−m]vL)+(1−λ)(c+mvH)).

2. d̂i1 = 0: In this case, according to Lemma 5, carrier i will purchase capacity from the platform or
deliver on his own and sell capacity in period 2 with same probability (if he has low task volume in period
2, i.e., vi2 = vL). This incurs an expected total discounted cost Φ̂i1(0; p̂1, p̂2) = p̂1vL + δ(λ(p̂∗2vL/2 + (c+
mvL − [(1− α)p̂∗2 −m]vL + f)/2) + (1− λ)(c+mvH)).

3. d̂i1 = 1: In this case, according to Lemma 5, carrier i will deliver on his own and sell capacity in
period 2 (if he has low task volume in period 2, i.e., vi2 = vL). This incurs an expected total discounted
cost Φ̂i1(−1; p̂1, p̂2) = p̂1vL + h+ δ(λ(c+mvL − [(1− α)p̂∗2 −m]vL) + (1− λ)(c+mvH)).

By comparing the above three options, we obtain that, if h ≤ δλf , then d̂∗i1 = 1 if p̂1 < (c + 2mvL −
h)/((2 − α)vL), or d̂∗i1 = −1 if p̂1 > (c + 2mvL − h)/((2 − α)vL). If h > δλf , then d̂∗i1 = 0 if p̂1 <

(c+ 2mvL − δλf)/((2− α)vL), or d̂∗i1 = −1 if p̂1 > (c+ 2mvL − δλf)/((2− α)vL).

Next we determine the carrier’s optimal decision when (c+2mvL)n
2(c+2mvL)+f

≤ ñe < 2n
3 . Similarly, ac-

cording to Lemma 5, p̂∗2 = c+2mvL+f
(2−α)vL − ε. Each carrier i minimizes his expected total discounted cost

Φ̂i1(d̂i1; p̂1, p̂2) by comparing the following three options:

1. d̂i1 = −1: In this case, according to Lemma 5, carrier i will deliver on his own and sell capacity in
period 2 (if he has low task volume in period 2, i.e., vi2 = vL). This incurs an expected total discounted
cost Φ̂i1(−1; p̂1, p̂2) = c+mvL− [(1−α)p̂1−m]vL+δ(λ(c+mvL− [(1−α)p̂∗2−m]vL)+(1−λ)(c+mvH)).

2. d̂i1 = 0: In this case, according to Lemma 5, carrier i will purchase capacity from the platform in
period 2 (if he has low task volume in period 2, i.e., vi2 = vL). This incurs an expected total discounted
cost Φ̂i1(0; p̂1, p̂2) = p̂1vL + δ(λp̂∗2vL + (1− λ)(c+mvH)).

3. d̂i1 = 1: In this case, according to Lemma 5, carrier i will deliver on his own and sell capacity in
period 2 (if he has low task volume in period 2, i.e., vi2 = vL). This incurs an expected total discounted
cost Φ̂i1(−1; p̂1, p̂2) = p̂1vL + h+ δ(λ(c+mvL − [(1− α)p̂∗2 −m]vL) + (1− λ)(c+mvH)).
By comparing the above three options, we obtain the same results as in the case that ñe ≥ 2n

3 . Thus,
the carrier’s optimal decision is same as in that case.

Finally, we determine the carrier’s optimal decision when ñe <
(c+2mvL)n

2(c+2mvL)+f
. According to Lemma 5,

p̂∗2 = c+2mvL
(2−α)vL . Each carrier i minimizes his expected total discounted cost Φ̂i1(d̂i1; p̂1, p̂2) by comparing

the following three options:
1. d̂i1 = −1: In this case, according to Lemma 5, carrier i will purchase capacity from the platform
or deliver on his own and sell capacity in period 2 with same probability (if he has low task volume in
period 2, i.e., vi2 = vL). This incurs an expected total discounted cost Φ̂i1(−1; p̂1, p̂2) = c+mvL − [(1−
α)p̂1 −m]vL + δ(λ(p̂∗2vL/2 + (c+mvL − [(1− α)p̂∗2 −m]vL)/2) + (1− λ)(c+mvH)).

2. d̂i1 = 0: In this case, according to Lemma 5, carrier i will purchase capacity from the platform in
period 2 (if he has low task volume in period 2, i.e., vi2 = vL). This incurs an expected total discounted
cost Φ̂i1(0; p̂1, p̂2) = p̂1vL + δ(λp̂∗2vL + (1− λ)(c+mvH)).

