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sing real data and process flows from two large hospitals (in Singapore and in Chengdu, China) as cases, we illustrate

how to apply certain modeling and optimization techniques, along with simulation as a validation tool, to hospital
resource planning problems. We demonstrate how these simple analytical tools can help achieve significant improvements in
both patient service and resource utilization, and without the need to increase the overall level of existing capacities. Two
resource planning problems are studied in detail, one concerns the rebalancing of bed capacities among various wards, and
the other addresses the allocation of medical diagnostic resource among different types of patients.

Key words: resource allocation; optimization; asymptotic optimality
History: Received: August 2019; Accepted: December 2019 by J. George Shanthikumar, after 1 revision.

1. Introduction

Critical health care delivery mostly takes place in a
large and complex system, the hospital, involving
expensive resources and highly skilled workers such
as doctors, nurses and other medical professionals.
Yet, many of today’s hospitals have yet to utilize and
benefit from the kind of tools and technologies that
run modern manufacturing plants such as a semicon-
ductor wafer fab, let alone all the research and inno-
vations that have gone into enterprise supply chain
management over the last two decades embodied
broadly in the analytics paradigm. Healthcare deliv-
ery, according to Atul Gawande (“Big Med.” New Yor-
ker, August 16, 2012)—a distinguished surgeon,
author, and public-health researcher, has a host of
principles and practices to learn from a restaurant

chain, Cheesecake Factory. These include the basic
tenet of any successful business: offering a quality
product/service or experience to customer at an
affordable price; the standardization of routine treat-
ments and procedures so as to improve efficiency and
reduce costs; and the adoption of “systems” concepts
and technologies so as to provide effective solutions
to the entire supply chain—in this case, the health
care value chain.

The goal of this study is to demonstrate, through
case studies at two large hospitals, how applying
some simple modeling and optimization techniques,
along with simulation as a validation tool, to hospital
resource planning problems can achieve significant
improvements in both patient service and resource
utilization, without the need to increase the existing
capacity.
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In the first case, we study the rebalancing of bed
capacity among various wards at a large hospital in
Singapore, referred to as Hospital-1 (or the first case)
below. Data reveals that while the average bed occu-
pancy rate (BOR) is around 86%, there is a big varia-
tion among the wards, due to demand changes over
the years. This supply-demand mismatching leads to
a high overflow rate: on average 18.91% of emergency
patients are wrong-sited (the highest overflow rate
being 68.67%), that is, these patients have to be sent to
some ward that is not the best choice for their treat-
ment. In addition, it causes long waiting time (weeks
or months) for elective patients to be admitted.

With a simple optimization model, we perform a
load balancing among wards, that is, optimize the
number of beds allocated to each ward, while main-
taining the total bed capacity at its existing level. This
reallocation reduces the overflow rate from 18.91% to
4.5%. Furthermore, even if we allow an increase in
elective patient admissions by 15%, the optimal real-
location can still maintain the overflow rate at around
6%—7%, and keep the waiting time of emergency
patients at about 0.5 hours, well within the required
6-hour limit.

The second case concerns medical diagnostic facili-
ties (such as CT and MRI) at another hospital, located
in Chengdu, China, referred to as Hospital-2 (or the
second case) below. Such facilities are shared among
emergency patients, inpatients, and outpatients, with
emergency patients given priority service, immedi-
ately upon arrival, while inpatients and outpatients
are served by appointment only. The hospital’s prac-
tice is to set daily quota for outpatient and inpatient
appointments (denoted 17 and 1;)—once the quota is
used up, appointments will be deferred to the follow-
ing day(s); while the remaining capacity is reserved
for emergency patients (13 = N — 1y — 1y, with N
being the total number of available slots per day).

Our approach is to first optimize the reserved
capacity for emergency patients, n;. We then apply a
“nested” policy among inpatients and outpatients to
share the remaining N — nj} slots, that is, with an
optimized quota 7] limiting the outpatient appoint-
ments, but allowing inpatients to have access up to all
N — nj slots. This optimization leads to a 14%
improvement in same-day service for inpatients and
outpatients; and for the delayed appointments, a 33%
reduction in patient-day counts. It also improves the
utilization of the facility by 10% and reduces overtime
by 11%.

The key to the first case is a square-root allocation
rule, by which the number of beds allocated to any
given ward i is p; + f;\/p;, where p; is the traffic
intensity (patient arrival rate times the average length
of stay at the ward), and f; is a decision variable to be
optimized. When the objective is to minimize the

maximal delay among all wards and with all wards
carrying equal weight, we show the optimal alloca-
tion is an “equal f rule,” that is, to set f; = f for all i.
Variations of this square-root allocation rule have
been widely used in call-center staffing. It comes from
what is known as the Erlang-C formula associated
with the M/M/c queueing model; refer to the
Appendix A.1.

In the second case, the nested policy plays the key
role. To construct the policy, we first derive upper-
and lower-bounds on the optimal value of the
dynamic programming (DP) solution to the allocation
problem. (The DP solution has a switching curve
structure, with the curves depending on both time
and states; as such its practical implementation is
questionable.) In particular, 13, the capacity reserved
for emergency patients comes from the upper-bound
solution, and 7, the quota on outpatients, comes from
the lower-bound solution. Interestingly, similar to the
first case, there is also a square-root phenomenon
here. Let D;, for i = 1, 2, 3, denote the demand (daily
total) of the three types of patients; and suppose
E(D;) = MNT, with T being a scaling factor, and A; > 0
a constant parameter. Then, we show that the upper-
and lower-bounds on the optimal DP solution coin-
cide on a term that is of order O(T), while differing on
a second term of order O(v/T). As the nested policy
falls in between the two bounds (and so does the opti-
mal DP solution), it is asymptotically optimal when
T— o0, that is, the gap from optimality vanishes when
T is large.

The square-root factor in both cases is not coinci-
dental. Fundamentally, it is rooted in the central limit
theorem: the sum of iid. random variables
Xy + -+ 4+ Xr, with E(X,) = u and Vﬂ?’(Xi) = 0'2,
can be approximated, when T is large, by a normal
random variable, uT + oV/TZ with Z following the
standard normal distribution. The demands (patient
number counts) in both cases can be approximated by
normal distributions when their means are reasonably
large (signifying high-volume demand on heavily uti-
lized resources). To the extent that each demand
brings along a revenue (if served) or a cost/penalty (if
denied), the objective value will scale accordingly.
Specifically, there will be a first-order (mean) term
that is of order O(T), and a second-order (variability
or standard deviation) term of order O(v/T). The les-
son learned from the first case is that the allocation of
the beds among the various wards is to first assign p;
beds to ward i, strictly according to their traffic inten-
sity (first-order), and then assign any remaining beds
to each ward i proportional to ,/p;, which measures
variability. In the second case, the insight is that both
the upper- and lower-bound solutions achieve the
same first-order O(T) value as the DP optimal solu-
tion, and so does the nested policy. This provides a
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performance guarantee for the proposed nested pol-
icy, which has the additional advantage of easy to
implement (whereas the DP solution is significantly
more complex as mentioned above).

Aside from these similarities, there are significant
differences in the two cases. The main challenge in
the first case comes from the cross-referenced wards
and clusters and the intertwined patient flows and
overflow priorities (refer to details below), and these
complications are clearly reflected in the complexity
of the data sets. Accordingly, much of our effort is
spent on studying the data and identifying a suitable
model that aggregates the 19 wards into 8 “super
wards.” Once this aggregation is done, the realloca-
tion of the beds is readily solved as convex optimiza-
tion problems. The second case, in contrast, has a
clear process flow along with a relatively clean-cut
dataset, which readily calls for a DP formulation as
overviewed above. Yet, the challenge is to adapt the
DP optimal policy into a solution that can be practi-
cally implemented at the hospital, comparable to its
existing practice in simplicity but with improved per-
formance. Our exposition below is clearly influenced
by the differences between the two cases, and follows
closely the actual steps we went through in the two
studies: from data to models and solutions in the first
case, whereas from models and solutions to heuristics
(the nested policy) so as to adapt to the process reality
in the second case.

In what remains of this introductory section, we
present a brief overview of the related literature. This
is followed by two sections, Sections 2 and 3, detailing
the two cases, respectively. Concluding remarks are
summarized in section 4. To ease the flow of exposi-
tion, as well as to facilitate reading, materials that are
more specialized in nature are collected in the
Appendix A.

1.1. Literature Review
The coordination of emergency, elective, and other
patients so as to better utilize hospital resources has
been extensively studied in the operations manage-
ment literature. For example, Armony et al. (2015)
and Hall et al. (2006) conduct detailed studies of
patient flows in various departments at an Israeli and
a US hospital, respectively. Discrete-event simulation
and queuing theory are two commonly used
approaches for modeling and improving patient
flows (see, e.g., Allon et al. 2013, Green 2006, Green
et al. 2006b, Jacobson et al. 2006, Zeltyn et al. 2011).
Compared to the rich literature on patient flow
models of emergency department (e.g., Huang et al.
2015), and appointment-scheduling in outpatient clin-
ics and other hospital facilities (e.g., Green and Savin
2008, Green et al. 2006a, Kong et al. 2013), inpatient
flow management and the interface between

emergency department and inpatient wards have
received less attention; see the same discussion in sec-
tion 4 of Armony et al. (2015). Related works on inpa-
tient operations include capacity allocation and flow
improvement in specialized hospitals or wards
(Bavafa et al. 2018, Cochran and Bharti 2006, Deo
et al. 2013, Green 2004, Green and Nguyen 2001, Grif-
fin et al. 2012), ward nurse staffing (de Véricourt and
Jennings 2011, Yankovic and Green 2011), bed assign-
ment (Mandelbaum et al. 2012, Thompson et al.
2009), admission control and design (Helm and Van
Oyen 2014, Helm et al. 2011, Kim et al. 2014), and dis-
charge policy (Chan et al. 2012, Shi et al. 2015).

Shi et al. (2015) focus on understanding the effect of
inpatient discharge policies and other operational
policies on the time-of-day waiting time performance,
such as the fraction of patients waiting for more than
six hours at the emergency department before being
admitted, and studying the impact of discharge and
other operational policies, whereas our study aims at
analyzing the impact of supply-demand imbalance
among the hospital wards, and the benefit of reallo-
cating the bed capacities in improving overflow rates
and waiting times. Also note that most existing works
focus on acute beds and intensive care units (ICUs)
(e.g., Chan et al. 2012, Costa et al. 2003, Kim et al.
2000, Kim et al. 2014), and only a few were on general
wards where most inpatient beds are located in.

