
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

8-2004 

Novel seed selection for multiple objects detection and tracking Novel seed selection for multiple objects detection and tracking 

Zailiang PAN 

Chong-wah NGO 
Singapore Management University, cwngo@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Graphics and Human Computer Interfaces Commons 

Citation Citation 
PAN, Zailiang and NGO, Chong-wah. Novel seed selection for multiple objects detection and tracking. 
(2004). Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, 
UK, 2004 August 23-26. 2, 744-747. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6555 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Novel Seed Selection for Multiple Objects Detection and Tracking

Zailiang Pan and Chong-Wah Ngo
Department of Computer Science

City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong

{zerin, cwngo}@cs.cityu.edu.hk

Abstract

This paper proposes a unified approach for initializing,
detecting and tracking of multiple moving objects. Object
initialization is achieved through novel seed selection which
is adaptively activated, depending on the quality of track-
ing, to select the best possible frames along the temporal
direction for object detection. EM algorithm is then em-
ployed to robustly segment and detect multiple objects in
a selected frame. Each detected object is represented by an
appearance-based model and mean shift tracking procedure
is adopted to rapidly and effectively track the target objects.

1. Introduction
The effective initialization, detection and tracking of

multiple objects in a sequence is a challenging task. Popular
approaches include energy minimization [5], condensation
[3] and mean shift tracking [1, 2]. Very often, manual initial-
ization of object locations is necessary for these approaches,
in particular when camera motion exists. In this paper, we
propose an automatic motion-based approach for object ini-
tialization through novel seed selection (NSS). NSS is a pro-
cedure to search for the best possible frame, not necessary
the first frame, in a sequence to start object detection and
tracking. This is motivated by the fact that not every frame
is appropriate for object localization since 1) some objects
may cease moving in some frames; 2) some objects may
be occluded; 3) some objects may have same moving direc-
tion as camera motion; 4) some frames may not be stable
due to camera shaking artifacts.

NSS is achieved through motion discriminant analysis,
more specifically, NSS looks for seeds (or frames) that con-
tain the most distinctive motion clusters. Once a seed is lo-
cated, EM algorithm is initialized to detect and segment
possible objects in the frame. Mean shift tracking proce-
dure is then employed to rapidly track multiple detected ob-
jects in both temporal forward and backward directions. In
our framework, the process of initialization, detection and
tracking is represented as a finite state machine (illustrated

in Fig 1). Given an image sequence, NSS is adaptively acti-
vated whenever the quality of tracking starts to degrade, for
instance, due to occlusion.

2. Motion Discriminant Analysis
3D structure tensor is used for motion representation.

The computed optical flows and their fidelity measures are
utilized directly for motion clustering and discrimination.
2.1. 3D Tensor Representation

Let I(x, y, t) be the intensity of a point in 3D image
volume. By assuming point intensity remains constant in
a short time. A constraint condition can be derived as

dI

dt
=

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
= ε (1)

where u and v represent the local spatial velocity along the
x and y coordinates respectively. ε is assumed to be zero-
mean Gaussian noise. The total sum of ε2 over a 3D image
volume R can be represented as

E =
∑

ε2 = V T

( ∑
x,y,t∈R

(∇I)(∇I)T

)
V (2)

where V = [u, v, 1]T and ∇I =
[

∂I
∂x , ∂I

∂y , ∂I
∂t

]T

. The cen-

tral term, which is a symmetric tensor representation of the
local structure of R, has the form

Γ =

[
Jxx Jxy Jxt

Jyx Jyy Jyt

Jtx Jty Jtt

]
(3)

Jmn =
∑

x, y, t∈R

∂I

∂m

∂I

∂n
m, n = x, y, t

Given the tensor representation in Eqn (3), the optical flow
v = [u, v]T can be estimated by minimizing the cost func-
tion E in Eqn (2). The diagonal components of a tensor
which represent the intensity variation in spatio-temporal
coordinate can be exploited for fidelity measure. Thus, our
proposed fidelity term λ, which depicts the certainty of es-
timated optical flow in R, is defined as

λ = 1 − E

E + Jxx + Jyy
(4)
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The fidelity term has following favorable properties: 1) It is
maximal for ideal flows, i.e., E = 0; 2) It is minimal if no
spatial intensity variation, i.e., Jxx + Jyy = 0; 3) Its value
is normalized in the range [0, 1].
2.2. Motion Clustering and Discriminant Analysis

Given the flows {vi} and their fidelities {λi} at time t as
described in Section 2.1, we adopt k-mean algorithm with
robust estimator for outlier-tolerated clustering:

1. Choose an initial classification {uij}, where uij = 1
if vi belongs to jth group and uij = 0 otherwise.

2. Calculated class probability Pj(k), sample means
M ′

j(k) and covariance matrices Σ′
j(k) from sam-

ples vi weighted by fidelities λi at kth iteration.

