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A Riemannian Network
for SPD Matrix Learning

Zhiwu Huang, Luc Van Gool
Computer Vision Lab, ETH Zurich, Switzerland
{zhiwu.huang, vangool}@vision.ee.ethz.ch

Abstract
Symmetric Positive Definite (SPD) matrix learning methods
have become popular in many image and video processing
tasks, thanks to their ability to learn appropriate statistical
representations while respecting Riemannian geometry of un-
derlying SPD manifolds. In this paper we build a Riemannian
network architecture to open up a new direction of SPD ma-
trix non-linear learning in a deep model. In particular, we de-
vise bilinear mapping layers to transform input SPD matrices
to more desirable SPD matrices, exploit eigenvalue rectifi-
cation layers to apply a non-linear activation function to the
new SPD matrices, and design an eigenvalue logarithm layer
to perform Riemannian computing on the resulting SPD ma-
trices for regular output layers. For training the proposed deep
network, we exploit a new backpropagation with a variant of
stochastic gradient descent on Stiefel manifolds to update the
structured connection weights and the involved SPD matrix
data. We show through experiments that the proposed SPD
matrix network can be simply trained and outperform exist-
ing SPD matrix learning and state-of-the-art methods in three
typical visual classification tasks.

Introduction
Symmetric Positive Definite (SPD) matrices are often en-
countered and have made great success in a variety of areas.
In medical imaging, they are commonly used in diffusion
tensor magnetic resonance imaging (Pennec, Fillard, and
Ayache 2006; Arsigny et al. 2007; Jayasumana et al. 2013).
In visual recognition, SPD matrix data provide powerful sta-
tistical representations for images and videos. Examples in-
clude region covariance matrices for pedestrian detection
(Tuzel, Porikli, and Meer 2006; 2008; Tosato et al. 2010),
joint covariance descriptors for action recognition (Harandi,
Salzmann, and Hartley 2014), image set covariance matrices
for face recognition (Wang et al. 2012; Huang et al. 2014;
2015b) and second-order pooling for object classification
(Ionescu, Vantzos, and Sminchisescu 2015).

As a consequence, there has been a growing need to carry
out effective computations to interpolate, restore, and clas-
sify SPD matrices. However, the computations on SPD ma-
trices often accompany with the challenge of their non-
Euclidean data structure that underlies a Riemannian mani-
fold (Pennec, Fillard, and Ayache 2006; Arsigny et al. 2007).

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Applying Euclidean geometry to SPD matrices directly of-
ten results in undesirable effects, such as the swelling of
diffusion tensors (Pennec, Fillard, and Ayache 2006). To
address this problem, (Pennec, Fillard, and Ayache 2006;
Arsigny et al. 2007; Sra 2011) introduced Riemannian met-
rics, e.g., Log-Euclidean metric (Arsigny et al. 2007), to en-
code Riemannian geometry of SPD manifolds properly.

By employing these well-studied Riemannian metrics, ex-
isting SPD matrix learning approaches typically flatten SPD
manifolds via tangent space approximation (Tuzel, Porikli,
and Meer 2008; Tosato et al. 2010; Carreira et al. 2012;
Fathy, Alavi, and Chellappa 2016), or map them into re-
producing kernel Hilbert spaces (Harandi et al. 2012; Wang
et al. 2012; Sanin et al. 2013; Quang, Biagio, and Murino
2014; Faraki, Harandi, and Porikli 2015; Zhang et al. 2015).
To more faithfully respect the original Riemannian geome-
try, recent methods (Harandi, Salzmann, and Hartley 2014;
Huang et al. 2015b) adopt a geometry-aware SPD matrix
learning scheme to pursue a mapping from the original SPD
manifold to another one with the same SPD structure. How-
ever, all the existing methods merely apply shallow learn-
ing, with which traditional methods are typically surpassed
by recent popular deep learning methods in many contexts
in artificial intelligence and visual recognition.

