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To support the rapid growth in global electric vehicle adoption, public charging of electric vehicles is crucial.

We study the problem of an electric vehicle charging service provider, which faces (1) stochastic arrival

of customers with distinctive arrival and departure times, and energy requirements as well as (2) a total

electricity cost including demand charges, costs related to the highest per-period electricity used in a finite

horizon. We formulate its problem of scheduling vehicle charging to minimize the expected total cost as

a stochastic program (SP). As this SP is large-scale, we solve it using exponential cone program (ECP)

approximations. For the SP with unlimited chargers, we derive an ECP as an upper bound and characterize

the bound on the gap between their theoretical performances. For the SP with limited chargers, we then

extend this ECP by also leveraging the idea from distributionally robust optimization (DRO) of employing

an entropic dominance ambiguity set: Instead of using DRO to mitigate distributional ambiguity, we use it

to derive an ECP as a tractable upper bound of the SP. We benchmark our ECP approach with sample

average approximation (SAA) and a DRO approach using a semi-definite program (SDP) on numerical

instances calibrated to real data. As our numerical instances are large-scale, we find that while SDP cannot

be solved, ECP scales well and runs e�ciently (about 50 times faster than SAA) and consequently results

in a lower mean total cost than SAA. We then show that our ECP continues to perform well considering

practical implementation issues, including a data-driven setting and an adaptive charging environment.

We finally extend our ECP approaches (for both the uncapacitated and capacitated cases) to include the

pricing decision and propose an alternating optimization algorithm, which performs better than SAA on our

numerical instances. Our method of constructing ECPs can be potentially applicable to approximate more

general two-stage linear SPs with fixed recourse. We also use ECP to generate managerial insights for both

charging service providers and policymakers.

Key words : stochastic programming, exponential cone programming, electric vehicle, demand charge,

robust optimization
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1. Introduction

Electric vehicles (EVs) are considered among the most promising technologies to decarbonize the

transportation sector, with market share expected to grow from 1% in 2018 to about 30% of

vehicle sales worldwide by 2030 (J.P. Morgan 2018). A key to the mass adoption of EVs is the

ease of charging, where public charging will play an increasingly important role, e.g., in supporting

adopters without residential charging as well as reducing “range anxiety” (Wood et al. 2017,

McKinsey & Company 2018). Examples of public charging service providers include EVgo, Tesla,

and ChargePoint, which have the largest market shares in the U.S. It is estimated that this charging

market in the U.S. will grow to $18.6 billion, and the number of charging points will expand to 40

million globally by 2030 (Bloomberg 2018).

A service provider of EV charging faces significant operational challenges. First, there are stochas-

tic arrivals of customers who have distinctive arrival time, desired departure time, and charging

requirements for their EVs, observations which we show using real data in the numerical study

section. Second, the tari↵ structure for an EV charging service provider in the U.S.—a commercial

electricity consumer—includes demand charges, i.e., costs “based on the highest average electric-

ity usage occurring within a defined time interval (usually 15 minutes) during a billing period”

(National Renewable Energy Laboratory 2017). The total demand charge is the sum of that appli-

cable to all periods during the entire horizon and that applicable to periods during only on-peak

or mid-peak hours: Time-di↵erentiated demand charges were developed to alleviate the issue that

all-period demand charges may penalize users with peak load, which may not coincide with the sys-

tem peak (Hausman and Neufeld 1984, Veall 1983). This total demand charge for an EV charging

service provider can be as high as 70% of its total electricity cost (Chitkara et al. 2016).

In this paper, we study the problem of a service provider in scheduling EV charging with the goal

of minimizing the total expected cost. We model it as a stochastic program (SP). We characterize

the random number of arriving customers to follow Poisson distributions, commonly used for

customer arrivals into a charging station (Mak et al. 2013, Schneider et al. 2017, He et al. 2021).

This SP is large-scale due to a large number of customer types which di↵er in arrival time,

departure time, and charging quantity. Therefore, we propose to solve it approximately using a

new approach called exponential cone programming (Chares 2009). It belongs to the class of conic

programming (Boyd and Vandenberghe 2004) that generalizes linear programming to incorporate

inequalities defined by an exponential cone—a three-dimensional convex cone involving exponen-

tials and logarithms. Exponential cone programming is an attractive approach as it can be solved

e�ciently (in polynomial time) owing to the recent availability of solvers, such as MOSEK (MOSEK

ApS 2020). There have been only a few attempts to use exponential cone programming in real

applications, such as inventory management, manpower planning, and insurance reimbursement
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(See and Sim 2010, Jaillet et al. 2021, Zhu et al. 2021). Among these, only See and Sim (2010)

involves solving an SP, and they use an approach based on exponential cone programming with-

out explicitly formulating an exponential cone program (ECP). In addition, See and Sim (2010)

requires the random variables in the SP to be sub-Gaussian, di↵erent from our paper, and thus

cannot be directly applied to our EV charging problem to derive ECPs. Therefore, in this paper, we

develop new methods to derive our ECPs to solve our SP approximately. In particular, we utilize

moment-generating functions (MGFs) of the random variables to bound an order statistic in the

objective introduced by the demand charge.

