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Self-Organizing Neural Models
Integrating Rules and Reinforcement Learning

Teck-Hou Teng, Zhong-Ming Tan, Ah-Hwee Tan, Senior Member, IEEE

Abstract— Traditional approaches to integrating knowledge
into neural network are concerned mainly about supervised
learning. This paper presents how a family of self-organizing
neural models known as Fusion Architecture for Learning,
COgnition and Navigation(FALCON) can incorporate a priori
knowledge and perform knowledge refinement and expansion
through reinforcement learning. Symbolic rules are formulated
based on pre-existing know-how and inserted into FALCON
as a priori knowledge. The availability of knowledge enables
FALCON to start performing earlier in the initial learning
trials. Through a temporal-difference (TD) learning method,
the inserted rules can be refined and expanded according to
the evaluative feedback signals received from the environment.
Our experimental results based on a minefield navigation task
have shown that FALCON is able to learn much faster and
attain a higher level of performance earlier when inserted with
the appropriate a priori knowledge.

I. INTRODUCTION

EXCITING and highly encouraging observations have
been made from reinforcement learning systems which

start off in a problem domain in complete oblivion and yet
achieve impressive performance after repetitive trials and
errors [1], [2]. However, it is always a zero-sum game in the
sense that sufficient learning cycles are needed for a system
to achieve the desired level of performance through repetitive
trials. Learning efficiency, besides performance accuracy, is
one of the other performance metrics that any sound solution
should aim to optimize. A self-organizing neural model that
saves precious time spent in learning from the ground up is
needed.

A principled way to improve learning efficiency is by
inserting a priori knowledge into a learning system during
initialization. These are prerequisite knowledge about the
constraints, limitations and operational characteristics of the
problem domain. The field of computational intelligence
offers a wide myriad of techniques for the discovery of
knowledge from any conceivable perspective of the problem
domain. Neural networks, decision trees, and statistical ma-
chine learning methods are the major approaches to learning
logical rules for knowledge discovery and data understand-
ing [3]. A learning system that is able to leverage on these
a priori knowledge will be a great asset.

Previous approaches to integrating knowledge into neural
network are mainly achieved through the supervised learning.
Rules are used to initialize the structure of the neural net-
work and refinement is achieved using the back-propagation

The authors are with the Nanyang Technological University, School of
Computer Engineering and Intelligent Systems Centre, Nanyang Avenue,
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algorithm [4], [5] or its variant [6]. Typical of most such
learning approaches, these works assume the rules that are
used to initialize the neural networks to be quite complete.
Also, the symbolic rules may lose their original meanings
after being put through the weight tuning process of the back-
propagation algorithm.

Such issues are addressed by Tan with a hybrid system
known as Cascade ARTMAP [7] that incorporates sym-
bolic knowledge into ART-based neural models. Cascade
ARTMAP is further designed to perform multi-step infer-
encing and pruning of the learnt rules. However, the work is
still based on supervised learning and therefore it lacks the
exploratory capability of the solution space adopted in the
reinforcement learning approach.

Effort that combines a priori knowledge and reinforce-
ment learning can be found in Kary’s bi-memory model
(BIMM) [8] that makes use of pre-existing knowledge to aid
in the exploration of state space. The short-term memory of
BIMM guides exploration through an action probability that
is determined through the SLAP principle while the long-
term memory is used for action-value learning. As all pre-
existing knowledge is still learned by the neural model, there
is no indication that it is able to build on external a priori
knowledge.

The CLARION cognitive architecture [9] represents ex-
plicit knowledge as a rule network at the top level and
acquires implicit knowledge using back-propagation neural
network through reinforcement learning at the bottom level.
While bottom-up transfer of implicit knowledge to the top
level is achieved through the Rule-Extraction-Refinement
algorithm [10], top-down learning guides the bottom level
in the learning of explicit knowledge [11]. The two-level
design, motivated by the study of implicit and explicit
processes, nevertheless introduces the issues of efficiency and
consistency.

This paper presents a family of self-organizing models
known as FALCON that integrates symbolic rules and re-
inforcement learning. As a multi-channel ART-based neural
network [12], FALCON is designed to perform online and
incremental learning across multi-modal input patterns, in-
volving state, action and reward. As FALCON’s network
structure is compatible with the symbolic rule-based rep-
resentation, a class of reactive action rules can be inserted
readily into FALCON at any point of the learning process.
More importantly, the refinement of such rules and the
discovery of new rules can be guided directly through a
temporal difference (TD) reinforcement learning method,
such as Q-Learning [13] [14]. In contrast to CLARION’s two
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level architecture, FALCON presents an integrated solution
for representing both symbolic and learned knowledge.