In the light of the successful paradigm of deep neural
networks (e.g., (LeCun et al. 1998; Krizhevsky, Sutskever,
and Hinton 2012)) to perform non-linear computations with
effective backpropagation training algorithms, we devise a
deep neural network architecture, that receives SPD matri-
ces as inputs and preserves the SPD structure across layers,
for SPD matrix non-linear learning. In other words, we aim
to design a deep learning architecture to non-linearly learn
desirable SPD matrices on Riemannian manifolds. In sum-
mary, this paper mainly brings three innovations:

• A novel Riemannian network architecture is introduced
to open a new direction of SPD matrix deep non-linear
learning on Riemannian manifolds.

• This work offers a paradigm of incorporating the Rieman-
nian structures into deep network architectures for com-
pressing both of the data space and the weight space.

• A new backpropagation is derived to train the proposed
network with exploiting a stochastic gradient descent op-
timization algorithm on Stiefel manifolds.
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Related Work
Deep neural networks have exhibited their great powers
when the processed data own a Euclidean data structure. In
many contexts, however, one may be faced with data de-
fined in non-Euclidean domains. To tackle graph-structured
data, (Bruna et al. 2014) presented a spectral formulation of
convolutional networks by exploiting a notion of non shift-
invariant convolution that depends on the analogy between
the classical Fourier transform and the Laplace-Beltrami
eigenbasis. Following (Bruna et al. 2014), a localized spec-
tral network was proposed in (Boscaini et al. 2015) to non-
Euclidean domains by generalizing the windowed Fourier
transform to manifolds to extract the local behavior of some
dense intrinsic descriptor. Similarly, (Masci et al. 2015)
proposed a ‘geodesic convolution’ on non-Euclidean local
geodesic system of coordinates to extract ‘local patches’ on
shape manifolds. The convolutions in this approach were
performed by sliding a window over the shape manifolds.

Stochastic gradient descent (SGD) has been the
workhorse for optimizing deep neural networks. As an
application of the chain rule, backpropagation is commonly
employed to compute Euclidean gradients of objective
functions, which is the key operation of SGD. Recently,
the two works (Ionescu, Vantzos, and Sminchisescu 2015;
Gao, Guo, and Wang 2016) extended backpropagation
directly on matrices. For example, (Ionescu, Vantzos, and
Sminchisescu 2015) formulated matrix backpropagation
as a generalized chain rule mechanism for computing
derivatives of composed matrix functions with respect
to matrix inputs. Besides, the other family of network
optimization algorithms exploits Riemannian gradients
to handle weight space symmetries in neural networks.
For instance, recent works (Bottou 2010; Bonnabel 2013;
Ollivier 2013; Marceau-Caron and Ollivier 2016) developed
several optimization algorithms by building Riemannian
metrics on the activity and parameter space of neural
networks, treated as Riemannian manifolds.

Riemannian SPD Matrix Network
Analogously to the well-known convolutional network
(ConvNet), the proposed SPD matrix network (SPDNet)
also designs fully connected convolution-like layers and rec-
tified linear units (ReLU)-like layers, named bilinear map-
ping (BiMap) layers and eigenvalue rectification (ReEig)
layers respectively. In particular, following the classical
manifold learning theory that learning or even preserving the
original data structure can benefit classification, the BiMap
layers are designed to transform the input SPD matrices,
that are usually covariance matrices derived from the data,
to new SPD matrices with a bilinear mapping. As the clas-
sical ReLU layers, the proposed ReEig layers introduce a
non-linearity to the SPDNet by rectifying the resulting SPD
matrices with a non-linear function. Since SPD matrices
reside on non-Euclidean manifolds, we have to devise an
eigenvalue logarithm (LogEig) layer to carry out Rieman-
nian computing on them to output their Euclidean forms for
any regular output layers. The proposed Riemannian net-
work is conceptually illustrated in Fig.1.

BiMap Layer
The primary function of the SPDNet is to generate more
compact and discriminative SPD matrices. To this end, we
design the BiMap layer to transform the input SPD matrices
to new SPD matrices by a bilinear mapping fb as

Xk = f
(k)
b (Xk−1;Wk) = WkXk−1W

T
k , (1)

where Xk−1 ∈ Sym+
dk−1

is the input SPD matrix of the

k-th layer, Wk ∈ R
dk×dk−1∗ , (dk < dk−1) is the transfor-

mation matrix (connection weights), Xk ∈ R
dk×dk is the

resulting matrix. Note that multiple bilinear mappings can
be also performed on each input. To ensure the output Xk

becomes a valid SPD matrix, the transformation matrix Wk

is basically required to be a row full-rank matrix. By apply-
ing the BiMap layer, the inputs on the original SPD manifold
Sym+

dk−1
are transformed to new ones which form another

SPD manifold Sym+
dk

. In other words, the data space on
each BiMap layer corresponds to one SPD manifold.

