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Abstract

Learning representations on Grassmann manifolds is popular
in quite a few visual recognition tasks. In order to enable deep
learning on Grassmann manifolds, this paper proposes a deep
network architecture by generalizing the Euclidean network
paradigm to Grassmann manifolds. In particular, we design
full rank mapping layers to transform input Grassmannian
data to more desirable ones, exploit re-orthonormalization
layers to normalize the resulting matrices, study projection
pooling layers to reduce the model complexity in the Grass-
mannian context, and devise projection mapping layers to re-
spect Grassmannian geometry and meanwhile achieve Eu-
clidean forms for regular output layers. To train the Grass-
mann networks, we exploit a stochastic gradient descent set-
ting on manifolds of the connection weights, and study a ma-
trix generalization of backpropagation to update the struc-
tured data. The evaluations on three visual recognition tasks
show that our Grassmann networks have clear advantages
over existing Grassmann learning methods, and achieve re-
sults comparable with state-of-the-art approaches.

Introduction
This paper introduces a deep network architecture on Grass-
mannians, which are manifolds of linear subspaces. In many
computer vision applications, linear subspaces have become
a core representation. For example, for face verification
(Huang et al. 2015b), emotion estimation (Liu et al. 2014b)
and activity recognition (Cherian et al. 2017), the image
sets of a single person are often modeled by low dimen-
sional subspaces that are then compared on Grassmanni-
ans. Besides, for video classification, it is also very common
to use autoregressive and moving average (ARMA) model
(Vemulapalli, Pillai, and Chellappa 2013). The parameters
of the ARMA model are known to be modeled with a high-
dimensional linear subspace. For shape analysis, the widely-
used affine and linear shape spaces for specific configura-
tions can be also identified by points on the Grassmann man-
ifold (Anirudh et al. 2017). Applications involving dynamic
environments and autonomous agents often perform online
visual learning by using subspace tracking techniques like
incremental principal component analysis (PCA) to dynam-
ically learn a better representational model as the appearance
of the moving target (Turaga et al. 2011).

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The popular applications of Grassmannian data motivate
us to build a deep neural network architecture for Grassman-
nian representation learning. To this end, the new network
architecture is designed to accept Grassmannian data di-
rectly as input, and learns new favorable Grassmannian rep-
resentations that are able to improve the final visual recog-
nition tasks. In other words, the new network aims to deeply
learn Grassmannian features on their underlying Rieman-
nian manifolds in an end-to-end learning architecture. In
summary, two main contributions are made by this paper:
• We explore a novel deep network architecture in the con-

text of Grassmann manifolds, where it has not been possi-
ble to apply deep neural networks. More generally, treat-
ing Grassmannian data in deep networks can be very valu-
able in a variety of machine learning applications.

• We generalize backpropagation to train the proposed net-
work with deriving an connection weight update rule on a
specific Riemannian manifold. Furthermore, we incorpo-
rate QR decomposition into backpropagation that might
prove very useful in other applications since QR decom-
position is a very common linear algebra operator.

Background

Grassmannian Geometry

A Grassmann manifold Gr(q,D) is a q(D − q) dimen-
sional compact Riemannian manifold, which is the set of
q-dimensional linear subspaces of the R

D. Thus, each point
on Gr(q,D) is a linear subspace that is spanned by the re-
lated orthonormal basis matrix X of size D × q such that
XTX = Iq , where Iq is the identity matrix of size q × q.

One of the most popular approaches to represent linear
subspaces and approximate the true Grassmannian geodesic
distance is the projection mapping framework Φ(X) =
XXT proposed by (Edelman, Arias, and Smith 1998).
As the projection Φ(X) is a D × D symmetric ma-
trix, a natural choice of inner product is 〈X1,X2〉Φ =
tr(Φ(X1)

TΦ(X2)). The inner product induces a distance
metric named projection metric:

dp(X1,X2) = 2−1/2‖X1X
T
1 −X2X

T
2 ‖F . (1)

where ‖·‖F indicates the matrix Frobenius norm. As proved
in (Harandi et al. 2013), the projection metric can approxi-
mate the true geodesic distance up to a scale of

√
2.

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3279



Grassmann Learning

To perform discriminant learning on Grassmann manifolds,
many works (Hamm and Lee. 2008; Hamm and Lee 2009;
Cetingul and Vidal 2009; Harandi et al. 2011; 2013; 2014)
either adopt tangent space approximation of the underlying
manifolds, or exploit positive definite kernel functions to
embed the manifolds into reproducing kernel Hilbert spaces.
In both of such two cases, any existing Euclidean techniques
can then be applied to the embedded data, since Hilbert
spaces respect Euclidean geometry as well. For example,
(Hamm and Lee. 2008) first embeds the Grassmannian into a
high dimensional Hilbert space, and then applies traditional
Fisher analysis methods. Obviously, most of these methods
are limited to the Mercer kernels, and hence are restricted to
use only kernel-based classifiers. Moreover, their computa-
tional complexity increases steeply with the growing num-
ber of training samples.