Specifically in this paper, we present a rule translation
and insertion algorithm for incorporating a priori knowledge
into FALCON networks. Such knowledge is represented as
symbolic IF-THEN rules, each of which is associated with
a reward factor. Rules with greater reward factors lead to
more favorable outcomes while those with negative rewards
result in less desirable situations. Inserting rules into a neural
model relieves its burden of having to discover these rules
on its own. It is also an avenue to include rules that are not
captured in the training cases but may yet be useful in the
real situation. Rule structures that are not easily learned can
also be included.

In most cases, the inserted rules may not be complete or
optimal. They have to be constantly evaluated for their via-
bility. Through a temporal difference reinforcement learning
method, the reward factor of each rule is constantly moder-
ated by FALCON using the feedback from the environment
on the action that the rule recommends. In addition, new
rules are generated from the explored actions that result in
favorable outcomes. FALCON thus constantly maintains and
expand its knowledge using the feedback signals from the
environment to achieve optimal performance.

We have conducted extensive experiments using a mine-
field navigation domain, wherein a variety of rules are in-
serted into FALCON before learning. The experiment results
show that pre-loading FALCON with a priori knowledge
leads to significantly better performance and learning effi-
ciency. In addition, it is found that the quality of the rules can
also influence the outcome of the experiments. Specifically,
FALCON is able to perform better when it is pre-loaded with
positive rules recommending do’s than when it is pre-loaded
with the negative ones recommending don’t’s.

The rest of the paper is organized as follows. The FAL-
CON architecture with its algorithm is summarized in Sec-
tion II. The rule representation schemes, the rule insertion
algorithm as well as the inferencing framework are presented
in Section III. Section IV presents the reinforcement learning
algorithm that guides the FALCON’s learning activity. The
experiments and results are presented in Section V. The final
section concludes and provides a brief discussion of future
work.

II. FALCON DYNAMICS

FALCON employs a 3-channel architecture (see Figure 1),
comprising a cognitive field F c

2 and three input fields, namely
a sensory field F c1

1 for representing current states, an action
field F c2

1 for representing actions, and a reward field F c3
1

for representing reinforcement values. The generic network
dynamics of FALCON, based on fuzzy ART operations [15],
is described below.
Input vectors: Let S = (s1, s2, . . . , sn) denotes the state
vector, where si ∈ [0, 1] indicates the sensory input i. Let
A = (a1, a2, . . . , am) denotes the action vector, where ai ∈
[0, 1] indicates a possible action i. Let R = (r, r̄) denotes
the reward vector, where r ∈ [0, 1] is the reward signal

Fig. 1. The FALCON architecture.

value and r̄ (the complement of r) is given by r̄ = 1 − r.
Complement coding serves to normalize the magnitude of
the input vectors and has been found to be effective in ART
systems in preventing the code proliferation problem. As all
input values of FALCON are assumed to be bounded between
0 and 1, normalization is necessary if the original values are
not in the range of [0, 1].
Activity vectors: Let xck denotes the F ck

1 activity vector for
k = 1, . . . , 3. Let yc denotes the F c

2 activity vector.
Weight vectors: Let wck

j denotes the weight vector as-
sociated with the jth node in F c

2 for learning the input
patterns in F ck

1 for k = 1, . . . , 3. Initially, F c
2 contains

only one uncommitted node and its weight vectors contain
all 1’s. When an uncommitted node is selected to learn an
association, it becomes committed.
Parameters: FALCON’s dynamics is influenced by choice
parameters αck > 0 for k = 1, 2, 3; learning rate parameters
βck ∈ [0, 1] for k = 1, 2, 3; contribution parameters γck ∈
[0, 1] for k = 1, 2, 3 where

∑3
k=1 γck = 1; and vigilance

parameters ρck ∈ [0, 1] for k = 1, 2, 3.
Code activation: A bottom-up propagation process first
takes place in which the activities (known as choice function
values) of the cognitive nodes in the F c

2 field are computed.
Specifically, given the activity vectors xc1, xc2 and xc3 (in
the input fields F c1