Since the weight space R
dk×dk−1∗ of full-rank matrices is

a non-compact Stiefel manifold where the distance function
has no upper bound, directly optimizing on the manifold is
infeasible. To handle this problem, one typical solution is
to additionally assume the transformation matrix Wk to be
orthogonal (semi-orthogonal more exactly here) so that they
reside on a compact Stiefel manifold St(dk, dk−1)

1. As a
result, optimizing over the compact Stiefel manifolds can
achieve optimal solutions of the transformation matrices.

ReEig Layer
In the context of ConvNets, (Jarrett et al. 2009; Nair and
Hinton 2010) presented various rectified linear units (ReLU)
(including the max(0, x) non-linearity) to improve discrim-
inative performance. Hence, exploiting ReLU-like layers to
introduce a non-linearity to the context of the SPDNet is
also necessary. Inspired by the idea of the max(0, x) non-
linearity, we devise a non-linear function fr for the ReEig
(k-th) layer to rectify the SPD matrices by tuning up their
small positive eigenvalues:

Xk = f (k)
r (Xk−1) = Uk−1 max(εI,Σk−1)U

T
k−1, (2)

where Uk−1 and Σk−1 are achieved by eigenvalue decom-
position (EIG) Xk−1 = Uk−1Σk−1U

T
k−1, ε is a rectifica-

tion threshold, I is an identity matrix, max(εI,Σk−1) is a
diagonal matrix A with diagonal elements being defined as

A(i, i) =

{
Σk−1(i, i), Σk−1(i, i) > ε,

ε, Σk−1(i, i) ≤ ε.
(3)

Intuitively, Eqn.2 prevents the input SPD matrices from
being close to non-positive ones (while the ReLU yields
sparsity). Nevertheless, it is not originally designed for reg-
ularization because the inputs are already non-singular af-
ter applying BiMap layers. In other words, we always set ε
above the top-n smallest eigenvalue even when the eigenval-
ues of original SPD matrices are all much greater than zero.

1A compact Stiefel manifold St(dk, dk−1) is the set of dk-
dimensional orthonormal matrices of the R

dk−1 .
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Output Layers
…

LogEig Layer  

ReEig Layer  BiMap Layer  Input SPD matrix

Figure 1: Conceptual illustration of the proposed SPD matrix network (SPDNet) architecture.

Besides, there also exist other feasible strategies to derive
a non-linearity on the input SPD matrices. For example, the
sigmoidal function (Cybenko 1989) could be considered to
extend Eqn.2 to a different activation function. Due to the
space limitation, we do not discuss this any further.

LogEig Layer
The LogEig layer is designed to perform Riemannian com-
puting on the resulting SPD matrices for output layers with
objective functions. As studied in (Arsigny et al. 2007), the
Log-Euclidean Riemannian metric is able to endow the Rie-
mannian manifold of SPD matrices with a Lie group struc-
ture so that the manifold is reduced to a flat space with the
matrix logarithm operation log(·) on the SPD matrices. In
the flat space, classical Euclidean computations can be ap-
plied to the domain of SPD matrix logarithms. Formally, we
employ the Riemannian computation (Arsigny et al. 2007)
in the k-th layer to define the involved function fl as

Xk = f
(k)
l (Xk−1) = log(Xk−1) = Uk−1 log(Σk−1)U

T
k−1,

(4)
where Xk−1 = Uk−1Σk−1U

T
k−1 is an EIG operation,

log(Σk−1) is the diagonal matrix of eigenvalue logarithms.
For SPD manifolds, the Log-Euclidean Riemannian com-

putation is particularly simple to use and avoids the high
expense of other Riemannian computations (Pennec, Fillard,
and Ayache 2006; Sra 2011), while preserving favorable the-
oretical properties. As for other Riemannian computations
on SPD manifolds, please refer to (Pennec, Fillard, and Ay-
ache 2006; Sra 2011) for more studies on their properties.

