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Abstract. Machine learning, a cornerstone of intelligent systems, has
typically been studied in the context of specific tasks, including clus-
tering (unsupervised learning), classification (supervised learning), and
control (reinforcement learning). This paper presents a learning archi-
tecture within which a universal adaptation mechanism unifies a rich
set of traditionally distinct learning paradigms, including learning by
matching, learning by association, learning by instruction, and learning
by reinforcement. In accordance with the notion of embodied intelli-
gence, such a learning theory provides a computational account of how
an autonomous agent may acquire the knowledge of its environment in a
real-time, incremental, and continuous manner. Through a case study on
a minefield navigation domain, we illustrate the efficacy of the proposed
model, the learning paradigms encompassed, and the various types of
knowledge learned.

1 Introduction

Machine learning, a cornerstone of intelligent system research, has typically been
studied in the context of specific tasks, including clustering (unsupervised learn-
ing), classification (supervised learning), and control (reinforcement learning).
In reality, an autonomous system acquires intelligence through its interaction
with the environment. This is in keeping with the view in modern cognitive sci-
ence that cognition is a process deeply rooted in the body’s interaction with the
world [1]. Embodied cognition is also akin to the intensive study on reinforce-
ment learning [15] in which an autonomous agent learns to adjust its behaviour
according to evaluative feedback received from the environment.

Over the past decades, a family of neural architectures known as Adaptive
Resonance Theory (ART) [3,5,8,9], has been steadily developed. With well-
founded computational principles, ART has been applied successfully to many
pattern analysis, recognition, and prediction applications [6,12]. These success-
ful applications are of particular interest because the basic ART principles have
been derived from an analysis of human and animal perceptual and cognitive
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information processing, and have led to behavioral and neurobiological predic-
tions that have received significant experimental support during the last decade;
see Grossberg 2003 and Raizada & Grossberg 2003 for reviews. In this paper, we
show that Adaptive Resonance Theory lays the foundation of a unified model
that encompasses a myriad of learning paradigms, traditionally viewed as dis-
tinct. The proposed model is a natural extension of the original ART models
from a single pattern field to multiple pattern channels. Whereas the original
ART models [2] perform unsupervised learning of recognition nodes in response
to incoming input patterns, the proposed neural architecture, known as fusion
ART (fusion Adaptive Resonance Theory), learns multi-channel mappings si-
multaneously across multi-modal pattern channels in an online and incremental
manner.

To illustrate the unified model, this paper presents a case study based on a
minefield navigation task, which involves an autonomous vehicle (AV) learning to
navigate through obstacles to reach a stationary target (goal) within a specified
number of steps. The experimental results show that fusion ART is capable of
performing a myriad of learning tasks and is able to produce a fast and stable
learning performance.

The rest of the paper is organized as follows. Section 2 provides a summary
of the fusion ART architecture and the associated system dynamics. Sections 3,
4, 5 and 6 show how fusion ART can be used for various types of learning tasks.
Section 7 illustrates the fusion ART functionalities and performance based on
the minefield navigation task. The final section concludes and highlights possible
future directions.

2 Fusion ART

Fusion ART employs a multi-channel architecture (Figure. 1), comprising a cate-
gory field F2 connected to a fixed number of (K) pattern channels or input fields
through bidirectional conditionable pathways. The model unifies a number of net-
work designs, most notably Adaptive Resonance Theory (ART) [3,5], Adaptive
Resonance Associative Map (ARAM) [16] and Fusion Architecture for Learning,
COgnition, and Navigation (FALCON) [20], developed over the past decades for a
wide range of functions and applications. The generic network dynamics of fusion
ART, based on fuzzy ART operations [4], is summarized as follows.

Input vectors: Let Ick = (Ick
1 , Ick

2 , . . . , Ick
n ) denote the input vector, where

Ick
i ∈ [0, 1] indicates the input i to channel ck. With complement coding, the

input vector Ick is augmented with a complement vector Īck such that Īck
i = 1−

Ick
i . Activity vectors: Let xck denote the F ck

1 activity vector for k = 1, . . . , K.
Let y denote the F2 activity vector. Weight vectors: Let wck

j denote the weight
vector associated with the jth node in F2 for learning the input patterns in F ck

1
for k = 1, . . . , K. Initially, F2 contains only one uncommitted node and its weight
vectors contain all 1’s. Parameters: The fusion ART’s dynamics is determined
by choice parameters αck > 0, learning rate parameters βck ∈ [0, 1], contribution
parameters γck ∈ [0, 1] and vigilance parameters ρck ∈ [0, 1] for k = 1, . . . , K.
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Fig. 1. The fusion ART architecture