1 , F c2
1 and F c3

1 respectively), for each F c
2

node j, the choice function T c
j is computed as follows:

T c
j =

3∑
k=1

γck
|xck ∧ wck

j |

αck + |wck
j |

(1)

where the fuzzy AND operation ∧ is defined by (p ∧
q)i ≡ min(pi, qi), and the norm |.| is defined by |p| ≡∑

i pi for vectors p and q. In essence, the choice function
Tj computes the similarity of the activity vectors with their
respective weight vectors of the F c

2 node j with respect to
the norm of individual weight vectors.
Code competition: The F c

2 node with the highest choice
function is identified in a code competition process. The
winner is indexed at J where

T c
J = max{T c

j : for all F c
2 node j} (2)

When a category choice is made at node J , yc
J = 1;

and yc
j = 0 for all j �= J . This indicates a winner-take-all

strategy.
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Template matching: Before code J can be used for learning,
the template matching process checks the proximity of the
weight template of code J to the corresponding activity
pattern xck. Resonance occurs if for each channel k, the
match function mck

J of the chosen code J meets its vigilance
criterion:

mck
J =

|xck ∧ wck
J |

|xck|
≥ ρck (3)

The match function mck
J computes the similarity of the

activity vector xck and weight vector wck
J with respect to the

norm of the activity vector. Together, the choice and match
functions work co-operatively to achieve stable coding and
maximize code compression.

When resonance occurs, learning ensues. If any of the
vigilance constraints is violated, mismatch reset occurs in
which the value of the choice function T c

J is set to 0 for the
duration of the input presentation. With a match tracking
process, at the beginning of each input presentation, the
vigilance parameter ρc1 equals a baseline vigilance ρ̄c1. If
a mismatch reset occurs, ρc1 is increased until it is slightly
larger than the match function mc1

J . The search process
then selects another F c

2 node J under the revised vigilance
criterion until a resonance is achieved. This search and test
process is guaranteed to end as FALCON will either find
a committed node that satisfies the vigilance criterion or
activate an uncommitted node which would definitely satisfy
the criterion due to its initial weight values of 1s.
Template learning: Once a node J is selected, for each
channel k, the weight vector wck

J is modified by the follow-
ing learning rule:

w
ck(new)
J = (1 − βck)w

ck(old)
J + βck(xck ∧ w

ck(old)
J ) (4)

The learning rule adjusts the weight values towards the
fuzzy AND of their original values and the respective weight
values. The rationale is to learn by encoding the common
attribute values of the input vectors and the weight vectors.
For an uncommitted node J , the learning rates βck are
typically set to 1. For committed nodes, βck can remain
as 1 for fast learning or below 1 for slow learning in a
noisy environment. When an uncommitted node is selected
for learning, it becomes committed and a new uncommitted
node is added to the F c

2 field. FALCON thus expands its
network architecture dynamically in response to the input
patterns.

III. RULES REPRESENTATION AND INSERTION

As the knowledge structure of FALCON is compatible
with the generalized modus ponens format, knowledge about
the desirable and non-desirable actions for a given situation
can be formulated as symbolic rules and inserted into a
FALCON network. Initializing FALCON with pre-existing
rules before learning serves to set up the global solution
structure. This helps to improve learning efficiency and pre-
diction accuracy. The subsequent sections contain the details
of the symbolic rule handling mechanism of FALCON.

A. Rule Representation

Each symbolic rule is associated with a reward factor
on the consequent in response to an antecedent. Let X

denotes the set of attribute-value pairs, Xrk denotes the set of
attribute-value pair avi for the antecedents and Yrk denotes
the set of attribute-value pair avj for the consequents of a
symbolic rule rk. Each symbolic rule rk has the following
format:

IF
∧
i

avi THEN Yrk(REWARD p) (5)

where avi ∈ Xrk ; and the antecedents Xrk and the
consequents Yrk are subsets of X with the constraint of
Xrk ∩ Yrk = 0. Each rule has a reward factor p defined
as p ∈ [0, 1]. The attribute-value pair avi as an element
of X can be defined as {(xi, vih)|vih ∈ V xi , xi ∈ X, i ∈
1, . . . , |X|, h ∈ 1, . . . , |V xi |} where V xi is the domain of
possible values for attribute xi. For i ≥ 2, the attribute-value
pairs avi are conjoined. Disjunctive relationship among the
attributes exists among the rules with identical consequents.