The study of medical diagnostic facility manage-
ment is related to two streams of literature, appoint-
ment scheduling in health care and demand
management (revenue management). For comprehen-
sive reviews on appointment scheduling and resource
allocation in health care, see Magerlein and Martin
(1978), Smith-Daniels et al. (1988), Chapman and Car-
mel (1992), (Cayirli and Veral 2003), Mondschein and
Weintraub (2003), Gupta (2007), Gupta and Denton
(2008), Jack and Powers (2009), Cardoen et al. (2010),
Guerriero and Guido (2011), and May et al. (2011).

The first stream of literature can be classified into
single-day scheduling and multi-day scheduling. Our
study of medical diagnostic resource allocation is
related to the single-day framework of Green et al.
(2006a) and Gupta and Wang (2008), while it differs
in many significant ways. The heuristic scheduling
policies they proposed do not explicitly concern the
multi-day applications with demand volumes depen-
dent on the day of the week. For a single-day applica-
tion, the “newsvendor policy” of Green et al. (2006a)
and the heuristic policy from the newsvendor solu-
tion of Gupta and Wang (2008) are similar to our
lower-bound solution, which we have shown to be
dominated by our nested-partition policy. Two other
heuristics of Green et al. (2006a) can be viewed as spe-
cial cases of our nested-partition policy. (For instance,
“fill all slots” is just fully pooling, which specialize to
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letting 77 = N in our nested-partition policy. In con-
trast, our choice of n; and N is optimized via the
lower-bound problem.) Furthermore, our proposed
nested-partition policy can be applied on a rolling-
horizon manner to a multi-day setting.

Our work is also in the same spirit as the multi-day
scheduling literature (e.g., Erdelyi and Topaloglu
2011, Gerchak et al. 1996, Huh et al. 2013, Patrick
et al. 2008, Sauré et al. 2015, Truong 2015), as we
address a detailed appointment scheduling problem
from a resource allocation point of view, and in doing
so, bring out the key tradeoff between reserving
capacity for emergency patients and risking unused
(wasted) resources during regular hours. We con-
tribute to the literature a different approach (a nested-
partition via the lower- and upper-bound solution to
the DP model), with proven asymptotic optimality,
and with additional new insights into the tradeoff
between reserving capacity for emergency patients
and serving outpatients and inpatients the best one
can.

Another related stream of literature is demand
management or revenue management (RM), which is
essentially dynamic resource allocation among multi-
ple classes of stochastic demands. Service capacity in
health care is constrained and perishable while
demand is fluctuating, hence it meets the necessary
conditions for an effective demand management (rev-
enue management) (Kimes 1989). For the single-
resource multi-class RM problem, the two most
widely used and well-performing heuristicc EMSR-a
(Belobaba 1987) which aggregates protection levels
pairwise and EMSR-b (Belobaba 1989) which aggre-
gates weighted-average demand by taking into
account the pooling effect, are merely feasible solu-
tions to our lower-bound problem which, in turn, is
dominated by our proposed nested-partition policy.

2. Bed-Capacity Allocation at
Hospital-1

Hospital-1 is a major hospital in Singapore. Over the
last 15 years or so, it has witnessed a substantial
expansion of its facilities and capacities along with a
steady increase in their demand. As bed capacity
increases over time, its allocation among different
wards has not always been mapped to the demand
dynamics, certainly not in any systematic manner. As
in any organization, there are turf barriers and admin-
istrative hurdles. Once a (new) set of beds is allocated
to a certain ward, it will be difficult if not impossible to
reallocate them to other wards, even when shifts in
demand clearly warrant such reallocation. The mis-
match in supply and demand results in patients being
wrong-sited, meaning they have to be sent to wards
that are different from their primary wards where they

would be best treated. This stream of wrong-sited
patients is referred to as “overflow,” and the substan-
tial rate of overflows has over the years become a seri-
ous performance issue. Further exacerbating the
problem is the hospital’s obligation to meet the stan-
dard of the (Singapore) Ministry of Health on the
emergency department boarding time. Under this time
pressure, the hospital management is more willing to
overflow emergency patients as opposed to waiting for
beds to become available in their primary wards.

To illustrate, consider the cardiology department.
In the dataset that we are given access to, its annual
total of admitted patients is 8585, while the average
number of beds over the same period is 61, and the
average length of stay is 4.02 days, which translates
into a required capacity of 95 beds. Thus, it is no sur-
prise that the cardiology department has a large over-
flow rate, 37.55%, which is the highest among all
departments in our study. Oncology is better, but it
has a different kind of problem. The annual total of
admitted oncology inpatients is 3572, and the average
length of stay is 6.09 days, which means that 60 beds
are required. The department has exactly this number
of beds; however, there are still 690 (or, 19.32%) oncol-
ogy patients assigned to other wards, which is the sec-
ond highest overflow rate in our study. The reason for
this is many of its beds are occupied by patients over-
flowed from other departments, so that its own
patients also need to be overflowed.

2.1. Data, Facts and Problems

In our study, we focus on five major clusters at Hospi-
tal-1: medicine, surgery, cardiology, orthopedic, and
oncology. (A cluster refers to a broad medical spe-
cialty, under which there are several wards, often
with further division of subspecialties.) These five
clusters have a total of 629 beds, across 19 wards, and
account for a total of 44,075 admissions (over the year
that we focus on). The clusters we left out include
obstetrics and gynecology, pediatrics, and ophthal-
mology, since they are quite independent, in the sense
that no beds are shared with other clusters.

There are three sources of inpatient admissions.
Emergency (EM) patients start from visiting the emer-
gency department, and then admitted by emergency
department physicians. Elective (EL) patients are
admitted from the clinics by outpatient specialists.
Internal transfer (TR) patients are from other wards
(i.e., outside of the 19 wards that we focus on), such
as ICU wards, isolation wards, high-dependence
wards, etc. The breakdown of the inpatients is 75.28%
EM, 19.12% EL, and 5.60% TR. Their distribution over
the five clusters is displayed in Figure 1. Observe that
among the five clusters, Medicine has the largest pro-
portion of EM admissions, followed by Cardiology
and Surgery.
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Figure 1 Admission Proportion of Five Major Clusters and Three
Patient Types [Color figure can be viewed at wileyonlinelib

rary.com]
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Once admitted, the number of days a patient
spends in a ward is called length of stay (LOS). It dif-
fers by wards and by cluster; the relevant data are
summarized in Table 1. The last two columns in the
table report the number of beds (or, bed capacity) in
each ward and their utilization (bed occupancy rate,
or BOR). The BOR reported in the table varies from
66.48% to 97.33%. When averaged over all wards, the
BOR is 85.87%. While this utilization level is not
excessively high, the variation (or imbalance) among
the wards is the main reason for a high level of over-
flows, as detailed below.

The detailed accounting of overflow is presented
in Table 2. In the left (first) column, each ward car-
ries in parentheses its association with one (or in
some cases, two) clusters. For example, ward 41 is

associated with both surgical (S) and cardiology (C)
clusters; and the first row records the head count of
patients admitted into ward 41, breaking down by
the clusters. Out of the total of 2465 patients, those
from outside of the surgical and cardiology clusters
are counted as overflow, a total of 323, or 13.1%. To
understand the columns, consider the third one, the
medicine cluster. Listed in the column are patient
head counts from all the wards, and the total is
18,144 (see the “Total” figure at the bottom). Since
only eight wards (42, 44, 53, 55, 57, 64, 66, 76) belong
to this cluster, patients in other wards are counted as
overflow, and that is the 2644 figure, mapping to an
overflow rate of 14.57%.

Data and statistics in Table 2 are further illustrated
in Figure 2 and in Figure 3, with the latter also pre-
senting a breakdown among EM, EL, and TR patients.
From Table 2, we can see that Cardiology and Medi-
cine have the largest number of overflowed inpa-
tients, while Cardiology and Oncology have the
highest overflow rates. The total number of over-
flowed patients is 8335, and the overall overflow rate
is 18.91%. Among those overflows, there are 6178
(14.02%) EM patients, 1760 (3.99%) EL patients, and
397 (0.90%) TR patients. As shown in Figure 2, NW52,
54,76, and 78 have overflow rates more than 30%. In
particular, overflow in NW76 is 68.67%.

In summary, the biggest problem as revealed from
the data is the high overflow rate: about 18.91% of
patients are wrong-sited. Overflow not only leads to
poor quality of patient care and service, it also
increases the workload of physicians and nurses (just
the extra time to walk to a remotely located ward is
non-trivial) and leads to high cost for management.

