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Scalable Detection of Partial Near-Duplicate Videos by
Visual-Temporal Consistency

Hung-Khoon Tan®®  Chong-Wah Ngo?
{hktan, cwngo}@cs.cityu.edu.hk

Department of Computer Science?’
City University of Hong Kong
Kowloon, Hong Kong

ABSTRACT

Following the exponential growth of social media, there now
exist huge repositories of videos online. Among the huge vol-
umes of videos, there exist large numbers of near-duplicate
videos. Most existing techniques either focus on the fast re-
trieval of full copies or near-duplicates, or consider localiza-
tion in a heuristic manner. This paper considers the scalable
detection and localization of partial near-duplicate videos
by jointly considering visual similarity and temporal consis-
tency. Temporal constraints are embedded into a network
structure as directed edges. Through the structure, partial
alignment is novelly converted into a network flow problem
where highly efficient solutions exist. To precisely decide
the boundaries of the overlapping segments, pair-wise con-
straints generated from keypoint matching can be added to
the network to iteratively refine the localization result. We
demonstrate the effectiveness of partial alignment for three
different tasks. The first task links partial segments in full-
length movies to videos crawled from YouTube. The second
task performs fast web video search, while the third performs
near-duplicate shot and copy detection. The experimental
result demonstrates the effectiveness and efficiency of the
proposed method compared to state-of-the-art techniques.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms

Algorithms Experimentation Performance
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1. INTRODUCTION

With the popularity of social media, the volume of pro-
fessional and user generated videos is growing exponentially.
Among these massive amount of data, significant portion be-
longs to copies or near-duplicates. As a consequence, visual
redundancy analysis becomes a topic of intensive studies re-
cently [27, 16], being applied to various emerging applica-
tions including copy enforcement [13], news video thread-
ing [26], and novelty ranking of web videos [7]. Most exist-
ing techniques focus on the discovery of full copies or near-
duplicates, where clips or shots are regarded as identical if
there are sufficient amount of keyframes or features being
duplicate or similar. This has largely fueled research into
fast indexing techniques such as the locality sensitive hash-
ing [13], hamming embedding [9], and random histogram [4].
While these techniques facilitate fast retrieval of duplicate
videos, the localization of duplicate video segments are often
being carried out in a heuristic manner. Typical examples
include voting scheme [2] which counts the number of dupli-
cates within different time stamps of a video to locate dupli-
cate segments. Such heuristics become difficult to cope with
the ever increasing amount of partial near-duplicate videos —
a common practice in social media where interesting parts of
a video are cut, edited, and then pasted in random positions
at another video of similar or arbitrary theme.

The rapid populating of partial near-duplicates among
videos indeed forms a media network that inter-relates dif-
ferent portions of videos. Understanding the topology of
network offers advantages such as tracing the manipulation
history of media [14] and video re-ranking by Page Rank like
algorithm [7]. Nonetheless, in contrast to HTML web pages,
“hyperlinks” of videos do not exist in reality and apparently
automatic creation of such links to bridge the partial near-
duplicate content of videos is not a trivial issue. Figure 1
depicts an example of several partial near-duplicate videos.
In broadcast videos for example, videos with partial rela-
tionship narrate different aspects of an event or story which
are not present in the other video. The degree of overlap be-
tween video pairs provides a more complete picture of their
relationships by further outlining the hierarchy and depen-
dency among them.

This paper addresses the issue of partial near-duplicate
detection and localization. The links among videos are es-
tablished through partially aligning video content. The par-
tial alignment problem is novelly converted to a network flow
problem. Using two videos A and B as example (the anchor
and reference videos respectively in Figure 2), the network is
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Figure 1: Partially near-duplicate videos. Given two videos, partial near-duplicate detection aims to detect
and localize the near-duplicate segments in the videos.

formed by a set of frames in B retrieved by video A. The re-
trieved frames in B are chronologically traced following the
original time stamps in B. This results in a variety of possi-
ble paths which can transfer flows of different capacities (or
similarities in our definition) in the network. Finding par-
tial alignment between videos A and B is then equivalent
to searching for a maximal path which carries the maxi-
mum capacity. To precisely locate the boundaries of the
overlapping segments, we also introduce two kinds of con-
straints: must-link and cannot-link to iteratively refine the
partial alignment. The refinement could also aid in the dis-
covery of multiple partial alignments, each of which follows
certain temporal coherency. The must-links and cannot-
links, which specify whether two frames from videos A and
B should and should not be aligned, are continuously mined
from the network along the process of searching a path with
maximum capacity flow.
Compared to existing techniques in near-duplicate retrieval,

the proposed approach offers several advantages as follows:

e Partial localization is considered. This is in contrast
to fingerprint-based approaches [6] which summarize
videos as compact signatures and sacrifice frame-level
granularity in performing localization.