Other Layers
After applying the LogEig layer, the vector forms of the out-
puts can be fed into classical Euclidean network layers. For
example, the Euclidean fully connected (FC) layer could be
inserted after the LogEig layer. The dimensionality of the fil-
ters in the FC layer is set to dk × dk−1, where dk and dk−1

are the class number and the dimensionality of the vector
forms of the input matrices respectively. The final output
layer for visual recognition tasks could be a softmax layer
used in the context of Euclidean networks.

In addition, the pooling layers and the normalization lay-
ers are also important to improve regular Euclidean Con-
vNets. For the SPDNet, the pooling on SPD matrices can be
first carried out on their matrix logarithms, and then trans-
form them back to SPD matrices by employing the matrix

exponential map exp(·) in the Riemannian framework (Pen-
nec, Fillard, and Ayache 2006; Arsigny et al. 2007). Sim-
ilarly, the normalization procedure on SPD matrices could
be first to calculate the mean and variance of their matrix
logarithms, and then normalize them with their mean and
variance as done in (Ioffe and Szegedy 2015).

Riemannian Matrix Backpropagation
The model of the proposed SPDNet can be written as a series
of successive function compositions f = f (l) ◦ f (l−1) . . . ◦
f (1) with a parameter tuple W = (Wl,Wl−1, . . . ,W1),
where f (k) is the function for the k-th layer, Wk is the
weight parameter of the k-th layer and l is the number of
layers. The loss of the k-th layer could be denoted by a func-
tion as L(k) = � ◦ f (l) ◦ . . . f (k), where � is the loss function
for the final output layer.

Training deep networks often uses stochastic gradient de-
scent (SGD) algorithms. The key operation of one classi-
cal SGD algorithm is to compute the gradient of the ob-
jective function, which is obtained by an application of the
chain rule known as backpropagation (backprop). For the k-
th layer, the gradients of the weight Wk and the data Xk−1

can be respectively computed by backprop as

∂L(k)(Xk−1, y)

∂Wk
=

∂L(k+1)(Xk, y)

∂Xk

∂f (k)(Xk−1)

∂Wk
, (5)

∂L(k)(Xk−1, y)

∂Xk−1
=

∂L(k+1)(Xk, y)

∂Xk

∂f (k)(Xk−1)

∂Xk−1
, (6)

where y is the output, Xk = f (k)(Xk−1). Eqn.5 is the gra-
dient for updating Wk, while Eqn.6 is to compute the gradi-
ents of the involved data in the layers below. For simplicity,
we often replace ∂L(k)(Xk−1, y) with ∂L(k) in the sequel.

There exist two key issues for generalizing backprop to
the context of the proposed Riemannian network for SPD
matrices. The first one is updating the weights in the BiMap
layers. As we force the weights to be on Stiefel manifolds,
merely using Eqn.5 to compute their Euclidean gradients
rather than Riemannian gradients in the procedure of back-
prop cannot yield valid orthogonal weights. While the gra-
dients of the SPD matrices in the BiMap layers can be cal-
culated by Eqn.6 as usual, computing those with EIG de-
composition in the layers of ReEig and LogEig has not been
well-solved by the traditional backprop. Thus, it is the sec-
ond key issue for training the proposed network.
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To tackle the first issue, we propose a new way of updat-
ing the weights defined in Eqn.1 for the BiMap layers by
exploiting an SGD setting on Stiefel manifolds. The steep-
est descent direction for the corresponding loss function
L(k)(Xk−1, y) with respect to Wk on the Stiefel manifold
is the Riemannian gradient ∇̃L

(k)
Wk

. To obtain it, the normal

component of the Euclidean gradient ∇L
(k)
Wk

is subtracted
to generate the tangential component to the Stiefel mani-
fold. Searching along the tangential direction takes the up-
date in the tangent space of the Stiefel manifold. Then, such
the update is mapped back to the Stiefel manifold with a re-
traction operation. For more details about the Stiefel geom-
etry and retraction, readers are referred to (Edelman, Arias,
and Smith 1998) and (Absil, Mahony, and Sepulchre 2008)
(Page 45-48, 59). Formally, an update of the current weight
W t

k on the Stiefel manifold respects the form

∇̃L
(k)

