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ABSTRACT
Multimedia-based ontology construction and reasoning have
recently been recognized as two important issues in video
search, particularly for bridging semantic gap. The lack of
coincidence between low-level features and user expectation
makes concept-based ontology reasoning an attractive mid-
level framework for interpreting high-level semantics. In this
paper, we propose a novel model, namely ontology-enriched
semantic space (OSS), to provide a computable platform for
modeling and reasoning concepts in a linear space. OSS
enlightens the possibility of answering conceptual questions
such as a high coverage of semantic space with minimal set of
concepts, and the set of concepts to be developed for video
search. More importantly, the query-to-concept mapping
can be more reasonably conducted by guaranteeing the uni-
form and consistent comparison of concept scores for video
search. We explore OSS for several tasks including concept-
based video search, word sense disambiguation and multi-
modality fusion. Our empirical findings show that OSS is a
feasible solution to timely issues such as the measurement of
concept combination and query-concept dependent fusion.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Design, Algorithms, Performance, Experimentation

Keywords
Ontology, Semantic Space, Concept-based Video Search

1. INTRODUCTION
Semantic-based retrieval has been one of the long-term

goals in multimedia computing. Traditional content-based
approaches of deriving semantics purely based on low-level
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Figure 1: General framework of concept-based video
retrieval.

features have proven their limitations in conquering the so-
called semantic gap. Modern approaches enable the seman-
tic search by pooling a set of concepts and thus forming a
semantic space to facilitate the high-level understanding of
user queries and low-level features [2, 3, 18, 19, 22]. The
search methodology is usually referred to as the concept-
based video search, as illustrated in Figure 1. The sensory
gap from user queries to raw data is bridged with a pool
of concepts enriched with general-purpose vocabularies, for
instance, from ontology (e.g., WordNet) and external infor-
mation (e.g., Internet). Basically, a set of concept detectors
is developed to represent the high-level semantics. The de-
tectors are automatically learnt with training examples de-
scribed by multi-modality features. Given a user query, the
best set of concepts that can describe the semantic of query
is reasoned through the vocabularies. A search list is then
produced by ranking items (e.g., shots) according to their
signal responses to the selected concept detectors.

Under the concept-based retrieval framework as depicted
in Figure 1, there are several issues remain challenging. One
fundamental problem is: which concept detectors should be
and are feasible to be developed for search [6, 7, 15]? Ideally,
the concept set could provide a high coverage of semantic
space and is general and frequent enough so as to answer
as many queries as possible [17]. On the other hand, given
the concept set, the mapping ambiguity between queries and
concepts need to be carefully resolved. A common solution
is to consider the mapping through ontology reasoning [19,
22], or more precisely selecting the concepts, which mini-
mize the linguistic distance with query terms. In the cur-
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rent state-of-the-art, these two issues (concept development
and query-concept mapping) are normally considered sep-
arately, where they are treated as two independent compo-
nents. More specifically, the set of developed concepts is
not exploited for query-concept mapping, and contradicto-
rily, the mapping is locally determined in another semantic
space spanned by a completely different (and much larger)
concept space. This inconsistency indeed causes the simi-
larity scores of query terms and concepts not directly com-
parable, resulting in less meaningful matching when finding
the “best concepts” to interpret query semantic.

In this paper, we propose a novel model called Ontology-
enriched Semantic Space (OSS) to jointly consider the two
aforementioned issues. First, we address the scalability issue
of which set of detectors should be developed. We argue that
scalability should be grounded on the generalization power
of detectors in spanning the semantic space. OSS is a lin-
ear space spanned by a set of basis concepts modeled with
ontology knowledge. Each basis is deliberately arranged to
cover an approximately equal portion of subspace in OSS.
Under this arrangement, the space can be generalized to an-
swer queries even for unseen concept detectors. Secondly,
OSS provides a computable space where the query-concept
mapping can be directly reasoned. Because the concept re-
lations are inherently encapsulated via linguistic similarity,
OSS allows a uniform and global way of choosing detectors
for query answering.

The conventional query-concept mapping is conducted by
linearly arranging the available detectors as a concept list.
Given the query terms, the desired detectors are identified
from the list with ontology reasoning or linguistic measure
[19, 22]. Denote Q = {q1, . . . , qm} as a text query with
m terms, and C = {c1, . . . , cn} as the list with n concepts.
Typically a matrix L whose entry l(i, j) represents the lin-
guistic similarity between a query term qi and a concept cj

is computed via ontology. The top-k concepts which receive
the highest scores in L are then selected for retrieval. We
argue that the similarities in entries l(i, j) are not compa-
rable, since each similarity represents a local decision com-
puted from a branch (or sub-tree) of ontology. Each branch
has properties such as information content and depth pe-
culiar only to the context of a branch. Consequently, the
similarities across branches are not uniform. Comparing
the similarities inferred from two different branches (e.g.,
transport and fruit) each having different properties results
in global inconsistence. This indeed causes the selection of
top-k concepts arbitrary. Take Figure 2(a) as an example,
let concepts a to e as children and v1 to v3 as ancestors.
Using measure such as Resnik [20], the concept pairs (a, b)
and (a, c) will be the same, although (a, c) sharing another
ancestor v2 and intuitively should be more alike. On the
other hand, the similarity scores of (d, e) and (a, b) cannot
be reasonably measured as they reside in different parts of
the ontology which carry different statistic and structural
information.