Joint visual-temporal detection. In addition to visual
features, the temporal coherency of frame sequence,
an inherent feature embedded in the network, is also
utilized for finding partial alignment. This is different
from existing keyframe-based methods [20, 22, 26, 27,
28] which ignore temporal information and rely heavily
on the retrieval or matching of point set features (e.g.,
SIFT from keypoints [17]) for robust detection, at the
expense of intensive computation. With temporal co-
herency being considered, relatively “simple” features
can be used to guarantee robust detection and localiza-
tion, while enjoying good efficiency. In addition, the
alignment is also less dependent on the “quality” of
keyframe as in [27], where point set features cannot be
accurately located if the selected keyframes have un-
dergone motion blur or with fast moving objects. In
fact, the detection rate of near-duplicates in [27] is de-
pendent on the result of keyframe selection to certain
extent. In our approach, keyframes are matched col-
lectively where their temporal relationship are taken
into account. This has resulted in a more robust ap-
proach that is less sensitive to the choice of keyframes.
Scalable alignment. Expensive cross-frame and all-
pair matching between two videos are not required by
our approach. This is mainly due to the novel con-
version of the problem to network flow optimization,
where searching only needs to be performed among
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the frames of target video but not the query video.
In addition, visual consistency of videos (represented
via capacity) and temporal coherency are considered
as a whole during search. These properties make our
approach different from other frame alignment algo-
rithms commonly used in the literature such as dy-
namic programming [8], Hungarian graph matching
[15] and Earth Mover’s Distance [25]. In these al-
gorithms, visual and temporal information are con-
sidered separately, where sliding window techniques,
which involve sequential scan of videos and exhaus-
tive cross-frame matching, are often required to locate
partial alignments. Using our approach, matching a
full-length movie of more than 2 hours to 100 videos
from YouTube requires only an average of 3 minutes.

In brief, the main contribution of this paper is the pro-
posal of partial near-duplicate video alignment with network
flow optimization. The proposed system performs scalable
and partial localization of near-duplicates by joint consider-
ation of visual and temporal consistency. In addition, the
boundaries of partial alignments can be precisely located
by incorporating the must-link and cannot-link constraints.
With this work, we also tackle a variety of tasks that require
the establishment of near-duplicate links among videos for
various purposes. The first task links partial segments of
full-length movies to videos crawled from YouTube. These
links provide clues to detect the highlight of videos, while
enriching the annotation of movie scenes with social tags.
The second task performs fast web video search by rapid
detection of near-duplicates in a database of more than 500
hours. The last two tasks perform near-duplicate shot de-
tection and copy detection respectively on TRECVID [19]
and Muscle-VCD-2007 datasets [11].

The remaining paper is organized as follows. Section 2
reviews related work on near-duplicate retrieval and detec-
tion. Section 3 presents temporal network modeling to de-
tect near-duplicate segments from two videos. Section 4
explore the use of must-links and cannot-links derived from
keypoint matching to refine the boundaries of the detected
segments. The proposed approach is evaluated under three
task settings, i.e., movie tagging (Section 5), web video re-
trieval (Section 6) and near-duplicate and copy detection
(Section 7). We then summarize our findings in Section 8.

2. RELATED WORK

Near-duplicate retrieval and detection, as a timely re-
search problem to several emerging applications, has been
intensively studied recently. Broadly, we can categorize the
existing works into three main groups: signature-based [6,
4], keyframe-based [20, 22, 26, 27] and trajectory-based [24,



16]. The definition of near-duplicate indeed varies depend-
ing on the target application. In general, near-duplicates are
composed of 1) videos of the same scene but captured under
different viewpoints, lighting and times, and 2) videos mod-
ified from the same source of material, resulting in copies of
different versions.

Signature-based approaches summarize video content into
fingerprints for fast retrieval. Typical example includes the
use of global color histogram to “average” frames in video as
a tiny fingerprint [22]. More advanced techniques include the
recently proposed random histogram [4] which projects low-
level features and embed them into a high dimensional space
using locality sensitive hashing. The resulting fingerprint is
not compact but sparse enough so that indexing technique
such as vector space model can be used for rapid retrieval.
While being efficient, temporal information is missing in fin-
gerprints and thus retrieval of partial near-duplicates is not
supported. Context-based approaches, similar to fingerprint
generation, derive signatures from the context surrounding
video. For instance, the recent work in [23] utilizes web con-
text such as thumbnail, view count and time duration of a
video for real-time web video re-ranking.

Keyframe-based approaches perform sparse analysis of video

content by matching representative frames sampled from
videos [20, 22, 26, 27]. Two classical techniques are sliding
window [22] and dynamic programming [8]. Sliding window
is sensitive to temporal resolution and is thus not suitable
for retrieving near-duplicates with changes in frame rate, es-
pecially the fast and slow-motion videos. Dynamic program-
ming finds the longest common subsequence and computes
the edit distances to determine near-duplicate identity. Ho-
ever, the role of dynamic programming is typically limited to
extracting temporal entities on the correspondence set gen-
erated from content matching. In the end, the robustness of
the approaches relies heavily on the stability of visual con-
tent. The recent work in [20] optimizes frame alignment by
considering visual similarity and alignment distortion. The
two frame sequences are aligned horizontally as points in an
image space and alignment distortion is based on the agree-
ment among the angles in the corresondence set. However,
the overhead to perform alignment could be quite signifi-
cant for long sequences, considering that a quadratic inte-
ger optimization is employed. Heuristic voting scheme is
also proposed in [2] where the aggregation of votings from
near-duplicate frames makes the near-duplicate shot detec-
tion robust to individual near-duplicate image false posi-
tives. However, voting can only generate coarse alignment
results which are not fully optimized and might not be ade-
quate for precise localization of partial near-duplicates.

Trajectory-based approaches track points of interest along
the video sequence to enrich keypoint features with spatio-
temporal information. For instance, trajectories have been
utilized to highlight different motion behaviors [16] and then
assign behavioral labels to each local descriptors. In another
recent work [24], the whole shot is represented using a bag
of trajectories where each trajectory in turn is described
as temporal patterns of discontinuities. In general, the ex-
traction of trajectories is an extremely expensive operation.
Moreover trajectory features are sensitive to camera motion
and therefore their robustness is limited to copy detection,
but not necessarily robust for general near-duplicate detec-
tion, especially those involving viewpoint changes.
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3. TEMPORAL NETWORK

Given two videos, a video is designated as the anchor video
Q@ and the other as the reference video R. Temporal network
is initially formed by querying the top-k similar frames from
R using Q). Figure 2 illustrates an example where an an-
chor video consisting of six frames retrieves six list of top-
k frames from the reference video. Directed edges are es-
tablished across the frames in top-k lists by chronologically
linking frames according to their time stamp values. For ex-
ample, with reference to Figure 2, the frame in the first list
with time stamp value 5 can link to one frame in another
list with time stamp larger than 5. In other words, when
tracing the list of connected edges from left to right, the
time stamp values are monotonically increasing. This form
a temporal network encompassing all possible frame align-
ments between videos () and R which follow strict temporal
coherency. Two artificial nodes, source and sink nodes, are
included for modeling so that all paths in the network are
originated from the source node and end at the sink node.