W t
k
= ∇L

(k)

W t
k
−∇L

(k)

W t
k
(W t

k)
TW t

k , (7)

W t+1
k = Γ(W t

k − λ∇̃L
(k)

W t
k
), (8)

where Γ is the retraction operation, λ is the learning rate,
∇L

(k)
Wk

(W t
k)

TW t
k is the normal component of the Eu-

clidean gradient that can be computed by using Eqn.5 as

∇L
(k)

W t
k
= 2

∂L(k+1)

∂Xk
W t

kXk−1. (9)

As for the second issue, we exploit the matrix generaliza-
tion of backprop studied in (Ionescu, Vantzos, and Smin-
chisescu 2015) to compute the gradients of the involved
SPD matrices in the ReEig and LogEig layers. In particu-
lar, let F be a function describing the variations of the upper
layer variables with respect to the lower layer variables, i.e.,
dXk = F(dXk−1). With the function F , a new version of
the chain rule Eqn.6 for the matrix backprop is defined as

∂L(k)(Xk−1, y)

∂Xk−1
= F∗

(
∂L(k+1)(Xk, y)

∂Xk

)
, (10)

where F∗ is a non-linear adjoint operator of F , i.e., B :
F(C) = F∗(B) : C, the operator : is the matrix inner
product with the property B : C = Tr(BTC).

Actually, both of the two functions Eqn.2 and Eqn.4 for
the ReEig and LogEig layers involve the EIG operation
Xk−1 = Uk−1Σk−1U

T
k−1 (note that, to increase the read-

ability, we drop the layer indexes for Uk−1 and Σk−1 in the
sequel). Hence, we introduce a virtual layer (k

′
layer) for the

EIG operation. Applying the new chain rule Eqn.10 and its
properties, the update rule for the data Xk−1 is derived as

∂L(k)

∂Xk−1
: dXk−1

= F∗
(
∂L(k

′
)

∂U

)
: dXk−1 + F∗

(
∂L(k

′
)

∂Σ

)
: dXk−1

=
∂L(k

′
)

∂U
: F (dXk−1) +

∂L(k
′
)

∂Σ
: F (dXk−1)

=
∂L(k

′
)

∂U
: dU +

∂L(k
′
)

∂Σ
: dΣ,

(11)

where the two variations dU and dΣ are derived by the
variation of the EIG operation dXk−1 = dUΣUT +
UdΣUT +UΣdUT as:

dU = 2U(P T ◦ (UT dXk−1U)sym), (12)

dΣ = (UT dXk−1U)diag, (13)

where ◦ is the Hadamard product, Dsym = 1
2 (D + DT ),

Ddiag is D with all off-diagonal elements being 0 (note that
we also use these two denotations in the following), P is
calculated by operating on the eigenvalues σ in Σ:

P (i, j) =

{
1

σi−σj
, i �= j,

0, i = j.
(14)

For more details to derive Eqn.12 and Eqn.13, please re-
fer to (Ionescu, Vantzos, and Sminchisescu 2015). Plugging
Eqn.12 and Eqn.13 into Eqn.11 and using the properties of
the matrix inner product : can derive the partial derivatives
of the loss functions for the ReEig and LogEig layers:

∂L(k)

∂Xk−1
= 2U

⎛
⎝P T ◦

(
UT ∂L(k

′
)

∂U

)
sym

⎞
⎠UT

+U

(
∂L(k

′
)

∂Σ

)
diag

UT ,

(15)

where ∂L(k
′
)

∂U and ∂L(k
′
)

∂Σ can be obtained with the same
derivation strategy used in Eqn.11. For the function Eqn.2
employed in the ReEig layers, its variation becomes dXk =
2(dU max(εI,Σ)UT )sym + (UQdΣUT )sym, and these
two partial derivatives can be computed by

∂L(k
′
)

∂U
= 2

(
∂L(k+1)

∂Xk

)
sym

U max(εI,Σ), (16)

∂L(k
′
)

∂Σ
= QUT

(
∂L(k+1)

∂Xk

)
sym

U , (17)

where max(εI,Σ) is defined in Eqn.3, and Q is the gradient
of max(εI,Σ) with diagonal elements being defined as