3. d̂i1 = 1: In this case, according to Lemma 5, carrier i will purchase capacity from the platform or
deliver on his own and sell capacity in period 2 with same probability (if he has low task volume in
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period 2, i.e., vi2 = vL). This incurs an expected total discounted cost Φ̂i1(−1; p̂1, p̂2) = p̂1vL + h +
δ(λ(p̂∗2vL/2 + (c+mvL − [(1− α)p̂∗2 −m]vL)/2) + (1− λ)(c+mvH)).

By comparing the above three options, we obtain that, d̂∗i1 = 0 if p̂1 < (c + 2mvL)/((2 − α)vL), or

d̂∗i1 = −1 if p̂1 > (c + 2mvL)/((2 − α)vL). Combining the results in the above three cases together,
Lemma 6 follows.

Proof of Theorem 2. Similar to the proof of Theorem 1, we analyze each case of Lemma 6 to derive the
platform’s expected total discounted profit and determine the equilibrium price.

We can obtain that case 1 of Lemma 6 is not in equilibrium, because the conditions of this case
cannot be satisfied under any p̂1. For case 2 of Lemma 6, according to Lemma 5, we have p̂∗2 = c+2mvL

(2−α)vL .

If h ≤ δ(1−λ)f , that is f ≥ h
δ(1−λ) , then according to Lemma 6, each carrier purchases capacity from the

platform and keeps his logistics capability if p̂1 <
c+2mvL−h
(2−α)vL , or delivers on his own and sell remaining

capacity if p̂1 >
c+2mvL−h
(2−α)vL , or with same probability to choose either option if p̂1 = c+2mvL−h

(2−α)vL . It’s

optimal for the platform to choose p̂∗1 = c+2mvL−h
(2−α)vL to maximize her profit. This leads to ne = 0 = ñe,

with which the conditions of case 2 are always satisified. This completes the proof of case 1 of Theorem
2.

If h > δ(1 − λ)f , that is f < h
δ(1−λ) , according to Lemma 6, each carrier purchases capacity from

the platform and eliminates his logistics capability if p̂1 <
c+2mvL−δ(1−λ)f

(2−α)vL or delivers on his own and

sell remaining capacity if p̂1 > c+2mvL−δ(1−λ)f
(2−α)vL , or with same probability to choose either option if

p̂1 = c+2mvL−δ(1−λ)f
(2−α)vL . It is optimal for the platform to choose p̂1 = c+2mvL−δ(1−λ)f

(2−α)vL to maximize her

profit. This leads to ne = λ
2n = ñe. Substituting them into the conditions of case 2, we obtain that

f <
(2−2λ+αλ2

4 )mvL+(1− 3λ
2 +

λ(λ+α)
4 )c

(2−α)λ2 (1−λ4 )
and f <

(2−3λ+αλ2

2 )mvL+(1− 5λ
2 +λ2+

αλ(2−λ)
4 )c

(2−α)λ2 (2−λ) . Combining them with

the condition f < h
δ(1−λ) , the result in case 2 of Theorem 2 follows.

Proof of Theorem 3. Define m5 =

(2−α)(1−λ
4 )λh

2δ(1−λ) −(1− 3λ
2 +

λ(λ+α)
4 )c(

2−2λ+αλ2

4

)
vL

, m6 =
(2−α)(2−λ)λh

2δ(1−λ) −(1− 5λ
2 +λ2+

αλ(2−λ)
4 )c(

2−3λ+αλ2

2

)
vL

,

f1 =
[(1−λ)vH+λ(1−2λ)vL]

[(√
n−
√
λ(1−λ)n+λn

)
C+
(
λn
(
1− vL

vH

)
−(1−λ)

(
1−λ vHvL

)
n
)
c
]

λ2(1−λ)2nvH +

(
λ
vL
vH

+(1−λ)2
)
nc−(1−λ)

√
nC

λ2n ,

f2 =
[(1−λ)vH+λvL]

[(√
n−
√
λ(1−λ)n+λn

)
C+
(
λn
(
1− vL

vH

)
−(1−λ)

(
1−λ vHvL

)
n
)
c
]

λ(1−λ)nvH
(
λ
vL
vH

+1−λ
) +

(1−λ)
(
λ
vL
vH

+1−λ
)
nc−(

√
n−
√
λn)C

λn
(
λ
vL
vH

+1−λ
) ,

f3 =
[m−(M−S)][(1−λ)nvH+λ(1−2λ)nvL]−(1−λ)

√
nC+

(
λ
vL
vH

+(1−λ)2
)
nc

λ2n , and

f4 =
[m−(M−S)](1−λ)(λnvL+(1−λ)nvH)−(

√
n−
√
λn)C+(1−λ)

(
λ
vL
vH

+1−λ
)
nc

λn
(
λ
vL
vH

+1−λ
) .

