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ABSTRACT

Semantic concept detectors are often individually and inde-
pendently developed. Using peripherally related concepts
for leveraging the power of joint detection, which is referred
to as context-based concept fusion (CBCF), has been one of
the focus studies in recent years. This paper proposes the
construction of a context space and the exploration of the
space for CBCF. Context space considers the global con-
sistency of concept relationship, addresses the problem of
missing annotation, and is extensible for cross-domain con-
textual fusion. The space is linear and can be built by mod-
eling the inter-concept relationship through annotation pro-
vided by either manual labeling or machine tagging. With
context space, CBCF becomes a problem of concept selec-
tion and detector fusion, under which the significance of a
concept/detector can be adapted when applied to a target
domain different from where the detector is being developed.
Experiments on TRECVID datasets of years 2005 to 2008
confirm the usefulness of context space for CBCF. We ob-
serve a consistent improvement of 2.8% to 38.8% for concept
detection when context space is used, and more importantly,
with significant speed-up compared to existing approaches.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms

Algorithms, Performance, Measurement, Experimentation

Keywords

Context Space, Context-based Concept Fusion, Video In-
dexing

1. INTRODUCTION
Semantic concept detection (or high-level feature extrac-

tion) plays an important role for automatic and interactive
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Figure 1: Context-based concept fusion (CBCF) us-
ing (a) conventional two-layer learning structure,
and (b) the proposed context space.

video search [12]. Concept detectors (or classifiers) are of-
ten developed independently, ignoring the fact that concepts
always coexist together and the training examples are nat-
urally multi-labeled. Generally speaking, concepts do not
appear in isolation, but are correlated to each other. Such
concept correlation provides clues for boosting detection per-
formance, particularly if the robustness of detectors is ex-
pected to be uncertain and weak in general. The consensus
from multiple contextually related detectors ideally could
provide statistical evidence to confirm the existence of a
concept. For example, the concept Car frequently co-occurs
with concepts Road. Using the contextual information from
Road is expected to help detecting Car.

Improving concept detection performance by utilizing such
peripherally related concepts is popularly termed as context-
based concept fusion (CBCF), which has received intensive
studies in recent years. Most existing works essentially use
a two-layer learning structure. As shown in Figure 1(a), n
individual concept detectors Ci (i = 1, . . . , n) are firstly de-
veloped. By using detector outputs Y from the first layer as
inputs, a supervised learner is then constructed for each con-
cept to get refined prediction Ŷ. Although performance im-
provement could be observed as reported in [5][13], there are
two major drawbacks. First, these approaches are fully su-
pervised and thus are computationally slow. Second, given
a concept, the number of correlated concepts is generally
small, compared to the un-correlated ones; using all the con-
cepts as in [13] will significantly affect the performance.

In this paper, we propose a novel approach for CBCF. In-
stead of relying on the second layer learner, a context space is
explicitly built to model the concept relationship. As shown
in Figure 1(b), with the context space, CBCF becomes a
procedure of concept selection and detector fusion. Specifi-
cally, given a target concept, the set of peripherally related
detectors are inferred from the context space to jointly boost



the detection performance. The selected detectors are then
linearly fused based on the weights derived from the con-
text space. The weights of detectors can also be adapted for
cross-domain fusion, if the peripheral detectors are trained
from a domain which is different from the target domain.
Context space includes mainly the co-occurrence relation-
ship among concepts. Such information can be learnt from
either manual annotations or detectors themselves. For the
later case, the learnt context space is capable of adapting
concept distribution across different domains and thus fa-
cilitating cross-domain contextual fusion. Mathematically,
context space is linear, and spanned by a set of basis con-
cepts learnt from concept relationship. Each concept or de-
tector, when projected to this space, becomes a vector facil-
itating similarity comparison. Given the context space, the
similarity between any two concepts is expressed not just
by pairwise relatedness, but also with reference to the avail-
able basis concepts. In other words, the space is capable of
providing a global view of context relationship for inferring
a small set of detectors suitable for CBCF. The advantages
offered by our proposed approach are summarized as follows:

• Global versus local measure: Inter-concept relationship
is usually locally determined by pairwise comparison
based on observation (e.g., from manual annotations).
Such locally determined correlation may not be glob-
ally consistent, because the relationship to other con-
cepts is ignored. This paper addresses the problem by
building a context space to globally model the con-
cept relationship. Specifically, contextual similarity of
two concepts is determined not only based on pairwise
comparison, but also considering their relatedness to
the basis concepts which form the space. Such uniform
measure can greatly facilitate the selection and fusion
of concept detectors for CBCF.