Table 1 Length of Stay (LOS), Bed Capacity, and Bed Occupancy Rate (BOR) in General Wards

LOS

Wards Cardio Med Onco Ortho Surg All clusters Ave. bed capacity BOR

NW41 4.98 2.93 3.48 410 5.83 5.34 43.58 82.68%
NW42 2.38 4.26 3.11 5.54 2.46 418 44.00 92.07%
NW43 4.34 2.55 2.38 417 3.89 3.82 41.24 87.39%
NW44 3.76 4.34 2.63 3.16 3.18 3.96 38.68 79.31%
NW51 2.19 1.90 4.00 3.85 2.30 3.34 39.00 66.48%
NW52 2.47 2.67 1.96 5.21 2.90 4.34 28.66 66.55%
NW53 3.90 6.03 3.11 13.00 2.94 5.98 45.92 97.33%
NW54 3.49 2.53 7.45 6.15 4.98 4.83 48.50 76.83%
NW55 3.43 5.16 3.16 1.75 3.53 4.92 40.64 86.14%
NW56 5.45 3.18 2.91 N.A. 2.75 5.33 17.00 94.79%
NW57 3.77 5.63 2.83 16.00 N.A. 5.49 14.00 95.05%
NW570 3.92 2.59 6.43 1.00 2.86 5.91 23.92 93.78%
NW58 2.29 2.15 6.52 2.33 8.67 6.03 24.00 91.34%
NW63 3.85 2.65 3.15 6.75 1.56 3.79 43.59 96.25%
NW64 3.52 3.92 3.24 7.71 3.25 3.82 47.01 93.89%
NW66 3.65 3.53 3.64 4.49 3.88 3.72 34.00 84.65%
NW76 4.86 4.43 6.52 5.50 5.03 4.93 18.00 91.28%
NW78 3.56 3.72 4.38 4.81 3.93 4.00 25.00 75.88%
NW86 2.78 2.38 8.17 2.50 2.46 7.75 12.02 88.54%
Total 4.02 4.37 6.09 4.90 418 4.47 628.76 85.87%



www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
https://doi.org/10.1111/poms.13158

Table 2 Overflow Statistics

Cardio(C) Med(M) Onco(On) Ortho(Or) Surg(S) Total Overflow (%)
NW41(SC) 488 197 23 103 1654 2465 323 13.10%
NW42(M) 84 3347 46 13 48 3538 191 5.40%
NW43(S) 196 234 26 126 2859 3441 582 16.91%
NW44(SM) 168 1824 19 19 798 2828 206 7.28%
NW51(0r) 135 315 2 1996 381 2829 833 29.45%
NW52(0r) 106 246 23 1056 172 1603 547 34.12%
NW53(M 49 2620 27 15 16 2727 107 3.92%
NW54(S0r) 256 747 22 1474 320 2819 1025 36.36%
NW55(M) 204 2248 69 8 70 2599 351 13.51%
NW56(C) 1045 44 11 4 1104 59 5.34%
NW57(M) 13 831 40 1 885 54 6.10%
NW570(0n) 25 165 1188 1 7 1386 198 14.29%
NW58(0n) 21 126 1164 6 9 1326 162 12.22%
NW63(C) 3828 182 13 8 9 4040 212 5.25%
NW64(M) 644 3258 232 14 65 4213 955 22.67%
NWG66(SM) 647 991 83 108 995 2824 838 29.67%
NW76(M) 288 381 54 164 329 1216 835 68.67%
NW78(S0r) 379 375 66 350 561 1731 820 47.37%
NW86(0n) 9 13 464 2 13 501 37 7.39%
Total 8585 18,144 3572 5464 8310 44,075 8335 18.91%
Overflow 3224 2644 756 588 1123 8335
(%) 37.55% 14.57% 21.16% 10.76% 13.51% 18.91%
Figure 2 OQverflow Breakdown by Wards [Color figure can be viewed at wileyonlinelibrary.com]
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Another problem, not directly shown in the data but get a bed. This excessive delay puts those patients in
universally acknowledged and widely reported in the severe risks and increases the probability of deterio-
media, is the excessive delay experienced by EL rating conditions, which, in turn, leads to more emer-

patients, who have to wait up to weeks and months to gency admissions, creating a vicious cycle.
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Figure 3 Overflow Breakdown by Clusters and by Patient Types [Color figure can be viewed at wileyonlinelibrary.com]
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A high overflow rate along with what is merely a
moderately high bed utilization suggests a serious
issue of load imbalance. While this has not caused a
serious delay for EM patients, that is only because the
hospital management appears to be very serious in

Figure 4 Overflow of Base Case and Simulation [Color figure can be
viewed at wileyonlinelibrary.com]
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enforcing the 6-hour rule for emergency admissions,
and thus quite willing to send EM patients to wrong-
sited wards. The more direct negative impact is the
reluctance of the management to admit more EL
patients, lest this might result in even more EM over-
flows.

2.2. Aggregation of Wards and Simulation
Modeling

From the above discussions, and from Table 2 in
particular, it is quite clear that to reduce overflow,
the key is to reduce the imbalance among the bed
capacities, not at the ward level but at the cluster
level. Thus, we want to first aggregate the wards
into “super wards," according to the clusters they
are associated with as indicated in the first column
of Table 2. This leads to the eight super wards in
Table 3. Note that the first five super wards are
mapped to the five clusters, whereas each of the
last three covers two clusters: “SOr" (Surg and
Ortho), “SC" (Surg and Card), and “SM” (Surg and
Med).

With this aggregation, the LOS and BOR statistics
are recalculated and summarized in Tables 4-6. As
observed from Table 5, the lowest BOR is at SW4,
66.51%; and the highest BOR at SW1, 95.84%. (Note
there is a small gap (about 2 beds) in total bed capac-
ity due to rounding.)
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We then use simulation to evaluate the perfor-
mance of the aggregated model, to make sure that it
matches the hospital’s base case in all major perfor-
mance measures. In the simulation model, we try to
follow all the rules and work flows of the hospital’s
practice. In this regard, three details are worth noting.
The first is the bed allocation priority (which is fol-
lowed in the simulation), which is in this order: 1st
priority: EM having already more than 6 hours; 2nd
priority: TR; 3rd priority: other EM (waiting time less
than 6 hours); 4th priority: EL.

The second rule from the hospital practice that we
follow in the simulation is its overflow table: where to
send a patient if no bed in the primary ward is avail-
able. Refer to Table 7. For instance, if the patient’s pri-
mary ward is in SW1, and no bed is available there,
then the first choice is to overflow the patient to an
available bed in one of the wards in SW2, SW4, SW6,
or SWS; if still no bed is available there, then look for
a bed in SW3 or SW5.

The third practice has to do with how the EM
waiting time is calculated. There are six steps
involved in admitting an EM patient: (1) bed request
from emergency department, (2) request acknowl-
edged by bed management unit (BMU), (3) allocation
by BMU, (4) confirmation from the emergency
department, (5) discharge from emergency depart-
ment, (6) admission into a general ward. The EM
waiting time is defined as the duration between a
bed request is initiated (step 1) and the bed confir-
mation is received (step 4). In the literature (e.g., Shi

Table 3 Aggregate General Wards Into Super Wards

General wards Super wards Clusters
NW56,63 Swi Card
NW42,53,55,57,64,76 Sw2 Med
NW570,58,86 SW3 Onco
NW51,52 Sw4 Ortho
NW43 SW5 Surg
NW54,78 SW6 Surg & Ortho (SOr)
NW41 Sw7 Surg & Card (SC)
NW44,66 Sw8 Surg & Med (SM)

Table 4 Length of Stay of Base Case

Super

wards SW1 Sw2 Sw3 Sw4 Sws5 SW6 SW7 Sw8 Al
SW1 419 275 304 675 1.92 412
SW2 375 479 355 6.08 4.31 4.67
SW3 311 240 675 222 448 6.25
SW4 232 224 212 432 249 3.71
SW5 434 255 238 417 3.89 3.82
SW6 353 293 5.15 5.38 4.51
SwW7 293 348 4.10 5.64 5.34
SW8  3.67 345 4.29 3.87 3.84
All 396 443 6.09 441 375 538 564 3.87 447

et al. 2015), the emergency department waiting time
(or “boarding time”) is defined as the duration
between bed request time and the time to exit from
the emergency department. This boarding time
includes the discharge time, component 5) in the
above list. As our focus here is on bed allocation, we
do not include any delay involved in Steps 5 and 6.
(These two times average to 45 minutes and 18 min-
utes from the data, and their inclusion will corre-
spond to what is usually called “boarding time.”)
According to the above definition, the average EM
waiting time is 1.71 hours. A major part of this time
is spent on the search for an appropriate bed and
related negotiations, which is typically longer in an
overflow case. The average pre-allocation delay is
1.16 hours for right-sited allocations; hence, the
delay due to bed shortage is 0.55 hours, the differ-
ence between the two delay times.

The simulated overall bed utilization is
85.93 £ 0.22%, while the hospital BOR is 85.87%.
Notably, the adjustment on LOS due to discharge
windows in the simulation model has no statistical
significance. For the overall overflow rate, simulation
reports 18.70 £ 0.23% versus 18.91% for the base case.
The breakdown among the five clusters is reported in
Figure #4.

2.3. Technical Preliminaries and Motivation

To prepare for the analytical approach (in the next
subsection) to the reallocation of beds to correct the
supply-demand imbalance among the wards, we
need some technical preliminaries, which we over-
view and motivate here.

The celebrated Erlang-C formula originated from
the M/M/c queueing model, where there are ¢ paral-
lel servers, the arrival process is Poisson with rate 4
and the service times are i.i.d. exponential with rate p.
Refer to Appendix A.1 for more details.

Let p: = 4/ u denote the traffic intensity, the rate of
work (or “demand” rate) that comes to the system
requiring service. Without loss of generality, think of
each server works at unit rate, thus c is the capacity of
the system—the maximum rate to deplete work from

Table 5 Bed Capacity and Occupancy Rate of Super Wards

Ave bed capacity

Super wards # Admissions (and round-off) BOR

SWi1 5144 60.59 61 95.84%
SW2 15,178 209.56 210 92.61%
SW3 3213 59.94 60 91.75%
Sw4 4432 67.66 68 66.51%
SW5 3441 41.24 41 87.39%
SW6 4550 735 74 76.51%
Swr7 2465 43.58 44 82.68%
SW8 5652 72.68 73 81.81%
Total 44,075 628.76 631 85.87%
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Table 6 Overflow Table of Base Case

Super wards SWA Sw2 SW3 SW4 SW5 SW6 Sw7 Sw8 Total Overflow (%)
SWi 4873 226 24 8 13 5144 271 5.27%
SW2 1282 12,685 468 215 528 15,178 2493 16.43%
SW3 55 304 2816 9 29 3213 397 12.36%
SW4 241 561 25 3052 553 4432 1380 31.14%
SW5 196 234 26 126 2859 3441 582 16.91%
SW6 635 1122 88 2705 4550 1845 40.55%
SwW7 197 23 103 2142 2465 323 13.10%
SW8 815 102 127 4608 5652 1044 18.47%
Total 8097 15,329 3572 3640 3982 2705 2142 4608 44,075 8335 18.91%
Overflow 3224 2644 756 588 1123 8335
(%) 39.82% 17.25% 21.16% 16.15% 28.20% 0.00% 0.00% 0.00% 18.91%
Table 7 Overflow Priority Table

Cardio Med Onco Ortho Surg SOr SC SM
From SWA1 Sw2 SW3 Sw4 SW5 SW6 SW7 SW8
to (1st priority) SW2,4,6,8 SW4 SW2,4,6,8 SW2,5,6,8 SW4 SW4,7,8 SW4,6,8 SW4,6,7
to (2nd priority) SW3,5 SW1,3,5,6,7 SW1,5,7 SW1,3,7 SW1,2,3
the system. Clearly, we require p < ¢ in order to have oA 1 ~ O(p), (2)
a stable system, that is, a system that has enough 1+ up®(p)/o(p)

capacity to handle all the work that is pumped into it.
(If not, backlogged work will cumulate and grow to
infinity as time goes by.)