OSS aims to provide a computable platform that allows
uniform and global comparison of concept pairs. With ref-
erence to Figure 2(b), the semantic space is represented as
a linear space spanned with basis concepts enriched with
ontology knowledge. The bases of OSS can be viewed as
the “key-concepts” of the original ontology space. Suppos-
ing the ancestors v1 to v3 of Figure 2(a) are selected as the
basis concepts of OSS, then one can linearly project the con-

v1

v2

b

a

c

b
a

c

v1

v2v3d

e

v3 d
e

(a) (b)

Figure 2: Reasoning with ontology (a) and OSS (b).

cepts a-e to the metric space with ontology reasoning. Such
framework indeed sights several opportunities. First, the ba-
sis concepts provide a high coverage of semantic space, and
are probably the ones that should be developed if they are
feasible to be built with the current technology. Secondly, in
contrast to the examples in Figure 2(a), the space guaran-
tees global consistency in comparing the concept pairs like
(a, b), (a, c) and (d, e).

An intuitive explanation of OSS is that the space is lin-
early constructed to model the available set of concepts. The
expressive power of OSS is linguistically spanned with a set
of basis concepts, which is easier to generalize, not only to
the available concept detectors but also to the unseen con-
cepts. With OSS, we explore several search related tasks in-
cluding concept selection and modality fusion in this paper.
The major contributions of our works are briefly summarized
as follows:

• Scalability: Building detectors for all concepts is im-
possible and not necessarily [7, 15]. A practical ques-
tion is which detectors should be developed given the
information at hand. Compared to recent works in
[15], OSS provides another novel view of selecting con-
cepts which have higher generalization ability in query
answering.

• Query-concept mapping: With OSS, the mapping is
no longer a local similarity comparison. Global con-
sistency is ensured so that the selection of concepts
becomes meaningful.

• Multi-modality fusion: A by-product of OSS is concept
clusters. We demonstrate that the clusters can be ex-
ploited effectively for fusing the outcomes of concept-
based search (visual) and ASR search (text), by taking
into account the reliability of concept detectors.

• Query disambiguation: User queries are mostly am-
biguous. We explore OSS to predict the search inten-
tion by finding the exact senses of query terms.

The remaining of this paper is organized as follows. Sec-
tion 2 describes the related works. Section 3 proposes OSS,
while Section 4 explores OSS for tasks such as concept de-
velopment and query-concept mapping. Section 5 presents
the experimental results. Finally, Section 6 concludes this
paper and pinpoints future directions.

2. RELATED WORK
Concept-based video retrieval has recently attracted a new

spurt of research attention, attributed to its potential in
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bridging semantic gap. Two critical efforts are the detec-
tion of semantic concepts and the utilization of concepts
as “semantic filters” for query answering. The current ac-
tivities in LSCOM [17], MediaMill-101 [24] and TRECVID
[25] further boost the common interest in building a large-
scale ontology suitable for multimedia search and annota-
tion. With these efforts and activities, encouraging findings
have been reported regarding the usefulness of concepts for
video search, compared to search with low-level features and
text keywords [3, 19, 22, 23].

While encouraging, the issues of building concept ontology
and performing query-concept mapping remain open and
unsolved [3, 15, 23]. Multimedia and visual based ontol-
ogy construction has been previously addressed in [8, 9, 16,
22, 26]. The construction mostly involves the manual map-
ping of visual elements to textual concept entities provided
by shared vocabularies. In [9], WordNet is extended with
visual tags describing properties such as visibility, motion
and frequency of occurrence. In [8], based on WordNet and
MPEG-7, a visual ontology is created by linking visual and
general concepts. In view of the richness of human vocab-
ularies and the need for domain experts in tagging or cre-
ating links, the scalability of these approaches still remains
unclear. A relatively straightforward approach is recently
proposed in [22] by directly attaching concept detectors to
WordNet synsets. The semantically enriched detectors can
thus utilize contextual information provided by WordNet.
In addition to the ontologies built on the basis of general-
purpose vocabularies, domain specific multimedia ontology
is also investigated in [16, 26]. In [26], two animal domain
ontologies are constructed separately for textual and visual
descriptions. The study indicates that the ontologies are
useful for image retrieval. Different from the existing ontol-
ogy construction [8, 9, 22], our approach utilizes concepts to
construct a semantic space which is computable and more
viable for query-concept mapping.

Depending on the types (visual or text) of queries, the
mapping from queries to concepts can be performed with
detectors [2, 18] or resources such as ontology [19, 23, 22],
text description [22] or co-occurrence statistic [2, 19]. For
queries with image or video examples, the mapping is equiva-
lent to pattern recognition problem. The responses of detec-
tors basically indicate the likelihood of corresponding con-
cepts present in queries. In [22], the best confident detec-
tor is selected, while in [2] a vector space model indicating
the probabilities of concepts is utilized for search. For text
queries, the mapping is usually performed through ontol-
ogy reasoning which includes two steps: word sense disam-
biguation (WSD) and concept selection. In WSD, the exact
senses (meanings) of query terms are estimated by check-
ing the possible sense combinations through vocabularies.
A popular algorithm for WSD is Lesk algorithm [1, 5] which
automatically extracts the actual sense of each term. By
knowing the senses of query terms, various ontology simi-
larity measures can be directly employed for computing the
association between terms and concepts. Popular measures
include Resnik [20], JCN [11] and WUP [27] which consider
ontological properties such as the specificity and information
content of a concept, and the linguistic path length between
two concepts. In addition to ontology reasoning, other ap-
proaches for mapping text queries are to compare queries
against the text descriptions associated with concepts [22]
or to expand queries with related terms [19]. The expanded

terms as well as their weights can be learnt from training
examples [2] or external information such as Internet [19].
Our proposed approach is mainly based on ontology reason-
ing. Both concepts and query terms are viewed as vectors
(or points) in OSS for similarity (or distance) comparison.