In brief, temporal network G is basically composed of
nodes from frames in reference video R, and directed edges
which traverse frames from source to sink nodes. The weight
of an edge is proportional to the similarity of the destination
node to its query frame in Q). In this network, the weight
signifies the capacity that an edge can carry. The network
flow which a path can transport is equal to the accumulated
weights of its edges from the source to sink nodes. Find-
ing a maximal path with the maximum flow is thus equiva-
lent to searching for a sequence alignment which maximizes
the similarity between ) and R in monotonically increasing
temporal order. The optimization is indeed an equivalent of
the classical network maximum flow problem in operations
research [1].

While the network appears to be simple, it actually sig-
nifies several interesting facts. First, visual and temporal
information are unified in a holistic way under the network.
This allows joint consideration of visual-temporal consis-
tency between @ and R — an important property which ex-
isting techniques for near-duplicate detection does not take
into account. Second, while the number of possible paths
may be exponential, the temporal constraint imposed to the
network can actually prune a significant number of paths.
In particular, falsely retrieved frames which are often ran-
domly positioned in the network can now be easily filtered
out with the use of temporal constraint. A by-product of
this joint visual-temporal consistency is that simple finger-
print features can be employed for top-k retrieval, rather
than the point set features such as the SIFT of keypoints
[27] which are expensive to compute.

3.1 Notation

The proposed temporal graph models the set of all viable
routes that obeys temporal consistency. The viable routes
in turn represent the set of possible alignment solutions that
we intend to optimize. Sequence matching is thus posed as
a transportation problem where the objective is to find the
optimal path to transport one unit load from the source node
to the sink node.

For ease of understanding, we shall use the following no-
tations in the remainder of this paper.

e Denote Q = {q1,...,q)o|} as the query video and R =
{r1,...,7 g} as the reference video where |- | denotes
the cardinality of a set.
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Figure 2: A Temporal Graph. The columns of the lattice are frames from the reference videos, ordered
according to the k-NN of the query frame sequence. The labels on each frame shows its time stamp in the
reference video. The optimal path is highlighted. For ease of illustration, not all paths are shown.

e Temporal Network is denoted as G = (N, E) where N
and E are the set of nodes and edges respectively. The
source and sink nodes are denoted as ngre and Ngink
respectively.

e N = {Ni,...,Njg} where N; = [n1,....,ni] contains
the top-k frames from R retrieved by ¢;, and ordered
according to their similarity values. Thus, n; denotes
the j** nearest frame to ¢;. One query function is de-
fined: T'S(n) returns the time stamp, or frame number,
of a node n.

e E = {e;;} is the set of all edges. e;; represents a
weighted directed edge linking any two nodes from top-
k lists N; to IN;, respectively.

e Given an arbitrary node n in G, SRC(n) is the di-
rect predecessors of n, or the set of nodes with one
of its out-going edge directed towards n. Similarly,
DEST(n) is the direct successors of n, or the set of
nodes with an in-coming edge emitted from n. E;,(n)
is the set of in-coming edges while Eoqyt(n) is the out-
going edges of n.

e Ag ={ai1,...,ar} and Ap = {b1,...,...,br} repre-
sent the best maximal frame alignment between ) and
R, or equivalently Ag is the optimal path in G. The
alignment is one-to-one (e.g., frame a; matches to by)
and L denotes the sequence length. With reference to
Figure 2, Ag = [2,3,4,5], Ar = [2,3,4,6] and L = 4.

3.2 Frame Alignment versus Flow Optimiza-
tion

The solution space provided by the network encompasses

various uncertainties of alignments arisen from differences

in temporal resolution and feature similarity. Under our

problem definition, we seek an optimal alignment between
Q and R:

L
AQ,AR,L = max Z Sim(qai7rbi) (1)
AQ:AR,L |
'L,aiEAQ,biEAR
subject to

(2)

aiy1 > ai, bit1 > b;

1<ar<[Ql, 1<bs <R
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where Sim represents the similarity of frame q.; and rp;.
Equations 2 and 3 imposes temporal order and one-to-one
(0O20) mapping relationship between Ag and Ar. Many-
to-many (M2M) or one-to-many (O2M) relationship is in-
deed possible by altering the inequality operators in Equa-
tion 2. Generally M2M or O2M mapping is more robust, for
example when matching a video to a slow-motion version.
However, the randomness caused by such relaxed mappings
can lead to noisy matches in practice. For practical and effi-
ciency reasons, O20 mapping is adopted in our formulation.

Equation 1 can indeed be solved in its original form as
a constrained binary programming problem. Possible solu-
tion includes branch-and-bound algorithm by treating Equa-
tion 2 as constraint and evaluating all possible permutation
of L. The evaluation can easily become intractable with the
increase in the video length — a case where we consider when
matching a full-length movie to web videos. With temporal
network G, in contrast, the temporal constraint in Equa-
tion 2 is structurally embedded into G as directed edges.
This structural embedding novelly converts the alignment
problem into a transportation problem, or more specifically
a network flow problem [1], where efficient algorithms are
readily available.