The ratio, p/c (which is <1 due to p < ¢) is the ser-
ver utilization, denoted by u; it also measures the pro-
portion of time the server is occupied (as opposed to
idling). Thus, when the utilization is high, all ¢ servers
are occupied most of the time. Consequently, any
new arrivals will have to wait in the queue before
receiving service from the next available server. Let «
denote the probability for this to happen, that is, how
frequent an arrival will need to wait (as opposed to
entering service right away).

A great insight from the Erlang-C formula is that
such a system can be loaded to a very high utilization,
but still very few arriving job need to wait, that is,
while the utilization u can be very close 1, the delay
probability o can be close to 0. For this to happen, the
system needs to have a (relatively) large number of
servers c¢. High utilization then means, p is also large,
close to ¢ (but still less than c). Suppose we express
the difference

C_p:ﬁ\/ﬁa (1)

with > 0 being a constant. This indeed captures all
the essential points mentioned above: ¢ and p are
both large, and their difference is order-of-magni-
tude smaller (,/p); so, p is close to ¢, and hence the
utilization is close 1.

Then, the Erlang-C formula gives a simple expres-
sion that relates the wait probability « to  via Equa-
tion (A.8) in the Appendix:

where @ and ¢ denote the standard normal distribu-
tion and its density function, ®:=1— @& and
u: = p/c. Furthermore, even when an arrival must
wait, the average waiting time (in queue) is a frac-
tion, 1/(B/p) of the mean service time (1/u); refer
to Equation (A.12) in the Appendix A.l1. Note, the
second approximation in Equation (2) is a rather
crude one (relative to the first approximation). It is
based on Equation (A.7): ¢(B)/B ~ ®(B) when >0
is moderately large (see result #4 in the
Appendix A.2).

Now, let us apply these results to Hospital-1. It has
about 800 beds, of which our study focuses on a large
portion, 629 beds, which served a total of 44,075
patients over a certain year. So, we have c = 629, and
the daily patient arrival rate is A= 44,075/
365 = 120.75. The average length of stay (LOS) per
patient is 4.47 days, which is 1/u. Hence, the traffic
intensity is p = 4/u = 539.77, and the utilization is
1 =85.81%. This also leads us to f = (c — p)/
VP = 3.84, and hence o = 0.000076 following Equa-
tion (2). That is, out of the 44,075 patients admitted
over the year, only about 3 (= 44,075 x 0.000076)
need to wait before a bed becomes available. This is
obviously far from the observed performance at the
hospital.

Of course, in any real hospital, and Hospital-1 in
particular, the total number of beds must be orga-
nized into separate functional wards. In other words,
they cannot be all lumped together as the c parallel
servers in the M/M/c model so as to achieve the max-
imal resource pooling effect. Yet, given a set of
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functional wards, one can still optimize the allocation
of the total number of beds among these wards
according to their individual utilizations (patient arri-
val rate times LOS) so as to minimize the overflow
and delay.

From the study on the hospital’s data detailed
above, the main cause of a high overflow rate is
clearly a mismatch between demand and supply (bed
capacity) among the wards, or more precisely, the
super wards. So, our proposed solution is to do a real-
location of the total number of beds, across the eight
super wards, indexed by i = 1, ..., I(=8).

2.4. Reallocation and Performance Improvement
Suppose, after leaving out beds allocated to all elec-
tive patients, there is a total of C’' bed remaining to be
allocated to emergency patients, among the I super
wards, termed “classes” below and indexed by
i=1,..., I Let p; :== \/u; denote the traffic intensity
of class i (emergency) patients. Let C :== C' — S1_, p,
and assume C > 0. Following the square-root
allocation rule detailed in the Appendix A.1, our
problem is to allocate these C beds among the I
classes, with f;,/p; for class i, and ;s being the deci-
sion variables.

Given this bed allocation, the delay/wait probabil-
ity for class i is o; ~ ®(f;), following the approxima-
tion in Equation (2). Our objective is to minimize the
largest wait probability among all classes:

1
i (B .t B. < C: >0, Vi (3
minmax ®(f;) s ;ﬂﬁ_ ; Bi>0, Vi (3)

Since the objective function is (strictly) decreasing,
the (capacity) constraint must be binding. A
moment’s reflection also tells us that all ff; must be
equal to achieve optimality, that is, the optimal solu-
tion is

1
Bi=C/> i, Vi=1,..L (4)
i=1

To reason formally, rewrite the above optimization
problem as follows:

minz s.t ®(f;) <z,
z,(B)

ﬁi > 07Vl

1
Vi iBi<C
i ; NE 5)

Let n; be the Lagrangian multiplier corresponding to
the constraint ®(f;) < z; and 0 be the Lagrangian
multiplier corresponding to the capacity constraint.
Then, the optimality equations from taking (partial)
derivatives on f; and on z are:

M-

7]z¢(ﬂi):0\/p_iv i=1....L =1 (6)

i=1

Summing up the first set of equations over i and
taking into account the last one, we have

I
GB)=0> o, i=1,...,L
i=1

That is, the optimal f; is equal for all i. This leads
to:

ﬁZ: IC ::ﬁV ’11: I\/p—l ) Z:17 717
> 7 >V
= = (7)
> VB

j=1

The above satisfy all the optimality equations, all
the constraints, and the complementarity condition
(each positive Lagrangian corresponds to a binding
constraint). Since the optimal solution sets all f5; = f
as in Equation (7), we shall refer to this as the
“equal f” allocation.

Alternatively, we can minimize the total over-
flow. Let w >0 be a given upper-limit on the
delay beyond which overflow must be triggered
(e.g., w = 6 hours). Then, following Equation (A.12)
in the Appendix A.l, with ¢ := p; + B;\/p;, we
have

P(Wi(B;) > w) = aye™ (G — ggm PPk, (8)
and the optimization problem is
I

min » NP(W;i(f;) >w)
$) S

Vi.

I
s.t. Z\/Piﬁiﬁc; pi =0,
i1

©)

Again, the objective function is decreasing, so the
constraint must be binding. And, with 0 as the
Lagrangian multiplier, and o; ~ ®(f;), the optimal-
ity equations are:

Aie PP [ B:) + B(B;)y/pipw] = 0y/p7, i=T1,...,1.

(10)

The resulting solution will be referred to below as
the “MinOF” (minimal overflow) allocation.

Table 8 shows the bed allocations in the base case,
and the reallocated bed capacities under the two new
rules above. Notably, the two new allocation rules
yield very similar solutions.
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We then use simulation to estimate the perfor-
mance of the re-allocation, and find the equal f alloca-
tion reduces the overall overflow rate drastically,
from 18.91% to about 4.5%. The average EM waiting
time also decreases from 0.55 hour to about 0.20 hour,
as shown in Table 9 where the detailed ward-by-ward
performance under the reallocation is also reported.
The performance of the MinOF allocation is very simi-
lar. (Hence, in what remains of this section we shall
focus on the equal f allocation only.)

The overall utilization of about 86% means there is
a 14% bed capacity “reserved” for EM patients. So the
natural question to ask is, can we reduce this reserved
capacity and increase EL admissions accordingly?
How much will this affect the overflow rates and
waiting times for EM patients?

We use the simulation model for the experiments of
increasing the EL admissions by 15%, 30%, and 50%.
In the hospital’s base case, EL patients constitute about
20% of the overall admissions; hence the proposed
increase amounts to increasing the overall admissions
by 3%, 6% and 10%, respectively. The utilization then
increases from 86% to 88%, 92%, 96%, respectively.

As shown in Table 10 below, when we increase the
EL admissions by 15%, and reallocate the bed capac-
ity following the equal f allocation rule, the overall
overflow rate is around 6%-7% and EM waiting is
about 0.5 hour. Even when we increase the EL admis-
sions by 50%, the overflow rate is around 9%-10%,
and the average EM wait is around 4 hours, which is
still significantly below the 6 hours requirement.

Table 8 Bed Allocation

3. Diagnostic Resource Allocation at
Hospital-2

Medical diagnostic facilities, such as computed
tomography (CT) or magnetic resonance imaging
(MRI), are a critical part of a comprehensive health
care system, and play an important role in the proper
diagnosis and timely treatment of diseases. Due to
their high fixed and operational costs, these facilities
often appear to be bottlenecks in many patient care
processes, and thus negatively impact patient service,
adding pressure on hospital managers to come up
with more efficient and effective ways to manage
these scarce resources.

Consider a typical facility. On any particular day,
there are three types of patients requesting its service:
outpatients, inpatients and emergency patients,
indexed below by i =1, 2, 3, respectively. The total
time available during the day for each facility to serve
patients (say, 12 or 13 hours) is divided into a fixed
number of slots, denoted N. The usual practice is to
further divide the N slots into three components, #;
for type i patients, with n; + n, + n3 = N. The
choice of n;’s is based on the daily averages of the
three types, taking into account that emergency
patients will have priority over the other two types.