• Incomplete or missing annotation: Manually labeled
concept annotations are always incomplete and forget-
ful. As reported in [8], missing annotations commonly
happen in LSCOM (Large-Scale Concept Ontology for
Multimedia) [10], regardless of the efforts being pooled
in for labeling of the concepts. A good example is that
Snow is not labeled together with Outdoor in some
sample shots by annotators. By pairwise correlation
comparison, such missing information can lead to mis-
leading statistics. Using context space for inference,
in contrast, the co-occurrence probability of Snow and
Outdoor can still somehow be discovered if Mountain

is always annotated together with Outdoor, and Snow

is happened to be labeled with Mountain in some sam-
ple shots. In other words, when concept relationship
is modeled as a whole as in context space, the tran-
sitivity relationship among concepts can be captured.
Missing relationship between two concepts, to certain
extent, could still be inferred.

• Robustness versus randomness: The fundamental dif-
ference between using all available detectors or a subset
of detectors for CBCF lies in the level of noise being
introduced. For two-layer learner as shown in Figure
1(a), randomness will be introduced if the majority
of detectors are not peripherally related to the target
concept. Adding the fact that some detectors may not
provide accurate estimation, learning a robust detector

for target concept which can fully benefit from context
inference becomes difficult. Our approach minimizes
the randomness from two aspects. First, in view that
the number of related detectors is likely to be much less
than irrelevant ones, only a very small but helpful set
of detectors is picked by querying context space. Sec-
ond, the significance of a peripheral detector to target
concept is known by explicitly inferring from context
space. This information provides clues for how to fuse
multiple selected detectors, and thus is relatively ro-
bust than simply concatenating the scores of detectors
as a feature vector for learning of a target detector.

• Cross-domain contextual fusion: Context space can be
learnt using different sources, either from manual la-
beling or automatic machine tagging. The later has ad-
vantage that no training examples are required. More
importantly, using detectors’ scores as clues to learn
context space allows more realistic fusion of detectors,
particularly in the case where the detectors are devel-
oped in a domain different from the target domain. We
name such fusion strategy as cross-domain fusion. In
the experiment, we demonstrate this strategy by on-
line learning of a context space for documentary video
domain, based on the detectors trained on news do-
main. The context space learnt in this way is capable
of adapting the distribution of concepts to fit the new
domain knowledge, providing a better view of how to
fuse concept detectors for CBCF.

• Speed efficiency : Knowing the importance (or weight)
of a detector towards target concept, our approach
adopts linear fusion for CBCF. Apparently, this fusion
strategy as illustrated in Figure 1(b) is much more ef-
ficient than retraining a classifier as in Figure 1(a).

The idea of building context space was initially proposed
in our prior work [15] for video search, in which we named
the space as “observability space”. In this paper, we further
explore context space for CBCF. The remaining sections are
organized as follows. Section 2 briefly surveys the existing
related work. Section 3 presents the building and modeling
of the proposed context space. Section 4 details the utiliza-
tion of context space for concept fusion in CBCF. Finally,
Section 5 shows the experimental results, and Section 6 con-
cludes this paper.

2. RELATED WORK
Semantic concept detection has captured extensive research

attention, mainly for its promising role in bridging the se-
mantic gap. The recently released LSCOM (Large-Scale
Concept Ontology for Multimedia) [10] includes 834 con-
cepts and a collection of annotations (training examples) for
449 out of the 834 concepts. Based on LSCOM, two detector
sets, Columbia374 [17] and VIREO-374 [7]1, are developed
and released for public use. Another detector set commonly
used is MediaMill-101 [14] which provides 101 concept detec-
tors. These detectors are individually developed, ignoring
the inter-concept relationships. Therefore, context-based
concept fusion (CBCF) which improves concept detection
performance by exploring peripherally related concepts, has

1Download site: http://vireo.cs.cityu.edu.hk/research/vireo374/
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Figure 2: Constructing context space for a given set of concepts by spectral decomposition.

attracted new research attention. CBCF has been investi-
gated in several prior works in recent years [13][5][6][9]. In
[13], Smith et al. used SVM to model the contextual rela-
tionship. Features for training the SVM is constructed by
aggregating the outputs of all the individual detectors. By
using this second layer supervised learner, the concept cor-
relation is explored to refine detection results. In [5], Jiang
et al. proposed an active CBCF method by firstly soliciting
users to annotate a small number of samples. After that,
a context-based SVM classifier is learnt which is similar to
[13]. In [6], a boosted conditional random field method is
proposed for CBCF, in which SVM is used as weak learner
for boosting. In [9], Lyndon et al. used inter-concept mu-
tual information based on pseudo-labels to select a set of
75 peripherally related concepts and then trained a SVM
for learning the contextual information. These works are all
using two-layer learning structure, which combines the indi-
vidual detector scores of the first layer into feature vectors as
inputs for training detectors in the second layer. However,
the output of the individual detectors can be unreliable. The
detector errors will be propagated to the second layer and
therefore degrading the overall performance.