In Region (i), the equilibrium expected total discounted profits of the UCC and the platform are

Π̄(m+ c
vL

) and Π̂
(
c+2mvL−δ(1−λ)f

(2−α)vL

)
respectively. Substituting p̄∗1 and p̄∗2 into Equation (2), p̂∗1 and p̂∗2 into

Equation (4), we can obtain that Π̄
(
m+ c

vL

)
= (1+δ)(m+S−M)λnvL+δ(1−λ)(m+S−M)nvH+λnc+

δnc
(
λ vLvH + 1− λ

)
−
(√

λn+ δ
√
n
)
C, and Π̂

(
c+2mvL−δ(1−λ)f

(2−α)vL

)
=

αλn[(1+δ(1−λ2 ))(c+2mvL)−δ(1−λ)f ]
2(2−α) .

By comparing Π̄
(
m+ c

vL

)
and Π̂

(
c+2mvL−δ(1−λ)f

(2−α)vL

)
in terms of c, we obtain that Π̄

(
m+ c

vL

)
>

Π̂
(
c+2mvL−δ(1−λ)f

(2−α)vL

)
if and only if

c >

(√
λ+ δ

)
C√
n

+
αλ[2(1+δ(1−λ2 ))mvL−δ(1−λ)f]

2(2−α) − (m+ S −M)[(1 + δ)λvL + δ(1− λ)vH ]

λ

(
1− α(1+δ(1−λ2 ))

2(2−α)

)
+ δ

(
λ vLvH + 1− λ

) ≡ c1,

where c1 decreases in n.
In Region (ii), the equilibrium expected total discounted profits of the UCC and the platform are

Π̄(m + c−h
vH

) and Π̂
(
c+2mvL−h
(2−α)vL

)
respectively. Substituting p̄∗1 and p̄∗2 into Equation (2), p̂∗1 and p̂∗2 into

Equation (4), we can obtain that Π̄
(
m+ c−h

vH

)
= (m + S −M)((1 + δ)λnvL + (1 − λ)nvH) + δλnc +

(c − h)n
(
λ vLvH + 1− λ

)
−
(√

n+ δ
√
λn
)
C, and Π̂

(
c+2mvL−h
(2−α)vL

)
= αλn[(1+δ)(c+2mvL)−h]

2(2−α) . By comparing

Π̄
(
m+ c−h

vH

)
and Π̂

(
c+2mvL−h
(2−α)vL

)
in terms of c and δ, we that Π̄

(
m+ c−h

vH

)
> Π̂

(
c+2mvL−h
(2−α)vL

)
if and

only if
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c >

(
1 + δ

√
λ
)

C√
n

+ h
(
λ vLvH + 1− λ

)
+ αλ[(1+δ)2mvL−h]

2(2−α) − (m+ S −M)[(1 + δ)λvL + (1− λ)vH ]

δλ+ (λ vLvH + 1− λ)− αλ(1+δ)
2(2−α)

≡ c2

and δ >
λα

2(2−α)
−
(
λ
vL
vH

+1−λ
)

λ(1− α
2(2−α) )

≡ δ1; or c < c2 and δ < δ1.

In Region (iii), the equilibrium expected total discounted profits of the UCC and the platform are

Π̄(m+ c−h
vL

) and Π̂
(
c+2mvL−h
(2−α)vL

)
respectively. Substituting p̄∗1 and p̄∗2 into Equation (2), we can obtain that

Π̄
(
m+ c−h

vL

)
= (1+ δ)(m+S−M)λnvL+λn((1+ δ)c−h)− (1+ δ)

√
λnC. By comparing Π̄

(
m+ c−h

vL

)
and Π̂

(
c+2mvL−h
(2−α)vL

)
, we obtain the following results.

1. Π̄
(
m+ c−h

vL

)
> Π̂

(
c+2mvL−h
(2−α)vL

)
if and only if c >

(1+δ)
√
λC√
n

+
αλ[2(1+δ)mvL−h]

2(2−α)
+λh−(m+S−M)(1+δ)λvL

(1+δ)λ(1− α
2(2−α) )

≡ c3,

where c3 decreases in n.

2. Π̄
(
m+ c−h

vL

)
> Π̂

(
c+2mvL−h
(2−α)vL

)
if and only if h <

(1+δ)(m+S−M)λvL+(1+δ)λc−(1+δ)
√
λC√
n
−αλ(1+δ)(c+2mvL)

2(2−α)

λ(1− α
2(2−α) )

≡
h1, where h1 increases in n.