3. MODELING SEMANTIC SPACE
Intuitively the abstract space of real world R can be viewed

as the space spanned by low-level feature space (L) and word
or concept space (W), i.e.,

L ×W −→ R (1)

We estimate the semantic space with the space spanned by
concepts. Denote ci ∈ W as the ith concept, the semantic
space is described by

~c1 × ~c2 × . . . × ~c∞ −→ R (2)

where ~ci is a basis concept. Each concept ci is associated
with a detector dci (or classifier) learnt with low-level fea-
tures as follows

dci : L −→ ci (3)

Generally modeling R with the known concepts and their
detectors is computationally intractable due to the richness
of human vocabulary and the limited computing power. Our
aim here is to approximate R with the available set of con-
cepts, and form a computable space that allows effective and
meaningful comparison with unseen vocabularies.

3.1 OSS Construction
Given n concepts, the semantic space in Eqn (2) is con-

structed by computing the pair-wise similarity of each con-
cept pair. The similarity is based on the ontology distance
which utilizes the is-a structural relationship among con-
cepts. With WordNet as an example, the is-a relationship
can be viewed as a graph with nodes representing concepts
and edges representing the concept relatedness. The dis-
tance between two concepts is dependent on the specificity of
concepts and the path length from one concept to the other
by traversing the edges. The specificity of a concept is de-
fined by the depth of the concept in the graph, where depth
is ordered according to the levels of is-a relationship. For
instance, the concept car is under its ancestor vehicle and
thus resides deeper than vehicle in WordNet. We employ
WUP [27] to measure the ontology similarity of a concept
pair ci and cj . WUP considers the speficity, path length and
common ancestor of concepts. Let pij as the lowest common
ancestor of ci and cj , the similarity is

WUP (ci, cj) =
2D(pij)

L(ci, cj) + 2D(pij))
(4)

where D returns the depth of a concept, and L gives the
path length of two concepts.

Based on Eqn (4), a n-by-n matrix O which encapsulates
the all-pair similarities of n concepts are computed. Each
row of O, denoted as oi, outlines the similarities of concept i
with other concepts. The n-dimensional vector oi is viewed
as a concept vector ~ci, i.e., we set

~ci = oi (5)

To make the semantic space (SS) complete and compact, the
basis concepts need to be estimated. Assuming SS is a linear
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Figure 3: Path length based and information content
based ontology measures are not metric, e.g., (b, a)+
(a, c) ≤ (b, c).

space, the bases can be found with techniques such as mani-
fold learning, factor analysis and clustering techniques. Here
we adopt clustering for estimation in order not to transform
the space and to directly select a subset of concept vectors as
the basis concepts. This would facilitate computation and
make the space interpretable with each basis representing
a concept, although other techniques like principal compo-
nent analysis (PCA) can ensure the orthogonality of bases.
Since the new space formed by r < n selected basis concepts
is ontology-enriched, we name the semantic space OSS − a
linear approximation of semantic space enhanced with on-
tology relationship. With r bases, each concept is projected
to OSS and described as a vector of r dimensions.

3.2 Metric in OSS
Since OSS is a linear space, many known metrics can be

employed to characterize distance. We use cosine similarity
for measuring the relatedness of concept vectors. Given an
unseen concept cu, a r-dimensional vector ~cu is first formed
by measuring the WUP similarity of cu with r basis concepts
cb. The vector ~cu can be represented as a linear expansion

~cu =

rX
b=1

ωb~cb (6)

where ωb is the WUP similarity between cu and cb. The
cosine similarity between two concepts cu and ci is then
measured as

Sim(cu, ci) =
~cu · ~ci

|~cu||~ci|
(7)

Note that the similarity is not only based on the ontology
relationship between concepts cu and ci, but is also with
respect to their relatedness to other basis concepts in OSS.

Compared to other ontology measures such as Resnik [20]
and WUP [27], OSS is a metric space. It is not hard to
show that other measures violate metric properties. Take
the graph structure in Figure 3 as an example, the path
length of (b, a) + (a, c) ≤ (b, c) violates triangle inequality.
Similarly, suppose each node is attached with information
content (IC), then IC(e) + IC(d) ≥ IC(f). Since IC is
used as a similarity measure and inversely proportional to
distance, IC based approach is also not a metric.

3.3 OSS versus WordNet
To fully reveal the benefit of OSS, we contrast the major

difference of measuring concept similarity in OSS and in the
original ontology space (WordNet). Figure 4 illustrates two
typical cases where the linguistic-based similarity measures
such as WUP fail in distinguishing the relatedness between

V1 V2

V1 V2

Family 1

Family 2

(a) (b)

Figure 4: Measuring the concept similarity in Word-
Net with WUP. (a) The similarity of (a, b) is the same
as (a, c), although a and b reside in a branch (Family-
1) different from c (Family-2), and thus should have
higher similarity. (b) The concept pairs (a, b), (a, c),
(c, b) have the same WUP similarity, although a and
b have another common ancestor d in addition to e,
and thus should be more similar.

concepts. For ease of elaboration, we assume concepts a, b
and c reside at the same level of depth, and concepts e and
d are the ancestors. In Figure 4(a), the concept a shares the
same WUP similarity with both b and c, although c resides
in a family different from a and b. With OSS, suppose v1

and v2 are the basis concepts, where ~v1 is more related to
Family-1 while ~v2 is more related to Family-2. By Eqn (7),
we can easily show that Sim(a, b) > Sim(a, c). This is sim-

ply because the concept vectors ~a, ~b and ~c are compared on
the basis of ~v1 and ~v2 as presented in Eqn (6). Similarly in
Figure 4(b), the concepts pairs (a, b), (a, c) and (c, b) all have
the same similarity with WUP, although a and b are more
related because of sharing another common ancestor. As-
suming the concept d is close to the basis ~v2 while concept e
is close to ~v1, we can easily prove that Sim(a, b) > Sim(a, c)
in OSS.