In addition to the two-layer learning techniques, other ap-
proaches for CBCF include [11][16]. In [11], Qi et al. pro-
posed a multi-label learning framework derived from Gibbs
random field. Though encouraging improvements were ob-
served on TRECVID 2005 data set, the complexity of this
method is quadratic to the number of concepts – the compu-
tational time to detect 39 concepts is already 25 times longer
than that used for training individual classifiers. This pre-
vents its application to a larger set of hundreds of semantic
concepts. In [16], Weng et al. proposed a concept fusion
method based on graphical model. Through optimizing pa-
rameters separately for each concept, an impressive improve-
ment of 16.7% was reported over the VIREO-374 baseline on
TRECVID 2006 test set. Nevertheless, all these approaches
for CBCF used pairwise comparison of manual annotations
to determine inter-concept relationship. This measurement
is local as introduced in Section 1. In this paper, we propose
to construct a context space which is able to offer global
measurement of inter-concept relationship. With the con-
text space, we will show that using a highly efficient linear
fusion model with unified parameter setting is able to offer
similar or better performance over the existing works.

3. BUILDING CONTEXT SPACE
Given a vocabulary set V = [C1, C2, . . . , Cn] of n con-

cepts, the aim is to construct a linear space which could
effectively model the contextual relationship of concepts in
a global way. Figure 2 illustrates the procedure for modeling
a context space. Basically concept relationship are modeled

and captured in a matrix representation R. The matrix will
be further decomposed for deriving the basis vectors which
form the linear space. In the first step of this procedure,
redundant concepts in the set V are removed by perform-
ing clustering. This eventually results in a compact set of
concepts V̂ for producing the matrix R. The inter-concept
relationship in V̂ is measured and encapsulated into R. By
further performing spectral decomposition on R, a context
space which is orthogonal and spanned by basis vectors is
constructed. In this space, each concept is represented as a
multi-dimensional vector. Concepts not in V̂ can also be pro-
jected to the context space by measuring their relatedness
with respect to the basis vectors. The similarity of concepts
can thus be directly measured by comparing their cosine dis-
tance in this space. Note that because the relationship of
concepts is globally encoded in the space, concept similarity
takes into account not only two concepts under investigation
but also their context relatedness to the basis vectors. The
details of space construction as shown in Figure 2 will be
further described in the remaining subsections.

3.1 Concept Modeling
The matrix R can be computed from either V or V̂. Nev-

ertheless, to improve computational stability of spectral de-
composition, the compact version V̂ is used instead. V̂ is
generated by clustering the n concepts in V. The clustering
process will remove redundant concepts in V, resulting in a
compact support set V̂ of m < n concepts. V̂ is basically
formed by the cluster centroids of V. We adopt agglom-
erative hierarchical clustering algorithm, and the number
of clusters m is determined using inconsistency coefficient
measure [4]. Ultimately, the concept relationship in V̂ is
encapsulated into the matrix R = [rij]m×m.

Spectral decomposition [3] is then performed on the ma-
trix R as following

R = V ΛV T

= (V Λ
1

2 V T )T (V Λ
1

2 V T ) (1)

= CT C (2)

where Λ is a matrix with all the eigenvalues of R on its di-
agonal, and V is the corresponding eigenvector matrix. The
matrix C encapsulates the concepts in V̂ as vectors. Denote
C = [ ~C1, ~C2, . . . , ~Cm], each column of C, ~Ci, represents the
vector of concept Ci. Theoretically, C contains the set of
basis vectors which span the context space.

3.2 Context Vector Representation
To project an arbitrary concept u /∈ V̂ to the concept
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Figure 3: Partial view of concept distribution on LSCOM context space learnt from (a) manual annotations,
and (b) detection scores. To contradict, we also show the concept distribution generated by directly using
pairwise PM correlation based on (c) manual annotations, (d) detection scores.

space, we perform:

CT ~u = Ru

~u = (CT )−1Ru (3)

where Ru is a m-dimensional vector, representing the rela-
tionship of u to the m concepts in V̂. By the projection,
concept u is represented as a vector in the context space,
which captures the contextual relationship of u to the m ba-
sis vectors. For convenience, we call the vector generated in
this way as “context vector”.