B. Rule Translation

For insertion into the FALCON model, each symbolic rule
has to be translated into an equivalent vector format. Specifi-
cally, each attribute-value pair avi in a rule is converted into
a complement-coded vector (vi, v

c
i ) such that

(vi, v
c
i ) =

⎧⎨
⎩

(1, 0) if xi = vih

(0, 1) if xi �= vih

(0, 0) if xi is not considered
(6)

Each discrete-value attribute-value pair avi can be trans-
lated as a complement-coded vector (vi, v

c
i ) where vc

i =
1 − vi. Each attribute xi is expressed as a concatenation of
complement-coded vector {(vi, v

c
i )|i ∈ 1, . . . , |V xi |}. This

concatenated vector representation is known as the attribute
vector.

The dimension of the attribute vector for discrete-value
attribute xi is (2 × |V xi |). The translated antecedent is a
concatenation of the attribute vectors. It has the dimension
of (2 × |X| × |V xi |). All the key attributes are represented
in the translated antecedent regardless of whether they are
represented in the relevant rule. In the context of FALCON,
the translated antecedent is known as the state vector S,
the translated consequent is known as the action vector A

and both of them are associated to reward vector R. The
consequent vector A has the dimension of 2×|Y rk |×|V xj |.
There is provision for multiple consequents in this solution.
The reward vector R = (r, rc) is comprised of the reward
factor p and its complement 1 − p, i.e., (r, rc) = (p, 1 − p).

The state-action-reward (S,A,R) triad tuple of the sym-
bolic rule is learnt by FALCON as a priori knowledge.
Complement coding is employed for the antecedent and
consequent as well as the reward factor.
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C. Rule Insertion

After translation, the state S, action A and reward R

vectors are inserted into FALCON through the iterative per-
formance of the code activation, code competition, template
matching and template learning procedure. The algorithm
that is presented in Table I outlines the rule insertion proce-
dure.

TABLE I

RULE INSERTION ALGORITHM

1) Initialize the FALCON network
2) Set ρck to 1
3) For each rule rk

a) Translate antecedent X
rk into state vector S;

consequent Y
rk into action vector A and

reward p into reward vector R

b) Present S, A and R to input fields of FALCON
c) Invoke FALCON dynamic (describe in Section II)

to insert the translated rule.
4) Repeat from Step 2 to Step 6 for all the rules.

During rule insertion, the vigilance parameters ρck are
each set to 1 to ensure that only identical attribute vectors are
grouped into one recognition category. Contradictory sym-
bolic rules are detected during rule insertion when identical
input attribute vectors are associated with distinct output
attribute vectors. The detection is achieved through a perfect
mismatch phenomenon, in which the system tries to raise
sensory field vigilance ρc1 above 1 in response to a mismatch
in the motor field.

In essence, FALCON is taught that by applying action A

to state S will provide it with reward R. This accomplishes
the basis of a rule. A cognitive node with the (S,A,R)
triad tuple establishes such a correlation. Hence, there are
as many cognitive nodes as the number of inserted rules.
The inserted rules are temporarily assumed to be distinct and
viable. Refinement of these a priori knowledge is achieved
under the guidance of the temporal difference reinforcement
learning method which is detailed in the subsequent section.

IV. REINFORCEMENT LEARNING

Though the rules may be based on sound observations,
the heuristic nature of these rules is an indication of their
inherent inaccuracies and inconsistencies. Various constraints
as well as the vast complexity of the problem domain demand
further augmentations of the knowledge base of FALCON. It
is a non-trivial task to ensure completeness of a knowledge
base for complex problem domains. Autonomous learning
capability such as reinforcement learning presents itself as
a viable approach in providing an adequate coverage of the
solution space.

TD-FALCON is an extension of FALCON to incorporate
Temporal Difference (TD) methods to estimate and learn
value functions of action-state pairs Q(s, a) that indicates
the goodness for a learning system to take a certain action
a in a given state s. Such value functions are then used in
the action selection mechanism, also known as the policy, to

decide on the method in which an action shall be selected.
The policy decides whether an action shall be identified
through exploration of the solution space or exploitation of
the knowledge base.