As a natural extension of ART, fusion ART responds to incoming patterns in
a continuous manner. It is important to note that at any point in time, fusion
ART does not require input to be present in all the pattern channels. For those
channels not receiving input, the input vectors are initialized to all 1s. The fusion
ART pattern processing cycle comprises five key stages, namely code activation,
code competition, activity readout, template matching, and template learning,
as described below. Code activation: Given the activity vectors Ic1, . . . , IcK ,
for each F2 node j, the choice function Tj is computed as follows:

Tj =
K∑

k=1

γck
|Ick ∧ wck

j |
αck + |wck

j |
, (1)

where the fuzzy AND operation ∧ is defined by (p ∧ q)i ≡ min(pi, qi), and the
norm |.| is defined by |p| ≡

∑
i pi for vectors p and q. Code competition:

A code competition process follows under which the F2 node with the highest
choice function value is identified. The winner is indexed at J where

TJ = max{Tj : for all F2 node j}. (2)

When a category choice is made at node J , yJ = 1; and yj = 0 for all j �= J . This
indicates a winner-take-all strategy. Activity readout: The chosen F2 node J
performs a readout of its weight vectors to the input fields F ck

1 such that

xck = Ick ∧ wck
J . (3)

Template matching: Before the activity readout is stabilized and node J can
be used for learning, a template matching process checks that the weight tem-
plates of node J are sufficiently close to their respective input patterns. Specif-
ically, resonance occurs if for each channel k, the match function mck

J of the
chosen node J meets its vigilance criterion:

mck
J =

|Ick ∧ wck
J |

|Ick| ≥ ρck. (4)
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If any of the vigilance constraints is violated, mismatch reset occurs in which the
value of the choice function TJ is set to 0 for the duration of the input presenta-
tion. Using a match tracking process, at the beginning of each input presentation,
the vigilance parameter ρck in each channel ck equals a baseline vigilance ρ̄ck.
When a mismatch reset occurs, the ρck of all pattern channels are increased
simultaneously until one of them is slightly larger than its corresponding match
function mck

J , causing a reset. The search process then selects another F2 node
J under the revised vigilance criterion until a resonance is achieved. Template
learning: Once a resonance occurs, for each channel ck, the weight vector wck

J

is modified by the following learning rule:

wck(new)
J = (1 − βck)wck(old)

J + βck(Ick ∧ wck(old)
J ). (5)

When an uncommitted node is selected for learning, it becomes committed and
a new uncommitted node is added to the F2 field. Fusion ART thus expands its
network architecture dynamically in response to the input patterns.

The network dynamics described above can be used to support a myriad
of learning operations. We show how fusion ART can be used for a variety of
traditionally distinct learning tasks in the subsequent sections.

3 Learning by Similarity Matching

With a single pattern channel, the fusion ART architecture reduces to the orig-
inal ART model. Using a selected vigilance value ρ, an ART model learns a set
of recognition nodes in response to an incoming stream of input patterns in a
continuous manner. Each recognition node in the F2 field learns to encode a tem-
plate pattern representing the key characteristics of a set of patterns. ART has
been widely used in the context of unsupervised learning for discovering pattern
groupings. Please refer to the selected ART literatures [3,5,8,9] for a review of
ART’s functionalities, interpretations, and applications.

4 Learning by Association

By synchronizing pattern coding across multiple pattern channels, fusion ART
learns to encode associative mappings across distinct pattern spaces. A specific
instance of fusion ART with two pattern channels is known as Adaptive Reso-
nance Associative Map (ARAM), that learns multi-dimensional supervised map-
pings from one pattern space to another pattern space [16]. An ARAM system
consists of an input field F a

1 , an output field F b
1 , and a category field F2. Given

a set of feature vectors presented at F a
1 with their corresponding class vectors

presented at F b
1 , ARAM learns a predictive model (encoded by the recognition

nodes in F2) that associates combinations of key features to their respective
classes.

Fuzzy ARAM, based on fuzzy ART operations, has been successfully applied
to numerous machine learning tasks, including personal profiling [19], document
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classification [11], personalized content management [18], and DNA gene expres-
sion analysis [22]. In many benchmark experiments, ARAM has demonstrated
predictive performance superior to those of many state-of-the-art machine learn-
ing systems, including C4.5, Backpropagation Neural Network, K Nearest Neigh-
bour, and Support Vector Machines.