More recently, a new learning scheme was proposed by
(Huang et al. 2015b) to perform a geometry-aware dimen-
sionality reduction from the original Grassmann manifold
to another lower-dimensional, more discriminative Grass-
mann manifold. This could better preserve the original Rie-
mannian data structure, which commonly leads to more fa-
vorable classification performances as studied in classical
manifold learning. While (Huang et al. 2015b) has reached
some success, it merely adopts a shallow learning scheme on
Grassmann manifolds, which is still far away from the best
solution for the problem of representation learning on non-
linear manifolds. Accordingly, this paper attempts to open
up a possibility of deep learning on Grassmannians.

Manifold Network

By leveraging the paradigm of traditional neural networks,
an increasing number of networks (Masci et al. 2015;
Ionescu, Vantzos, and Sminchisescu 2015; Huang and
Van Gool 2017) have been built over general manifold
domains. For instance, (Masci et al. 2015) proposed a
‘geodesic convolution’ on local geodesic coordinate sys-
tems to extract local patches on the shape manifold for
shape analysis. In particular, the method implements con-
volutions by sliding a window over the shape manifold, and
local geodesic coordinates are employed instead of image
patches. In (Huang and Van Gool 2017), to deeply learn ap-
propriate features on the manifolds of symmetric positive
definite (SPD) matrices, a deep network structure was de-
veloped with some spectral layers, which can be trained by
a variant of backpropagation. Nevertheless, to the best of our
knowledge, this is the first work that studies a deep network
architecture on Grassmann manifolds.

Grassmann Network Architecture

In analogy to convolutional networks (ConvNets), the pro-
posed Grassmann network (GrNet) also devises a Projection
block containing fully connected convolution-like layers and
normalization layers, named full rank mapping (FRMap)
layers and re-orthonormalization (ReOrth) layers respec-
tively. Inspired by the geometry-aware manifold learning
idea (Huang et al. 2015b), the FRMap layers are proposed

to firstly perform transformations on input orthonormal ma-
trices of subspaces to generate new matrices by adopting a
full rank mapping scheme. Then, the ReOrth layers are de-
veloped to normalize the output matrices of the FRMap lay-
ers so that they can keep the basic orthogonality. In other
words, the normalized data become orthonormal matrices
that reside on Stiefel manifold1. As well-studied in (Edel-
man, Arias, and Smith 1998; Hamm and Lee. 2008), the pro-
jection metric performing on orthonormal matrices can rep-
resent linear subspaces and respect the geometry of Grass-
mann manifolds, which is actually a quotient manifold of the
Stiefel manifold. Accordingly, we develop projection map-
ping (ProjMap) layers to maintain the Grassmannian prop-
erty of the resulting data. Meanwhile, the ProjMap layers
are able to transfer the resulting Grassmannian data into
Euclidean data, which enables the regular Euclidean lay-
ers such as softmax layers for classification. The ProjMap
and softmax layers forms the Output block for GrNet. Ad-
ditionally, since traditional pooling layers can reduce the
network complexity, we also study projection pooling (Pro-
jPooling) layers on the projection matrix form of the re-
sulting orthonormal matrices. As it is non-trivial to perform
pooling on non-Euclidean data directly, we develop a Pool-
ing block to combine ProMap, ProjPooling and orthonor-
mal mapping (OrthMap) layers, which respectively achieves
Euclidean representation, performs pooling on resulting Eu-
clidean data and transforms the results back to orthonormal
data. The proposed GrNet structure is illustrated in Fig.1.

FRMap Layer

To learn compact and discriminative Grassmannian repre-
sentation for better classification, we design the FRMap lay-
ers to first transform the input orthonormal matrices of sub-
spaces to new matrices by a linear mapping function ffr as

Xk = f
(k)
fr (Xk−1;Wk) = WkXk−1, (2)

where Xk−1 ∈ Gr(q, dk−1) is the input of the k-th layer2,
Wk ∈ R

dk×dk−1∗ , (dk < dk−1) is the transformation ma-
trix (connection weights) that is basically required to be a
row full rank matrix, Xk ∈ R

dk×q is the resulting matrix.
Generally, the transformation result WkXk−1 is not an or-
thonormal basis matrix. To tackle this problem, we exploit a
normalization strategy of QR decomposition in the follow-
ing ReOrth layer. In addition, as classical deep networks,
multiple projections {W 1

k , . . . ,W
m
k } per FRMap layer can

be applied on each input orthonormal matrix as well, where
m is the number of transformation matrices.

As the weight space R
dk×dk−1∗ of full rank matrices on

each FRMap layer is a non-compact Stiefel manifold where
geodesic distance has no closed form. In view of gradient-
steepest-descent learning by geodesic stepping for criterion
optimization, it is necessary to have a closed form of the
geodesic distance to derive natural gradients over a smooth

1A Stiefel manifold St(dk, dk−1) is the set of dk-dimensional
orthogonal matrices of the R

dk−1 .
2For consistency, k is used to denote the relative index of each

involved layer in the sequel.
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Figure 1: Conceptual illustration of the proposed Grassmann Network (GrNet) architecture. The rectangles in blue represent
three basic blocks, i.e., Projection, Pooling and Output blocks, respectively.