Q(i, i) =

{
1, Σ(i, i) > ε,

0, Σ(i, i) ≤ ε.
(18)

For the function Eqn.4 used in the LogEig layers, its varia-
tion is dXk = 2(dU log(Σ)UT )sym+(UΣ−1dΣUT )sym.
Then we calculate the following two partial derivatives:

∂L(k
′
)

∂U
= 2

(
∂L(k+1)

∂Xk

)
sym

U log(Σ). (19)

∂L(k
′
)

∂Σ
= Σ−1UT

(
∂L(k+1)

∂Xk

)
sym

U , (20)

By mainly employing Eqn.7–Eqn.9 and Eqn.15–Eqn.20,
the Riemannian matrix backprop for training the SPDNet
can be realized. The convergence analysis of the used SGD
algorithm on Riemannian manifolds follows the develop-
ments in (Bottou 2010; Bonnabel 2013).
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Discussion
Although the two works (Harandi, Salzmann, and Hartley
2014; Huang et al. 2015b) have studied the geometry-aware
map to preserve SPD structure, our SPDNet exploits more
general (i.e., Stiefel manifold) setting for the map, and sets it
up in the context of deep learning. Furthermore, we also in-
troduce a non-linearity during learning SPD matrices in the
network. Thus, the main theoretical advantage of the pro-
posed SPDNet over the two works is its ability to perform
deep learning and non-linear learning mechanisms.

While (Ionescu, Vantzos, and Sminchisescu 2015) in-
troduced a covariance pooling layer into ConvNets start-
ing from images, our SPDNet works on SPD matrices di-
rectly and exploits multiple layers tailored for SPD matrix
deep learning. From another point of the view, the proposed
SPDNet can be built on the top of the network (Ionescu,
Vantzos, and Sminchisescu 2015) for deeper SPD matrix
learning that starts from images. Moreover, we must claim
that our SPDNet is still useful while (Ionescu, Vantzos, and
Sminchisescu 2015) will totally break down when the pro-
cessed data are not covariance matrices for images.

Experiments
We evaluate the proposed SPDNet for three popular vi-
sual classification tasks including emotion recognition, ac-
tion recognition and face verification, where SPD matrix
representations have achieved great successes. The com-
paring state-of-the-art SPD matrix learning methods are
Covariance Discriminative Learning (CDL) (Wang et al.
2012), Log-Euclidean Metric Learning (LEML) (Huang et
al. 2015b) and SPD Manifold Learning (SPDML) (Harandi,
Salzmann, and Hartley 2014) that uses affine-invariant met-
ric (AIM) (Pennec, Fillard, and Ayache 2006) and stein di-
vergence (Sra 2011). The Riemannian Sparse Representa-
tion (RSR) (Harandi et al. 2012) for SPD matrices is also
evaluated. Besides, we measure the deep second-order pool-
ing (DeepO2P) network (Ionescu, Vantzos, and Sminchis-
escu 2015) which introduces a covariance pooling layer
into typical ConvNets. For all of them, we use their source
codes from authors with tuning their parameters according
to the original works. For our SPDNet, we study 4 con-
figurations, i.e., SPDNet-0BiRe/1BiRe/2BiRe/3BiRe, where
iBiRe means using i blocks of BiMap/ReEig. For example,
the structure of SPDNet-3BiRe is X0 → f

(1)
b → f

(2)
r →

f
(3)
b → f

(4)
r → f

(5)
b → f

(6)
l → f

(7)
f → f

(8)
s , where

fb, fr, fl, ff , fs indicate the BiMap, ReEig, LogEig, FC and
softmax log-loss layers respectively. The learning rate λ is
fixed as 10−2, the batch size is set to 30, the weights are
initialized as random semi-orthogonal matrices, and the rec-
tification threshold ε is set to 10−4. For training the SPDNet,
we just use an i7-2600K (3.40GHz) PC without any GPUs.

Emotion Recognition
We use the popular Acted Facial Expression in Wild
(AFEW) (Dhall et al. 2014) dataset for emotion recognition.
The AFEW database collects 1,345 videos of facial expres-
sions of actors in movies with close-to-real-world scenarios.