With vector representation, comparing the similarity of
two concepts is computationally efficient. Given the context
vectors of concept Ci and Cj , we apply cosine similarity as

λij = Cos(Ci, Cj) =
~Ci · ~Cj

| ~Ci|| ~Cj |
. (4)

where λij considers similarity of two concepts with respect
to their contextual relatedness to the bases of context space.
This measure is relatively robust compared with pairwise
measure of concept relatedness.

3.3 Concept Relationship Measurement
When building the context space, we need a measure for

quantifying the relationship between two concepts in the ma-
trix R. In this paper, we employ Pearson product-moment
correlation (PM) for this purpose. Given two concepts Ci

and Cj , the PM correlation is computed as

rij = PM(Ci, Cj) =

∑|T |
k=1

(Oik − µi)(Ojk − µj)

(|T | − 1)σiσj

(5)

where Oik indicates the presence of concept Ci in shot k, µi

and σi are the sample mean and standard deviation, respec-
tively, of observing Ci in a data set T . We use two sources of
information for computing PM: 1) manual annotations and
2) detection scores. For manual annotations, we set Oik to
1 if Ci is labeled in shot k, and 0 otherwise. When detection
scores are used, we simply set Oik equal to the output score
(probability) of Ci detector to shot k.

Learning context space using detection scores is flexible,
since the responses of detectors can also somewhat reveal the
context relationship of concepts. For instance, for shots con-
taining the object “car”, the detectors Car and Road should
exhibit consistently higher scores more often than other de-
tectors. Learning such relationship has the advantage that

there is no need to annotate all the concepts on the same
data set, which is not easy to be achieved in practice.

3.4 Example: LSCOM Context Space
As an example, we use 374 concepts of LSCOM [10] to

build a context space and observe the concept distribution.
Figures 3(a) and 3(b) show the partial view of context spaces
built from manual annotations and detection scores respec-
tively. For illustration purpose, the context space is pro-
jected to 2D using MDS (multi-dimension scaling). The
concept distributions in 3(a) and 3(b) appear similar to each
other, when comparing the relative distance between con-
cepts. The major difference is the concept Sky. In 3(a), Sky

is closer to concepts Airplane and Helicopter. While in 3(b),
Sky is more centrally located. This is mainly due to the fact
that manual annotations tend to label Sky together with Air-

plane and Helicopter, but not always for other vehicles. The
context space in 3(b) is able to provide a more “objective”
view of concept distribution since Sky is frequently detected
together with vehicles. Using either the manual annotations
or detection scores for learning context space has the pros
and cons. Detection scores, in contrast to manual anno-
tations, appears as a noisy measure particularly since the
robustness of detectors can vary from one to another. For
certain groups of concepts, the context space nevertheless
is less biased than the one built by using manual annota-
tions. Certainly, the correctness is still dependent on the
robustness of detectors.

The context space capable of measuring concept similar-
ity globally, is obtained by representing concepts as vectors
through the spectral decomposition on the matrix R which
contains only the local view of pairwise concept relation-
ship. To show the advantages of having global view, we also
contrast how concepts distribute by directly measuring the
pairwise relationship using PM, as shown in Figures 3(c)
and 3(d). There are two main observations when compar-
ing 3(a) and 3(c). First, in 3(c), the distance between Boat

and Waterway appears closer than that between Car and
Road. Such distribution could introduce inconsistency for
concept fusion, in a way that the significance of Waterway

for Boat should be similar in par with the importance of Road

to Car. Such consistency is indeed observed in context space
where their distances are relatively similar, as shown in 3(a).
Context space is capable of keeping such consistency since
the basis vectors provide a mean of global reference, in ad-



dition to pairwise correlation, to the two concepts. Second,
it is harder to observe the relationship of concepts such as
Airplane, Helicopter and Boat to Vehicle in 3(c) than in 3(a).
We check the manual labels of LSCOM and notice that this
is due to the problem of “forgetful annotation”: the concept
Vehicle is more often tagged together with Car than with the
other three concepts. Context space, nevertheless, is able to
capture the relationship of Vehicle to other vehicle-related
concepts. As shown in 3(a), Vehicle is more centrally lo-
cated and nearby to Car as well as Airplane, Helicopter and
Boat. We further check the manual labels and notice that
context space is able to somehow amend the forgetful an-
notations due to the fact that concepts such as Conveyance

and Transportation Event are always labeled together with
Vehicle and Airplane. Context space can pick such hidden
cues happened in a transitivity manner and then globally
present the concept relationship. Similar observations also
happen when comparing Figures 3(b) and 3(d).