manifold. Hence, optimizing on the non-compact manifold
directly is infeasible unless endowing the manifold with
pseudo-Riemannian metrics. To handle this problem, one
feasible solution is imposing orthogonality constraint on the
weight matrix Wk so that it resides on a compact Stiefel
manifold St(dk, dk−1). Obviously, such orthogonal solu-
tion space is smaller than the original solution space Rn×m

∗ ,
making the optimization theoretically yield suboptimal so-
lution of Wk. To achieve a more faithful solution, following
(Huang et al. 2015b), we alternatively do the optimization
over the manifolds PSD(dk, dk−1)

3 of the conjugates Pk =
W T

k Wk, which are actually positive semidefinite (PSD)
matrices. As studied in (Bonnabel and Sepulchre 2009;
Journee et al. 2010; Meyer, Bonnabel, and Sepulchre 2011)
and the popular manopt toolbox4, a PSD manifold is actually
a quotient space, and thus optimizing on it actually pursues
optimal full rank matrix Wk directly. In the sense, optimiz-
ing on PSD manifolds actually minimizes f(Wk) instead of
f(W T

k Wk), where f denotes the involved layer’s loss func-
tion that will be introduced in the next section.

ReOrth Layer

Inspired by (Kim, Kittler, and Cipolla 2007; Huang et al.
2015b) that use QR decomposition to transform a regular
matrix to an orthonormal matrix, we design the ReOrth lay-
ers to perform QR decomposition on the input matrix Xk−1

Xk−1 = Qk−1Rk−1, (3)

where Qk−1 ∈ R
dk−1×q is the orthonormal matrix com-

posed by the first q columns, and Rk−1 ∈ R
q×q is the in-

vertible upper-triangular matrix. Since R is invertible and
Q is orthonormal, we can make Xk become an orthonormal
basis matrix by normalizing Xk−1 in the k-th layer as:

Xk = f (k)
ro (Xk−1) = Xk−1R

−1
k−1 = Qk−1. (4)

In the context of ConvNets, (Cybenko 1989; Jarrett et
al. 2009; Nair and Hinton 2010; Goodfellow et al. 2013;
He et al. 2015) have presented various nonlinear activation
functions, e.g., rectified linear units (ReLU), to improve dis-
criminative performance. Accordingly, exploiting this kind

3A PSD manifold PSD(dk, dk−1) is the set of dk-rank positive
semidefinite matrices of size dk−1 (Bonnabel and Sepulchre 2009;
Journee et al. 2010).

4http://www.manopt.org/

of layers to introduce the non-linearity to the domain of the
proposed GrNet is also necessary. In the light of this, to some
extent, the function Eqn.4 also takes a role of performing a
non-linear activation with the QR factorization.

ProjMap Layer

The ProjMap layer is designed to perform Grassmannian
computation on the resulting orthonormal matrices. As well-
studied in (Edelman, Arias, and Smith 1998; Hamm and
Lee. 2008; Hamm and Lee 2009; Harandi et al. 2011;
Huang et al. 2015b), the projection metric is one of the most
popular Grassmannian metrics, and is able to endow the spe-
cific Riemannian manifold with an inner product structure so
that the manifold is reduced to a flat space. In the flat space,
classical Euclidean computations can be applied to the pro-
jection domain of orthonormal matrices. Formally, we apply
the projection mapping (Edelman, Arias, and Smith 1998)
to a orthonormal matrix Xk−1 in the k-th layer as

Xk = f (k)
pm(Xk−1) = Xk−1X

T
k−1. (5)

As for other Riemannian computations on Grassmann
manifolds, please refer to (Le 1991; Edelman, Arias, and
Smith 1998; Srivastava and Klassen 2004; Absil, Mahony,
and Sepulchre 2009; Helmke, Hüper, and Trumpf 2007).

ProjPooling Layer

It is known that classical pooling layers with max, min and
mean pooling functions reduce the sizes of the representa-
tions to lower the model complexity, and therefore improve
the regular ConvNets. Motivated by this, we also design
pooling layers for the feature maps of Grassmannian data.

Without loss of generality, we here study mean pooling
for the Grassmannian points. Actually, there exist some ap-
proaches (Absil, Mahony, and Sepulchre 2004; Dodge and
Rousson 1999; Srivastava and Klassen 2002; Marrinan et al.
2014) to compute mean points on Grassmannians. Inspired
by the idea (Srivastava and Klassen 2002) with keeping the
balance between computational time and calculation accu-
racy, we propose three layers to implement mean pooling
for Grassmannian data. In particular, the Grassmannian data
are first mapped to the space of projection matrices by the
ProjMap layer presented before. As the resulting m projec-
tion matrices {Xi

k−1|1 ≤ i ≤ m} of size dk−1 × dk−1 are
Euclidean, we then design a regular mean pooling layer for
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them. Lastly, we devise an orthonormal mapping (OrthMap)
layer to transform the mean projection matrix back to or-
thonormal data. Formally, the functions for the ProjPooling
and OrthMap layers are respectively defined as

Xk = f (k)
pp ({X̂1

k−1, . . . , X̂
n
k−1}) =

1

n

n∑
i

X̂i
k−1, (6)

Xk+1 = f (k)
om (Xk) = Uk−1,1:q. (7)

where Uk−1,1:q is the first q largest eigenvectors achieved
by eigenvalue (EIG) decomposition on the input projection
matrices Xk = Uk−1Σk−1U

T
k−1, and n is the number of

instances X̂i
k−1 for the pooling. The instances can be either

n projection matrices or n entries within an square patch
of size

√
n × √

n located in one projection matrix. In other
words, the first type of pooling is performed across the pro-
jection matrices (A-ProjPooling), while the second one is
executed by sliding the mean filter over each square patch
within one projection matrix (W-ProjPooling). As a result,
A-ProjPooling with OrthMap finally yields m

n orthonormal
matrices of size dk−1 × q, while W-ProjPooling with Or-
thMap outputs m orthonormal matrices of size dk−1√

n
× q.