In brief, the concept similarity in OSS is globally deter-
mined with the aid of basis concepts. While in WordNet,
most linguistic reasoning methods utilize the local structure
(depth, path length, specificity) peculiar to a sub-graph for
measuring similarity. Consequently, a uniform and objec-
tive comparison of similarity scores obtained from different
sub-graphs of WordNet becomes difficult.

4. EXPLORING OSS
With OSS as a computable platform, we explore several

search related tasks including concept development, query-
concept mapping and multi-modality fusion in this section.

4.1 Concept Development
Developing concept detectors is generally a time consum-

ing task due to the need for collecting and annotating train-
ing samples. As a consequence, building detectors for all
human-known concepts is unrealistic, but determining the
kinds of concepts to be developed becomes a timely and
practical issue. In [15], the empirical study indicates that
the priority should be given to frequent concepts and scene-
based concepts which could benefit most search queries. In
OSS, the priority determination is based on the generaliza-
tion power of concepts, by modeling the inter-concept rela-
tionship. The generalization can be identified based on the
suitability of a concept being selected as a basis to fill the
semantic space.

To illustrate the idea, we use MediaMill-101 concepts [24]
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Table 1: Examples of basis concepts.
Basis Cluster Members
water river, water, waterfall
vehicle tank, bicycle, vehicle
golf soccer, football, golf
entertainment racing, cycling, sports, entertainment

as an example to show the selection of basis concepts. Ini-
tially the matrix O which describes the ontological relation-
ship among concepts is computed. Each concept is then
represented as a high dimensional vector as in Eqn (5). The
concept vectors are hierarchically clusters with agglomera-
tive algorithm and consequently form a dendrogram as il-
lustrated in Figure 5(a). With our approach, the correla-
tion among concepts is nicely captured as observed in Fig-
ures 5(b)-(d) which highlights some groupings in the den-
drogram. Basically concepts related to vehicle (5(b)) and
sport (5(d)) are correctly grouped. To select the bases of
MediaMill-101 concepts, we employ the inconsistent coeffi-
cient [10] to find the best possible concept clusters in the
dendrogram (details in Section 5.1). The concepts nearer to
cluster centroids are then selected from each cluster as the
bases of OSS.

Table 1 shows the few selected basis concepts and their
clusters. To enhance the generalization power of a seman-
tic space, theoretically one should develop the detectors for
basis concepts, which guarantee a high coverage. Neverthe-
less, practically some basis concepts are harder to build (e.g.,
entertainment) or less feasible than its member (e.g., golf
versus soccer). Under these cases, the bases can still be uti-
lized as references in the semantic space, while other devel-
oped concept detectors can model their ontological relation-
ship with reference to the bases. Compared with [15] which
concludes one should develop frequent and scene-based con-
cepts, the MediaMill-101 bases picked by our approach are
mostly general concepts (e.g., water and vehicle), implying
more training examples for concept development. While this
might be a good news that the selected basis concepts are
easier to build, there is still a fundamental issue that general
concepts normally include more varieties in appearance and
thus could be harder to develop (e.g., vehicle versus car).

4.2 Query-to-Concept Mapping
Given a text query Q = {q1, . . . , qm} with m terms, the

task is to rank n concepts in the set C according to their
importance and relevancy to the query. The top-k concept
detectors can then be utilized for video search. With OSS,
the similarity between a query term qi and a concept cj is
computed via Eqn (6) and Eqn (7). The top-1 concept, for
instance, is selected as

ĉ = argmax
cj∈C

Sim(qi, cj) ∀qi ∈ Q (8)

4.3 Word Sense Disambiguation (WSD)
A query term qi normally carries multiple senses (mean-

ings). WSD is to estimate the actual sense of qi jointly with
other senses of terms in query Q. Suppose there are m terms
and each term has p senses, there are mp ways of interpret-
ing Q. A greedy approach commonly adopted in WSD is to
find a combination that maximizes the overlap of senses for
all terms in Q. With OSS, the greedy approach can be easily
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Figure 5: Dendrogram of MediaMill-101 detectors.

implemented by measuring the projection of senses to basis
concepts. Denote sk

i as the sense of qi in kth combination,
the actual query sense Q̂ = {ŝ1, . . . , ŝm} is computed as

Q̂ = argmax
1≤k≤mp

φ(k) (9)

where

φ(k) =
mX

i=1

mX
j=i+1

Sim(sk
i , sk

j ) (10)

The query Q̂ is then used for performing query-concept map-
ping. Basically, WSD is a query preprocessing step aiming
to predict the search intention of queries which are usually
short and imprecise.

4.4 Multi-modality Fusion
OSS guarantees the consistent measurement of concept

similarity. In OSS, concepts can be effectively clustered
according to their ontological relatedness. Figure 6 shows
the 2-dimensional distribution of MediaMill-101 concepts
in OSS with multi-dimensional scaling (MDS). Apparently,
these concepts form few clusters sparsely distributed in the
space. Our aim here is to explore the correlation of these
concept clusters with multi-modality features, and subse-
quently utilize the correlation of cluster-modality pairs for
fusion. The task is similar to query-class dependent fusion
[28], where each cluster represents a class appropriate for
answering a group of queries with similar type. In our case,
a query Q is projected to OSS to locate one or multiple
clusters, and the clusters provide information on how to
fuse multi-modality features by examining the correlation
of cluster-modality pairs.