In the network flow problem, each directed edge is char-
acterized by two terms: weight and flow. Given an edge e;;
directed from any arbitrary node from N; to another node
in Nj, the weight of e;; is defined as:

(4)

where g; is the jt" query frame from Q, and n; is the node in
Nj. For any edge terminating at the sink node, the weight is
assigned to zero. The flow of e;;, under our problem defini-
tion, is a binary indicator with value equal to 1 or 0. Given
a particular solution, the flows at the edges traversed by
the path is 1 while for all other edges, the flow value is 0.
One important criterion to ensure a valid solution is that
the path given by the solution must not be broken at any
point between the source and the sink node. To meet this
requirement, the temporal network must obey the flow con-
servation constraint where the net inflows and the outflows
at a particular node must be equal to zero.

Denote f(e;;) as the flow at edge e;;. The objective is find
the optimal values of f(e;;) that maximizes the total accu-

w(eij) = Sim(g;,ny)



mulated weight and at the same time obeys the equilibrium
requirement. The frame alignment, based on network flow
optimization, is thus formulated as:

maximize Z f(ei)w(eij) (5)

e;;€EE
subject to
Yo flewm)— Y. fleow) =0, YneEN (6)
ein€E;in(n) eout €EEout(n)

S o) =1 (7)

eout €EEout(nsrc)
S fem) =1 (®)

ein€Ein(Nsink)
ng(eij)SL Veij cE (9)

where Equations 6, 7 and 8 impose the flow conservation
constraints to control a well-behaved weight transfer from
the source to the sink node. The set of nodes traversed
by the optimal path indicated by f(-) = 1 constitutes the
solution. Comparing equations 5 and 1, the optimal path
corresponds to Ar, and Ag is easily obtained with no effort
once Agr is known.

The network flow formulation is a special constrained lin-
ear program with two interesting properties [1]. First, since
the right hand sides of the constraint equations are binary,
the unimodalarity property guarantees that the solution must
also be binary and are therefore useful as an assignment
problem such as ours. Second, since the coefficients of the
left hand side in the constraint equations are either 0 or
+1, there exist very efficient algorithms for the optimiza-
tion problem. We adopt the network simplex algorithm in
[5] for our approach. The time complexity of the algorithm
is O(B x C) where B and C are the number of nodes and
edges in the structure respectively. The upper bound for B
is O(k x |Q|) while the upper bound for C'is O(U x W) where
U = @ is the maximum number of directed edges be-

tween the nodes in any two top-k lists, while W = %
is the number of permutations of two top-k lists out of IN.

3.3 Heuristic Temporal Pruning

The efficiency of flow optimization algorithm can be fur-
ther improved by imposing heuristics to simplify the con-
struction of the temporal graph G. A simple example is to
reduce the length of top-k list by excluding frames whose
similarities are insignificant. We introduce a total of seven
constraints with three additional heuristic parameters (wnd,
%, Lmin) which will be explained later. These constraints
jointly specify the conditions for establishing an edge e;; be-
tween node b from N; and node ¢ from Nj, where j > i:

C1 0<j—i<wnd

C2 0<TS(c)—TS(b) <wnd

C3 -3z € N : TS(b) <TS(x) <TS(c),i<k<j
Cc4 w(ei;) > %

C5 L> Lpmin orelse L=0

C6 Ein(r) #0, j > 1Q| = Lmin

c7 Eout(s)) #0, 5 < Lmin
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Algorithm 1 M = GetMaximalPath (G)

1: My — GetMaxDur (G, Forward)
2: My «— GetMaxDur (G, Backward)
3t M(-) = My (o) + My ()

Algorithm 2 DUR = GetMaxDur (G, DIRECTION)

1: if DIRECTION = Forward then
2 start = 1, end = |Q|, neighbors = DEST
3: else
4:  start =|Q|, end = 1, neighbors = SRC
5: end if
6

7

8

: DUR(-) =0
: for i = start to end do
for n; € N; do

9: for m; in neighbors(n;) do

10: DUR(mj) = max(DUR(mj), DUR(n;) +|TS(mj) —
TS(na)))

11: end for

12:  end for

13: end for

Cl and C2 are the temporal constraints (originally dis-
cussed in the first paragraph of Section 3) to guarantee that
any path in the network is linked chronologically according
to the time stamp. The parameter wnd is used to specify the
tolerable level of temporal distortion, where the difference
between the time stamp values of two successively aligned
frames specified by Ag and Ar must not exceed wnd.

C3 trims all sub-optimal edges that will clearly be ignored
in the optimal solution. For example, given an edge e;;, if
there exists a node x in the middle list N through which
an alternate path can be established from b to ¢, then e;;
is essentially redundant since w(e;;) < w(e;r) + w(ek;) and
w(ei;) = w(ek;) = Sim(c,qg;). In addition, although the
signatures of two frames are not accurate enough to identify
near-duplicate frames, it is sufficiently reliable to remove non
near-duplicate frames if their similarity value is too low. The
threshold ¥ in C4 specifies the minimum similarity in order
for a node to be considered in our model.

C5 states that the near-duplicate segment is expected to
be at least Lmin in length. For instance, when matching
online videos to full-length movie video, the degree of overlap
should be proportional to the length of the online video in
order to be considered a positive match. To eliminate the
set of all sequences shorter than L., from the structure,
Algorithms 1 and 2 (given above) are proposed to find the
mazimal length for all nodes. Given a node r, its maximal
length M (r) is the length of the longest path from the source
node nsr. to the sink node nsinr that passes through r.
Nodes whose maximal lengths are shorter than L., are
removed from the structure together with their edges. This
is accomplished by breaking the path into the two parts. The
network is first scanned in the forward direction to retrieve
Mg (r), the maximal length from the ngr. to 7, and then
in the backward direction to retrieve My(r), the maximal
length from the r to nsink. The process is an efficient one
since the calculation of maximal paths can be conducted
simultaneously for all nodes in a single run.