3. Recalculate sample means Mj(k) and covariance ma-
trices Σj(k) from vi and λi which satisfy the con-
straint (vi − M ′

j)
T Σ

′−1
j (vi − M ′

j) < c × σj , where
σj is estimated by robust estimator as σj = 1.4826 ×
median(vi − M ′

j)
T Σ

′−1
j (vi − M ′

j), and c = 2.5 is a
empirical parameter.

4. Reclassify every vi. If there is any change in the class
label of vi, repeat steps 2 to 4. The classification of vi

is based on min
j

{(1/2)(vi − Mj)T Σ−1
j (vi − Mj) +

(1/2) ln |Σj | − lnPj}.

Class separability is utilized to determine novel seed selec-
tion. The more separable the classes are, the more likely the
objects can be detected. The class separability is defined as

M = tr(S−1
w Sb) (5)

Sw =

g∑
j=1

PjΣj

Sb =

g∑
j=1

Pj(Mj −
g∑

k=1

PkMk)(Mj −
g∑

k=1

PkMk)T

The initial number of cluster is set as g = 10. Merging of
clusters is desirable if any two classes, say 1 and 2, satisfy
the following constraint.

tr(S−1
w Sb) = P1P2(M2 − M1)

T S−1
w (M2 − M1) < s (6)

where s is an empirical parameter.

3. Seed Point Selection
Based on Eqn (5), good starting points (or seeds)

are adaptively located along the temporal dimension.
Seed point selection is represented as a finite state ma-
chine as shown in Figure 1. The transition among states is
based on the degree of matching, occlusion and motion in-
tensity as follows:

Seed select. A state is transferred to seed select to ini-
tialize object location or when the quality of tracking starts
to degrade. The selection criteria of a seed is based on

seed selec t m oving

oc c luded

update

s tationary
GC

OO=objec t overlap                      OB=objec t blobs
GC=good initial c ondition             NM=no m otion
DM=degraded m atc h

!:NOT

OO
GC

GC
DM

OB
NM

!NM

Figure 1. State transition diagram

the mean and variance of class discriminant determined by
M > E(M)+α×V ar(M), where α is an empirical param-
eter. The object detection (in Section 4) will be triggered to
estimate new object layers.

Object moving. This state is transited from seed select
whenever object blobs are detected. The degree of object
occlusion and matching (see Section 5) will be calculated
to determine the change of state.

Object occluded. Object occlusion is detected if any two
and more object blobs have large degree of overlap. The
trackers of those occluded objects are deleted temporarily,
and will be re-emerged by backward tracking from the next
seed point.

Object update. The target candidate template will
change gradually over time during tracking. If the match-
ing score (defined as distance function in Section 5) de-
grades, the corresponding tracker will be removed and
recovered by backward tracking from the next seed point.

Object stationary. An object remains in stationary state
if no motion is detected.

4. Object Detection
EM algorithm is employed for the detection of objects

at the selected seed points. The segmentation priors and
motion parameters (computed as in Section 2.2) associated
with seed points are used to initialize EM. Our EM algo-
rithm is similar to [6] by Sawhney and Ayer, except the seg-
mentation prior which is a by-product of motion discrimi-
nation is incorporated directly in E-step as conditional ex-
pectation. Let the vector Ψ = [ΠT , ΣT , ΘT ]T represents
all unknown parameters, where Π = [π1, · · · , πg]T , Σ =
[σ1, · · · , σg]T , Θ = [θi, · · · , θg]T are population propor-
tions, variances and motion parameters respectively. Fur-
thermore, let zj = [z1j , · · · , zgj ]T (as [4, p. 48]) represents
the vector of ownership indicator, our EM algorithm is ex-
pressed as follows.

E Step. The expectation τij of the binary ownership at
jth pixel location pj for ith population , at mth iteration, is
given by

τij = E(zm
ij |I(pj), z

m−1
ij )
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= pr(zm
ij = 1|I(pj), z

m−1
ij )

=
p(I(pj)|zm

ij = 1)p(zm
ij = 1|zm−1

ij )∑g

k=1
p(I(pj)|zm

kj = 1)p(zm
kj = 1|zm−1

ij )

=
ρm

i f(I(pj), θi, σi)∑g

k=1
ρm

k f(I(pj), θk, σk)
(7)

where ρm
k = p(zm

kj = 1|zm−1
ij ) indicates the reliability of

ownership by given a segmentation prior at (m − 1)th iter-
ation. f(I(pj), θi, σi) is a density function for the random
variate of image intensity according to different motion pa-
rameters. It usually takes a form of normal distribution.

M Step. Given ownership expectation {τij}, the max-
imum likelihood estimates of parameter Ψ, Ψ̂, satisfy the
following equations:

π̂i =

n∑
j=1

τij/n i = {1, · · · , g} (8)

g∑
i=1

n∑
j=1

τij
∂ log f(I(pj); θi, σi)

∂σ̂i
= 0 (9)

g∑
i=1

n∑
j=1

τij
∂ log f(I(pj); θi, σi)

∂θ̂i

= 0 (10)

Eqn (10) is solved by Gaussian-Newton algorithm as in [6].