Clearly, this practice is suboptimal. The optimal
policy can be derived from a (stochastic) dynamic
programming (DP) formulation of the problem,
assuming serving each type i customer earns a rev-
enue of 7;, a rejection costs ¢; and any unused slot at

Super wards SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 All
Base case

No. admitted 8097 15,329 3572 3640 3982 2705 2142 4608 44,075

LOS 3.96 4.43 6.09 4.41 3.75 5.38 5.64 3.87 4.47

Bed capacity 61 210 60 68 41 74 44 73 631
Bed re-allocation

Equal g 101 209 69 53 50 49 4 59 631

MinOF 102 209 70 53 50 48 40 59 631
Table 9 System Performance under Different Bed Re-Allocation Policies

SW1 SW2 SW3 SW4 SW5 SW6 Sw7 SW8 All

Equal s

Bed re-allocation 101 209 69 53 50 49 4 59 631

BOR 86.74% 89.00% 85.49% 87.76% 83.57% 85.35% 83.62% 86.06% 86.81%

Overflow rate (in) 1.74% 2.34% 3.87% 12.29% 3.99% 10.03% 9.76% 5.47% 4.57%

Overflow rate (out) 4.03% 3.77% 3.65% 9.06% 4.90% 4.76% 4.53% 4.93% 4.57%

Ave EM wait 0.16 0.13 0.20 0.32 0.24 0.37 0.42 0.31 0.20
MinOF

Bed re-allocation 102 209 70 53 50 48 40 59 631

BOR 86.01% 88.76% 84.39% 87.57% 82.90% 85.37% 84.42% 85.75% 86.45%

Overflow rate (in) 1.66% 2.11% 3.80% 11.88% 3.69% 8.93% 8.43% 517% 4.23%

Overflow rate (out) 3.45% 3.44% 2.97% 8.46% 4.44% 4.65% 5.38% 4.85% 4.23%

Ave EM wait 0.14 0.12 017 0.30 0.22 0.38 0.45 0.32 0.20
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Table 10 EL Admissions Increase by 15%, 30% and 50%

SW1 SW2 SW3 Sw4 SW5 SW6 SW7 SW8 All
115% EL
Equal s
Bed re-allocation 102 206 71 53 50 49 4 59 631
BOR 90.35% 91.14% 90.80% 87.81% 87.45% 86.70% 86.51% 87.52% 89.42%
Overflow rate (in) 5.18% 4.14% 9.82% 8.55% 6.68% 10.29% 13.49% 6.95% 6.62%
Overflow rate (out) 7.16% 5.83% 6.74% 7.48% 7.70% 6.07% 6.25% 6.93% 6.62%
Ave EM wait 0.53 0.45 0.62 0.55 0.56 0.46 0.49 0.38 0.48
130% EL
Equal g
Bed re-allocation 103 202 76 53 50 49 40 58 631
BOR 92.19% 92.93% 92.25% 90.69% 90.48% 90.35% 90.61% 90.62% 91.78%
Overflow rate (in) 6.14% 4.81% 12.12% 10.77% 8.27% 12.32% 14.68% 8.98% 8.00%
Overflow rate (out) 8.27% 6.82% 6.50% 9.51% 9.92% 7.97% 9.13% 917% 8.00%
Ave EM wait 112 1.07 1.14 1.28 1.27 0.99 1.12 0.88 1.09
150% EL
Equal p
Bed re-allocation 104 200 78 53 50 49 40 57 631
BOR 95.70% 96.03% 96.21% 95.22% 95.03% 94.99% 94.84% 95.16% 95.62%
Overflow rate (in) 8.711% 6.53% 13.61% 13.09% 10.61% 14.96% 17.09% 10.83% 10.11%
Overflow rate (out) 11.04% 8.03% 9.22% 12.14% 13.05% 10.20% 10.67% 11.23% 10.11%
Ave EM wait 3.52 3.45 3.38 3.88 3.62 3.34 3.35 3.14 3.46

the end of working day is penalized at a cost rate of 7,
and the objective is to maximize the expected total net
profit—revenues from serving the three types of
patients minus cost penalties) over the day. Denote
ri =1 + ¢ (i = 1,2, 3),and assume

1 <71 <713 (11)

That is, serving an emergency patient is more valu-
able, in terms of the sum of revenue received and
penalty avoided, than serving an inpatient, which,
in turn, is more valuable than serving an outpatient.

We can show that the solution to the DP, that is, the
optimal policy, has a threshold structure: accept a type
1 or type 2 patient if and only if the number of remain-
ing (i.e., available) slots is above a certain threshold;
and there’s another threshold that applies to accepting
inpatients (type 2) only. (Refer to the Appendix A.3.)
While this structure is appealing, it is still too complex
for practical implementation, as the thresholds not only
depend on the current state (how many slots have been
used up) but also on the time of the day.

Our goal is to design a simple and easily imple-
mentable policy that is close to the performance of the
optimal policy. To this end, we pursue two alternative
formulations that yield, respectively, an upper bound
and a lower bound to the DP objective value. The
upper- and lower-bound problems are static optimiza-
tion problems; as such, their solutions are state- and
time-independent, and hence easy to implement. Fur-
thermore, solutions from both bounds are asymptoti-
cally optimal (more on this below). Based on these
solutions, we construct a simple nested policy, detailed
below, as the solution to the resource allocation
problem.

3.1. A Nested Policy

The nested policy is directly built upon the lower-
bound solution, which, in turn, is obtained from split-
ting the N appointment slots among the three types of
patients, that is, accept each type as long as there are
slots (allocated to that type) available, on a first-come-
first-served basis. When all slots allocated to any type
are exhausted, further arrivals from that type will be
rejected. This yields a lower-bound to the DP since
this static partition is clearly a feasible policy.

Fori =1, 2, 3,let D; denote type-i demand, the total
number of patients over the day. Consider normal
demand distributions for all three types, with mean ;
and variance 61.2 for i =1, 2, 3. First, for emergency
patients, use the upper-bound solution derived in the
Appendix A4, y3 + 0325, and reproduced below:

N o
2! :T%’ 2L =2 A Cz:;) (12)

where ®@(-) denotes the distribution function of the
standard normal Z ~ N(O, 1).

Next, for the other two types, let y; + g;y; denote
the allocation to type-i requests, i = 1, 2, with y; as
decision variables. Then, similar to the upper-bound
objective function in (A.32), the objective function of
the lower-bound problem can be derived as follows

3 2
Vvi= Z”iﬂi — no3zy — (73 + 1)03G(z5) — Z?iaiG(yi)’
p =1
(13)

where G(x) := E(Z — x)* is the shortfall function;
refer to Appendix A.2.
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Hence, (1, y2) should be the solution to:

2
ryniyn Z?{G{G(y{),
1,Y2 4
S (14)
s.t. Zo-,-y,- <N =Ny — 1t — i — 0325,
i=1

Since G(y) is decreasing in y, the above constraint
must be binding. Hence, the problem reduces to a
single-variable convex minimization problem,
which, upon a transformation of variables, can be
expressed as follows:

/_
min ?161G<;> +7262G(N x). (15)
1

X > = (4]

The above problem can be solved via a line search.
Furthermore, it is readily verified that the solution
must satisfy

N —x N/O'l
< , or x <

X
= 16
. (16)

o1 +oy’
since 71 < 15.

Comparing the lower bound V! in Equation (13)
with the upper bound V" in Equation (A.36), we
observe the leading term in both is equal to >, ; r;s;,
which is of order T; whereas all other terms involve a
factor of ¢, and hence will be of order VT, With more
work we can further bound the gap between the
upper- and lower-bound, V" — V¢ as follows,

d<V" — V! <6+ (7, — 711)0G(y) where d~O(VT),
(17)

and y is a constant independent of T.
The above clearly implies, with V* denoting the
optimal DP value,

) Ve — i
lim |[——

. VeVt
Lim v =0, lim

T—o0 V*

|=o.

Hence, both the upper- and lower-bound solutions
are asymptotically optimal.

The lower-bound solution V* obtained above is a
fully partitioned policy: it partitions the N slots into
n3 1= p3 + 03z} slots for emergency patients, where z§
follows Equation (12), n; := p; + x* slots for outpa-
tients, where x* is the solution to the minimization prob-
lem in (15), and the remaining 1, = N — n; — n3 slots
for inpatients. LetN := n; + ny = N — ns.It is natu-
ral to modify the partition among outpatients and
inpatients by allowing the latter to have access to all
N slots, since 7, > 7. Specifically, outpatients will be
accepted if and only if the number of accepted out-
patients is below n;; whereas inpatients will be

accepted if and only if the sum of accepted outpa-
tients and inpatients is below 7. Call this the nested
(partition) policy, and denote its value function as
V. It is readily shown that V* > V" > V!. Thus, the
nested policy is also asymptotically optimal.

3.2. Hospital-2 Data and Practice

Here we use process flows and data from Hospital-2
in numerical studies along with simulation, to con-
duct performance comparisons between the nested
policy developed above and the baseline practice at
the hospital. The dataset covers a 1-year period with
90,790 patient records of CT regular scans, retrieved
from the hospital’s information system, following
standard compliance with the hospital’s patient pri-
vacy guidelines. We choose to focus on the regular CT
scans (as opposed to enhanced scans), as these involve
all three types of patients, and have a high daily vol-
ume, with short and less variable service times.

For regular CT scans at the hospital, both outpa-
tients and inpatients have to make appointments in
advance while emergency patients randomly walk in
and receive service with priority. The normal CT
working hours are 08:00-21:00, a total of 13 hours per
day. The average service time per patient is 2.4 min-
utes, with very little variation among the three types.
This translates into N = 325 available slots as the daily
capacity for each facility.

Requests for service, or “demand rates,” from all
three types of patients, are reported in Table 11, with
an hourly breakdown. Statistical tests applied to data
have confirmed Poisson distribution as the best fit.
Demand over the weekdays usually exceeds the daily
capacity, inevitably causing a substantial number of
service requests from outpatients and inpatients to be
deferred for 1 or even 2 days. For the two weekend
days (Saturday and Sunday), the hospital’s practice is
to close (new) appointment requests from outpatients
and inpatients, and only serve emergency patients
and clear out the outpatients and inpatients deferred
from the weekdays.

The hospital’s practice is to accept up to 120 outpa-
tients and up to 50 inpatients each day and to reserve
the remaining slots for emergency patients. This will
be referred to the hospital’s baseline policy, and sum-
marized in Table 12, with a period-by-period break-
down of the two thresholds, 120 and 50. In reality,
however, these reference numbers are often adjusted
ad hoc, resulting in the fluctuations and demand-sup-
ply mismatch.

3.3. Sensitivity Analysis

There are cost parameters involved in the analytical
models, including both the DP optimal solution and
the nested policy. They can be chosen or adjusted to
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reflect the relative importance among the on-time ser-
vice of the three types of patients, and also the relative
value of the CT resource.

Therefore, we first conduct a sensitivity analysis to
compare the performance of the nested policy and the
hospital’s baseline policy under different combina-
tions of these cost parameters using the average
demand rates in Table 11. The results are reported in
Table 13, where ¢ and ¢ are the two policies’ relative
gap in percentages below the optimal DP solution
(which achieves the maximal expected net profit). For
all cases, c; = 500 is fixed as a reference point.