We then benchmark our ECP approach to solve the SP with two common approaches, sample

average approximation (SAA) and a distributionally robust optimization (DRO) approach using a

semi-definite program (SDP). We compare these approaches on numerical instances calibrated to

real data of electricity tari↵ and customer arrivals. We summarize our theoretical and numerical

contributions as follows:

• We derive an ECP approximation for the case in which the provider has unlimited chargers

labeled ECP-U (where U represents “uncapacitated”). We show that the optimal expected

cost of ECP-U gives an upper bound of that of our uncapacitated SP. We also characterize a

bound on the gap between the theoretical performances of ECP-U and the SP.

• We derive another ECP approximation for the case with finite chargers, labeled ECP-C (where

C represents “capacitated”), by combining the method in deriving ECP-U and also the idea

from DRO of employing an entropic dominance ambiguity set (Chen et al. 2019). Instead of

using DRO to mitigate distributional ambiguity, we use it to derive ECP-C as a tractable upper

bound of the capacitated SP. We show that the optimal expected cost of ECP-C converges to

a finite value bounded by that of ECP-U as the number of chargers tends to infinity.

• We extend our ECP approach to include also the pricing decision (together with the charging

scheduling decisions) for both the uncapacitated and capacitated cases. We show that our

ECP approximations can be solved e�ciently using an alternating optimization algorithm.

• As our numerical instances are large-scale (with about 80,000 random variables and 700,000

decision variables), we show that while DRO-based SDP cannot be solved, ECP-C runs e�-

ciently (about 50 times faster than SAA), and results in not only a lower standard deviation

of the total cost but also a lower mean of this cost than SAA because SAA cannot be solved to

optimality within a reasonable amount of time. We also find the optimality gap of ECP-C to

be at most around 4% on all instances. In addition, we show the superior performance of ECP

over SAA and other benchmarks continues to hold considering three practical implementation

issues: finer time discretization, a data-driven setting where there are estimation errors in

arrival rates or model mis-specification of arrival distribution, and an adaptive EV charging



4 Chen, He, and Zhou: An Exponential Cone Programming Approach for Managing EV Charging

environment. In the extended model with pricing decision, we show that our ECP approach

continues to perform better than SAA.

• Using the ECP approach on our numerical instances also results in the following managerial

insights: First, it is beneficial to incorporate customer departure information in scheduling

optimization. Second, either an on-peak or mid-peak demand charge alone is not su�cient to

smooth the electricity load, but an all-period demand charge alone can smooth the electricity

load as well as when all three types of demand charge exist.

Our paper has the following academic and practice relevance: First, though developed for the EV

charging problem, our method of constructing ECPs can be potentially applicable to approximate

more general two-stage linear SPs with fixed recourse. Second, our ECP-C approximation can

be used by charging service providers in managing EV charging due to its superior performance.

Third, our numerical results provide insights for charging service providers on the value of customer

departure information as well as for regulatory bodies on designing tari↵ structures in smoothing

electricity load.

The rest of the paper is organized as follows. After reviewing the literature in §2, we introduce

our SP in §3 for scheduling EV charging. In §4, we first develop ECP-U for the case in which the

charging service provider has unlimited chargers, and provide its performance guarantee; we then

develop ECP-C for the capacitated case. In §5, we consider two benchmark approaches to solving

our SP model. In §6, we consider an extension of our model to jointly optimize the pricing and

scheduling decisions and derive ECP approximations, which we solve by developing an alternating

optimization algorithm. In §7 using numerical instances calibrated to real data, we compare the

performance of ECP-C with other approaches and generate managerial insights using ECP-C. We

conclude and discuss future work in §8. Any proof not in the main text can be found in the Online

Appendix.

2. Literature Review

Our paper contributes to the literature on optimization with uncertainty. Common approaches

include stochastic programming (Danzig 1955, Shapiro et al. 2009, Birge and Louveaux 2011),

robust optimization (e.g., Ben-Tal et al. 2009, Goldfarb and Iyengar 2003, Bertsimas and Sim 2004,

Ben-Tal et al. 2013) and, more recently, DRO (e.g., Delage and Ye 2010, Wiesemann et al. 2014,

Esfahani and Kuhn 2018, Bertsimas et al. 2019, and the references therein). We build an SP model

for the EV charging scheduling problem and specifically contribute to the literature of using the

expected recourse function approximation in solving SPs (see Birge and Louveaux 2011, Chapter

8 for example) by proposing a new approach based on ECPs. ECPs have been used in a limited

number of papers, such as See and Sim (2010), Jaillet et al. (2021), and Zhu et al. (2021), but



Chen, He, and Zhou: An Exponential Cone Programming Approach for Managing EV Charging 5

none of the existing methods to derive ECPs applies to our EV charging problem. In particular, we

develop ECP-U by using an MGF to bound the largest order statistic introduced by the demand

charge. This method can be potentially applied to approximate more general two-stage linear SP

with fixed recourse. We then combine this method together with the idea in the DRO framework of

employing an entropic dominance ambiguity set (Chen et al. 2019) to derive ECP-C. In addition,

all earlier work solves ECPs approximately using second-order cones or cutting plane due to a lack

of e�cient solvers, while we solve ECPs exactly.