5 Learning by Instruction

During learning, fusion ART formulates recognition categories of input pat-
terns across multiple channels. The knowledge that fusion ART discovers during
learning, is compatible with symbolic rule-based representation. Specifically, the
recognition categories learned by the F2 category nodes are compatible with a
class of IF-THEN rules that maps a set of input attributes (antecedents) in one
pattern channel to a disjoint set of output attributes (consequents) in another
channel. Due to this compatibility, at any point of the incremental learning pro-
cess, instructions in the form of IF-THEN rules can be readily translated into
the recognition categories of a fusion ART system. The rules are conjunctive in
the sense that the attributes in the IF clause and in the THEN clause have an
AND relationship. Augmenting a fusion ART network with domain knowledge
through explicit instructions serves to improve learning efficiency and predictive
accuracy.

The fusion ART rule insertion strategy is similar to that used in Cascade
ARTMAP, a generalization of ARTMAP that performs domain knowledge in-
sertion, refinement, and extraction [17]. For direct knowledge insertion, the IF
and THEN clauses of each instruction (rule) is translated into a pair of vec-
tors A and B respectively. The vector pairs derived are then used as training
patterns for inserting into a fusion ART network. During rule insertion, the vig-
ilance parameters are set to 1s to ensure that each distinct rule is encoded by
one category node.

6 Learning by Reinforcement

Reinforcement learning [15] is a paradigm wherein an autonomous system learns
to adjust its behaviour based on reinforcement signals received from the environ-
ment. An instance of fusion ART, known as FALCON (Fusion Architecture for
Learning, COgnition, and Navigation), learns mappings simultaneously across
multi-modal input patterns, involving states, actions, and rewards, in an online
and incremental manner. Compared with other ART-based reinforcement learn-
ing systems, FALCON presents a truly integrated solution in the sense that there
is no implementation of a separate reinforcement learning module or Q-value ta-
ble. Using competitive coding as the underlying principle of computation, the
network dynamics encompasses a myriad of learning paradigms, including unsu-
pervised learning, supervised learning, as well as reinforcement learning.

FALCON employs a three-channel architecture, comprising a category field
F2 and three pattern fields, namely a sensory field F c1

1 for representing current
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states, a motor field F c2
1 for representing actions, and a feedback field F c3

1 for rep-
resenting reward values. A class of FALCON networks, known as TD-FALCON
[21,23], incorporates Temporal Difference (TD) methods to estimate and learn
value function Q(s, a), that indicates the goodness to take a certain action a in
a given state s.

The general sense-act-learn algorithm for TD-FALCON is summarized in
Table 1. Given the current state s, the FALCON network is used to predict
the value of performing each available action a in the action set A based on the
corresponding state vector S and action vector A. The value functions are then
processed by an action selection strategy (also known as policy) to select an
action. Upon receiving a feedback (if any) from the environment after perform-
ing the action, a TD formula is used to compute a new estimate of the Q-value
for performing the chosen action in the current state. The new Q-value is then
used as the teaching signal (represented as reward vector R) for FALCON to
learn the association of the current state and the chosen action to the estimated
value.

Table 1. The TD−FALCON algorithm

1. Initialize the FALCON network.
2. Given the current state s, for each available action a in the action set A,

predict the value of performing the action Q(s,a) by presenting the corresponding
state and action vectors S and A to FALCON.

3. Based on the value functions computed, select an action a from A following an
action selection policy.

4. Perform the action a, observe the next state s′, and receive a reward r (if any).
5. Estimate the value function Q(s, a) following a temporal difference formula given

by ΔQ(s, a) = αTDerr.
6. Present the corresponding state, action, and reward (Q-value) vectors, namely

S, A, and R, to FALCON for learning.
7. Update the current state by s=s’.
8. Repeat from Step 2 until s is a terminal state.

7 Case Study: Minefield Navigation

The minefield simulation task studied here is similar to the underwater nav-
igation and mine avoidance domain developed by Naval Research Lab (NRL)
[7,14]. The objective is to navigate through a minefield to a randomly selected
target position in a specified time frame without hitting a mine. In each trial,
the autonomous vehicle (AV) starts from a random position in the field, and
repeats the cycles of sense, act, and learn. A trial ends when the system reaches
the target (success), hits a mine (failure), or exceeds 30 sense-act-learn cycles
(out of time). The target and the mines remain stationary during the trial.