Output Layers

As shown in Fig.1, after applying the ProjMap layer, the out-
puts (i.e., the projection matrices) lie in Euclidean space, and
thus can be converted into vector forms. Hence, on the top
of the ProjMap layer, classical Euclidean network layers can
be employed. For instance, the regular fully connected (FC)
layer could be used after the ProjMap layer. The dimension-
ality of the filters in the FC layer is typically set to dk×dk−1,
where dk and dk−1 are the class number and the dimension-
ality of the input vector forms respectively. Finally, the com-
mon softmax layer can be used for visual classification.

Training Grassmann Network

As most layers in the GrNet model are expressed with com-
plex matrix factorization functions, they cannot be simply
reduced to a constructed bottom-up from element-wise cal-
culations. In other words, the matrix backpropgation (back-
prop) cannot be derived by using traditional matrix that
treats element-wise operations in matrix form. As a result,
simply using the traditional backprop will break down in
the setting. To solve the problem, (Huang and Van Gool
2017; Ionescu, Vantzos, and Sminchisescu 2015) introduced
manifold-valued connection weight update rule and matrix
backprop respectively. Furthermore, the convergence of the
stochastic gradient descent (SGD) algorithm on Rieman-
nian manifolds has also been studied well in (Bottou 2010;
Bonnabel 2013). Accordingly, we exploit the training proce-
dure for the proposed GrNet upon these existing works.

To begin with, we represent the proposed GrNet model
with a sequence of successive function compositions f =
f (l) ◦ f (l−1) ◦ f (l−2) . . . ◦ f (2) ◦ f (1) with a parameter tu-
ple W = (Wl,Wl−1, . . . ,W1), where f (k) and Wk are
the function and the weight matrix respectively for the k-th
layer, and l is the number of layers. The loss of the k-th layer

can be denoted by a function as L(k) = � ◦ f (l) ◦ . . . f (k),
where � is the loss function for the last output layer.

Then, we recall the definition of the matrix backprop and
its properties studied in (Ionescu, Vantzos, and Sminchis-
escu 2015). In particular, (Ionescu, Vantzos, and Sminchis-
escu 2015) exploits a function F to describe the variations of
the upper layer variables with respect to the lower layer vari-
ables, i.e., dXk = F(dXk−1). Consequently, a new version
of the chain rule for the matrix backprop is defined as

∂L(k)(Xk−1, y)

∂Xk−1
= F∗

(
∂L(k+1)(Xk, y)

∂Xk

)
, (8)

where y is the desired output, Xk = f (k)(Xk−1), F∗ is a
non-linear adjoint operator of F , i.e., a : F(b) = F∗(a) : b,
the matrix inner product A : B = Tr(ATB).

In the sequel, we will detail the connection weight update
on the specific PSD manifold and the matrix backprop pro-
cess through some key layers in the context of the proposed
GrNet. For simplicity, we uniformly let ∂L(k)(Xk−1, y) be
∂L(k), Qk−1 be Q, and Rk−1 be R respectively.

FRMap Layer

For the FRMap layers, we propose a new way of updat-
ing the weights appeared in Eqn.2 by exploiting an SGD
setting on PSD manifolds. As studied in (Absil, Mahony,
and Sepulchre 2009), the steepest descent direction for the
corresponding loss function L(k)(Xk−1, y) with respect to
Wk on one Riemannian manifold is the Riemannian gradi-
ent ∇̃L

(k)
Wk

. In particular, following the standard optimiza-
tion (Absil, Mahony, and Sepulchre 2009) on Riemannian
manifolds, we first apply the parallel transport to transfer
the Euclidean gradient in the tangent space at the current
status of the weight W t

k to the one in the tangent space at
the next status W t+1

k . Then the resulting Euclidean gra-
dient is subtracted to the normal component of the Eu-
clidean gradient ∇L

(k)

W t
k

. After this operation, searching
along the tangential direction yields the update in the tangent
space of the PSD manifold. Finally, the resulting update is
mapped back to the PSD manifold with a retraction opera-
tion Γ. For more details about the geometry of PSD mani-
folds and the retraction operation on Riemannian manifolds,
the readers are referred to (Bonnabel and Sepulchre 2009;
Journee et al. 2010; Meyer, Bonnabel, and Sepulchre 2011;
Absil, Mahony, and Sepulchre 2009). Accordingly, the up-
date of the current connection weight W t

k on the PSD man-
ifold adheres to the following form

∇̃L
(k)

W t
k
= ∇L

(k)

W t
k
−∇L

(k)

W t
k
(W t

k)
T
W t

k , (9)

W t+1
k = Γ(W t

k − λ∇̃L
(k)

W t
k
), (10)

where λ is the learning rate, ∇L
(k)

W t
k
(W t

k)
T
W t

k is the normal

component of the Euclidean gradient ∇L
(k)

W t
k

. By employing

the conventional backprop, ∇L
(k)

W t
k

is computed by

∇L
(k)

W t
k
=

∂L(k+1)

∂Xk

∂f (k)(Xk−1)

∂W t
k

=
∂L(k+1)

∂Xk
XT

k−1.