The database is divided into training, validation and test
data sets where each video is classified into one of seven ex-
pressions. Since the ground truth of the test set has not been
released, we follow (Liu et al. 2014) to report the results on
the validation set. To augment the training data, we segment
the training videos into 1,747 small clips. For the evaluation,
each facial frame is normalized to an image of size 20× 20.
Then, following (Wang et al. 2012), we compute the covari-
ance matrix of size 400× 400 to represent each video.

On the AFEW database, the dimensionalities of
the SPDNet-3BiRe transformation matrices are set to
400× 200, 200× 100, 100× 50 respectively. Training the
SPDNet-3BiRe per epoch (500 epoches in total) takes
around 2 minutes(m) on this dataset. As show in Table.1,
we report the performances of the competing methods in-
cluding the state-of-the-art method (STM-ExpLet (Liu et al.
2014)) on this database. It shows our proposed SPDNet-
3BiRe achieves several improvements over the state-of-the-
art methods although the training data is small.

In addition, we study the behaviors of the proposed
SPDNet with different settings. First, we evaluate our
SPDNet without using the LogEig layer. Its extremely low
accuracy 21.49% shows the layer for Riemannian comput-
ing is necessary. Second, we study the case of learning di-
rectly on Log-Euclidean forms of original SPD matrices,
i.e., SPDNet-0BiRe. The performance of SPDNet-0BiRe
is 26.32%, which is clearly outperformed by the deeper
SPDNets (e.g., SPDNet-3BiRe). This justifies the impor-
tance of using the SPD layers. Besides, SPDNets also clearly
outperform DeepO2P that inserts one LogEig-like layer into
a standard ConvNet architecture. This somehow validates
the improvements are from the contribution of the BiMap
and ReEig layers rather than deeper architectures. Third,
to study the gains of using multiple BiRe blocks, we com-
pare SPDNet-1BiRe and SPDNet-2BiRe that feed the Lo-
gEig layer with SPD matrices of the same size as set in
SPDNet-3BiRe. As reported in Table.1, the performance
of our SPDNet is improved when stacking more BiRes.
Fourth, we also study the power of the designed ReEig
layers in Fig.2 (a). The accuracies of the three different
rectification threshold settings ε = 10−4, 5 × 10−5, 0 are
34.23%, 33.15%, 32.35% respectively, that verifies the suc-
cess of introducing the non-linearity. Lastly, we also show
the convergence behavior of our SPDNet in Fig.2 (b), which
suggests it can converge well after hundreds of epoches.

Action Recognition
We handle the problem of skeleton-based human action
recognition using the HDM05 database (Müller et al. 2007),
which is one of the largest-scale datasets for the problem.

On the HDM05 dataset, we conduct 10 random evalua-
tions, in each of which half of sequences are randomly se-
lected for training, and the rest are used for testing. Note that
the work (Harandi, Salzmann, and Hartley 2014) only recog-
nizes 14 motion classes while the protocol designed by us is
to identify 130 action classes and thus be more challenging.
For data augmentation, the training sequences are divided
into around 18,000 small sequences in each random evalua-
tion. As done in (Harandi, Salzmann, and Hartley 2014), we
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Method AFEW HDM05 PaSC1 PaSC2

STM-ExpLet 31.73% – – –
RSR-SPDML 30.12% 48.01%±3.38 – –
DeepO2P 28.54% – 68.76% 60.14%
HERML-DeLF – – 58.0% 59.0%
VGGDeepFace – – 78.82% 68.24%
CDL 31.81% 41.74%±1.92 78.29% 70.41%
LEML 25.13% 46.87%±2.19 66.53% 58.34%
SPDML-AIM 26.72% 47.25%±2.78 65.47% 59.03%
SPDML-Stein 24.55% 46.21%±2.65 61.63% 56.67%
RSR 27.49% 41.12%±2.53 – –
SPDNet-0BiRe 26.32% 48.12%±3.15 68.52% 63.92%
SPDNet-1BiRe 29.12% 55.26%±2.37 71.75% 65.81%
SPDNet-2BiRe 31.54% 59.13%±1.78 76.23% 69.64%
SPDNet-3BiRe 34.23% 61.45%±1.12 80.12% 72.83%

Table 1: The results for the AFEW, HDM05 and PaSC
datasets. PaSC1/PaSC2 are the control/handheld testings.

represent each sequence by a joint covariance descriptor of
size 93× 93, which is computed by the second order statis-
tics of the 3D coordinates of the 31 joints in each frame.