Our paper also contributes to the nascent literature in EV operations management, which focuses

on problems such as the planning and operations of battery swapping stations (Mak et al. 2013, Sun

et al. 2019, Schneider et al. 2017), the adoption of EVs (Avci et al. 2014, Lim et al. 2014), charging

infrastructure planning (He et al. 2021), and vehicle-to-grid operations (Zhang et al. 2021). In

particular, He et al. (2021) present an integrated model to jointly determine the size and location of

EV charging stations for a fleet of EVs in a vehicle sharing context. Zhang et al. (2021) formulate a

two-stage stochastic integer program to study service-zone and facility capacity planning and fleet

management in EV sharing systems with vehicle-to-grid integration. Di↵erent from those papers,

which primarily focus on infrastructure planning, we optimize for a charging schedule that caters

to various customer types di↵erentiated by arrival/departure times and charging requirements.

In the literature on EV charging management from the perspective of a charging service provider,

Jin et al. (2013) and Zhang et al. (2014) consider the problem of scheduling EV charging in the

presence of an energy storage system. Our paper di↵ers from the first in that our EV arrivals are

stochastic while theirs is deterministic, and di↵ers from the second in that we optimize the charging

decisions while their charging rate is fixed. Jiang and Powell (2016) optimize the charging of one

EV within a reservation window and consider the risk of the charging cost, while we model the

setting where the provider charges multiple EVs with stochastic arrivals. Wu et al. (2021) study the

problem of incentivizing customers to delay charging by designing a menu of price and departure

time using a mechanism design approach, while we study the problem of optimizing the charging

schedule with stochastic customer arrivals using a stochastic optimization approach. In addition,

di↵erent from all these papers, we consider the setting where the provider buys electricity from a

utility company with a tari↵ structure that includes demand charges.

Notation. We use boldface uppercase and lowercase characters to denote matrices and vectors,

respectively. For example, x 2 Rn means that x is an n-dimensional real vector. For a matrix

A2Rm⇥n, A0 is the transpose. As usual, we use 1 to denote a vector of all 1’s and 0 to denote the

vector or a matrix of all 0’s. We define the inner productX •Y = trace(X 0
Y ) for anyX, Y 2Rm⇥n

.
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By x� y, we mean that x is greater than y component-wise. We denote by [N ], {1,2, . . . ,N} the

set of positive running indices up to N . We use b·c (d·e) as a floor (ceil) function that takes a real

number as input and gives as output the greatest (smallest) integer less (greater) than or equal to

the input. We use P0(Z) to represent the set of all probability distributions on the support set Z.

A random vector, z̃, is denoted with a tilde sign and we use z̃ ⇠ P, P 2P0(RIz) to define z̃ as an

Iz-dimensional random variable with distribution P. We use EP [·] to signify the expectation with

respect to P.

3. A Stochastic Programming Model for Scheduling EV Charging

We model the operations of a charging service provider to minimize the total expected cost in a

finite horizon of T periods. The service provider has a limited number of chargers, denoted by C.

We assume customers do not enter a station that does not have chargers available. This assumption

is due to the fact that EVs (e.g., Tesla) are equipped with onboard or mobile navigation systems

that can help route them only to stations with available chargers.

As the EV charging industry is evolving quickly, there are currently various business practices.

We consider one common practice where the service provider requests from each customer both

desired departure time and quantity to charge (i.e., charging requirement) to manage the charging

more e↵ectively. For example, the adaptive charging network framework developed at Caltech1 and

the corresponding commercialized charging management software developed by Powerflex (2021)

allow drivers to provide their estimated departure time and energy request through a mobile app.

Moreover, this setting echoes the literature in EV charging scheduling (e.g., Jin et al. 2013, Xu

et al. 2016). Providing such departure time information is intuitively more valuable for the case

of long-duration charging, such as a few hours in the workplace and residential charging, than

with short-duration charging, such as 30 minutes in public charging stations at highway stops.

However, our model is general to accommodate both short- and long-duration charging. Further,

we show using data in §7.5.1 even if the duration is short (such as 35 minutes on average), the

value of providing departure information for the scheduling optimization is still significant, and this

value increases rapidly when the duration increases. This alludes to the value of service providers

requesting such departure information even when the charging duration is short.

EV arrivals. To characterize the customer arrival profile in the aforementioned general business

practice, we classify EV customers into V types according to the triple (sv, ⌧v, uv), where sv is

the arrival time, ⌧v is the desired departure time (sv  ⌧v), and uv is the charging requirement for

customer type v 2 [V ]. This definition of customer types is also consistent with real data used in

§7, where customers are heterogeneous in all three dimensions.