4. CONTEXTUAL FUSION
The proposed fusion strategy as shown in Figure 1(b) is

composed of two major steps: detector selection and detec-
tor fusion. Given a target concept Ct and the learnt context
space, the selection procedure starts by first projecting the
target concept to context space. Based on the similarities
computed by Eq. (4), the top-k concepts with higher simi-
larities to the target concept are then selected as predictors
for CBCF. The selected predictors are fused linearly, where
the fusion weights are determined by the similarities com-
puted from the context space. Let Yp be a vector containing
the detection scores of an individual detector of concept Cp

towards the shots in a test set T , our contextual fusion for
a given target concept Ct is conducted as follows

Ȳt =
1

|P|

∑

Cp∈P

λtp · Yp (6)

where P is the set of selected predictor concepts for the tar-
get concept Ct, and Ȳt aggregates the detection scores of all
the predictor concepts. The fusion weight λtp is determined
by Eq. (4), which measures the similarity of Ct and Cp in the

context space. The final estimation Ŷt of Ct is obtained by
averaging its original detection scores Yt and the aggregated
scores Ȳt

Ŷt = avg(Yt + Ȳt). (7)

As discussed in Section 3.3, there are two sources of in-
formation that can be used to construct the context space,
which results in two different λtp: λM

tp and λS
tp respectively

derived from the spaces learnt from manual annotations and
detection scores. The weight λM

tp is basically domain specific,

while λS
tp can be adaptive to domain changes and learnt on-

the-fly by the time of concept detection. Since the joint
appearance of concepts can be different from domain to do-
main, adaptive learning of a context space for the target
domain offers a novel view of detector fusion. Moreover, for
the detectors learnt from a domain different from the test
data, the context space can amend their significance to other
detectors accordingly. For instance, the significance of the
concept Map to Weather can be reduced by adapting the
concept distribution in the context space, when the target
domain is switched from news to others. Such adaptation
greatly facilitates the cross-domain contextual fusion.

Table 1: Performance of CBCF with context space
learnt from manual annotations of LSCOM. The
VIREO-374 baseline detectors were trained on TV05
development data.

TV05 TV06 TV07 TV08
VIREO-374 baseline (MAP) 0.303 0.155 0.057 0.040

CBCF (MAP) 0.312 0.179 0.068 0.056
Improvement 2.8% 15.3% 18.2% 38.8%

# of improved concepts 7/10 19/20 16/20 17/19

5. EXPERIMENTS
We conduct experiments using four TRECVID datasets

[12]: TV05, TV06, TV07 and TV08, from years 2005 to
2008 respectively. TV05 and TV06 are composed of broad-
cast news videos in English, Chinese and Arabic. There
are 85 hours (45,765 shots) and 150 hours (79,484 shots) of
testing videos in TV05 and TV06 respectively. TV07 and
TV08 are Dutch videos from the Netherlands Institute for
Sound and Vision, containing mainly documentary videos of
50 hours (18,142 shots) and 100 hours (33,726 shots) respec-
tively in the testing sets. For the baseline detector set, we
use VIREO-374 [7] which is composed of detectors for 374
LSCOM semantic concepts. The detectors are trained using
TRECVID 2005 development set based on the annotations
provided by LSCOM. Each detector is associated with three
SVM classifiers trained with local interest point features2,
grid-based color moment and wavelet texture respectively.
The outputs of the three classifiers are combined as the final
detection scores with average fusion.

Following the TRECVID evaluation, we use average pre-
cision (AP) to evaluate the results on TV05 and inferred
average precision (infAP) for TV06–08. AP approximates
the area under precision-recall curve, while infAP estimates
the traditional AP when the testing data sets are partially
labeled [1]. To aggregate the performance over multiple con-
cepts, we use mean AP for TV05 and mean infAP (MAP)
for TV06–08. Throughout our experiments, we report per-
formance on each year’s test set over the officially evaluated
concepts by NIST. For a given target concept, we uniformly
select the three most similar detectors based on the context
space for CBCF. Selecting more detectors, especially if the
number of detectors is determined adaptively, could possi-
bly lead to better performance. However, we do not aim to
elaborate this part in the paper, but rather concentrate on
analyzing the effectiveness of context space for CBCF.

We begin by presenting the experimental results for CBCF
using the context space learnt from the 374 LSCOM annota-
tions which were manually labeled on TV05 development set
(Section 5.1). The results for cross-domain fusion are then
described using the context space learnt from the detection
scores of VIREO-374 (Section 5.2). Empirical insights about
the advantage of the proposed context space (Section 5.3),
and performance comparison with existing techniques (Sec-
tion 5.4) are then presented.