For our SPDNet-3BiRe, the sizes of the transformation
matrices are set to 93× 70, 70× 50, 50× 30 respectively,
and its training time at each of 500 epoches is about 4m
on average. Table.1 summarizes the results of the compar-
ative algorithms and of the state-of-the-art method (RSR-
SPDML) (Harandi, Salzmann, and Hartley 2014) on this
dataset. As DeepO2P (Ionescu, Vantzos, and Sminchisescu
2015) is merely for image based visual classification tasks,
we do not evaluate it in the 3D skeleton based action recog-
nition task. We find that our SPDNet-3BiRe outperforms the
state-of-the-art shallow SPD matrix learning methods by a
large margin (more than 13%). This shows that the proposed
non-linear deep learning scheme on SPD matrices leads to
great improvements when the training data is large enough.

The studies on without using LogEig layers and different
configurations of BiRe blocks are executed as the way of the
last evaluation. The performance of the case of without us-
ing LogEig layers is 4.89%, again validating the importance
of the Riemannian computing layers. Besides, as seen from
Table.1, the same conclusions as before for different settings
of BiRe blocks can be drew on this database.

Face Verification
For face verification, we employ the Point-and-Shoot Chal-
lenge (PaSC) database (Beveridge et al. 2013), which is very
challenge and widely-used for verifying faces in videos. It
includes 1,401 videos taken by control cameras and 1,401
videos captured by handheld cameras for 265 people. In ad-
dition, it also contains 280 videos for training.

On the PaSC database, there are control and handheld
face verification tasks, both of which are to verify a claimed
identity in the query video by comparing with the associ-
ated target video. As done in (Beveridge, Zhang, and others
2015), we also use the training data (COX) (Huang et al.
2015a) with 900 videos. Similar to the last two experiments,
the whole training data are also augmented to 12,529 small
video clips. For evaluation, we use the approach of (Parkhi-
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Figure 2: (a) Accuracy curve of the proposed SPDNet-3BiRe
at different rectification threshold ε values, and (b) its con-
vergence curve at ε = 10−4 for the AFEW dataset.

and, Vedaldi, and Zisserman 2015) to extract state-of-the-
art deep face features on the normalized face images of size
224 × 224. To speed up the training, we employ PCA to fi-
nally get 400-dimensional features. As done in (Huang et al.
2015b), we compute an SPD matrix of size 401 × 401 for
each video to fuse its data covariance matrix and mean.

For the evaluation, we configure the sizes of the SPDNet-
3BiRe weights to 401× 200, 200× 100, 100× 50 respec-
tively. The time for training the SPDNet-3BiRe at each of
100 epoches is around 15m. Table.1 compares the accu-
racies of the different methods including the state-of-the-
art methods (HERML-DeLF (Beveridge, Zhang, and others
2015) and VGGDeepFace (Parkhiand, Vedaldi, and Zisser-
man 2015)) on the PaSC database. Since the RSR method is
designed for recognition tasks rather than verification tasks,
we do not report its results. Although the used softmax out-
put layer in our SPDNet is not favorable for the verification
tasks, we find that it still achieves the highest performances.

Finally, we can also obtain the same conclusions as before
for the studies on different configurations of the proposed
SPDNet as observed from the results on the PaSC dataset.

Conclusion
We proposed a novel deep Riemannian network architecture
for opening up a possibility of SPD matrix non-linear learn-
ing. To train the SPD network, we exploited a new back-
propagation with an SGD setting on Stiefel manifolds. The
evaluations on three visual classification tasks studied the
effectiveness of the proposed network for SPD matrix learn-
ing. As future work, we plan to explore more layers, e.g.,
parallel BiMap layers, pooling layers and normalization lay-
ers, to improve the Riemannian network. For further deep-
ening the architecture, we would build the SPD network on
the top of existing convolutional networks such as (Ionescu,
Vantzos, and Sminchisescu 2015) that start from images. In
addition, other interesting directions would be to extend this
work for a general Riemannian manifold or to compress tra-
ditional network architectures into more compact ones with
the proposed SPD or orthogonal constraints.
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