Given the current state s, it first decides between ex-
ploration and exploitation by following an action selection
policy. For exploration, a random action is picked. For
exploitation, it searches for optimal action through a direct
code access procedure. Upon receiving a feedback from
the environment after performing the action, a temporal
difference formula is used to compute a new estimate of
the Q value of performing the chosen action in the current
state. The new Q value is then used as the teaching signal
for TD-FALCON to learn the association of the current state
and the chosen action to the estimated Q value.

A. Action Selection Policy

The simplest action selection policy is to pick the action
with the highest value predicted by the TD-FALCON net-
work. However, a key requirement of autonomous agents is to
explore the environment. This is especially important for an
agent to function in situations without immediate evaluative
feedback. If an agent keeps selecting the optimal action that
it believes, it will not be able to explore and discover better
alternative actions. There is thus a fundamental tradeoff be-
tween exploitation, i.e., sticking to the best actions believed,
and exploration, i.e., trying out other seemingly inferior and
less familiar actions.

The ε-greedy policy selects the action with the highest
value with a probability of 1 − ε and takes a random action
with probability ε [16]. With a constant ε value, the agent
will always explore the environment with a fixed level of
randomness. In practice, it may be beneficial to have a higher
ε value to encourage the exploration of paths in the initial
stage and a lower ε value to optimize the performance by
exploiting familiar paths in the later stage. A decay ε-greedy
policy is thus adopted to gradually reduce the value of ε over
time. The rate of decay is typically inversely proportional
to the complexity of the environment as a more complex
environment with larger state and action spaces will take a
longer time to explore.

B. Direct Code Access

During the inference process, FALCON attempts to seek
out a reasonable response to the current situation. The situa-
tion is encoded in the same format as the antecedent vector.
It is presented as the state vector S to FALCON. Through
a direct code access procedure [17], FALCON searches for
the cognitive node which matches with the current state and
has the maximal reward value. The TD-FALCON algorithm
with direct code access is as shown in Table II.

For direct code access, the activity vectors xc1, xc2, and
xc3 are initialized by xc1 = S, xc2 = (1, . . . , 1), and
xc3 = (1, 0). FALCON then performs code activation and
code competition according to equations (1) and (2) to select
a cognitive node.
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TABLE II

TD-FALCON WITH DIRECT CODE ACCESS ALGORITHM

1) Initialize the TD-FALCON network with a priori
knowledge.

2) Sense the environment and formulate a state
representation s.

3) Follow an action selection policy to make a choice
between exploration and exploitation.
a) If exploration, take a random action.
b) If exploitation, identify the encoded action a with the

maximal Q(s,a) value by presenting the state vector S,
the action vector A = (1, . . . , 1), and the reward vector
R = (1, 0) to TD-FALCON.

4) Perform the action a, observe the next state s and
receive a reward r (if any) from the environment.

5) Estimate the revised value function Q(s,a) following a
Temporal Difference formula such as δQ(s, a) = αTDerr .

6) Present the corresponding state S, action A and
reward(Q-value) R vectors ti TD-FALCON for learning.

7) Update the current state by s = s’.
8) Repeat from Step 2 until s is a terminal state.

Upon selecting a winning F c
2 node J , the chosen node J

performs a readout of its weight vector to the action field
F c2

1 such that

xc2(new) = xc2(old) ∧ wc2
J (7)

An action aI is then chosen, which has the highest activation
value

xc2
I = max{x

c2(new)
i : for all F c2

1 node i} (8)

The state vector Ŝi is the only input to FALCON. In
exploitation mode, it seeks out a cognitive node j whose
state vector Sj has the best match with state vector Si shall
provide its action vector Aj as the output. A best match is
determined through the vigilance criterion during template
matching. This requires the vigilance parameter ρpk to have
a value between 0 and 1, i.e, ρpk ∈ (0, 1) The closer ρpk is
to 1, the stronger the match is required to be and vice versa.
The action vector of the chosen code J which satisfies the
vigilance criterion is decoded to obtain the symbol equivalent
to be acted upon by the agent on the environment.

C. Value Function Learning

A typical Temporal Difference equation for iterative esti-
mation of value functions Q(s,a) is given by

ΔQ(s, a) = αTDerr (9)

where α ∈ [0, 1] is the learning parameter and TDerr is
a function of the current Q-value predicted by TD-FALCON
and the Q-value newly computed by the temporal difference
formula.