Several observations can be drawn:

* The performance of the nested policy is signifi-
cantly better, under all combinations of parame-
ters: its average gap from the optimal is 2.22%,
as opposed to the baseline’s 17.81%. Refer to
part (b) of the table.

* The performance of the nested policy is rela-
tively insensitive to the cost parameters. In com-
parison, the performance of the baseline policy
significantly deteriorates when either ¢, or =
increases. Its performance generally improves
when c3 increases.

¢ Thus, the baseline policy seems to single-mind-
edly focus on emergency patients, making sure
there are enough slots reserved for these patients.

* The (best) partition thresholds under the nested
policy are detailed in part (c) of the table, under
various parametric combinations. They appear
to be quite insensitive as well. The small adjust-
ments are also easy to understand. For instance,
the slots reserved for emergency patients,
n3 = N — N increases in c3, and decreases in 7
(reserve less if any wasted slot is priced higher).

Table 11 Demand Rates from Three Types of Patients

Table 12 The Hospital’s Baseline Policy

Time length Number of
Time period (mins) Patient type scheduled patients
08:00-08:30 30 Outpatient 25
08:30-11:00 150 Inpatient 20
11:00-11:30 30 Inpatient 10
11:30-12:00 30 Outpatient 15
12:00-13:00 60 N.A. 0
13:00-14:30 90 Outpatient 10
14:30-17:00 150 Inpatient 20
17:00-18:00 60 Outpatient 10
18:00-19:00 60 N.A. 0
19:00-21:00 120 Outpatient 60
Total no. of appointments Inpatient 50
Total no. of appointments Outpatient 120

3.4. Performance Improvement Using the Nested
Policy

Next, we do a detailed comparison between the
nested policy and the hospital’s baseline policy,
when applied to the hospital data over any week, the
five-day cycle. From the above sensitivity analysis, we
have observed that the nested policy of (120, 194, 131)
connects well with the baseline policy: they have the
same threshold (120) for outpatients, the largest
source of demand. This nested policy, in turn, corre-
sponds to the following cost parameters (per Table 13),

r1 =12 =13 = 800, c1 =500, ¢ =750, c3 = 2000,
7 = 800.

Using these parameters, we will compute the best
nested partition for each weekday using the demand
data from Table 11.

We then run simulation to compare the perfor-
mance of the two policies over a typical one-week
cycle including all five week days. (The weekends

Time Interval
DOW Patient type 08-09 09-10 10-11 1112 1213 13-14 1415 1516 16-17 17-18 1819 1920 20-21 Sum
Mon Outp. 20.2 33.6 34.7 30.7 13.1 15.6 245 23.6 11.5 2.2 0 0 0 210
Inp. 14.8 12.6 14.7 1.9 2.8 58 1741 6.3 35 0 0 0 0 80
Emg. 45 9.5 15.3 9.7 12.3 12.7 11.9 12.2 12.6 9.8 8.4 11.4 1.3 142
Tue Outp. 18.3 32.6 32.0 27.3 114 15.8 23.4 21.0 9.7 2.0 0 0 0 194
Inp. 23.3 17.0 14.2 2.4 3.4 7.3 12.9 4.8 1.6 0 0 0 0 87
Emg. 53 1.4 14.9 9.0 10.3 12.3 10.1 9.0 13.0 9.3 8.7 10.6 10.9 135
Wed Outp. 141 259 27.8 22.8 8.5 14.3 21.8 18.4 10.0 2.1 0 0 0 166
Inp. 22.0 12.9 11.0 3.8 4.3 5.0 14.6 4.4 15 0 0 0 0 80
Emg. 5.4 9.9 13.9 9.5 10.4 10.8 9.9 10.4 11.9 7.3 8.1 12.2 11.8 132
Thu Outp. 11.7 26.2 26.3 195 7.2 10.3 15.9 13.7 8.9 2.0 0 0 0 142
Inp. 19.4 141 10.0 3.4 8.3 7.4 14.7 4.0 1.7 0 0 0 0 83
Emg. 5.8 9.8 14.7 8.4 10.0 11.0 10.1 10.3 12.0 8.4 8.7 12.4 1.7 133
Fri Outp. 14.3 23.8 23.7 18.7 7.0 9.8 13.6 12.0 5.6 14 0 0 0 130
Inp. 22.9 125 11.3 1.4 10.5 79 14.2 5.8 2.6 0 0 0 0 89
Emg. 5.6 1.4 16.2 9.1 9.9 10.6 9.9 10.1 111 8.3 9.3 12.5 9.9 134
Average Outp. 15.7 28.4 28.9 23.8 9.4 13.2 19.8 17.7 9.1 1.9 0 0 0 168
demand Inp. 20.5 13.8 12.2 2.6 5.9 6.7 14.7 5.1 2.2 0 0 0 0 84
rate Emg. 53 10.4 15.0 9.1 10.6 1.5 10.4 10.4 121 8.6 8.6 11.8 1.1 135
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Table 13 Sensitivity Analysis for Performance Comparisons between
the Nested Policy and the Hospital’s Baseline Policy

(a) Relative gap (%) below the optimal DP solution

n =400 n = 800 n = 1200

C c o ob o b ol b

750 2000 1.59 13.21 1.63 16.39 1.62 19.71
2500 1.62 12.32 1.60 15.37 1.60 18.58
3000 1.61 11.60 1.62 14.52 1.66 17.64
1000 2000 2.93 17.12 2.87 20.32 2.86 23.67
2500 2.84 16.27 2.79 19.35 2.78 22.60
3000 2.83 15.58 2.79 18.55 2.79 21.71

(b) Overall gap (%)

o ab
Minimum 1.59 11.60
Maximum 2.93 23.67
Average 2.22 17.81

(c) The best partition thresholds under the nested policy

n =400 7 =800 7 =1200

Co C3 m N 3 m N s m N 3

750 2000 118 192 133 120 194 131 121 195 130
2500 116 190 135 117 191 134 118 192 133
3000 114 188 137 115 189 136 117 191 134
1000 2000 117 195 130 118 196 129 119 197 128
2500 114 192 133 115 193 132 116 194 131
3000 112 190 135 113 191 134 114 192 133

are left out since no service requests are accepted
from inpatients and outpatients; hence, no decisions
to be made.) The simulation uses random patient
arrivals and random service times according to the
hospital data. It also captures two idiosyncratic and
inevitable phenomena: (i) the occasional forced
idling of the facility, and (ii) the need to run over-
time in order to clear those inpatients and outpa-
tients who are already scheduled but delayed by
emergency patients. The first one is explicitly
accounted for in the analytical model by the penalty
n for each wasted slot; the second one is only tangen-
tially reflected in the c3 cost.

The simulation for the nested policy is detailed as
follows.

1. Get the “static” partition (n1, 1o, n3) from the
LB solution (14) with n; = p; + oiyi(i = 1, 2)
and n3 = p3 + 0325 for each of the 5 days.

2. Implement the above partition (11, 1, 13) as a
nested policy (11, N, n3), that is, reserve nj
slots for type 3, and use the remaining
N = N — n3 slots for types 1 and 2, with a
further limit n; applied to type 1.

3. Run simulation to get the numbers (served,
deferred, utilization and overtime) for Monday.

4. Starting from Tuesday, first assign the deferred
inpatients to the N slots (for Tuesday, obtained
from Step 1), and deduct these slots from
(also for Tuesday, obtained from Step 1). Use the
reduced n; to control the number of outpatients
(assigning those deferred from Monday first).

5. Repeat the above for Wednesday, Thursday
and Friday.

We run the simulation until the relative error is
within 0.5%. The performance comparison with
respect to served and deferred is summarized in
Table 14(a), where the column “served” counts the
number of patients served on the same day (emer-
gency patients are all served on the same day); and
“deferred” is measured in patient-days, as some
patients may be deferred by more than one day.
(Hence, one patient deferred for 2 days counts as 2
patient-days.) The “total” in the “served” column
counts the total number of three types of patients
served; the “total” in the “deferred” column counts
the total patient-days deferred for inpatients and out-
patients. The performance comparison with respect to
utilization and overtime is summarized in
Table 14(b). From the table, the advantages of the
nested policy include the following:

* Its on-time service (i.e., on the same day) is a total
of 975 inpatients and outpatients over a week as
opposed to the baseline’s 850, a 14% improvement.
Its deferred patient-days (over a week) is 1068, as
opposed to the baseline’s 1431, a 33% improve-
ment. In particular, the deferred patient-day for
inpatients is 38, in sharp contrast to the baseline’s
493, with only a slight increase of 92 deferred
patient-days for outpatients.

It improves the utilization significantly (by
about 10%), while also reducing the overtime
(by about 11%).

4. Concluding Remarks

Using two resource allocation problems from two large
hospitals as cases, along with real data and process
flows, we have demonstrated in this study how analyt-
ical modeling and optimization can significantly
improve hospital performance, in terms of both patient
service and resource utilization. Furthermore, this
improvement is achieved without any increase in the
overall level of resource capacity, entirely through
revamping existing operations. In the case of Hospital-
1, the key is to use the square-root allocation rule to
optimize the number of beds allocated to the various
wards, so as to reduce the overflow rates and waiting
times for emergency patients, and to admit more elec-
tive patients. In the case of Hospital-2, the key is a
nested partition of the diagnostic resource capacity
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Table 14 Performance Comparisons of the Nested Policy and the Hospital’s Baseline Policy through Simulation

(a) Performance comparison w.r.t. served (no. of patients) and deferred (patient-days)

Nested Policy

Baseline Policy

Served Deferred Served Deferred
DOW  Outpatient Inpatient  Total Outpatient Inpatient  Total Outpatient Inpatient  Total Outpatient Inpatient ~ Total
Mon 117 71 330 93 9 102 120 50 312 90 30 120
Tue 108 86 329 178 9 187 120 50 305 164 67 231
Wed 117 81 330 227 8 235 120 50 302 210 97 307
Thu 114 85 332 255 6 261 120 50 303 232 130 362
Fri 108 89 331 277 6 283 120 50 304 242 169 411
Sum 564 411 1652 1030 38 1068 600 250 1526 938 493 1431
(b) Performance comparison w.r.t. utilization and overtime
Nested Policy Baseline Policy
DOW Utilization (%) Overtime (mins) Utilization (%) Overtime (mins)
Mon 91.8 75 85.8 79
Tue 93.5 61 84.1 76
Wed 91.3 78 82.3 82
Thu 92.5 75 82.8 82
Fri 93.6 63 83.5 78
Average 92.5 70 83.7 79

among emergency patients, inpatients, and outpa-
tients, along with optimized threshold values derived
from the upper- and lower-bound solutions to a
dynamic programming formulation. In both cases, the
solutions are either in the closed form or easy to com-
pute; as such, they facilitate implementation, and can
be readily updated whenever there is a shift in
demand or resource availability.