We adopt the fuzzy synthetic evaluation [21] to estimate
the correlation between concept clusters and multi-modality
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Figure 6: Two dimensional view of MediaMill-101
detectors in OSS.

features. Let U = [u1, u2, . . . , un] as the order set with n
clusters, and V = [v1, v2, . . . , vm] as the order set with m
modalities. We want to estimate the fuzzy correlation of
two sets, i.e., R ∈ F (V × U), where R is a relation matrix
and F is a fuzzy set. The matrix R is in the form of

R =

2
664

r11 r12 r13 . . . r1n

. . .

. . .
rm1 rm2 rm3 . . . rmn

3
775 (11)

where rij specifies the relation of modality i to cluster j. The
relation matrix R can be estimated with training or subjec-
tive pairwise evaluation. We adopt the first scheme and the
details will be discussed in the experiment (Section 5.4).

The relation R basically determines a fuzzy transforma-
tion TR from U to V, described as

TR : F (U) −→ F (V ) (12)

A query Q = {q1, q2, . . .} is converted to a fuzzy vector
P = [p1, . . . , pn] by applying the membership function U(qi)
for every query term. The function U assigns each qi a be-
longing score to clusters via Eqn (7) in OSS, and then out-
puts P with pi describes the similarity of clusters to query
term qi. The vector P is further transformed with fuzzy
mapping as follows

TR(pi) = pi ◦ R ∈ F (V ) ∀pi ∈ F (U) (13)

where ◦ is a fuzzy composition operation. The transforma-
tion produces a vector W = [w1, . . . , wm] with wi specifies
the weight (importance) of ith modality with respect to the
given query Q. The vector W can be employed directly for
the linear fusion of multi-modalities.

5. EXPERIMENTS
We use the automatic search task of TRECVID 2005 video

dataset [25] for experiment evaluation. The video archive
contains one-month’s (November 2004) broadcast videos col-
lecting from multi-lingual sources including English, Chinese
and Arabic languages. The testing data, containing 79,484
shots (about 85 hours of videos), is used for assessing the
performance of OSS in video search. Twenty four search
topics (see Table 4), together with their ground-truth pro-
vided by TRECVID’05, are used for the experiments. We
only use the text queries of search topics, imagining that
most users perform search with a short description of words.
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Figure 7: Basis selection: searching best possible
clustering through the inconsistent coefficients of
dendrogram.

For the semantic concepts, we use MediaMill-101 concept
detectors [24]. We remove the concepts not defined in Word-
Net, resulting in 80 detectors. The actual senses of each
concept in WordNet are manually assigned based on visual
impression. For ease of evaluation, we only assign one sense
to each concept, although multiple sense assignment is possi-
ble in OSS. In the experiments, we test the selection of single
and multiple concepts per search topic respectively for re-
trieval. The retrieved items (shots) are ranked according to
their scores to the selected concept detector(s). The search
performance is then evaluated with mean average precision
(MAP ), where AP is defined as

AP =
1

min (R, k)

kX
j=1

Rj

j
Ij (14)

where R is the number of relevant shots to a search topic, Rj

is the number of relevant shots in the top-j retrieved shots,
and Ij = 1 if the shot ranked at jth position is relevant
and 0 otherwise. We set k=1000, following the standard
of search task in TRECVID. MAP is the mean AP of all
search topics.

5.1 Basis Selection vs. Search
We first demonstrate the construction of OSS by show-

ing the selection of basis concepts versus search performance
based on MediaMill-101 detectors. Agglomerative hierarchi-
cal clustering is initially performed to group the concepts,
and Figure 5(a) shows the dendrogram. To select the OSS
basis concepts, we employ the inconsistency coefficient [10]
to find the best possible concept clusters in the dendrogram.
Denote l as a link connecting two clusters, the coefficient τ(l)
of the link is computed as

τ(l) =
len(l) − µ(l)

σ(l)
(15)

where len(l) is the length of link l, defined as the centroid
distance between two clusters connected by l. The µ(l) and
σ(l) specify the average length and standard deviation of
all links under l respectively. The coefficient τ(l) basically
characterizes the tightness of a grouping under the link l, by
comparing its length with all links under this grouping. The
lower the value of τ , the more similar the concepts under
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Figure 8: Performance of video search on different
basis selections.

the link. At the lowest level of dendrogram, τ(l) = 0 since
only two concepts are under l. Figure 7 shows the number
of clusters (y-axis) whose links are below a given coefficient
value (x-axis). The result indicates that the best possible
case happens when there are 58 concept clusters, where the
τ(l) increases slightly from 0 but with a dramatic jump of
80 to 58 concepts. Table 1 shows few basis concepts and
their cluster members. Basically, a basis concept is the most
centrally located concept in the cluster.

To verify that the choice of bases under the dendrogram
of 80 concepts, we conduct an experiment to measure the
search performance by varying the number of selected bases.
Figure 8 shows the MAP of 24 search topics against different
choices of OSS bases. Each search topic is assigned one con-
cept in this experiment. The search performance improves
when more bases are included to span the semantic space.
The MAP reaches the highest when the number of bases
is equal to 58. The performance starts to drop from this
point onwards when more bases are considered. The result
indeed aligns with the observation obtained from τ(l) coef-
ficient which indicates 58 clusters are enough to represent
the 80 concepts in MediaMill-101.

The performance of OSS could be theoretically explained
by the completeness and independence of the space. Under-
estimating the number of bases results in the lack of bases
to span the semantic space. The incompleteness causes the
deficiency of vector representation in the space. Overesti-
mating the number of bases, on the other hand, affects the
independence of basis vectors. The correlation of concept
vectors could not be properly measured with the inclusion
of the redundant information. Due to the use of clustering,
the selected basis concepts are not strictly orthogonal to each
other and are asymmetrically distributed. As the number of
bases increases beyond a certain limit, the asymmetric dis-
tribution can actually bias the similarity measurement of
concept vectors.