1
https://ev.caltech.edu/info
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Recent research on EV operations (e.g., Mak et al. 2013, Schneider et al. 2017, He et al. 2021)

often characterize customer arrivals at a charging (or battery swapping) station by Poisson dis-

tributions, which is empirically verified in He et al. (2021). Similarly, we assume the arrivals of

customer types v 2 [V ] with infinite chargers are independent Poisson random variables, and each

has an arrival rate �v. However, as the charging capacity is finite, the arrivals of customer types v

(denoted by z̃v) are truncated Poisson random variables2, and thus they become dependent in this

case. Let Vt , {v 2 [V ] | sv  t ⌧v} denote the set of customer types at the station in period t. Let

z̃ , (z̃v)v2[V ] denote the vector of these truncated Poisson random variables drawn from the joint

distribution denoted by PC (where C represents “capacitated”) with arrival rate �, (�v)v2[V ] and

support Z defined as:

Z ,
(
z � 0 |

X

v2Vt

zv C, 8t2 [T ]
)
. (1)

Decisions. The service provider decides on a menu-based schedule where the charging decision is

adaptive to customer types. Specifically, the menu-based charging schedule is x, (xv,t)v2[V ],t2Tv ,

where xv,t denotes in period t 2 Tv the charging speed for customer type v (i.e., the quantity

of electricity used to charge the EV of this type in this period) and Tv , {sv, . . . , ⌧v} is the set

of periods within the charging window of customer type v. Our modeling of the charging speed

optimization is motivated by the observation in our data that the average charging speeds for most

EVs vary and are not at their maximums, even for chargers with charging power greater than 22

kW (see §7). The sequence of events in each period t2 [T ] is as follows: At the beginning of each

period t, the charging service provider observes the realization of customer arrival z̃v with sv = t,

and charges xv,t to EVs of type v 2 Vt by looking up the menu-based charging schedule x. At the

end of period t, customers with desired departure time equal to t (i.e, ⌧v = t) finish their charging

service and leave the charging station.3 The feasible set of x, denoted by X , is given as follows:

X ,

8
<

:x

������

P
t2Tv ⌘xv,t = uv 8v 2 [V ]

0 xv,t K/⌘ 8v 2 [V ], t2 Tv

9
=

; ,

where the first constraint indicates that customer type v needs to fulfill the charging requirement

uv before ⌧v and ⌘ 2 (0,1] is the ratio of the quantity of electricity increased in the battery to

the quantity of electricity used to charge the battery. The second constraint indicates that the

charging speed is within the limit, where K (in energy unit/period) is the maximum amount of

energy a battery can be charged in each period.4 For a well-defined type v 2 [V ], it thus satisfies

2
For customers arriving at the same time, we allow any way of truncation.

3
Note all of our analytical results can be extended in a straightforward manner when we modify our model to

represent a steady state situation, where type v with ⌧v < sv represents customers departing in period T + ⌧v.
4
For the case in which ⌘ and K di↵er for di↵erent customer types (e.g., with various states of charge), our theoretical

results in §4 and §6 extend in a straightforward manner.
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uv K(⌧v � sv + 1), as otherwise the charging requirement cannot be met even with charging at

the maximum speed for the entire stay duration.

Total cost. The objective of the service provider is to minimize its expected total electricity cost,

which includes demand charge as mentioned in §1. This demand charge depends on the maximum

per-period electricity used within the horizon and is imposed on almost all commercial electricity

users (such as charging stations) by their utility firms in the U.S. (Mills et al. 2008, National

Renewable Energy Laboratory 2017). The rationale is for utility firms to recover the maintenance

cost of standby equipment in the event of high load from users and also incentivize them to smooth

the electricity load over time. Let d (in $/(energy unit/period)) denote the unit demand charge;

let ft(x, z̃) denote the total electricity used to charge EVs of all customers in period t, i.e.,

ft(x, z̃) =
X

v2Vt

xv,tz̃v.

Given (x, z̃), the total cost of charging all EVs within the horizon, denoted by c(x, z̃), is as follows:

c(x, z̃) , dmax
t2[T ]

{ft(x, z̃)}+
X

s2[T ]

esfs(x, z̃), (2)

where the first term is the demand charge, and the second term is the energy charge, with et (in

$/energy unit) denoting the unit time-of-use (TOU) energy charge. Note that “demand charge”

and “energy charge” are terminology used in the rate structure of utility firms, where “demand”

di↵ers from the usual meaning in “customer demand,” and “charge” di↵ers from that used in “EV

charging.” Note also that for simplicity of exposition, the demand charge in (2) consists of only

an all-period demand charge, applicable to all periods in the finite horizon. We consider the case

in which the total demand charge is the sum of multiple types of demand charge, such as demand

charge in peak hours and mid-peak hours, in the numerical study in §7. Lastly, note that our model

and theoretical results can be easily extended to the case where demand charge depends on the

maximum electricity usage per multiple periods (see an example in §7.4.1).