TD-FALCON employs a Bounded Q-learning rule,
wherein the temporal error term is computed by

ΔQ(s, a) = αTDerr (1 − Q (s, a)) (10)

Fig. 2. The minefield navigation simulator.

where TDerr = r + γmaxa′Q(s′, a′) − Q(s, a), of which
r is the immediate reward value, γ ∈ [0, 1] is the discount
parameter, and maxa′Q(s′, a′) denotes the maximum esti-
mated value of the next state s′. It is important to note
that the Q values involved in estimating maxa′Q(s′, a′) are
computed by the same TD-FALCON network itself and not
by a separate reinforcement learning system. The Q-learning
update rule is applied to all states that the agent traverses.
With value iteration, the value function Q(s, a) is expected to
converge to r+γmaxa′Q(s′, a′) over time. By incorporating
the scaling term 1−Q (s, a), the adjustment of Q values will
be self-scaling so that they will not be increased beyond 1.
The learning rule thus provides a smooth normalization of
the Q values. If the reward value r is constrained between 0
and 1, we can guarantee that the Q values will remain to be
bounded between 0 and 1.

V. EXPERIMENTS

In the minefield navigation domain, an autonomous vehicle
(AV) is tasked to navigate a minefield (see Fig. 2) to a
randomly placed target destination within a specified time
frame. The mines are randomly distributed throughout the
minefield. The task fails when the AV hits a mine or when it
is unable to reach the target destination using the allocated
number of steps. The task is successful when the AV reaches
the target destination within the allocated number of steps
and without moving into any mine along the way. The AV
starts to move from a random vacate location in the minefield.
It acts out its existence through a repetitive cycle of sense,
act and learn. All the experiments are based on a 16 by
16 minefield consisting of ten mines. In addition, the target
destination and the mines remain stationary during the trial.

The sonar readings and the relative target bearings are
taken into consideration in the symbolic rules. Sonar readings
of the mines are available from five positions - left, left
diagonal, front, right diagonal and right. For each direction
i, the sonar signal is measured by si = 1

di
, where di is the

distance to an obstacle (that can be a mine or the boundary
of the minefield) in the i direction. When the sonar reading
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of a particular direction is 1, this indicates that the mine is
adjacent to the AV. The other input attribute is the relative
bearing of the target from the current position. There are
eight target bearings - front, diagonal right, right, diagonal
back right, back, diagonal back left, left and diagonal left.
Table IV contains P1 rules that recommend the best pos-
sible actions. Table V contains the P2 rules which are the
supplementary rules that recommend the second best actions.
Table III contains the N rules which are the negative rules.
Whereas a positive rule recommends action(s) leading to a
positive outcome, a negative rule highlights actions leading
to undesirable situations.

TABLE III

N RULES

NR1: IF LeftSonar = 1
THEN Move Left (REWARD = 0)

NR2: IF DiagonalLeftSonar = 1
THEN Move DiagonalLeft (REWARD = 0)

NR3: IF FrontSonar = 1
THEN Move Front (REWARD = 0)

NR4: IF DiagonalRightSonar = 1
THEN Move DiagonalRight (REWARD = 0)

NR5: IF RightSonar = 1
THEN Move Right (REWARD = 0)

Each symbolic rule leads to a decision on the movement
direction. The AV can choose from one out of the five
possible actions, namely move left, move diagonally left,
move straight ahead, move diagonally right, and move right.
At the end of a trial, a reward of 1 is given when the AV
reaches the target. A reward of 0 is given when the AV fails
to reach the target destination or when it moves into a mine.
For the delayed feedback scheme, no immediate feedback is
given at each step of the trial.

A TD-FALCON network containing 18 nodes in the
sensory field (representing 5 × 2 complement-coded sonar
signals and 8 target bearing values), five nodes in the action
field, and two nodes in the reward field (representing the
complement-coded function value) is included as the brain
of the AV. TD-FALCON employed a set of parameter values
obtained through empirical experiments: choice parameters
αc1 = 0.1, αc2 = 0.001, αc3 = 0.001; learning rate βck =
1.0 for k = 1, 2, 3 for fast learning; contribution parameters
γc1 = γc2 = γc3 = 1

3 ; baseline vigilance parameters
ρ̄c1 = 0.25 and ρ̄c2 = 0.2 for a marginal level of match
requirement in the state and action spaces, and ρ̄c3 = 0.5
for a stricter match criterion on reward values. For Temporal
Difference learning, the learning rate α was fixed at 0.5 and
the discount factor γ was set to 0.9. The initial Q value was
set to 0.5. For action selection policy, ε was initialized to 0.5
and decayed at a rate of 0.0005 until it dropped to 0.005.