The constraints C6 and C7 are the direct consequences of
C5. Any sequence, whose first frame are from N; where 7 is
larger than |Q| — Limin, must be shorter than L., and is
discarded. Similarly, any sequence, whose last frame is from
N; where j is smaller than L.,in, should not be considered.



With the constraints, the complexity of the network sim-
plex algorithm introduced in Section 3.2 can be significantly
reduced. C1 and C2 reduces the upper bound for both the
edge and list permutation parameters U and W to
where wnd < k and wnd < |Q|. C3 reduces the number of
edges C' by removing sub-optimal edges. C4 removes all ref-
erence frames whose similarities to its corresponding anchor
frames are too low. This reduces the number of nodes B es-
pecially when matching unrelated videos. C5-C7 results in
further reduction of both B and C' by trimming unrealistic
solutions that violate the user’s expectation.

4. DETECTION FRAMEWORK

The proposed algorithm essentially extracts the chrono-
logical sequences with the set of most visually similar frame-
pairs. The method, however, still lacks the mechanism to
isolate random noisy sequence from genuine ones. Towards
this end, we integrate keypoint matching into the detection
framework, partly to verify the near-duplicate identity of the
sequences, and also to refine the boundaries for precise local-
ization. Keypoint matching has been shown to provide very
reliable detection result between two near-duplicate frames.
As an example, the publicly available keypoint-based NDK
algorithm [27] that we use in this paper reported a precision
of 94%. Given the alignment result from sequence match-
ing, the corresponding frame-pairs are subjected to keypoint
matching to confirm their near-duplicate identities.

Interestingly, the result from keypoint matching can be
re-used as the a prior: information to perform refinement of
the alignment result. Possible solution includes reconfigur-
ing the constraints where the lower bounds for the edges
routing to a near-duplicate node (a reference frame that
has been detected as a near-duplicate to its corresponding
anchor frame by keypoint matching) are set to 1 and con-
versely, the upper bounds for the edges routing to a non
near-duplicate node are set to 0. However, direct applica-
tion of the constraints would inevitably have a noticeably
adverse impact on runtime depending on the number of iter-
ations. Motivated by recent researches on constraint-based
clustering [21], the pair-wise constraints are integrated into
sequence matching in a manner that takes into account the
topology of the temporal network. One major difference is
that, in our approach, the constraints are dynamically gen-
erated and increase in significance as more constraints are
accumulated over the iterations.

Figure 3 illustrates the outline of the proposed framework.
Duplicate frame-pairs detected from keypoint matching are
marked as must-links and non-duplicate pairs as cannot-
links. The results from keypoint matching are used to revise
the network structure with two objectives in mind, to refine
matching while maintaining a competitive speed. Here, the
must-link nodes are novelly used as stubs to cut the net-
work into a series of non-overlapping smaller networks. Par-
titioning a full optimization problem into multiple smaller
ones results in considerable time saving. Assuming that
the network is partitioned uniformly into L number of sub-
networks, the number of nodes B and edges C in each sub
network is L times lesser than the original structure, re-
sulting in a significant reduction in time complexity from
O(B x C) to O(£22).

Moreover, network construction can be completed effort-
lessly in an incremental manner. The must-links, which de-
fine the boundaries between fragments, will play the new role

wnd(wnd—1)
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Figure 3: Verification process.

as the source and sink nodes for the respective fragments.
Nodes that are not connected to the partition’s source and
sink node are removed from the structure together with their
edges. Since partitioning the network also splits the near-
duplicate sequence into multiple shorter portions, the pa-
rameter L..;n should be either relaxed or disabled in subse-
quent iterations.

4.1 Multiple Partial Alignments

In practice, two partially similar videos may contain mul-
tiple randomly positioned near-duplicate segments. The re-
lationships between potential near-duplicate segments in two
different segments may come in three possible configura-
tions, as depicted in Figure 4, namely, sequential alignment,
cross alignment and self-duplication. These configurations
can indeed be handled by our approach.

The handling of both sequential and cross alignments is
essentially the same. Referring to Figure 2, note that the
reference frames are repeated in the various top-k lists based
on their similarity to the anchor frames. As such, the parti-
tions separated by the detected segments, are self-sufficient
such that network flow optimization can be carried out sepa-
rately without much interference from the rest. Network re-
construction is fast since it can be done incrementally. The
structure can be derived from the original structure (before
the iterations) with two simple modifications. First, the ref-
erence frames which have been identified as near-duplicates



a) Sequential segments b) Cross segments

c) Self-Duplication

Figure 4: Different configurations of multiple partial
near-duplicates.

from previous runs are removed together with their edges.
Second, the edges routing to or from the top-k lists of the
previously detected segments are re-routed either to the sink
or source nodes. The process is highly efficient as each par-
tition is significantly smaller compared to the original struc-
ture. The step is repeated multiple times until no segments
that fulfill L,.;» can be found.

The other configuration, self-duplication occurs when there
are repetitive segments within the same video. The scenario
is common especially in news broadcast videos where con-
tinuous updates are given over short intervals on the devel-
opment of a particular story. Self-duplication can be han-
dled similarly by treating the video itself as both the query
and reference videos. It only requires one extra heuristic,
i.e., frames with the same time stamp are not allowed to be
aligned.