Model Formulation. We formulate the problem of scheduling EV charging as an SP:

min
x2X

EPC [c(x, z̃)], (3)

where the expectation is over z̃. We denote an optimal solution to (3) by x
⇤ and the optimal value

of (3) by ⇡
⇤, i.e., ⇡⇤ =EPC [c(x

⇤
, z̃)].

Note that c(x, z̃) is a nonlinear function which can be linearized with auxiliary variables, so

problem (3) can be rewritten as a two-stage stochastic linear program with complete recourse.

Two-stage SPs are in general #P-hard, as evaluating the expectation of the random objective

function is #P-hard (Hanasusanto et al. 2016). In addition, our SP model (3) is large-scale due to



Chen, He, and Zhou: An Exponential Cone Programming Approach for Managing EV Charging 9

its large number of random variables, V , and decision variables: V is the product of three terms,

the number of possible arrival periods, departure periods (given an arrival period), and charging

requirements; the latter is the product of V and the number of periods within the charging window

of all types. As we show in our numerical study calibrated to real data, for a representative one-day

planning horizon, the numbers of random variables and decision variables are about 80,000 and

700,000, respectively. We next propose an approach to solve our SP based on ECP approximation

in §4, and benchmark ECP with two common approaches, SAA and DRO, which we discuss in §5.

4. Exponential Cone Programming Approximations

In this section, we first consider the uncapacitated case by developing an ECP approximation and

providing a theoretical performance guarantee. We then extend it to the capacitated case by using

the idea from the framework of DRO.

As mentioned before, an ECP is a conic program with constraints that can be represented by

exponential cones, which are three-dimensional convex cones involving exponentials and logarithms:

Kexp , {(x1, x2, x3) | x1 � x2 exp(x3/x2), x2 > 0}[ {(x1,0, x3) | x1 � 0, x3  0} .

ECP generalizes the widely used LP and second-order conic program (SOCP) (see, e.g., Chan-

drasekaran and Shah 2017). ECPs can be solved in polynomial time using an interior point algo-

rithm with an e�cient solver, such as MOSEK. Note that since the most di�cult step in solving

(3) is computing the expectation of the largest order statistic introduced by the demand charge

(while the energy charge is linear in z̃), ECPs become a natural choice for the approximation of

(3) because we use the MGF (involving exponential functions) of z̃ to bound this order statistic.

4.1. The Uncapacitated Case

Let P1 denote the joint distribution of z̃ for C =1. Note that z̃v’s for v 2 [V ] are independent

Poisson random variables. Given any ✓, (✓v)v2[V ], the MGF of z̃ ⇠ P1 is

EP1

2

4exp

0

@
X

v2[V ]

✓vz̃v

1

A

3

5=
Y

v2[V ]

EP1 [exp (✓vz̃v)] =
Y

v2[V ]

exp
�
�v(e

✓v � 1)
�
, (4)

where the first equality is due to the independence of z̃v’s and the second equality follows from

the closed-form MGF expression of a Poisson random variable z̃ ⇠ P with arrival rate �, i.e.,

EP [e✓z̃] = e
�(e✓�1) for any ✓. Since (4) involves exponential functions, we obtain an upper bound of

⇡
⇤, the optimal value of (3), using an ECP as follows:
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Proposition 1. When C =1, the optimal value of ECP-U gives an upper bound of ⇡
⇤
:

inf
x2X ,,�,µ>0,⇠,⇣

d (+ �)+
X

s2[T ]

esfs(x,�)

s.t.
X

v2Vt

xv,t�v  � 8t2 [T ] (5a)

(ECP-U) µ exp (xv,t/µ) ⇠v,t 8t2 [T ], v 2 Vt (5b)

µ exp

  
�+

X

v2Vt

�v(⇠v,t�xv,t�µ)

!
/µ

!
 ⇣t 8t2 [T ] (5c)

X

t2[T ]

⇣t  µ (5d)

Proof. To obtain an upper bound of ⇡
⇤, we first obtain an upper bound of

EP1
⇥
maxt2[T ] ft(x, z̃)

⇤
:

EP1


max
t2[T ]

ft(x, z̃)

�
=EP1


max
t2[T ]

(ft(x, z̃)� ft(x,�)+ ft(x,�))

�

EP1


max
t2[T ]

(ft(x, z̃)� ft(x,�))+max
t2[T ]

ft(x,�)

�

=EP1


max
t2[T ]

(ft(x, z̃)� ft(x,�))

�
+max

t2[T ]
ft(x,�). (6)

We then obtain an upper bound of the first term in (6) given any µ> 0 as follows:

EP1


max
t2[T ]

(ft(x, z̃)� ft(x,�))

�
µ lnEP1


exp

✓
max
t2[T ]