(11)
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ReOrth Layer

Actually, the ReOrth layers involve QR decomposition
Eqn.3 and the non-linear operation Eqn.4. Firstly, for Eqn.3
we introduce a virtual layer k

′
, which receives Xk−1 as

input and produces a tuple Xk′ = (Q, R). Following
(Ionescu, Vantzos, and Sminchisescu 2015) to handle the
case of a tuple output, we apply the new chain rule Eqn.8
with the equations a : F(b) = F∗(a) : b and dXk′ =
F(dXk−1) to achieve the update rule for the structured data:

∂L(k)

∂Xk−1
: dXk−1

= F∗
(
∂L(k

′
)

∂Q

)
: dXk−1 + F∗

(
∂L(k

′
)

∂R

)
: dXk−1

=
∂L(k

′
)

∂Q
: F (dXk−1) +

∂L(k
′
)

∂R
: F (dXk−1)

=
∂L(k

′
)

∂Q
: dQ+

∂L(k
′
)

∂R
: dR,

(12)
where the two variations dQ and dR are derived by the vari-
ation of the QR operation dXk−1 = dQR+QdR as:

dQ = SdXk−1R
−1 +Q(QT dXk−1R

−1)asym, (13)

dR = QT dXk−1 − (QT dXk−1R
−1)asymR, (14)

where S = I − QQT , I is an identity matrix, Aasym =
Atril − (Atril)

T , Atril extracts the elements below the
main diagonal of A. For more details to derive Eqn.13 and
Eqn.14, please refer to the part I of Appendix.

As derived by the part II of Appendix, plugging Eqn.13
and Eqn.14 into Eqn.12 achieves the partial derivatives of
the loss functions for the ReOrth layers:

∂L(k)

∂Xk−1
=

⎛
⎝ST ∂L(k

′
)

∂Q
+Q

(
QT ∂L(k

′
)

∂Q

)
bsym

⎞
⎠ (R−1)

T

+Q

⎛
⎝∂L(k

′
)

∂R
−

(
∂L(k

′
)

∂R
RT

)
bsym

(R−1)T

⎞
⎠ ,

(15)
where Absym = Atril − (AT )tril, Atril extracts the ele-

ments below the main diagonal of A. ∂L(k
′
)

∂Q and ∂L(k
′
)

∂R can
then be obtained on the function Eqn.4 employed in the Re-
Orth layers. Specially, its variation becomes dXk = dQ.
Therefore, the involved partial derivatives with respect to Q

and R are computed by ∂L(k
′
)

∂Q = ∂L(k+1)

∂Xk
and ∂L(k

′
)

∂R = 0.

OrthMap Layer

As presented before, the OrthMap layers involve eigen-
value (EIG) decomposition. Thus we adopt the proposition
in (Ionescu, Vantzos, and Sminchisescu 2015) to calculate
the partial derivatives for the EIG computation.

Proposition 1 Let Xk−1 = UΣUT with Xk−1 ∈ R
D×D,

such that UTU = I and Σ owns a diagonal structure. The

resulting partial derivative for the EIG layer k
′

is given by

∂L(k)

∂Xk−1
= U

(
K̂T ◦

(
UT ∂L(k

′
)

∂U

))
UT

+U

(
∂L(k

′
)

∂Σ

)
diag

UT .

(16)

where K̂ = 1/(σi − σj), i 
= j; 0, i = j (σi is the diago-
nal element of Σ), and the partial derivatives with respect to
Σ and U in Eqn.7 for the OrthMap layers can be achieved

by ∂L(k
′
)

∂U = [∂L
(k+1)

∂Xk
0] and ∂L(k

′
)

∂Σ = 0, where 0 is the
matrix of size D × (D − q) with all elements being zero.

Empirical Evaluation

We compare four groups of exiting methods to evaluate the
proposed GrNet for three visual classification tasks: emotion
recognition, action recognition and face verification.