5.2 Word Sense Disambiguation
Prior to video search, a pre-processing step is to infer the

actual senses of query terms. In this experiment, we ex-
plore OSS for word sense disambiguation as presented in
Section 4.3. We compare the performance of OSS with Lesk
algorithm [1] which is commonly adopted for sense disam-
biguation. Table 2 summarizes the comparison of experi-
menting 24 TRECVID search topics composing of 70 query

Table 2: Comparison of WSD
Query Terms Correct Sense Accuracy

Lesk [1] 70 56 80.00%
OSS 70 58 82.85%

Table 3: Mean average precision (MAP ) of video
search with different ontology measures (single con-
cept selection).

LCH WUP RES LIN JCN OSS
0.0213 0.0213 0.0418 0.0104 0.0104 0.0486

terms. The topics form a total of 852 possible sense com-
binations. Both OSS and Lesk algorithm estimate the best
combination of sense for each topic. The task is basically
performed by finding the combination that maximizes the
all-pair similarities of senses. In OSS, each sense is repre-
sented as a vector, and the similarity of two senses is directly
computed with Eqn (7). In Lesk algorithm, the similarity
is based on the amount of overlap (in words) between the
definitions of two senses. The performance of OSS and Lesk
is judged based on the percentage of senses being correctly
predicted. In the experiment, the groundtruth of each term-
sense assignment is manually judged. The result in Table 2
indicates that both OSS and Lesk can correctly predict 80%
of actual senses. The performance of OSS is slightly better
than Lesk algorithm. The result indeed shows the benefit
of OSS − the ontology enriched space achieves competitive
performance as Lesk algorithm even though the definitions
of senses are not utilized for similarity comparison.

5.3 Concept-based Video Search
We compare OSS with five other popular ontology mea-

sures: LCH [12], WUP [27], RES [20], LIN [14] and JCN [11]
for video search. The first two measures use path length in-
formation, while the last three utilize information content
[20]. In the experiments, we use WordNet as the ontology
for all the measures. Denote D as the depth and I as the in-
formation content of a concept, L as the path length between
two concepts, and pij as the common ancestor of concepts
ci and cj . The measures are defined as

LCH(ci, cj) = − log
L(ci, cj)

2δ
(16)

WUP (ci, cj) =
2D(pij)

L(ci, cj) + 2D(pij))
(17)

RES(ci, cj) = I(pij) (18)

LIN(ci, cj) =
2I(pij)

I(ci) + I(cj)
(19)

JCN(ci, cj) =
1

I(ci) + I(cj) − 2I(pij)
(20)

where δ is the maximum depth of WordNet. The infor-
mation content is estimated based on the one-million-word
Brown Corpus of American English [4]. For OSS, as pre-
sented in Section 5.1, a total of 58 basis concepts is selected.
Each concept in OSS is thus represented as a 58-dimensional
vector. The concept vectors are compared via cosine simi-
larity as in Eqn (7).

Table 3 shows the performance comparison of six different
measures with single-concept selection on 24 search topics.
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Table 4: Comparison of Semantic Measures
WUP RES OSS

ID Topic Detector AP Detector AP Detector AP
149 Condoleeza Rice face 0.0007 face 0.0007 face 0.0007
150 Iyad Allawi face 0.0001 face 0.0001 leader 8E-05
151 Omar Karami face 0.0009 face 0.0009 face 0.0009
152 Hu Jintao face 0.0005 face 0.0005 face 0.0005
153 Tony Blair face 0.0006 face 0.0006 face 0.0006
154 Mahmoud Abbas face 0.0025 face 0.0025 face 0.0025
155 Graphic map of Iraq with Baghdad marked map 0.0069 map 0.0069 map 0.0069
156 Two visible tennis players on the court court 0 tennis 0.6624 tennis 0.6624
157 People shaking hands people 0.0018 people 0.0018 people 0.0018
158 Helicopter in flight aircraft 0.0111 cloud 0.003 aircraft 0.0111
159 George Bush entering or leaving vehicle face 0 face 0 vehicle 4E-05
160 Something on fire with flames and smoke grass 0.0006 smoke 0.0111 smoke 0.0111
161 People with banners or signs people 0.0009 people 0.0009 people 0.0009
162 People leaving or entering a building people 0.0002 people 0.0002 people 0.0002
163 A meeting with large table and people people 0.0097 meeting 0.0251 people 0.0097
164 A ship or boat boat 0.0672 weather 0.0003 boat 0.0672
165 Basketball players on the court court 0.0001 basketball 0.1529 court 0.0001
166 One or more palm trees tree 0.0034 dog 0 tree 0.0034
167 An airplane taking off aircraft 0.0082 aircraft 0.0082 aircraft 0.0082
168 A road with one or more cars car 0.0756 car 0.0756 car 0.0756
169 One or more military vehicles military 0.0365 vehicle 0.0187 vehicle 0.0187
170 A tall building building 0.0276 building 0.0276 building 0.0276
171 A goal being made in a soccer match soccer 0.2541 football 0.0007 soccer 0.2541
172 Office setting office 0.0029 office 0.0029 office 0.0029

MAP 0.0213 0.0418 0.0486

In the experiment, except OSS, all measures employ Lesk
algorithm for word sense disambiguation. OSS is capable
of estimating the actual senses in its own semantic space as
presented in Section 5.2. The search result indicates that
OSS outperforms other measures in terms of MAP perfor-
mance. Interestingly the information content based mea-
sures exhibit very different performance, where RES relies
on only the lowest common ancestor performs better than
LIN and JCN. On the other hand, path length based ap-
proaches like LCH and WUP are not performed as well as
RES. Our analysis shows that these five measures are less
reliable and can be easily distorted with noise introduced in
WordNet.