(ft(x, z̃)� ft(x,�))/µ

◆�

µ lnEP1

2

4
X

t2[T ]

exp ((ft(x, z̃)� ft(x,�))/µ)

3

5

=µ ln
X

t2[T ]

EP1 [exp ((ft(x, z̃)� ft(x,�))/µ)]

=µ ln
X

t2[T ]

EP1

"
exp

 
X

v2Vt

xv,t

µ
(z̃v ��v)

!#

=µ ln
X

t2[T ]

Y

v2Vt

EP1


exp

✓
xv,t

µ
z̃v

◆�
exp

✓
�xv,t

µ
�v

◆

=µ ln
X

t2[T ]

exp

 
X

v2Vt

�v

�
e
xv,t/µ� 1�xv,t/µ

�
!
, (7)

where the first line is due to the convexity of an exponential function and Jensen’s inequality:

exp

✓
EP1


max
t2[T ]

(ft(x, z̃)� ft(x,�)/µ)

�◆
EP1


exp

✓
max
t2[T ]

(ft(x, z̃)� ft(x,�)/µ)

◆�
;

the fourth line results from substituting ft(x, z̃) =
P

v2Vt
xv,tz̃v into the right-hand side (RHS) of

the third line; and the fifth and sixth lines follow from (4).
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Note if we combine (6) and (7) as follows

EP1


max
t2[T ]

ft(x, z̃)

�
 inf

µ>0

0

@µ ln
X

t2[T ]

exp

 
X

v2Vt

�v

�
e
xv,t/µ� 1�xv,t/µ

�
!1

A+max
t2[T ]

ft(x,�),

its RHS has the following epigraph form

inf
µ>0,,�

+ �

s.t.
X

v2Vt

xv,t�v  �, 8t2 [T ]

µ ln
X

t2[T ]

exp

 
X

v2Vt

�v

�
e
xv,t/µ� 1�xv,t/µ

�
!
 . (8)

The constraint (8) is equivalent to
P

t2[T ] µ exp
�P

v2Vt
�v

�
e
xv,t/µ�xv,t/µ� 1

�
�/µ

�


µ, where the expression within the first summation of the left-hand side, i.e.,

µ exp
�P

v2Vt
�v

�
e
xv,t/µ�xv,t/µ� 1

�
�/µ

�
, has an epigraph form for all t2 [T ] as follows:

inf
⇣t

⇣t

s.t. µ exp

  
�+

X

v2Vt

�v(µe
xv,t/µ�xv,t�µ)

!
/µ

!
 ⇣t. (9)

Further, the term µe
xv,t/µ inside constraint (9) has an epigraph form inf⇠v,t

�
⇠v,t : µexv,t/µ  ⇠v,t

 

for all v 2 Vt. Hence, the epigraph containing constraint (8) can be equivalently written as

inf
µ>0,,�,⇠,⇣

+ �

s.t. (5a)� (5d).
(10)

Since fs(x, z̃) is linear in z̃ for all s 2 [T ] and z̃ ⇠ P1 is the vector of independent Poisson

random variables, we have

EP1 [fs(x, z̃)] = fs(x,�). (11)

Therefore, by combining (6), (7), (10), and (11) and optimizing over x, we get the optimal value

of ECP-U as an upper bound of ⇡⇤, as a solution optimal to ECP-U is also feasible to (3). ⇤
Note that the model in Proposition 1 is labeled ECP-U (recall U represents “uncapacitated”)

because all the constraints in this model involve either linear or exponential functions and thus can

be expressed as exponential cone constraints. For example, the constraint (5b), µ exp (xv,t/µ) ⇠v,t,

can be written as (⇠v,t, µ,xv,t)2Kexp. Hence, ECP-U is an ECP, and thus can be solved via a state-

of-the-art conic programming solver e�ciently (MOSEK ApS 2020). Note also that the number of

decision variables and constraints of ECP-U are on the same order as those of our SP model (3).
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Remark 1. To the best of our knowledge, the only other paper to approximate an SP with

ECPs is See and Sim (2010), but their approach requires the random variables of the SP to be

sub-Gaussian in order to derive meaningful bounds, which is not applicable to our SP. Moreover,

our approximation method di↵ers from theirs by directly bounding the expectation of piecewise

linear convex functions while they first use a linear decision rule and then approximate the resulting

expected surplus of a�ne functions. Finally, we directly solve ECPs, while all previous papers (e.g.,

See and Sim 2010) approximate ECPs using second-order cone programs.

Remark 2. Though developed for a specific charging problem, our ECP approach of bounding

the expected recourse function could be potentially useful for solving more general two-stage SPs.

Consider a two-stage linear SP with fixed recourse where the recourse function is defined generally

as

Q(x, z̃) = inf
y
{d0

y :H(z̃)x+Wy�h(z̃)} ,

where h(z̃) and H(z̃) are a�ne in z̃. If the dual feasible set {q� 0 :W 0
q= d} is non-empty and

compact with vertices vi, i2 [I], the expected recourse function becomes

EP [Q(x, z̃)] =EP


max
i2[I]

v
0
i (h(z̃)�H(z̃)x)

�
.