Comparing methods: 1). General manifold learning meth-
ods: Expressionlets on Spatio-Temporal Manifold (STM-
ExpLet) (Liu et al. 2014a) and Riemannian Sparse Repre-
sentaion combining with Manifold Learning on the manifold
of SPD matrices (RSR-SPDML) (Harandi, Salzmann, and
Hartley 2014); 2). Grassmann learning methods: Discrim-
inative Canonical Correlations (DCC) (Kim, Kittler, and
Cipolla 2007), Grassmann Discriminant Analysis (GDA)
(Hamm and Lee. 2008), Grassmannian Graph-Embedding
Discriminant Analysis (GGDA) (Hamm and Lee 2009) and
Projection Metric Learning (PML) (Huang et al. 2015b); 3).
Regular convolutional networks: VGGDeepFace (Parkhi-
and, Vedaldi, and Zisserman 2015) and Deep Second-order
Pooling (DeepO2P) (Ionescu, Vantzos, and Sminchisescu
2015); 4). Manifold network: Network on SPD manifolds
(SPDNet) (Huang and Van Gool 2017) and DeepO2P that
trains standard ConvNets with a manifold layer end-to-end

We use source codes of all the comparing methods from
authors with tuning their parameters as in the original pa-
pers. For our GrNet, we build its architecture with using i
Projection-Pooling block(s) (named as GrNet-iBlock) and
one Output block, all of which are illustrated in Fig.1. The
learning rate λ and the batch size are set to 0.01 and 30 re-
spectively. The FRMap matrices are all initialized as random
full rank matrices, and the number of them per layer is set
to 16. For all the ProjPooling layers, the number n of the
instances for pooling are fixed as 4. For training the GrNet,
we just use an i7-2600K (3.40GHz) PC without any GPUs5.
Note that, the readers can follow the DeepO2P method to
implement an end-to-end learning of ConvNet+GrNet. Since
the focus of this paper is on deep learning for Grassmannian
inputs, we leave the study in future work.

5As the matrix factorizations are implemented well in CUDA,
we will achieve the GPU version of our GrNet for speedups.
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Emotion Recognition: We utilize the popular Acted Facial
Expression in Wild (AFEW) (Dhall et al. 2014) dataset. The
dataset contains 1,345 sequences of facial expressions acted
by 330 actors in close to real world setting. The standard pro-
tocol designed by (Dhall et al. 2014) splits the dataset into
three data sets, i.e., training, validation and test data sets.
In the training and validation data sets, each video is clas-
sified into one of seven expressions, while the ground truth
of the test set has not been released. As a result, we follow
(Liu et al. 2014a; Huang and Van Gool 2017) to present the
results on the validation set. As done in many works such
as (Huang and Van Gool 2017) for augmenting the train-
ing data, we split the training videos to 1,747 small sub-
videos. For the evaluation, each facial frame is normalized
to an image of size 20×20. Then, following (Liu et al. 2013;
2014b), we model sequences of facial expression with a set
of linear subspaces of order 10, which span a Grassmann
manifold Gr(10, 400). In the task, the sizes of the GrNet-
1Block weights are set to 400 × 100, while those of the
GrNet-2Blocks are set to 400× 300 and 150× 100.

Action Recognition: We use the HDM05 database (Müller
et al. 2007) that is one of the largest-scale skeleton-based
human action datasets. The dataset consists of 2,337 se-
quences of 130 action classes, and provides 3D locations of
31 joints of the subjects. Following the protocol designed in
(Huang and Van Gool 2017), we conduct 10 random eval-
uations, each of which randomly selected half of sequences
for training and the rest for testing. For data augmentation,
the training sequences are divided into around 18,000 small
subsequences in each random evaluation. As done in (Ha-
randi, Salzmann, and Hartley 2014; Huang and Van Gool
2017), we represent each sequence by a covariance descrip-
tor of size 93 × 93, which is computed by the second or-
der statistics of the 3D coordinates of the 31 joints in each
frame. Then, we apply SVD on the covariance descriptors to
get linear subspaces of order 10, which form the data on a
Grassmannian Gr(10, 93). For our GrNet-1Block, the sizes
of the connection weights are set to 93× 60, while those of
GrNet-2Blocks are fixed as 93× 80, 40× 30 respectively.

Face Verification: We employ one standard dataset named
Point-and-Shoot Challenge (PaSC) (Beveridge et al. 2013).
For 256 subjects, it owns 1,401 videos taken by control
cameras, and 1,401 videos from handheld cameras. For the
dataset, (Beveridge et al. 2013) designs control and handheld
face verification experiments. As done in (Beveridge, Zhang,
and others 2015; Huang and Van Gool 2017), we use its 280
training videos and the COX data (Huang et al. 2015a) with
900 videos for training. Similarly, the training data are split
to 12,529 small clips. To extract the state-of-the-art deep
features, we perform the approach of (Parkhiand, Vedaldi,
and Zisserman 2015) on the normalized face images of size
224× 224. To speed up the training, we employ PCA to re-
duce the deep features to 400-dimensional ones. Following
(Huang and Van Gool 2017), a SPD matrix of size 401×401
is computed by fusing covariance matrix and mean for each
video. As done in (Huang et al. 2015b) on each video, we
finally compute a linear subspace of order 10, which lies on

Gr(10, 401). We set the sizes of GrNet-1Block weights to
401× 100, while setting those to 401× 300 and 150× 100
for GrNet-2Blocks.