Table 4 lists the detailed performances of WUP, RES and
OSS on the 24 search topics. Basically path length ap-
proaches like WUP are straightforward but sensitive to the
outcomes of word sense disambiguation. When incorrect
senses (e.g., Topic-160) are assigned, inappropriate concept
detectors (e.g., grass) will be selected. Information content-
based approaches like RES, on the other hand, are sensitive
to the statistics of corpus. For instance, the concept soccer
is not selected in Topic-171 simply because the information
content of soccer is 0 in the corpus. OSS, using a completely
different methodology, does not suffer from these shortcom-
ings. The basis concepts provide a relatively robust measure
by modeling the inter-concept relationship. The modeling
makes the measure less sensitive to word disambiguation
while guaranteeing global consistency of similarity scores.
Comparing with the recent results (MAP = 0.0485) in [22]
where there is a pool of 363 detectors for the 24 search top-
ics, our results are indeed encouraging.

Table 5 shows the MAP performance of different approaches
when the best three concepts are selected for query answer-
ing. Table 6 further lists the first three detectors selected by
OSS. The MAP performances of all approaches, particularly
the LCH, WUP and JCN, are improved when comparing to

Table 5: Mean average precision (MAP ) of video
search with different ontology measures (multiple
concept selection).

LCH WUP RES LIN JCN OSS
0.0460 0.0533 0.0423 0.0344 0.0475 0.0543

single concept selection. Overall, OSS still exhibits the best
performance. However, the performances of few topics de-
grade. It is partially because these topics have less than
three related concepts. Selecting multiple concepts may in-
troduce irrelevant detectors (e.g., the male and female in
Topic-166) and worsen the precision. On the other hand,
the concept selection does not take into account the relia-
bility of detectors. Including more detectors could probably
degrade the performance supposing detectors with less reli-
ability are selected (e.g., the chair in Topic-172).

During retrieval, the score of a retrieved item is com-
puted as the linear sum of the concept detectors’ responses
weighted by their similarities to the given query. We notice
that the setting of weight is an important factor for analyz-
ing the performances of difference measures. For instance,
due to the limited pool of detectors, the first three selected
concepts of OSS, WUP and JCN are similar. However, be-
cause OSS is able to assign proper weights to concepts due
to the use of basis concepts, the semantic importance of
concepts towards queries can be better characterized. For
instance, in Topic-161, WUP assigns higher weights to peo-
ple and house (1.0) than crowd (0.9). Similarly, JCN assigns
1.0 to people, 0.99 to house but 0.112 to crowd. OSS gives
a relatively reasonable weight combination (1.0 for people,
0.94 for house, 0.935 for crowd). The consistency in concept
measurement, and thus the ability in assigning proper con-
cept combination, indeed leads to the performance stability
of OSS in both single and multiple concept selections.
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Table 6: Multiple concept selection with OSS.
Topic ID Selected Detectors AP

1st 2nd 3rd
149 face graphics candle 0.0009
150 leader face female 0.0001
151 face leader female 0.0009
152 face leader female 0.0002
153 face graphics candle 0.0006
154 face leader female 0.0025
155 map city road 0.0182
156 tennis court basketball 0.6623
157 people house violence 9E-05
158 aircraft boat vehicle 0.0031
159 vehicle bus bicycle 0.0001
160 smoke fire grass 0.0006
161 people house crowd 0.0013
162 people building house 0.0001
163 people table meeting 0.0195
164 boat aircraft vehicle 0.0062
165 court basketball leader 0.1573
166 tree female male 0.0012
167 aircraft boat vehicle 0.0151
168 car truck bicycle 0.0871
169 vehicle military police 0.0423
170 building house tower 0.0236
171 soccer football golf 0.2587
172 office studio chair 0.0016

5.4 Multi-Modality Fusion
In this experiment, we demonstrate that OSS can be em-

ployed for multi-modality fusion, by considering the abilities
of concept clusters in query answering. Through training,
we estimate the importance of each concept cluster to two
modalities: retrieval-by-ASR (text baseline) and retrieval-
by-concept. The information gathered for each cluster is
then adopted for the late fusion of two modalities. As pre-
sented in Section 4.4, the task is similar to query-class de-
pendent fusion, where each concept cluster is in charge of
answering a group of queries which requires a specific way
of multi-modality fusion. However, different from conven-
tional approaches [28], we do not perform query classifica-
tion. Instead, we measure the significance of each concept
cluster to a query directly in the ontology-enriched semantic
space. All clusters are involved in determining the weights
for fusion depending on their significance towards a query.

Based on the OSS constructed in Section 5.1, each concept
is described as a 58-dimensional vector. We empirically set
the number of concept clusters as 14 and apply k-means to
divide the concepts into 14 partitions. We add in one extra
cluster for “name entity” resulting in 15 concept clusters as
listed in Table 7. With the clusters, we learn the relation
matrix R in Eqn (11) using the TRECVID 2005 develop-
ment set. Denote V as the retrieval-by-concept modality,
and T as the retrieval-by-ASR modality. For V -modality,
the weight rV i for cluster i is estimated based on the MAP
of its detectors in the development set. For T -modality,
the weight rTi for cluster i is estimated by the probability
of finding their concepts in the speech transcripts of con-
cept ground-truth. For instance in Cluster-10, the rV 10 is
the MAP performance of three detectors (beach, mountain,
snow), while rT10 is the probability of observing the three
words in the transcripts of shots containing the three con-
cepts. One exception is Cluster-15 for name entity, where
we set rV 15 = 0 and rT15 = 1, assuming that there is no
concept detector available for the majority of name entities.