5. Object Tracking
Mean shift [1, 2] is adopted for object tracking due to its

efficiency and robustness to non-rigid motion. The track-
ing algorithm is appearance-based and mean shift pro-
cedure is utilized to match a target candidate which is
most similar to the target model. The similarity mea-
sure is based on Bhattacharyya coefficient metric be-
tween the color density distributions of a target model
q̂ = {q̂u}u=1···m (with

∑m
u=1 q̂u = 1) and a target can-

didate p̂(y) = {p̂u(y)}u=1···m (with
∑m

u=1 p̂u = 1).
Bhattacharyya coefficient is given as

ρ̂(y) ≡ ρ[p̂(y), q̂] =

m∑
u=1

√
p̂u(y), q̂u (11)

where m is the quantization level of a color histogram. By
Eqn (11), the distance between two distributions is

d(y) =
√

1 − ρ[p̂(y), q̂] (12)

The target color distribution can be represented as follows.
Denote {xi}i=1,···,n as the pixel locations of a target candi-
date centered at y. A convex and monotonic decreasing ker-
nel profile k is used to assign smaller weights to the loca-
tions that are farther from y. Let b(xi) as a function which
indexes the histogram bin of a given color, the normalized
probability of a color u in a target candidate is

p̂u(y) =

∑n

i=1
k
(∥∥y−x

h

∥∥2
)

δ[b(xi) − u]∑n

i=1

(∥∥y−x
h

∥∥2
) (13)

where δ is the Kronecker delta function and h is the ra-
dius of the kernel profile. The distribution of target model,
q̂, can be derived in a similar fashion.

Given an initial target location y0, the new location y1

of a target candidate is achieved by maximizing Eqn (11)
based on the mean shift iteration given by

y1 =

∑n

i=1
xiωig

(∥∥y0−x
h

∥∥2
)

∑n

i=1
ωig

(∥∥y0−x
h

∥∥2
) (14)

where g = −k′ and

ωi =

m∑
u=1

δ[b(xi) − u]

√
q̂u

p̂u(ŷ0)

The mean shift tracking algorithm, in principle, searches
for local maximum in the neighborhood of initial location
by exploiting the gradient of surface.

6. Experiments
To demonstrate the effectiveness of our approach, a soc-

cer sequence with multiple players is used for testing. In
this sequence, a camera is moved to track four players that
run randomly on soccer field. The target models are repre-
sented by RGB histograms with 32 × 32 × 32 bins.

Figure 2 shows the discriminant curve calculated by Eqn
(5) at every two adjacent frames. The dashed horizontal line
indicates the class separability M where M > E(M)+α×
V ar(M) (see Section 3). Only those frames whose M val-
ues are above the horizontal line will be considered for seed
selection. There are two seeds selected as the starting track-
ing positions. Initially, the first seed which consists of three
distinctive clusters is picked up at 11th frame. Another seed
is adaptively selected at 145th frame when the target mod-
els are occluded at 139th frame.

Figure 3 shows the results of object detection by our
EM algorithm at the two selected seed frames. The target
windows are initialized based on the segmentation results
by EM. Initially, there are three clusters found at the 11th

frame by motion clustering (as shown in Figure 4): one clus-
ter corresponds to the background, one corresponds to the
two players on the left who run in the same direction, and
one corresponds to another two players on the right with
same motion direction. By simultaneous estimation of mo-
tion models and segmented regions, EM successfully detect
the blobs of four players, as shown in Fig 3(c).

Figure 5 shows two events when the candidate matching
based on mean shift tracking degrades. The top row is an
event that a player moves out of the camera view. The cor-
responding tracker is removed at the 65th frame. The bot-
tom row shows an event of occlusion. The three players at
the 139th frame, shown on the left, are tracked according
to the target models estimated at the first seed (11th frame).
Because one of the player is occluded, the three players at
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Figure 2. Discriminant Curve

(a) target window at 11th frame (b) target window at 145th frame

(c) detected objects at 11th (d) detected objects at 145th

Figure 3. Object initialization and detection.

the 140th frame, shown on the right, are tracked based on
the target models detected at the second seed frame (145th

frame), instead of the first seed. In this sequence, all play-
ers are tracked effectively and correctly in spite of occlu-
sion, object disappearance and moving camera.

7. Conclusion

We have presented a unified approach for multiple ob-
jects tracking. The novelty lies on the novel seed selection,
which finds the frames with good initial conditions for ob-
ject segmentation. This has indeed led to robust object de-
tectors based on EM algorithm. With the accurate target
models, the objects can be tracked rapidly, and most im-
portantly more effectively, by mean shift algorithm. Notice
that object occlusion, which is regarded as a difficult task,
can also be circumvented in our approach.
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Figure 4. Motion analysis on 11th frame.

Figure 5. Object tracking at frames 64, 65, 139
and 140 (from left to right and top to bottom).
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