5. MOVIE TAGGING

In this section, we showcase the effectiveness of sequence
matching for the task of automatic movie tagging. With the
emergence of media sharing websites such as YouTube, there
has been a growing trend for fans to extract and publish
online interesting scenes from their favorite movies, together
with tags, comments and descriptions. To make use of these
readily available resources, one fundamental task is to link
partial segments from a full-length movie to online videos
crawled from these websites to propagate the social tags to
the correct segments. The main challenge in matching with
a movie which can last for several hours is efficiency and
therefore a fast matching algorithm is required.

Experiment Setup. We test on 5 full-length movies
listed in Table 1 where 100 videos are crawled from YouTube
for each movie using the movie’s title. For labeling, only
online videos containing segments that preserve the flow of
the original movie content are labeled as the partial near-
duplicates of the movie. Trailers, music-videos, movie re-
views and commentaries, though containing random scenes
from the movie, do not carry any useful context for movie
tagging and therefore are labeled as non near-duplicates.

For signature representation, simple edge histogramming
with cosine distance is used. By default, the alignment
parameters are set as follows: nearest neighbor k = 20,
temporal distortion wnd = 15, minimum expected length
Limin = 0.5 X |Q], similarity threshold ¥ = 0.3 and verifica-
tion iterations N = 3. For the iterative keypoint verification
component (refer to Figure 3), local interest points are ex-
tracted by using the Difference of Gaussian (DoG) detector
and PSIFT descriptor [27] while keypoint matching is con-
ducted using [28] and then verified using SR-PE [27]. SR-
PE considers pattern coherency in order to handle arbitrary
scale and rotation transformations of near-duplicate regions.
The codes are written in C# and the experiments are con-
ducted on an Intel Core 2 Duo 3.0GHz CPU with 3GB of
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RAM . In the remaining of the paper, we shall refer to our
proposed method as TNP.

Results. Table 1 shows the matching result. In general,
the proposed method delivers an impressive performance,
achieving a precision of 0.96 and and recall of 0.83. In terms
of localization accuracy, the degree of overlap between the
query video segments and the located segments in the main
movies is as high as 81% in average. More importantly, our
approach is highly efficient, requiring only 3.3 minutes in
average to complete processing one movie. This is because
the alignment speed is determined mainly by the length of
the shorter sequence, in our case, the online videos.

Movie videos are often available in two versions, wide
screen or full screen. One important observation is that
when matching different versions of movie videos, the dif-
ference in the aspect ratio may cause keypoint matching to
fail due to severe stretching. Although the near-duplicate
segment can be accurately determined by the alignment al-
gorithm, SR-PE cannot recognize near-duplicate frames and
as a result the recall performance is affected. To alleviate
the problem, the online videos are transformed into the same
aspect ratio setting as the movie video in our experiments.

6. WEB VIDEO RETRIEVAL

In this section, we evaluate the performance of our system
on a full duplicate scenario, where the task is to retrieve
near-duplicate videos from a web video corpus. The web
video dataset in [22] is used for evaluation. The dataset con-
sists of 12,790 web videos collected from YouTube, Google
and Yahoo, using 24 search queries and the total length of
all the web videos is over 540 hours. We use 24 seed videos,
one per query, as video examples for near-duplicate retrieval.
The seed videos are the set of popular videos which are most
viewed by users in the video sharing websites. Readers are
referred to [22] for more details on the dataset.

Experiment Setup. Following the setup in [22] for com-
parison purposes, we use visual keywords of 1000 clusters
with hard assignment as signature. Keypoints are extracted
using Hessian-Affine detector [18] and described by PCA-
SIFT features [12]. For parameter setting, the following
setup is used: N =1, k = 3, wnd = 15, Lymin = 0.1 and
% = 0.75. Compared to edge histogram, a higher value for
¥ is needed for visual keyword with hard assignment since
the feature is rather sparse. To evaluate the performance of
TNP, we compare it with two state-of-the-art methods for
near-duplicate video retrieval. The two methods are QIP
[20] which considers both visual similarity and alignment dis-
tortion in a quadratic integer programming formulation and
HIRACH [22], which uses a hierarchical framework where
color histograms are used for initial filtering and keypoint
matchings are used to refine the result. The global color
signature (CHSIG), possibly the simplest approach to mea-
sure video similarity, is used as the baseline to judge the
improvement that the alignment algorithms can achieve.

Result. Table 2 shows the retrieval performance of the
four approaches in terms of mean average precision (MAP)
over the 24 web video queries. TNP outperforms the base-
line CHSIG by a wide margin with only a slightly lower
performance than QIP and HIRACH. HIRACH, although

We use the same platform and settings (DoG, PSIFT and
SR-PE) for the experiments in Section 5 to 7 unless specified
otherwise.



Table 1: Experiment Result on Movie Dataset

#Koyfrz.nnols in Aycragc #Kcyf.rames #Positive Precision  Recall Degree of Runi.:imc
the movie video in YouTube videos samples overlap (min)
3:10 to yuma 2686 68 10 1.00 0.90 0.89 1.6
BraveHeart 2816 80 4 1.00 0.75 0.58 0.9
Syriana 2323 48 21 0.95 0.90 0.88 3.8
The Incredibles 2395 119 29 1.00 0.83 0.81 6.0
The Last Emperor 3538 78 14 0.85 0.79 0.90 4.1
Average 2752 79 10 0.96 0.83 0.81 3.3
strategy to break up the network into multiple fragments
Table 2: Web Video Retrieval Result hi hgyh . _Hp It i li . P s ’
TND QIP HIRACH T crsic ] Which otherwise will result in a linear increase in runtime.
FMAP _ 0.935 0.951 0.952 0.891 Table 3: Sensitivity towards top-k
7 Frame-pair 114,154 | 238,769 | 6,471,693 - k 1 3 5 10 20
comparisons MAP 0.945 0.946 0940 0934 0.934
"Total time for Align Speed (ms) | 14 15 22 46 94
keypoint matching | 2.9 hours | 5.9 hours | ~7 days -
& verification .
Align speed Table 4: Sensitivity towards wnd
. 28 ms 11s - - a
per frame-pair wn 1 5 10 15
Total align ) MAP 0.852 0.934 0.936 0.937
time 9.8 min | 1.4 days - - Align Speed (ms) | 43 94 180 259
Total runtime 3.1 hours | 1.7 days ~7 days 1 sec