Proof of Theorem 4. In Region (i), according to Theorems 1 and 2, we can obtain that n1 = λn, n2 = n,
np,1 = λn

2 , and np,2 = λn
2 . Thus, we have ∆̄ψ = (λn−

√
λn+n−

√
n)ψ and ∆̂ψ = 5

4λnψ. By comparing

∆̄ψ and ∆̂ψ in terms of n, we obtain that ∆̄ψ > ∆̂ψ if and only if n >
(

1+
√
λ

1−λ/4

)2
. Similarly, the results

for Regions (ii) and (iii) can be determined.

Proof of Theorem 5. Define m7 =
(2−α)[(M−S)λnvL−λnc+

√
λnC]+αλnc

2

2(1−α)λnvL ,

m8 =
(M−S)(λnvL+(1−λ)nvH)−

(
λ
vL
vH

+1−λ
)
nc+
√
nC+ αλnc

2(2−α)

2(1−α)λnvL
2−α +(1−λ)nvL

, andm9 =
(M−S)(1−λ)nvH+

[
λ
(
1− vL

vH

)
−(1−λ)

]
nc+(

√
n−
√
λn)C

(1−λ)nvH .

One can see that max{m8,m9} decreases with S. Define θ = min
{
ñp
ñs
, 1
}

, where ñp and ñs are the ratio-

nal beliefs about the number of carriers who purchase capacity from the platform and who sell capacity
on the platform, respectively.

Similar to the proofs of Lemma 1, we can derive the optimal decision of each carrier i as follows.
1. Each carrier i with vi = vH uses the UCC’s service if p̄ ≤ m+ c

vH
, or delivers on his own if p̄ > m+ c

vH
.

2. Each carrier i with vi = vL uses the UCC’s service if p̄ ≤ m + c
vL
− θ[(1 − α)p̂ − m] and p̂ ≥ p̄,

or purchases capacity from the platform if p̄ > p̂ and p̂ < c+(1+θ)mvL
[1+θ(1−α)]vL , or delivers on his own if p̄ >

m + c
vL
− θ[(1 − α)p̂ −m] and p̂ > c+(1+θ)mvL

[1+θ(1−α)]vL . Note that carrier i is indifferent between purchasing

capacity from the platform and delivering on his own if p̂ = c+(1+θ)mvL
[1+θ(1−α)]vL .

According to the assumption (1−α)p̂−m < ( 1
vL
− 1
vH

)c, we can obtain that m+ c
vL
−θ[(1−α)p̂−m] >

m + c
vH

. Similar to the proof of Lemma 1, we can obtain that the optimal choice of the consolidator is
among the following:

1. Choose p̄∗ > c+2mvL
(2−α)vL and p̂∗ = c+2mvL

(2−α)vL . Under these prices, each carrier i with vi = vH delivers

on his own, and each carrier i with vi = vL is indifferent between delivering on his own (and selling his
remaining capacity to the platform) and purchasing capacity on the platform. The consolidator’s profit

is αλn(c+2mvL)
2(2−α) .

2. Choose p̄∗ = m + c
vL

and p̂∗ ≥ m + c
vL

. Under these prices, each carrier i with vi = vH
delivers on his own, and each carrier i with vi = vL uses the UCC’s service. The consolidator’s profit is
(m+ S −M)λnvL + λnc−

√
λnC.

3. Choose p̄∗ = m+ c
vH

and p̂∗ ≥ m+ c
vL

. Under these prices, each carrier i uses the UCC’s service.

The consolidator’s profit is (m+ S −M)(λnvL + (1− λ)nvH) + (λ vLvH + 1− λ)nc−
√
nC.

It is optimal for the consolidator to choose the choice that leads to a largest profit. Comparing the
consolidator’s profit under the above three choices, we can obtain the results in Theorem 5.

Proof of Theorem 6. Define m10 = M − S +
(
√
n−
√
λn)C+λnc−

(
λ
vL
vH

+1−λ
)
(c−h)n

(1−λ)nvH ,

m11 = M − S +

(√
λ(1−λ)+λn−λ

√
n
)
C+λ2nf−λ(1−λ)

(
1+

vH
vL

)
nc

λ(1−λ)n(vL+vH) , and

m12 = M −S+

(√
λ(2−λ)n−

√
λn
)
C+
(
λ
vL
vH

+1−λ
)
(c+f)λn−

(
1+(1−λ) vHvL

)
λnc

λ(1−λ)nvL . The proof is similar to the proof

of Theorem 1 and thus omitted.
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