TD-FALCON is evaluated for its ability to response ap-
propriately to same task configuration under five different
initialization schemes. TD-FALCON that is trained up to
3000 iterations using Q-Learning with delayed feedback is
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Fig. 3. The success rates of TD-FALCON trained with delayed feedback.

used for all the schemes. Each of these initialization schemes
differs in the rule set used to initialize TD-FALCON for the
navigation task in the Minefield Simulation Platform. From
the legend of the plots, AV is a TD-FALCON that has not
been initialized with any a priori knowledge. This forms
the baseline for the performance comparison; P1-AV is a
TD-FALCON that is pre-loaded with a set of P1 rules (see
Table IV); P1P2-AV is a TD-FALCON that is pre-loaded
with the combination of P1 rules and P2 rules, i.e., P1+P2
rules (see Table V for P2 rules); N -AV is a TD-FALCON
that is pre-loaded with a set of N rules (see Table III)
and P1N -AV is a TD-FALCON that is pre-loaded with the
combination of P1 rule and N rules.

The success rates of the AVs using various rule initializa-
tion schemes are shown in Figure 3. We can see that AV
has a much more modest level of success rates over the
increasing number of training iterations as compared to the
other AVs. It only achieve a success rate of 19.3% after 200
iterations. The success rates begins to plateau near the 87%
mark after around 2200 iterations. Its success rates peak at
around 88.7% after 2600 iterations before retreating to 87.3%
level at 3000 iterations. All these observations indicate that
TD-FALCON has reached a local saturation point. It is not
able to improve its performance beyond the 90% level. P1-
AV, on the other hand, exhibits a marked improvement in
performance. The success rates of P1-AV shoots right up to
the 82.1% level only after 200 iteration. After some minor
corrections, the success rates begin to stabilize after only
1000 iterations at a higher level of around 93%. Notably, its
peak success rates performance is 6% more than that of the
AV without rule insertion. This clearly shows that inserting
rules into TD-FALCON has lifted its performance.

With the insertion of the rule sets P1 and P2, P1P2-AV
shows an even higher level of performance. Specifically, the
success rates achieve 91.1% only after 200 iterations. Its
performance which stabilizes after just 600 iterations has
the highest success rate of 97% among all the AVs. This
has clearly highlighted the merit of inserting positive rules
into TD-FALCON. With the negative rules inserted into TD-
FALCON, N -AV reveals a rather modest improvement in
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TABLE IV

P1 RULES

P1R1: IF FrontSonar �= 1 AND TargetBearing = front
THEN Move Front (REWARD = 1)

P1R2: IF DiagonalRightSonar �= 1 AND TargetBearing = DiagonalRight
THEN Move DiagonalRight (REWARD = 1)

P1R3: IF RightSonar �= 1 AND TargetBearing = Right
THEN Move Right (REWARD = 1)

P1R4: IF RightSonar �= 1 AND TargetBearing = DiagonalBackRight
THEN Move Right (REWARD = 1)

P1R5: IF LeftSonar �= 1 AND TargetBearing = Back
THEN Move Left (REWARD = 1)

P1R6: IF LeftSonar �= 1 AND TargetBearing = DiagonalBackLeft
THEN Move Left(REWARD = 1)

P1R7: IF LeftSonar �= 1 AND TargetBearing = Left
THEN Move Left (REWARD = 1)

P1R8: IF DiagonalLeftSonar �= 1 AND TargetBearing = DiagonalLeft
THEN Move DiagonalLeft (REWARD = 1)

TABLE V

P2 RULES

P2R1: IF DiagonalLeftSonar �= 1 AND FrontSonar = 1 AND TargetBearing = front
THEN Move DiagonalRight (REWARD = 1)

P2R2: IF DiagonalRightSonar = 1 AND RightSonar �= 1 AND TargetBearing = back
THEN Move Right (REWARD = 1)

P2R3: IF DiagonalRightSonar �= 1 AND RightSonar = 1 AND TargetBearing = Right
THEN Move DiagonalRight (REWARD = 1)