generating impressive results, is relatively slow because of a
semi-brute force approach which requires a significant num-
ber of keyframe-pair comparisons. Furthermore, keypoint
matching is a computationally expensive operation. To im-
prove scalability, both TNP and QIP consider only likely
candidate keyframe-pairs. In general, QIP generates a com-
prehensive correspondence list where most frames in the
shorter sequence would be matched. On the other hand,
TNP generates a shorter alignment sequence, requiring 40%
less frame-pair computations, but becomes more susceptible
to misalignment in the process. In addition, TNP is 95 times
faster than QIP, requiring only 28 miliseconds compared to
11 seconds for QIP to align two videos. CHSIG, on the other
hand, is fast but is unable to handle complex near-duplicate
videos with major editing and transformations, and thus has
the lowest retrieval performance.

Parameters Sensitivity. In this section, we evaluate
the sensitivity of the system towards the various parameters.
The experiments are obtained by varying the respective pa-
rameters while fixing the others to Lnin = 0, wnd = 5,
k = 20 and N = 0 (SR-PE verification, no iteration). The
experiment results are shown in the Tables 3, 4, 5 and 6. In
general, the precision is not sensitive to the parameter set-
tings. Only when the parameters are set too rigid (wnd =1
or Lpmin = 0.5), the performance will be affected. In terms
of speed, the parameters k and wnd have a more signifi-
cant impact on the runtime. To minimize the impact to
runtime, L is found to be particularly useful, where the
runtime decreases steadily when varied from § is varied 0
to 0.5 where Limin = 0 X |@Q]. In addition, without verifi-
cation (N = —1), the ranking given by the alignment re-
sult still outperforms CHSIG, with MAP=0.922. Moreover,
when keypoint matching is enabled (N > 0), the perfor-
mance shows considerable improvements which confirms the
iterative verification framework. In addition, the algorithm
shows only a subtle increase of 30% in runtime when the
number of iterations N increases to 3. This justifies the

2[27] reported an average speed of 90ms to process one
frame-pair.
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Table 5: Sensitivity towards L, =0 X |Q)|

[ 0 0.05 0.1 0.25 0.50
MAP 0.934 0.935 0.936 0.936 0.925
Align Speed (ms) 94 65 50 36 26
Table 6: Sensitivity towards N.
N -1 0 1 2 3
MAP 0.922 0.934 0.935 0.934 0.934
Align speed (ms) 93 93 108 110 119
#SR-PE 0 106,483 115448 120626 125225
N = —1: verification mode disabled.

N = 0: SR-PE verification (no iterations).
N > 0: SR-PE verification (with iterations).

7. NEAR-DUPLICATE AND COPY
DETECTION

7.1 Copy Detection and L ocalization

In this section, we showcase the effectiveness of the pro-
posed system to detect video copies and localize copied seg-
ments from videos. We perform our experiments on the
Muscle-VCD-2007 video dataset [11], which is the evaluation
set used in the video copy evaluation in CIVR 2007. Two
tasks were competed. Given a query video, task 1 retrieves
copies of whole long videos while task 2, a much harder task,
detects and locates the partial-duplicate segments from all
the videos. For task 1, a total of 15 videos spanning over 2
hours 30 minutes with various transformations are used as
queries. For task 2, a total of 21 transformed extracts are
inserted into 3 query videos with a total duration of 45 min-
utes. In the test set, there are 102 videos with a duration
of 100 hours covering a diverse variety of viewing materials
and programs. We use visual keywords (500 codewords with
soft-weighting [10]) for signature representation and the co-
sine distance for distance measure. The parameters settings
are N =3, K =5, wnd =5, ¥ = 0.3 and Lmin is set to 0.5
for task 1 and -1 for task 2.

Detection Performance. For task 1 (copy detection), a
reranking framework is employed. An initial list is retrieved
with the keypoint verification feature disabled (N = 0).
Given a query video, the test videos are ranked based on



Table 7: Muscle-VCD-2007 Detection Result
TNP Team
ADV IBM CITYU CAS
Precision 1 0.86 0.86 0.66 0.53
Runtime (min) 8.5 64 44 45 15
Table 8: MUSCLE-VCD-2007 Localization Result
TNP (for different N) Team
0 1 2 3 CITYU ADV
QS 0.90 0.90 0.90 0.90 0.86 0.33
QF 0.79 0.81 0.82 0.82 0.76 0.17
Runtime (min) | 2.44 2.60 2.85 2.97 35 33

the accumulated similarity values of the aligned frame pairs.
The algorithm is then repeated on the top rank (top 1)
videos with iterative SR-PE verification enabled (N = 3).

The results are shown in Table 7. The performance is
calculated based on the detection precision of the top posi-
tioned video in the retrieved list. The best official results
for all teams who participated in the evaluation are repro-
duced here for comparison. Our algorithm manages to re-
trieve the perfect score in this experiment. In fact, all video
copies are correctly pulled to the top-most position in the
list even in the initial run. More importantly, our algorithm
is very efficient. Eventually, the proposed reranking frame-
work invoked only 551 frame-pair computations. The fastest
runtime by the other methods is 15 minutes (ADV) but at
the expense of accuracy where the precision is only 0.53. In
contrast, our method delivers the best possible result with
a runtime of only 8.5 minutes.