5.1 Context Space for CBCF
Table 1 shows the performance of our CBCF approach

with a context space learnt from manual annotations of
LSCOM, using VIREO-374 detector set as baseline. Over-
all, consistent performance improvements (2.8%-38.8%) are

2Note that in VIREO-374, only one dictionary of 500
visual keywords was used. Using more dictionaries can lead
to better performance as shown in our recent work [2].



Table 2: Selected predictor concepts for the 20 eval-
uated concepts in TV06 using a context space learnt
from manual annotations of LSCOM.

Target Concept Predictor Concepts
Sports Athlete, Soccer, Basketball

Weather Map, Snow, News Studio
Office Furniture, Computer, Actor

Meeting Furniture, Suit, Powerplants
Desert Weapon, Rocky Ground, Armored Vehicle

Mountain Hill, Landscape, Sky
Waterscape Waterway, River, Lake

Corp. Leader Ties, Face, Single Person Male
Police Police Security, Police, Military

Military Military Personnel, Soldier, Rifle
Animal Dog, Bird, Horse

Computer-TV-screen News Studio, Studio, Studio Anchor Person
Flag-US US Flags, Flags, Speaker At Podium
Airplane Airport, Airplane Flying, Airport Or Airfield

Car Ground Vehicles, Vehicle, Road
Truck Pickup Truck, Ground Vehicles, Vehicle

People-Marching Funeral, Crowd, Parade
Explosion Fire Smoke, Exploding Ordinance, Weapon

Map Weather, Studio, News Studio
Chart Stock Market, Sketch, Weather
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Figure 4: Per-concept performance of CBCF on
TV07 test set using context space learnt from man-
ual annotations on TV05 development data (broad-
cast news videos).

observed on all data sets. More details will be discussed in
the following two subsections.

5.1.1 Concept Selection

Selecting appropriate concepts is crucial in our CBCF
method. Table 2 lists the top 3 selected predictor concepts
for each of the 20 officially evaluated concepts in TV06. We
see that the proposed context space is able to help selecting
reasonably good concepts for all the target concepts, e.g.,
{Athlete, Soccer, Basketball} for Sports, and {Hill, Land-

scape, Sky} for Mountain. Since the context space is learnt
from manual labels on TV05 development data (broadcast
news videos), some concepts are selected based on domain
specific knowledge. For example, concept Map mostly co-
occurs with concepts Weather and Studio (in weather fore-
cast program). These selected concepts are useful for CBCF
on news videos, but are useless or even noisy when applied
to other data domain such as documentary videos.

To confirm our observations, Figure 4 shows the per-concept
performance on TV07 test set using the context space learnt
from manual labels on news videos 3. Compared to VIREO-
374 baseline, the performances of 12 out 20 concepts are
improved. We see that the fusion performance of concept
Map is about the same. This is in consistent with our dis-
cussions above. The only concept with significant perfor-
mance drop is Computer TV-screen. This is due to the

3Note that 19 out the 20 officially evaluated concepts in
TV06 were also used in TV07. The only difference is that
Corp. Leader in TV06 was replaced by Boat Ship in TV07.
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Figure 5: Distribution of true-positive shots
(precision@k) over TV05–TV08 test data sets.

same reason to concept Map, i.e. the selected predictor
concepts {News Studio, Studio, Studio Anchor Person} for
Computer TV-screen are too domain specific. In Section
5.2, we will show how a context space learnt from detection
scores helps in these cases.

5.1.2 Distribution of True-Positive Shots

AP evaluates the performance of a concept detector by
approximating the area under precision-recall curve, which
essentially reflects the distribution of the true-positive shots
in the rank list of the detector. Figure 5 shows precisions at
different cutting points of the rank lists for each of the four
year’s test sets. At each k, we show the mean precision@k
over all the evaluated concepts in each year. From the fig-
ure, we see that our CBCF method improves the precision
at various choices of k for all the test sets. Another inter-
esting observation is that for TV05 and TV06, the CBCF
only improves the precision when k ≤ 200. This indicates
that the CBCF only re-ranks the top ranked shots and is not
able to find more true-positives from the lower part of the
list (k > 2000). While for TV07 and TV08, we see that the
precision@2000 is also significantly boosted. This is proba-
bly due to the fact that the VIREO-374 baseline detectors
were trained on broadcast news videos (TV05 development
set), which are quite different with the documentary videos
in TV07 and TV08. This will result in relatively lower base-
line performance for TV07 and TV08, and thus leave more
room for improvement by CBCF.