Experimental Analysis

Table.1 presents the performances of the comparing meth-
ods for the three used datasets. The results show our GrNet
with 2 blocks can outperform the existing general manifold
learning, Grassmann learning methods and standard Con-
vNets (i.e., VGGDeepFace and DeepO2P). Particularly, on
HDM05, we can observe that our GrNet outperforms the
state-of-the-art Grassmann learning methods by a large mar-
gin (more than 11%). This verifies that the proposed GrNet
yields great improvements when the training data is large
enough. For PaSC, although the used softmax output layer
in the GrNet does not suit the verification task well, we find
that it still reaches the highest performances in the case of
2 blocks, which learns more favorable Grassmannian repre-
sentation. As studied in existing state-of-the-art Grassmann
learning methods, the GrNet without Riemannian comput-
ing (i.e., ProjMap) and without geometry-aware learning
(i.e., ReOrth) perform very badly (17.62% and 26.15% re-
spectively for AFEW). Besides, the consistent improvement
of stacking more GrNet blocks verifies it can learn more
discriminative Grassmannian representations and finally im-
prove the classification performances.

By comparing one of the manifold networks DeepO2P
that uses an end-to-end training of ConvNet with a sin-
gle SPD manifold layer, our GrNets achieve better perfor-
mances. In contrast, our GrNets fail to surpass the other
manifold network SPDNets that use multiple SPD manifold
layers. Nevertheless, our GrNets perform deep learning on a
different type of manifolds with owning many considerable
differences in both terms of application range and intrinsic
properties, some of which are enumerated below.

1). The proposed FPMap layers learn full rank projections
while the BiMap layers in SPDNets pursue bi-linear orthog-
onal projections. Besides, the GrNets exploit both single and
multiple projections in each FRMap layer (i.e., S-FRMap,
M-FRMap). The results in Fig.2 (a) show the benefit of using
M-FRMap. Furthermore, it alternatively studies a new con-
nection weight update rule on PSD manifolds rather than the
one on Stiefel manifolds, whose performances (i.e., 32.13%,
57.25%, 80.15%, 71.28%) on the datasets are often worse.

2). The GrNets design brand new ReOrth, ProjMap and
ProjPooling layers. Particularly, for the ReOrth layers, the
exploration of the QR decomposition in backpropagation
is a very important theoretical contribution. Besides, it de-
vises pooling layer across and within projection matrices
(A-ProjPooling, W-ProjPooling), both of which work on the
top of the M-FRMap layers. As studied in Fig.2 (a), W-
ProjPooling typically outperforms A-ProjPooling. The un-
favorable performance of A-ProjPoolings would be caused
by the extrinsic mean calulation on the Grassmannian and
the weak relationship across multiple projection matrices.
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Method AFEW HDM05 PaSC1 PaSC2
STM-ExpLet 31.73% – – –
RSR-SPDML 30.12% 48.01%±3.38 – –
DCC 25.78% 41.74%±1.92 75.83% 67.04%
GDA 29.11% 46.25%±2.71 71.38% 67.49%
GGDA 29.45% 46.87%±2.19 66.71% 68.41%
PML 28.98% 47.25%±2.78 73.45% 68.32%
VGGDeepFace – – 78.82% 68.24%
DeepO2P 28.54% – 68.76% 60.14%
SPDNet 34.23% 61.45%±1.12 80.12% 72.83%
GrNet-0Block 25.34% 51.12%±3.55 68.52% 63.92%
GrNet-1Block 32.08% 57.73%±2.24 80.15% 72.51%
GrNet-2Blocks 34.23% 59.23%±1.78 80.52% 72.76%

Table 1: Results for the AFEW, HDM05 and PaSC datasets.
PaSC1/PaSC2 are the control/handheld testings.

Figure 2: (a) Results of using single and multiple FRMap
(S-FRMap, M-FRMap), ProjPoolings across or within pro-
jections (A-ProjPooling, W-ProjPooling) for the three used
databases. (b) (c) Convergence and accuracy curves of
SPDNet and the proposed GrNet for the AFEW.

3). Training GrNet-1Block per epoch costs about 10, 9
and 13 minutes respectively on the three datasets, while
training SPDNet (w/o complex pooling) takes 2, 4 and 15
minutes. However, in theory, our GrNet actually runs much
faster than the existing SPDNet when using the same setting.
This is because the GrNet handles much lower-dimensional
orthonormal matrices of size d × q (the order q is often set
to 10), while the SPDNet treats SPD matrices of size d× d.

4). Fig.2 (b)(c) show the GrNet can use much less epochs
(than the SPDNet) to converge on AFEW, and the valida-
tion gets near 12% improvement after training. For larger
datasets like HDM05, the improvement is even up to 40%.

Conclusion

This paper introduced the first network architecture to per-
form deep learning over Grassmann manifolds. Essentially,
it is a natural exploration of convolutional networks to per-
form fully connected convolution, normalization, pooling
and Remannian computing on Grassmannian data. In three
typical visual classification evaluations, our Grassmann net-
works significantly outperformed existing Grassmann learn-
ing methods, and performed comparably with state-of-the-
art methods. Directions for future work include extending
the current GrNet to an end-to-end ConvNet+GrNet training
system and applying it to other computer vision problems.
Acknowledgement: This work is supported by EU Frame-
work Seven project ReMeDi (grant 610902).