Localization Performance. For task 2 (copy localiza-
tion), two criteria are used to evaluate the performance,
where QF =1 — % to evaluate the overlap ac-
curacy for the 21 segments and QS = ‘CO”E‘C;L}SZIL:;AIMM‘
is used to evaluate the detection accuracy of the segments.
Since no prior knowledge of the partial copy sequence is
available, L is set to -1. Table 8 shows the result for this
experiment. In general, the boundaries specified by TNP
is very accurate with the highest score of QF = 0.82 and
QS = 0.90. Our results are superior to the reported results
from CITYU and ADV systems. As the number of iterations
N increases, the localization performance increases steadily,
indicating the boundaries of partial duplicates get increas-
ingly accurate. Again, the increase in runtime is observed
to be not significant as N increases.

7.2 Near-duplicate Shot Detection

In this section, we evaluate our algorithm for general near-
duplicate detection. In particular, we show that NDK detec-
tion is sensitive to the choice of keyframes to certain extent
since it is difficult to select a single frame that can consis-
tently represent the set of all near-duplicate shots in the
dataset. To overcome this problem, we experiment the use
of multiple frames to represent each shot. When comparing
two shots, TNP is employed to align the two frame sequences
and near-duplicate detection is carried out on the alignment
result. If one of the frame pair is detected as near-duplicate,
the two shots will be regarded as near-duplicate.

Experiment Setup. For evaluation, we use the NDK-
7006 dataset [27] which is collected from TRECVID 2003

[19]. The experiment is conducted in two runs. First, keyframe-

based near-duplicate detection is tested on the 3384 positive
keyframe pairs in the ground truth, as well as on a set of 6000

Table 9: Near-duplicate shot detection result.
SR-PE TNP
2588 (76%) 2839 (84%)

True Positive

False Negative | 796 (24%) 545 (16%)
True Negative | 6000 (100%) 5999 (~ 100%)
False Positive 0 (0%) 1 (=~ 0%)

negative keyframe pairs randomly selected from the dataset.
In the second run, the multiple frame representation is eval-
uated where TNP is used to align the frame sequences. Each
shot is segmented into multiple sub-shots through simple vi-
sual thresholding (set to 0.85) using color histograms and the
frame with the highest accumulated similarity to all other
frames is selected to represent each sub-shot. For the align-
ment parameters and frame-level representation, the same
settings as the copy detection task are used.

Result and Discussion. Table 9 shows the result of the
near-duplicate shot detection. Using only one keyframe per-
shot, SR-PE correctly detects 2588 positive frame pairs but
misses another 796 pairs. By TNP, 288 of the keyframe pairs
missed by SR-PE are correctly recovered but in the process
37 of the keyframe pairs originally detected by SR-PE are
lost. In the end, a total of 2839 numbers of near-duplicate
shots is detected through TNP, a 9.7% improvement in recall
performance compared to the keyframe-based approach. For
the negative samples, SR-PE successfully identifies all the
non near-duplicate keyframe pairs. When applied to the set
of aligned frames, SR-PE maintains a decent performance
on the negative set, with only 1 false positive. In average, 3
additional frame-pair computations are required to process
a shot but there exists indexing techniques, e.g. the inverted
file to speed up the process.

In addition, TNP detects two erroneously labeled frame
pairs (see Figure 7 for one of the mislabeled pairs). The la-
beling error is transparent to a human annotator since a sin-
gle keyframe is insufficient to handle the diverse contents in
these shots. In general, we can identify three types of shots
where TNP is useful. The first category is the strong-motion
shot (Figure 5) where two near-duplicate shots are affected
by mis-alignments among the keyframes. After alignment
by TNP, they could be correctly identified as near-duplicate
shots. The second category is the subtle-motion shot where
subtle shift in scale (Figure 6(a)) and viewpoint (Figure 6(b)
and 6(c)) results in a significant distortion at the low-level
feature space. The problem is alleviated after performing
alignment where the aligned frame pairs are correctly de-
tected by SR-PE. The third category is the multi-segment
shot (Figure 7) which happens when multiple unrelated seg-
ments are erroneously grouped into a single shot as a result
of inaccurate shot boundary detection.

8. CONCLUSIONS

We have presented a novel approach to detect and localize
near-duplicate segments from two videos through the joint
consideration of visual features and temporal coherency of
frame sequence. Temporal constraint is embedded into a
network structure and partial alignment is novelly posed as
a network flow problem where efficient solutions exist. To in-
crease precision, the set of must-links and cannot-links gen-
erated from keypoint matching is used to refine the bound-
aries of the overlapping segments. In our experiments, we
demonstrate the scalability of our system by matching full-
length movies to YouTube videos which takes only 3 min-



Figure 5: Motion-based shots. The top row shows
the keyframes for two shots. The aligned frames
generated by TNP are shown in the second and third
rows.

Figure 6: Subtle motion shots. The top row shows
the keyframes for two shots. The second row shows
the aligned frames generated by TNP.

utes to complete per movie. In addition, the experiments
display satisfactory detection and localization performance
in the various datasets where the proposed algorithm out-
performs other state-of-the-art algorithms. Lastly, we im-
prove the performance of near-duplicate shot detection by
tackling the misalignment problem in the keyframe-based
approach. For future work, we plan to extend our work to
broadcast videos where recurring video segments [3] are com-
monly found. The hyper-links among the partial-duplicate
segments will be explored to improve the performance of
topic tracking and story summarization.
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