5.2 Cross-Domain Contextual Fusion
In this section, we construct context spaces from detection

scores for cross-domain contextual fusion (cf. Section 4).
Different from Section 5.1, for TV07 and TV08 test sets, we
use the classifiers trained on each year’s new development
data as target detectors. In this scenario, VIREO-374 de-



Table 3: Selected predictor concepts for the 20 eval-
uated concepts in TV07 using a context space learnt
from concept detection scores.

Target Concept Predictor Concepts
Sports Walking Running, Outdoor, Crowd

Weather Waterscape Waterfront, Mountain, Hill
Office Talking, Furniture, Computer

Meeting Furniture,Powerplants, Suit
Desert Hill, Mountain, Sky,

Mountain Mountain, Hill, Landscape,
Waterscape Boat Ship, Sky, Waterscape Waterfront
Boat Ship Waterscape Waterfront, Sky, Waterway

Police Group, Person, Walking Running
Military Military Personnel, Soldier, People-Marching
Animal Forest, Dog, Bird

Computer-TV-screen Office, Comp. Or Television, Comp. TV
Flag-US People-Marching, US Flag, Flag
Airplane Sky, Airplane Flying, Helicopter Hovering

Car Road, Urban, Ground Vehicle
Truck Car, Road, Urban

People-Marching Crowd, People Marching, Parade
Explosion Fire Explosion Fire, Exploding Ordinance, Water

Map Still Image, Chart, Sketch
Chart Still Image, Charts, Map

Table 4: Performance of cross-domain contextual fu-
sion with context space learnt from detection scores.
Note that the baseline detectors are trained on each
year’s new development data.

TV06 TV07 TV08
Baseline detectors (MAP) 0.156 0.092 0.119

Cross-domain fusion (MAP) 0.167 0.103 0.123
Improvement 7.3% 11.7% 3.0%

# of improved concepts 16/20 15/20 12/20

tectors will be adopted to enhance target detectors trained
in another data domain. A context space is thus learnt for
each test set based on the detection scores and then applied
for cross-domain contextual fusion.

Table 3 lists the selected predictor concepts for each of the
20 evaluated concepts in TV07 using a context space learnt
from detection scores. We can see that this context space
is able to pick more reasonable predictor concepts in several
cases, e.g., concepts {Hill, Mountain, Sky} are selected for
concept Desert, while based on the context space learnt from
manual labels, {Weapon, Rocky Ground, Armored Vehicle}
are selected, which is possibly because the highly frequent
Iraq war news contain all these concepts.

Table 4 shows the experimental results. Note that al-
though the videos of TV06 are also broadcast news, they are
captured in a different year from TV05. Thus we also include
TV06 test set in this experiment, in order to compare with
the context space learnt from manual annotations. From the
Table, we see that the performance improvement for TV06
(7.3%) is not as high as that using a context space learnt
from manual annotations (15.3%). This is due to the fact
that the context space learnt from detection scores may in-
troduce noises into the concept selection process since many
detectors themselves are rather weak and may generate ran-
dom responds towards testing data. The improvements on
TV07 and TV08 are also lower than that on VIREO-374
baseline, which is partially because the new baseline detec-
tors trained on the new data are much stronger. Neverthe-
less, the overall performance improvement over all the three
test sets is still noticeable (3.0%–11.7%). Thus, we con-
clude that learning context spaces from detection scores is a
promising choice since it does not require all the concept be-
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Figure 6: Performance comparison of CBCF using
the proposed context space and pairwise PM cor-
relation on TV06. Both context space and PM are
computed on manual annotations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

S
p

o
rt

s

W
e

a
th

e
r

O
ff

ic
e

M
e

e
tin

g

D
e

s
e

rt

M
o

u
n

ta
in

W
a

te
rs

p
a

c
e

P
o

lic
e

M
ili

ta
ry

A
n

im
a

l

C
o

m
p

u
te

r_
T

V
-s

c
re

e
n

F
la

g
-U

S

A
ir

p
la

n
e

C
a

r

T
ru

c
k

B
o

a
t_

S
h

ip

M
a

rc
h

in
g

E
x

p
lo

s
io

n

M
a

p

C
h

a
rt

in
fA

P

VIREO3-374 PM Context Space

Figure 7: Performance comparison of CBCF using
the proposed context space and pairwise PM cor-
relation on TV07. Both context space and PM are
computed on detection scores.

ing fully annotated, which is hard to be achieved especially
when the number of concepts is large or the data domain
changes from time to time.

5.3 Global vs. Local Measure
In our CBCF method, both concept selection and fu-

sion weights are determined by the context space which
is able to offer globally consistent measurement of inter-
concept relationships. In this section, we compare the pro-
posed method with pairwise correlation computed by Pear-
son product-moment (PM; cf. Section 3.3). We also select
top-3 predictor concepts for each target concept and use lin-
ear weighted fusion for CBCF, where the fusion weights are
directly computed by PM.