Table 7: Concept clusters for multi-modality fusion.
ID Concepts
1 cartoon, chart, drawing, graphics, monologue
2 crowd, government, meeting, military,

people, police, vegetation
3 basketball, cycling, entertainment, football, golf,

marching, racing, soccer,sport, tennis, walking
4 disaster, explosion
5 violence, face, food, river, water, waterfall
6 cloud, fire, sky, smoke, weather
7 female, leader, male, prisoner, religious
8 animal, bird, dog, fish, grass, tree
9 city, court, studio
10 beach, mountain, snow
11 building, flag, house, map, office, road, tower
12 aircraft, bicycle, boat, bus,

car, motorbike, tank, truck, vehicle
13 candle, chair, newspaper, screen, table, weapon
14 desert
15 named entities

Given a query Q, a fuzzy vector P is first obtained by
applying Eqn (12). The vector is computed by measuring
the similarity of each query term with the cluster centroids
in the semantic space. With Eqn (13), P and R are com-
bined through fuzzy composition. The transformation then
produces the fusion weights W = [WV ,WT ] for retrieval by
concept and ASR modalities respectively.

To verify the proposed approach, we compare our ap-
proach (OSS) with two heuristic linear fusion strategies:
weighted average fusion (WAF) and pseudo query-class de-
pendent fusion (PQF). In WAF, we empirically assign the
fusion weights of 0.6 to ASR modality and 0.4 to concept
modality. In PQR, for queries with name entity, the ASR
modality is given a weight of 0.7 while the concept modality
is given 0.3. Otherwise, we set the weights of both modali-
ties as 0.5. The performances are compared against the text
baseline (retrieval-by-ASR) implemented based on Lemur
[13].

Table 8 shows the comparison of four different approaches.
Basically all fusion techniques improve over the ASR base-
line, indicating the usefulness of concept modality. Among
these techniques, OSS achieves the highest AP for 13 search
topics, most of them are non-name-entity queries. Over-
all, compared with the fixed-weight setting as in WAF and
PQR, OSS achieves the most improvement (53.46%) over
the baseline. This indicates that OSS, incorporating with
fuzzy transformation, is capable of estimating appropriate
fusion weights. Take Topic-156 and Topic-171 as examples,
OSS shows significant improvement as the related concepts
(Cluster-3) are semantically grouped, and the relation ma-
trix R takes into account the reliability of detectors. We
find that there are 6 topics, including 2 name entity queries,
where OSS does not improve over baseline. We investigate
the results and notice that the reason is indeed because
we use cluster centroids for comparing the similarities with
query terms. This somehow makes the fusion weights under
or over estimating the importance of particular modality.
We believe a better cluster-query similarity measurement
can further boost the performance of OSS.

6. CONCLUSION
We have presented OSS as a new computable platform for

the uniform and consistent measurement of concept similar-
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Table 8: Comparison of different fusion techniques.
Topic-ID Baseline WAF PQF OSS
149 0.0337 0.0493 0.0454 0.0494
150 0.0154 0.0125 0.0144 0.0152
151 0.2335 0.2411 0.2460 0.2461
152 0.2190 0.2817 0.2778 0.2711
153 0.2590 0.2575 0.2578 0.2563
154 0.1559 0.1553 0.1629 0.1597
155 0.000 0.0054 0.0028 0.0067
156 0.0063 0.283 0.4466 0.4725
157 0.0013 0.0014 0.0015 0.0028
158 0.0169 0.0227 0.0213 0.0262
159 0.0023 0.0056 0.0048 0.0043
160 0.0218 0.0236 0.0261 0.027
161 0.0357 0.0341 0.0326 0.0349
162 0.0018 0.0018 0.0019 0.0014
163 0.0105 0.0201 0.0239 0.0234
164 0.0892 0.0492 0.0268 0.0476
165 0.0165 0.1022 0.1424 0.1613
166 0.004 0.0038 0.0038 0.0038
167 0.000 0.0011 0.0017 0.0017
168 0.0453 0.0792 0.0949 0.0952
169 0.0729 0.0672 0.0522 0.0683
170 0.0057 0.0081 0.0126 0.013
171 0.1817 0.1953 0.1838 0.2104
172 0.0149 0.0145 0.0149 0.0152
MAP 0.0601 0.0798 0.0874 0.0922
Improve - 32.78% 45.42% 53.46%

ity and combination. The platform, aiming at a high cover-
age of semantic space with a minimal concept set, shapes the
ways of modeling concept inter-relatedness, while providing
guideline for concept development. To show the feasibility
of OSS, we explore and experiment several search related
tasks including query-concept mapping and multi-modality
fusion. Our findings show that, due to the uniform way of
assessing similarity, OSS is a feasible solution for large-scale
video search, concept combination, and query dependent fu-
sion with concept clusters. Currently we assume that OSS
exists in a linear space for computational reason. Whether
a nonlinear space assumption is feasible for OSS remains an
unanswered issue that worths further investigation.

A useful resource currently not explored in OSS is the co-
occurrence statistics of concepts in video data. The statistics
can be directly utilized for basis concept selection, amending
the semantic space such that the co-occurred behavior can
also be modeled. Under such circumstance, the space is en-
riched with both ontology semantic and statistics useful for
video search. Developing the basis concepts in this space as
detectors could be more realistic since the statistics indeed
hint the utility and observability of the concepts. In ad-
dition to positively correlated concepts, the set of negative
concepts (e.g., indoor versus outdoor) is also a useful piece
of information for fast pruning in video search as presented
in [15]. It is possible to have another “negatively correlated”
semantic space, complementary to OSS, to allow fast filter-
ing one on hand, and effective searching on the other hand.
We will consider both aspects (co-occurrence and negative
correlation) as the future extension of OSS.
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