Appendix

I. Regarding the gradient computation of QR decomposi-
tion, we first differentiate its implicit system

Xk−1 = QR, QTQ = I, 0 = Rtril, (17)
where Rtril returns the elements below the main diagonal
of R, and we obtain

dXk−1 = dQR+QdR, dQTQ = −QT dQ. (18)
Multiplying the first equation of Eqn.18 from the left with
QT and the right with R−1 derives

dR = QT dXk−1 −QT dQR, (19)

dQ = dXR−1 −QdRR−1. (20)

The multiplication of Eqn.19 from the right with the in-
verse of R yields the equation

0 = QT dXk−1R
−1 −QT dQRR−1 − dRR−1. (21)

As (dRR−1)tril = 0, we further derive (QT dQ)tril =
(QT dXk−1R

−1)tril. Since QT dQ = (QT dQ)tril −
((QT dQ)tril)

T is antisymmetric (see Eq.18) we have
QT dQ = (QT dXk−1R

−1)tril − ((QT dXk−1R
−1)tril)

T

= (QT dXk−1R
−1)asym.

(22)

Substituting Eqn.22 into Eqn.19 derives the gradient of
QR decomposition w.r.t R as Eqn.14. By plugging Eqn.14
into Eqn.20, we can derive the gradient of the QR decompo-
sition w.r.t Q as Eqn.13.

II. When plugging Eqn.13 and Eqn.14 into Eqn.12 to
achieve Eqn.15, we employ the properties of matrix in-
ner product A : B = Tr(ATB), which were studied in
(Ionescu, Vantzos, and Sminchisescu 2015), to derive the
following equivalent equation

A : Basym = Absym : B, (23)
where Basym = Btril − (Btril)

T , Absym = Atril −
(AT )tril, Atril extracts the elements below the main diago-
nal of A.

3285



References

Absil, P.-A.; Mahony, R.; and Sepulchre, R. 2004. Riemannian ge-
ometry of Grassmann manifolds with a view on algorithmic com-
putation. Acta Applicandae Mathematica 80(2):199–220.
Absil, P.-A.; Mahony, R.; and Sepulchre, R. 2009. Optimization
algorithms on matrix manifolds. Princeton University Press.
Anirudh, R.; Turaga, P.; Su, J.; and Srivastava, A. 2017. Elas-
tic functional coding of Riemannian trajectories. IEEE-TPAMI
39(5):922–936.
Beveridge, J.; Phillips, P.; Bolme, D.; Draper, B.; Given, G.; Lui,
Y.; Teli, M.; Zhang, H.; Scruggs, W.; Bowyer, K.; et al. 2013. The
challenge of face recognition from digital point-and-shoot cameras.
In BTAS.
Beveridge, J. R.; Zhang, H.; et al. 2015. Report on the FG 2015
video person recognition evaluation. In FG.
Bonnabel, S., and Sepulchre, R. 2009. Riemannian metric and
geometric mean for positive semidefinite matrices of fixed rank.
SIAM Journal on Matrix Analysis and Applications 31(3):1055–
1070.
Bonnabel, S. 2013. Stochastic gradient descent on Riemannian
manifolds. IEEE T-AC 58(9):2217–2229.
Bottou, L. 2010. Large-scale machine learning with stochastic
gradient descent. In COMPSTAT.
Cetingul, H., and Vidal, R. 2009. Intrinsic mean shift for clustering
on Stiefel and Grassmann manifolds. In CVPR.
Cherian, A.; Fernando, B.; Harandi, M.; and Gould, S. 2017. Gen-
eralized rank pooling for activity recognition. CVPR.
Cybenko, G. 1989. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and systems
2(4):303–314.
Dhall, A.; Goecke, R.; Joshi, J.; Sikka, K.; and Gedeon, T. 2014.
Emotion recognition in the wild challenge 2014: Baseline, data and
protocol. In ICMI.
Dodge, Y., and Rousson, V. 1999. Multivariate L1 mean. Metrika
49(2):127–134.
Edelman, A.; Arias, T.; and Smith, S. 1998. The geometry of
algorithms with orthogonality constraints. SIAM journal on Matrix
Analysis and Applications 20(2):303–353.
Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; and
Bengio, Y. 2013. Maxout networks. In ICML.
Hamm, J., and Lee., D. D. 2008. Grassmann discriminant analysis:
a unifying view on subspace-based learning. In ICML.
Hamm, J., and Lee, D. D. 2009. Extended Grassmann kernels for
subspace-based learning. In NIPS.
Harandi, M.; Sanderson, C.; Shirazi, S.; and Lovell, B. C. 2011.
Graph embedding discriminant analysis on Grassmannian mani-
folds for improved image set matching. In CVPR.
Harandi, M.; Sanderson, C.; Shen, C.; and Lovell, B. 2013. Dic-
tionary learning and sparse coding on Grassmann manifolds: An
extrinsic solution. In ICCV.
Harandi, M. T.; Salzmann, M.; Jayasumana, S.; Hartley, R.; and
Li, H. 2014. Expanding the family of Grassmannian kernels: An
embedding perspective. In ECCV.
Harandi, M. T.; Salzmann, M.; and Hartley, R. 2014. From man-
ifold to manifold: Geometry-aware dimensionality reduction for
SPD matrices. In ECCV.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep into
rectifiers: Surpassing human-level performance on imagenet clas-
sification. In ICCV.
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