In both cases, the challenges and difficulties
involved in applying analytics and related tools are
also clearly demonstrated. In particular, it appears
that no tool can really be a “plug and play”; some
level of modification and adaptation, applied to either
the model or the solution or both, always seems
needed. In this regard, analytics is almost as much of
an art as it is a science.
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Appendix A

A.1. Erlang-C Formula and the Square-Root
Allocation Rule

Consider the M/M/c queueing model, with arrivals
following a Poisson process and service times follow-
ing an i.i.d. exponential distribution, and there are ¢
parallel servers. Let 1 and p denote, respectively, the
arrival and the service rates; let p = 1/u. Assume
c>p to ensure stability of the system. Let =,
i=0,1,..., denote the steady-state probability that
there are i jobs in the system. We know

_/
T = 1
1

) Pk
TE071:07177C; n'CJrk:(E) nCak:071727"';
(A1)

and, in particular, 7p = 1/S, where S is the normal-
izing constant:

c—1 p,‘ PC 1 c
S=>» —+R—, and R:= = . (A2)
— il c! 1—p/c c—p
Other probabilities of interest:
1 ,DC ,DC .
7T0=§7 TEC:ETCOZQ7 (A.3)

and the probability that an arriving job will have to
wait in queue,
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C

o R
o= E Tepk = R = gp—', (A.4)
P c!

which is known as the Erlang-C formula.

Approximations to the above formulas, the last one
in particular, can be worked out via approximating
the Poisson distribution by normal. Let N follow a
Poisson distribution with mean (and variance) p, and
we approximate it by a normal variate X with the
same mean and variance. Then,

[y

c— i

=

=e’[1=P(N>c¢)] = e[l —P(X>0)]

— PO (c_p) ,
NG
where ®(x) denotes the distribution function of the
standard normal. Similarly, approximating P(N = c)
\/%efxz/Z
denoting the density function of the standard nor-
mal, we have

1

Il
o

i

(A.5)

by a normal density, and with ¢(x) =

P 0 B 1 (C — p>
—=e"P(N=c)=el — . A6
ER VAN (4.8)
Write
c—p
p = . A7
Vr (A7)
Then, we have, taking into account \/% = ﬁ,
R 1
o= L= . (A8
ST RE S 1+ (p/C)O(B)/9(B) )

It is known that ®(x) =1 — ®(x) =~ (<)P(x)/x
when x > 0. This leads to, with u := p/c being the ser-
ver utilization,

B ()

O(B) +u®(B) — ~ ¢(P) +ulf — ¢(p)]

For the normal approximation outlined above to
work well, p needs to be large; and hence, so must be
c (recall ¢ > p), such that ff in Equation (A.7) is a posi-
tive constant. (Numerically, a reasonably large p, say,
in the 10-15 range, will already make the approxima-
tion work quite well.) This can be made more precise
as follows:

p~0n), c~0On), u ::§<1; VPl —u)— B
€ (0,00).

. (A9)

(A.10)

The last limit says, the server utilization approaches
1 in the order of 1 — ip (as p — 00). This is the
so-called “heavy traffic condition.”

The waiting time in gqueue (i.e., excluding service
time), denoted W, of any arriving job follows an
Erlang distribution of k + 1 iid exponential phases,
each with mean 1/(cu), denoted E(k + 1, cu), if there
are ¢ + k jobs in the system, for k =0, 1, ...; o.w., the
waiting time in queue is zero. That is,

W=0wp.1—o W=Ek+1,cu) w.p. ne, k
=0,1,....

(A.11)
Therefore, the density function of W is, for x > 0:

P(W = x) = P[E(k +1,cp) = 1]

> cp(cux) k
_ .u(k/'l ) oo (g) T = C[uncef(c;h)\)x.

k=0 :

Hence,
c
P(W>x) = o e~ (AT,
cu—
Recognizing
c
c,uﬁ)\nc = Rn. = a,

we have

P(W >x) = ae~ NV x> 0. (A.12)

That is, given a job has to wait in queue (which hap-
pens w.p. «), the waiting time is exponentially dis-
tributed, with rate cu — A = (c — p)u = B/pu.

In summary, 1 — o is the key service-level measure:
the probability of zero queuing delay (W = 0); and «
follows the approximation in Equation (A.8). To
achieve this service level, the required capacity c fol-
lows a square-root rule, via Equation (A.7), with f
being the “safety factor”: ¢ = p + B,/p. With this
rule, the probability for any job to wait in queue is o,
in which case the waiting time is exponentially dis-
tributed with a mean 1/(f,/pu), that is, only a fraction
1/(B+/p) of the mean service time 1/p.

A.2. Useful Results for the Shortfall Function of
Standard Normal
Here we collect some useful results that relate to the
standard normal variable, Z, and the shortfall func-
tion involving Z.

The density and distribution functions of Z will be
denoted by ¢(x) and @(x), respectively. Let
®(x) := 1 — ®(x). Define the “shortfall function” as

G(x):=E(Z-x)" = /+w(z — x)¢p(z)dx

= ¢(x) — x®(x) (A.13)
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where the last equality follows directly from

¢'(z) = —z¢(2).
The following is a collection of useful properties of
G().

1. G(x) is decreasing and convex in x, since
(Z — x)" is decreasing and convex in x. Also,
G (x) = —D(x).

2. The part of G(x) that has significant curvature
is limited to [-1, 1]. For x > 1, we have G
(x) =~ 0; and for x < —1, we have G(x) =~ —x.

3. Direct calculation implies, for any a < b,

2 b G(x)dx = ®(b) — ®(a) + bG(b) — aG(a).

(A.14)

4. From (1 — xl—z)ﬁ < ®x) < 29 for x>0, we

X

have
0<G(x) = ¢(x) — x®(x) < %, Vx>0. (A.15)
5. Applying L'Hospital twice, we have
x;((}i;c) — 1asx — +oo. (A.16)
That is, G(x) ~ @ as x — +00, in contrast with

B(x) ~ L2,

A.3. Optimal Threshold Policy for the Diagnosis
Resource Allocation Problem

Here we formulate the resource allocation problem of a
medical diagnostic facility among the three types of
patients (indexed by i =1, 2, 3 as in section 3.1) as a
finite-horizon stochastic dynamic program (DP). The
working hours of the facility during a day are divided
into N equal “slots,” each being the time needed to com-
plete one patient’s diagnosis. The allocation problem
concerns a single working day of the facility: how to
split the N slots among the three types of patients, with
the provision that outpatients and inpatients (i = 1, 2)
need to make a request for an appointment (which may
not be accepted), whereas emergency patients (i = 3)
can just walk in and will always be accepted.

As in section 3.1, for i = 1, 2, 3, let D; denote type-i
demand, the total number of patients over the day.
Suppose requests (for appointments) from type 1 and
type 2 patients arrive during the planning horizon fol-
lowing two independent Poisson processes. The plan-
ning horizon is divided into T equal intervals, referred
to as “periods” below and indexed backward by
t=1T, ..., 1. The choice of T should be large enough,

such that we can model a discrete-time version of the
two Poisson arrival processes. Specifically, over each
period t, the probability of having a type-i request is
)\i € (0, 1) (for either i = 1 or i = 2, but not both); and
1 — Al — A7 is the probability that there is no request
(from either type) in period t. Upon the arrival of each
request, the decision is to either accept or reject the
request. An accepted request will be given a slot to per-
form the diagnosis. Suppose for i = 1, 2, each accepted
type-i request earns a revenue of r;, and each rejected
request incurs a penalty c;. The slots that remain at the
end of the planning horizon (t = 0) are those reserved
for emergency patients (type 3). Let r3 be the revenue
from serving each type-3 patient, and c3 be the penalty
cost for rejecting a type-3 patient. Let 7 be the penalty
cost for any un-used slot at the end of the working day.
Let Vi(n) denote the value-to-go function, starting
from period t onward and with n slots remaining (out
of a total of N). The DP recursion is given as follows,
fort=T,...,1,andn =1, ..., N, we have

2
Vi(n) =Y Nmax{Vi1(n — 1) +7;, Vi1 (n) — ci}
i=1

+ <1 — 22: Ai) Vi1(n),
i=1
(A17)

and at the boundary, ¢t =0,

Vo(i’l) = 1’3E(D3 A n) — C3E(D3 — 1’1)+ - TEE(I’l - D3)+.
(A.18)

The total value generated over the planning horizon
is V(N) = V*, which we want to maximize.
To simplify notation, denote

AVi(n) :=Vin) - Vin-1), t=T,...,0.

Define

ni = min{n|AV, 1(n) <7}, i=1,2 t=T,...,1,
(A.19)

which is the minimum 7 such that the marginal
value of an appointment is no greater than 7;, and in
particular, define

Top— :F31<ﬂ>, i=1,2.

where F3(-) denotes the distribution function of Ds,
the number of emergency requests (during the day).
Note that when Dj; follows a normal distribution
with mean 3 and variance o¢3. Denote
a A b:= min(a, b), then,

(A.20)
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N Anp = ny = jg + 0323 where z3
73 —T N —
() (o)
3+ 7 o3

with ®(:) being the distribution function of the stan-
dard normal random variable Zz. Substituting n3,
the number of slots reserved for emergency patients,
into Vo, along with D3 = u3 + 0323, we have

(A21)

Vo(n3) = 133 — moszy — (73 + m)03G(z3),  (A.22)
where G(x) := E(Z — x)" is the well-known short-
fall (or, loss) function. Refer to section A.2 for prop-
erties of the shortfall function used in the analysis
below.

From the DP model in Equations (A.17)—-(A.18), we
can derive the optimal policy in Proposition 1.
Throughout, we use the words “increasing” and “de-
creasing” in the non-strict sense, meaning non-
decreasing and non-increasing, respectively.