Minefield navigation and mine avoidance is a non-trivial task. As the con-
figuration of the minefield is generated randomly and changes over trials, the
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Fig. 2. The task completion performance of TD-FALCON compared with the BP-Q
Learner operating with delayed rewards

system needs to learn strategies that can be carried over across experiments.
For sensing, the AV has a coarse 180 degree forward view based on five sonar
sensors. In each direction i, the sonar signal is measured by si = 1

di
, where di

is the distance to an obstacle in the i direction. Other sensory inputs include
the current and target bearings. In each step, the system chooses one of the five
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possible actions, namely move left, move diagonally left, move straight ahead,
move diagonally right, and move right.

In this domain, we conduct experiments using TD-FALCON, a three-channel
fusion ART model, with both immediate and delayed evaluative feedback. For
both reward schemes, at the end of a trial, a reward of 1 is given when the AV
reaches the target. A reward of 0 is given when the AV hits a mine. For the
immediate reward scheme, a reward is estimated at each step of the trial by
computing a utility function utility = 1

1+rd , where rd is the remaining distance
between the AV and the target position.

7.1 Performance Comparison

We compare the performance of TD-FALCON with an alternative reinforcement
learning system (hereafter referred to as the BP-Q Learner), in terms of success
rate, hit-mine rate, and out-of-time rate in a 16 by 16 minefield containing 10
mines. The BP-Q Learner uses the standard Q-learning rule and a gradient de-
scent based multi-layer feedforward neural network as the function approxima-
tor. For illustration purpose, we only show the performance of the two systems
operating with delayed rewards (Figure. 2). We can see that the BP-Q Learner
generally takes a very large number of (more than 40, 000) trials to reach 90%
success rates. In contrast, TD-FALCON consistently achieves the same level of
performance within the first 1000 trials. In other words, TD-FALCON learns at
least an order of magnitude faster than the BP-Q learner.

Considering network complexity, the BP-Q Learner has the advantage of a
highly compact network architecture. When trained properly, a BP network
consisting of 36 hidden nodes can produce performance equivalent to that of
a TD-FALCON model with say 200 category nodes. In terms of the speed of
adaptation, however, TD-FALCON is clearly a faster learner by consistently
mastering the task in a much smaller number of trials.

7.2 Knowledge Interpretation

To illustrate the variety of the knowledge learned by TD-FALCON, Table 2
shows a sample set of the knowledge encoded by its recognition nodes. Through
learning by similarity matching, TD-FALCON identifies key situations in its
environment that are of significance to its mission. Two such typical situations
are shown in the first row of the table. Through learning by association (or
directly as instructions), TD-FALCON learns the association between typical
situations and their corresponding desired actions. Two such association rules
are shown in the second row. Finally, through the reinforcement signals given by
the environment, TD-FALCON learns the value of performing a specific action
in a given situation. The third row shows two extreme cases, one indicating a
high payoff for taking an action in a situation and the other giving a severe
penalty for taking the same action in a slightly different situation.
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Table 2. Sample knowledge learned by FALCON in the minefield navigation domain.
∧ is used here to indicate AND operator.

Type of Learning Knowledge Learned
Similarity FrontSonar=1.0 ∧ Target=Front
matching FrontSonar≤0.5 ∧ Target=Front
Association or IF FrontSonar≤0.5 ∧ Target=Front THEN Move=Front
Instruction IF FrontSonar=1.0 ∧ DRightSonar≤0.5 ∧ Target=Front

THEN Move=DRight
Reinforcement IF FrontSonar≤0.5 ∧ Target=Front THEN Move=Front (Q=1.0)

IF FrontSonar=1.0 ∧ Target=Front THEN Move=Front (Q=0.0)

8 Conclusion

This paper has outlined a generalized neural architecture, known as fusion Adap-
tive Resonance Theory (fusion ART), that learns multi-dimensional mappings
simultaneously across multi-modal pattern channels, in an online and incremen-
tal manner. Such a learning architecture enables an autonomous agent to acquire
its intelligence in a real-time dynamic environment. Using Adaptive Resonance
Theory (ART) as an universal coding mechanism, the proposed model unifies
a myriad of traditionally distinct learning paradigms, including unsupervised
learning, supervised learning, rule-based knowledge integration, and reinforce-
ment learning. In fact, ART-style learning and matching mechanism seems to be
operative in many levels of the cerebral cortex of the brain, especially in the vi-
sion system [10]. The proposed framework may thus serve as a foundation model
for developing high level cognitive information processing capabilities, including
awareness, reasoning, explaining, and surprise handling.
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