If z̃ has independent components with exponential cone representable log-MGF, this expected

recourse function can be upper bounded by an ECP using the same approach as in Proposition 1.

We denote an optimal solution to ECP-U by x̄ and the value of the objective function in (3)

evaluated at x̄ by ⇡
E, i.e., ⇡E =EP1 [c(x̄, z̃)]. We next show that compared with an optimal solution

to (3), x⇤, there is a theoretical guarantee on the performance of x̄. Theorem 1 compares ⇡E and

⇡
⇤ (note that ⇡⇤ =EP1 [c(x⇤

, z̃)] =EPC [c(x
⇤
, z̃)], as PC ⌘ P1 when C is infinite).

Theorem 1. Any optimal solution x̄ to ECP-U has a performance guarantee as follows:

⇡
E �⇡

⇤ =EP1 [c(x̄, z̃)]�EP1 [c(x⇤
, z̃)] d inf

µ>0

0

@µ ln
X

t2[T ]

exp

 
X

v2Vt

�v�

✓
min{uv,K}

µ⌘

◆!1

A , (12)

where �(x), e
x� 1�x.

Theorem 1 gives in (12) an upper bound on the di↵erence between ⇡
E and ⇡

⇤. This bound

depends on d, ⌘, K, and T , as well as �v and uv (for all v 2 [V ]), but it does not depend on es.

Although this bound is not tight, it can be computed before solving ECP-U. After solving ECP-U,

the bound on the di↵erence between ⇡
E and ⇡

⇤ on our numerical instances becomes tighter (see

§7).
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4.2. The Capacitated Case

Unlike the uncapacitated case, z̃ ⇠ PC does not follow independent Poisson distributions when

C <1, so it is di�cult to obtain its analytical characterization analogous to that in (4). We then

use the idea of DRO: It is often used to mitigate distributional ambiguity, but we use DRO to derive

an ECP approximation as a tractable upper bound of our SP model. Note that in our SP model

the arrival distribution is known (joint truncated Poisson distribution, z̃ ⇠ PC), and thus there is

no distributional ambiguity. We relax this known distribution to be contained in an ambiguity set

in the DRO framework, which we denote by F , i.e., PC 2F . Therefore, the solution from the DRO

framework gives an upper bound of our SP model with the known distribution. As we show below,

the DRO formulation is intractable, and thus we obtain an upper bound of this DRO formulation

by developing an ECP approximation, which in turn gives an upper bound of our SP model.

We use the infinitely constrained “entropic dominance” ambiguity set, adapted from Chen et al.

(2019):

F ,

8
>>>><

>>>>:

P2P0

�
RV

�

����������

z̃ ⇠ P
lnEP [exp (✓

0
z̃)]

X

v2[V ]

�v

�
e
✓v � 1

�
,8✓� 0

P [z̃ 2Z] = 1

9
>>>>=

>>>>;

,

where the third line is the support constraint with the support Z given in (1). The second line

is entropic dominance constraints, which restrict all the moments of random variables zv’s to be

no greater than those of independent Poisson variables (i.e., in uncapacitated case): The left- and

right-hand sides of this set of constraints are the log-MGFs of z̃ ⇠ PC and z̃ ⇠ P1 (see (4)),

respectively. To further understand F , we write it as the intersection of the following two sets, as

shown in Lemma 1:

F1 ,

8
<

:P2P0

�
RV

�
������
z̃ ⇠ P; lnEP [exp (✓

0
z̃)]

X

v2[V ]

�v

�
e
✓v � 1

�
,8✓� 0

9
=

;

F2 ,
�
P2P0

�
RV

��� z̃ ⇠ P; EP [z̃]�; P [z̃ 2Z] = 1
 
.

Lemma 1. F =F1 \F2
.

Lemma 1 shows the following: (1) Both the entropic dominance constraints (in F1) and the

support constraint (in F2) are crucial in defining the ambiguity set. For instance, we show numer-

ically that a model without F1 performs much worse in §7.4.4. (2) As F2 is an example of the

moment-based ambiguity sets commonly used in DRO which involves only a constraint on the first

moment (i.e., EP [z̃]�), Lemma 1 implies that F , as a subset of F2, incorporates more moment

information than F2 does. Therefore, F is smaller and less conservative than F2. Next, we show

that the ambiguity set F contains the given distribution PC .
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Proposition 2. PC 2F .

Therefore, we can obtain an upper bound of the optimal value of (3) by considering the worst-case

expected total cost over the ambiguity set F :

min
x2X

sup
P2F

EP [c(x, z̃)] , (DRO-Ent)

where “Ent” represents “entropic.” However, due to the infinite number of constraints in F (since

the entropic dominance constraints have to hold for all ✓� 0), the DRO-Ent model is not tractable

(Chen et al. 2019). Therefore, we approximate DRO-Ent using an ECP formulation similar to

that in Proposition 1, which can also be solved e�ciently. We use Lemma 1 to write DRO-Ent

as the optimization over ambiguity set F1 and F2 separately. For the former case, we can use

a technique similar to that of the proof of Proposition 1; for the latter, as F2 is an example of

moment-based ambiguity sets used in DRO, we use techniques standard in DRO to obtain bounds.