ProrosiTioN 1. The optimal policy is characterized as
follows. If 7, >N, mno appointment will be
accepted; otherwise, in each period t =T, ..., 1 and for
i=1,2,

(@) n} >y > ny = n?, and nl is increasing in t;

(b) if n > nl, accept both types of requests;

(c) if np <n < n}, accept inpatient (type-2) requests
only;

(d) if n < 1y, reject both types of requests.

In particular, n3 = N A np is the number of slots
reserved for emergency patients, and N = (N — np)" is
the total number of appointment slots can be accepted.

Proposition 1 characterizes the optimal reservation
policies as the switching-curve or threshold type,
which are illustrated in Figure 5.

The key to prove Proposition 1 lies in the structural
properties of the value function, which are summa-
rized in the following Lemma 2.

Lemma 2. Vi(n) satisfies the following first- and sec-
ond-order properties:

(a) it is concave in n, that is, for each given t, AVy(n)
is decreasing in n;

(b) it is concave in t, ie., for each given n:
Vi(n) = Viea(n) > Via(n) — Vi(n);

(c) it is submodular in (t, n), i.e., AVi(n) is increasing
in t:

Vt(l’l) — Vt(Tl — 1) Z Vf,1 (Tl) — Vt,l(n — 1)

To prove Lemma 2, rewrite Equations (A.17)—(A.18) as

Vi(n) = Viea (n) + X2, X((ri + ¢ — AV () — c3),
F=T,...1,
(A.23)

Vo(ﬂ) = 1’3E(D3 A\ 1’1) — C3E(D3 — 71)+ — TEE(Tl — D3)+.
(A.24)

(a) From (A.24), Vy(n) is clearly concave in 1, as A is
concave and (x)* is convex. Inductively, suppose
Vi_1(n) is concave in n, that is, AV,_;(n) is decreasing
in n. From Equation (A.23), we have

2
AVi(n) = AViq(n) + > Nlri+ci = AV (n)]"
i=1
2 .
- Z M[ri +ci — AV (n — 1)]7.
i=1
(A.25)
It suffices to argue that the first two terms on the
right hand side are decreasing in n. (The third term,

Figure 5 Optimal Control Policy

Accept both 1 and 2

Accept 2 only

Reject both 1 and 2

(@ n, <N

n

Reject both 1 and 2

(b) i, =N
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with a minus sign, is already decreasing in 7, given
the induction hypothesis.) Note, these two terms
reduce to one of the following three possibilities:

AVi 1 (n); (1 —=A)AV, 4 (n )+x’(r,+c)

Z)\’ (ri + ci);

and all three are decreasing in n, glven the induc-
tion hypothesis.

(b) Concavity in t is equivalent to Vi(n)-—
Vi1(n) > Vi_1(n) — Vi(n). However, this follows
immediately from Equation (A.23)—the second equal-
ity, along with AV,_q(n) < AV,(n), the submodularity
in (c)—to be proven below.

(0 It is equivalent to show AVi(n) > AV, 1(n).
However, this follows immediately from Equation
(A.25), since the second term on the right- hand side
dominates the third term, taking into account
AVt_1 (Tl) < AVt_1 (Tl — 1)

Lemma 2 says that the value function is concave in
n and t, respectively, and submodular in (f,n). The
marginal value of an appointment is increasing in
time, that is, it is higher at the start and lower when
approaching to the end of the booking horizon.

We are now ready to prove Propostion 1. We will
show (a) only, as the other claims are readily verified.
To this end, we need to show

AVt(n) S?z, VHZﬁz; AVt(n) > 7o, Vn <.

i=1,2 (1=X =X )AV, 4 (

(A.26)

by induction on t. The above claim clearly all holds
at t =0. Suppose it holds for t — 1 and we will
show it holds for ¢.

By the definition of 7 in Equation (A.19) and Lemma
2(c) that AV;(n) is increasing in ¢, it follows that 1! is
increasing in t and n} > n? given 7y < 7,. Consider n}
along with 71, and Equation (A.20), we have

1 1 2.
n, >ny; >ny = no.

Make use of Equation (A.25), and consider the fol-
lowing five cases.
(1) If n > n} + 1, we have AV, 1(n) <7 » and
AVt_1(7’l — 1) S 7_"1 S 7’2, thus

AVi(n) = AV (n) + \(AVi_1(n — 1) — AV, (n))

+ XAV g (n — 1) — AV,_q(n))

2
= (1= M)AV (n
i=1

(Tl — 1)§?2

2
)+ ) NAV;
i=1

(@ If n=n!, we have AV, 1(n) <7 <7, and
r1 <AVy,_1(n — 1); and taking into account
(?2 — AVf_l(n — 1))+ > ?2 — AVt_1(1’l — 1)), we
have

AVi(n) <AV 1 (n) + N (71
- AZ(AVt 1(n—1)

(1- Z YAV, 1 (
(n— 1) <7».
@) If m+1<n<mn/, we have 7 <AV,
(n) <ryand 11 < AVi_1(n — 1) < 1y, thus
= AVi 1(n) + N2(AVi1(n — 1) — AV;_4(n))
= (1= X)AV,_1(n) + NAV, 1 (n — 1) <7y.

— AVH (n))
—AVi_1(n))

+)\lr1 +)\ AV 4

AVt(n)

) If 71y = n(<n}), we have 71 <AV;_1(n) <7,
and AV, 1(n — 1) > 1, > 7y, thus

AVi(n) = AV;_1(n) + X2 (72 — AVi_1(n))

= (1= X)AV; 1 (n) + N7y <7

(5) If n<ny, we have AV; 4(n) > 7, >7 and
AVt_l(Tl — 1) > 7, > 11, thus

AVt(n) =AV; 4 (1’!) > 7).

This completes the induction, and hence, the proof.

A.4. Upper-Bound Solution to the Diagnosis
Resource Allocation Problem

As before, fori = 1, 2, 3, let D; denote type-i demand,
the total number of patients over the day. An upper-
bound to the DP value function can be obtained from
a standard “hind-sight” optimal argument. (This
amounts to taking the expectation outside of max in
the DP, which leads to an upper bound due to Jen-
sen’s inequality.)

Specifically, suppose we know D;, the (realized)
total number of type-i requests, for i =1, 2 (but not
Ds3). Then, we will allocate x; slots to type-i, for
i =1, 2, 3, s0 as to maximize the following objective:

2

Z[Y{D,‘ — C,'(Di —

i=1
— 7'CE(X3 — D3)+,

X,‘)] + 73E(D3 A X3) — C3E(D3 — .’)C3)+

where for i=1,2,3, r; is the revenue for each
accepted patient and c; the penalty cost for each
rejected patient, and 7 is the penalty cost for any
slot left unused. Note, for i =1, 2, we must have
x; < Dj; hence, there will not be any wasted slots.

Write7; := ri+¢;, fori =1, 2, 3. Re-organize terms,
taking into account the identify a Ab =a-—
(a — b)", the upper-bound problem can be expressed
as follows:
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max r1X1 + X —c1D1 — cp Dy +73x3 — C3E(D3)
X1,X2,X3

—(F3+m3)E(x3 —D3)"
st.xi<D;,i=1,2;x1+x+x3=N;x,>0,i=1,2,3.
(A.27)

To solve the above maximization problem, it is use-
ful to envision an algorithm that increases the three
variables x;, i =1, 2, 3, from zero until all N slots
are exhausted or one or both of the other two con-
straints, x; < D;, i =1, 2, become binding. This will

lead to the following:
3
> rE(D;) +n[E(Ds) — x3] — (73 +7)E(Ds —x3)
i=1

—(f,—7)E[D> — (N —x3)]" —HE[D; + D, — (N —x3)] ¥,
(A.28)

where xj = F;! (:;;Z), with F;! being the inverse
distribution function of Ds; and 7 is the Lagrangian
multiplier w.r.t. the constraint x; + x» +x3 = N of

the maximization problem in (A.27), satisfying

n € [n,n"], with n :=73 — (F3 + ©)F3(N), n* :==7, V5",
(A.29)

In the DP, the patient arrivals follow Poisson pro-
cesses. Hence, D; follows a Poisson distribution with
mean J;, for i =1, 2, 3. Now, for asymptotic analysis,
let T be a scaling parameter, such that the means
now become )\T. We can then approximate D; by
the normal distribution N(y;, ¢?),i =1, 2, 3, with

1
i =NT =07, i=123. (A.30)
For the analysis to be meaningful, we must assume
N is scaled accordingly:

N = AT + kVT,

Because if N does not grow with T, then for sufficiently
large T, it is trivially optimal to reserve all N slots for
emergency patients and reject all other requests.

This way, with straightforward algebra, the upper
bound in Equation (A.28) can be expressed as follows:

x>0, Ir. (A31)

3

> " rin; — 7303G(23) — mos[zs + G(z3)] — (72 — 71)02G
i=1
<N — My — M3 — 0321’5,)

02

N — 1ty — py — i3 — 032}
1y g Nttty - o
1/0%—!—0%

(A.32)

where

* 1T =1 0 u

= 0! ; A.

% (?BJHT), n el (A.33)
with " and 5’ defined in Equation (A.29), replacing
Fs(N) by O(*7E).

In the upper bound in Equation (A.32), z3 still
depends on n, which, in turn, depends on D; and D,
(via x7 and x3). To overcome this handicap, we replace
n by either ° or i*, that is, replace z} by its upper- and
lower-bounds, z4 and zj, as follows:

Making use of the expressions for " and 1’ in Equa-
tion (A.29), we have

N — T3 — 7
== zﬁ,:zg/\cl)‘l(—_3 2).

(A.35)
g3 3+

Note, on the RHS of Equation (A.36), —r303G(z5) is
the only increasing term (in particular, note that
—no3(zy + G(z3)) is decreasing, since x + G(x) is
increasing). Hence, we replace zj by z§ in
—7303G(z3) and by zg in all other terms. Thus, the
upper-bound objective value can be expressed as
follows:

3
vt = Zr,-,ui — 7303G(24) — a3 (25 + G(25))
i—1

— (72— r1)02G<

—71¢/0% + 03G

N — pp — i3 — 032}
o2

N—M—/Jz—/vls—ﬂszg

,/a%—&—a%

(A.36)
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