Figures 6 and 7 show the per-concept performance com-
parison of CBCF using context space and PM respectively
on TV06 test set and TV07 test set. Note that for TV06,
both context space and pairwise PM correlation are com-
puted on manual annotations, while for TV07 they are com-
puted on detection scores. From the figures, it is obvious
that CBCF with context space is consistently better than
that with the pairwise PM correlation, which confirms the
advantages of the proposed context space – it is able to offer
a global measurement of inter-concept relationship and also
can somewhat recover incomplete or missing annotations.

5.4 Performance Comparison and Run Time
In this experiment, we first compare our method to the

traditional two-layer learning structure [13][9]. As none of
the existing works tested on TV07 and TV08 data sets, in
this section we only experiment with TV06 data sets and
indirectly compares with other works tested on TV05 data
sets. Following [9], for each target concept, we select top-75
peripherally related concepts using the context space and
then aggregate the prediction scores of these concepts as a
75-dimensional feature vector for SVM learning. Table 5 re-



Table 5: Performance comparison with two-layer
SVM learning on TV06 test set. The best result
for each concept is shown in bold.

Concept VIREO-374 2-Layer Context
Name Baseline SVM Space
Sports 0.393 0.430 0.444

Weather 0.433 0.369 0.457

Office 0.081 0.025 0.082

Meeting 0.295 0.328 0.316
Desert 0.049 0.059 0.053
Mountain 0.182 0.229 0.220
Waterscape Waterfront 0.098 0.146 0.128
Corporate Leader 0.008 0.000 0.047

Police Security 0.015 0.015 0.019

Military 0.098 0.122 0.133

Animal 0.006 0.004 0.006

Computer TV-screen 0.273 0.273 0.289

Flag-US 0.269 0.291 0.306

Airplane 0.018 0.050 0.054

Car 0.164 0.191 0.183
Truck 0.064 0.082 0.082

People-Marching 0.050 0.060 0.068

Explosion Fire 0.165 0.168 0.168

Map 0.286 0.294 0.341

Chart 0.165 0.205 0.181
MAP 0.155 0.167 0.179

Improvement – 7.0% 15.3%

ports the results. We see that the proposed CBCF method
using context space performs best for 14 out of 20 concepts.
Overall, the improvement of the context space based CBCF
is 15.3%, which doubles that of the 2-layer SVM learning
structure. As reported in [9], their learning structure already
outperformed another earlier work [6] on a subset of TV05.
Thus we will not directly compare with [6]. The highest
performance improvement of the existing CBCF techniques
was reported in [16], which improved VIREO-374 baseline
by 16.7% on TV06 test set through optimizing a graphical
model with fine tuned parameters for each of the 20 con-
cepts. While in our method, we offer similar performance
gain by uniformly selecting 3 concepts for all target concepts
and using simple but highly efficient linear fusion.

The proposed CBCF method is extremely fast. Learning
the context space takes less than 10 seconds on a regular PC
using either manual annotation or detection scores (on TV06
test set). Once the context space is built, the CBCF with
linear fusion only takes 6 seconds over 20 concepts on TV06
test set containing 79,484 shots. This is much faster than
the existing techniques which all involve a computationally
expensive optimization process.

6. CONCLUSIONS
We have presented our approach for the construction and

exploration of context space for CBCF. The approach turns
CBCF into a procedure of concept selection and detector fu-
sion. Under this procedure, our contributions include mainly
the proposal of linear space for uniform context measure-
ment, concept selection, and the insights to cross-domain
contextual fusion. The building of context space using scores
from detectors enlightens the possibility of learning concept
relationship without manual labeling, while addressing the
issue of cross-domain detection. Such learning is highly ef-
ficient and can be conducted on-the-fly as demonstrated in
our experiments. The consistent performance improvement
being observed when using TRECVID data sets of years
2005 to 2008 also confirm the merit of our approach.

Our current work can be extended in the following ways.
In this paper, we only empirically select three most relevant

(positive) detectors for CBCF. Using more (or less) detec-
tors, including the negative concepts, remains an issue to
be studied. The criteria for selection depends on the fac-
tors such as properties of a concept (whether it is general
or specific), size of detector set, and also the target domain.
In addition, we do observe some fundamental differences be-
tween the context spaces learnt from manual annotations
and detection scores. Both spaces actually offer different
views of concept distributions – human view which could be
subjective and forgetful, and machine view which could be
noisy. Combining both views for CBCF could be an inter-
esting research study.
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