P2R4: IF DiagonalRightSonar �= 1 AND RightSonar = 1 AND TargetBearing = DiagonalBackRight
THEN Move DiagonalRight(REWARD = 1)

P2R5: IF RightSonar �= 1 AND TargetBearing = Back
THEN Move Right (REWARD = 1)

P2R6: IF LeftSonar = 1 AND DiagonalLeftSonar �= 1 AND TargetBearing = DiagonalBackLeft
THEN Move DiagonalLeft (REWARD = 1)

P2R7: IF LeftSonar = 1 AND DiagonalLeftSonar �= 1 AND TargetBearing = Left
THEN Move DiagonalLeft (REWARD = 1)

P2R8: IF LeftSonar �= 1 AND DiagonalLeftSonar = 1 AND TargetBearing = DiagonalLeft
THEN Move Left (REWARD = 1)
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Fig. 4. The average normalized steps taken by TD-FALCON trained
with delayed feedback.
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Fig. 5. The average number of cognitive nodes created by TD-
FALCON trained with delayed feedback.
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performance. Its performance stabilizes earlier than AV at
around 1800 iterations and its improvement is marginal and is
only observable in the initial learning trials. Its success rates
peak at 88% after 2400 iterations. P1N -AV has a slightly
lackluster performance than that of P1P2-AV but it is still
better than P1-AV. Though the insertion of negative rules
may be beneficial, its benefits is diminished in TD-FALCON
that has been inserted with positive rules.

From the above observations, it can be concluded that TD-
FALCON that is not initialized with any prior knowledge
is not able to achieve the same level of success over the
same learning trials as those that have been pre-loaded with
some form of a priori knowledge. The merits of having pre-
existing knowledge is immediately apparent from the com-
parison among the success rates plots against the baseline.

To evaluate how well the AV is able to traverse from its
initial position to its target destination, we define a measure
called normalized step given by stepn = step

sd
, where step

is the number of sense-move-learn cycles taken to reach the
target and sd is the shortest distance between the starting and
target positions. A normalized step of 1 means the system
has taken the optimal (shortest) path to the target destination.
Figure 4 shows that P1-AV, P1P2-AV and P1N -AV all take
a close to optimal path to the target destination after only
200 iterations. AV and N-AV require more iterations before
it acquires the capability to move along an approximately
optimal path to the target destination. This clearly illustrates
the beneficial effect of inserting positive logic rules over
negative logic rules and not inserting any rules at all.

Inserted rules are represented as cognitive nodes in TD-
FALCON. Each of these nodes maps a state vector S to
its action vector A and the reward vector R. The network
complexity plot in Figure 5 shows the node count at a 200-
iteration interval. It shows AVs pre-loaded with rules have a
higher number of node counts at the earlier iterations. With
reference back to Figure 3, AVs with higher node count have
higher success rate. However, a noteworthy observation is
made between the node counts of P1N -AV and P1-AV. At
200 iterations, P1-AV has around 27 nodes and manages
to achieve 82.1% success rate while P1N -AV manages only
80.5% success rate with around 33 nodes. It has 6 more nodes
yet its success rate is 1.55% lower. P1N -AV has more nodes
than P1-AV because it is pre-loaded with P1 and N rules.
However these extra nodes do not translate into better success
rates. This is an indication that the quality of the nodes has
an important role in the performance of the TD-FALCON.
Therefore it is necessary to refine the rules as represented
by these cognitive nodes through the reinforcement learning
approach to ensure optimal performance.

VI. CONCLUSION

We have shown that inserting FALCON with a priori
knowledge greatly enhances its performance for the naviga-
tion task towards the target destination in the minefield sim-
ulation platform. FALCON is known to be able to perform
well with zero knowledge. With a priori knowledge, it is able
to perform even better. Thus, it is concluded that it is always

better to bootstrap FALCON with sound a priori knowledge
about the problem domain. In the experiments, FALCON
has also been inserted with different types of knowledge. It
is shown that positive knowledge is able to provide much
greater improvement to the performance of FALCON while
negative knowledge is able to lift the performance of FAL-
CON slightly. It is also observed that the quality rather than
the quantity of the inserted rules has a greater influence on
the performance of FALCON. Subsequent extension to this
effort may include further investigation on various learning
paradigms, the use of novel techniques for obtaining better
quality rules as well as to expand on the capability of
FALCON to handle more expressive rules.
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