We combine these two to obtain a tractable upper bound as follows, which we label as ECP-C

(where C represents “capacitated” as mentioned above).

Proposition 3. When C <1, the following ECP-C gives an upper bound of ⇡
⇤
:

inf
x2X ,a,b�0,⌫�0,y�0,µ>0,

,�,↵,��0,⇠,⇣,⇢�0

d (+ �+↵+�
0
�)+ a+ b

0
�

s.t.
X

v2Vt

yv,t�v  � 8t2 [T ] (13a)

(⇠v,t, µ, yv,t)2Kexp 8t2 [T ], v 2 Vt (13b) 
⇣t, µ,�+

X

v2Vt

�v(⇠v,t� yv,t�µ)

!
2Kexp 8t2 [T ] (13c)

(ECP-C)

X

t2[T ]

⇣t  µ (13d)

C

X

k2[T ]

⇢
k
t  ↵ 8t2 [T ] (13e)

xv,t� yv,t��v 
X

k2Tv

⇢
k
t 8t2 [T ], v 2 Vt (13f)

C

X

t2[T ]

⌫t  a (13g)

X

s2Tv

xv,ses� bv 
X

t2Tv

⌫t 8v 2 [V ] (13h)

Similar to ECP-U, ECP-C can be solved e�ciently. (Note that the number of decision variables

and constraints in ECP-C is on the same order as those in our SP model (3).)

Theorem 2. The optimal value of ECP-C increases as C increases and converges to a value

that is upper bounded by the optimal value of ECP-U as C!1.
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Theorem 2 shows that the optimal value of ECP-C increases as charging station capacity

increases, intuitively because more vehicles will be admitted to the station to be charged. It also

shows that this optimal value of ECP-C converges and yields an asymptotic lower bound of the

optimal value of ECP-U. However, unlike ECP-U, we are unable to obtain a theoretical perfor-

mance guarantee of an optimal action to ECP-C and thus use a numerical study to examine its

performance together with those of two benchmark approaches.

5. Benchmark Approximations
5.1. Sample Average Approximation (SAA)

The most common approach to solve a two-stage SP is SAA based on Monte Carlo sampling:

Generate from the given distribution many independent samples and replace this distribution in

the SP model with the empirical distribution of these samples. We denote these samples from

PC by z
i ⌘ (ziv)v2[V ] 8i 2 [N ], where N is the sample size. The SAA model can be obtained after

reformulating (3) as a two-stage SP using auxiliary variables:

inf
x2X ,�i8i2[N ]

1

N

X

i2[N ]

0

@d�
i +

X

s2[T ]

es

 
X

v2Vs

xv,sz
i
v

!1

A

s.t.
X

v2Vt

xv,tz
i
v  �

i 8t2 [T ], i2 [N ]

(14)

Let us denote by x
S an optimal solution to (14) and by ⇡

S the value of the objective function in

(3) evaluated at xS, i.e., ⇡S =EPC [c(x
S
, z̃)]. Since xS and ⇡

S depend on the samples generated and

are thus random, so to obtain a solution near optimal to (3) with a high probability requires the

sample size N to be su�ciently large, especially given the large-scale nature of (3). In particular,

as mentioned in Shapiro and Nemirovski (2005), the sample complexity of obtaining an ✏-optimal

solution is Õ(D
2L2

✏2
), where L is the Lipchitz constant of the objective function f(·,z) for all z 2Z

and D is the diameter of X . Nonetheless, fewer samples may be needed in practice. For instance, in

our numerical study, we need about 38,000 samples to obtain a near-optimal solution (see Figure

3 in §7.3).

5.2. Distributionally Robust Optimization (DRO)

Another benchmark is a DRO approach with the mean-variance ambiguity set:

min
x2X

sup
P2F⌃

EP [c(x, z̃)] , (DRO-C)

where

F⌃ =

8
>>>>><

>>>>>:

P2P0

�
RV

�

�����������

z̃ ⇠ P
EP [z̃] =µ

EP [z̃z̃0]�⌃+µµ
0

P [z̃ 2Z] = 1

9
>>>>>=

>>>>>;

. (15)
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Using standard techniques in DRO (see Wiesemann et al. 2014, for example), the model DRO-C

can be reformulated as the following SDP (see Online Appendix A for its derivation):

min
x2X ,↵,�,�,

⇠t�0,⇣t�0,yt,8t2[T ]

d (↵+�
0
µ+� • (µµ0 +⌃))+

X

s2[T ]

esfs(x,µ)

s.t.

0

@↵�C
P

s2[T ] ⇣
t
s y

t0

y
t �

1

A⌫ 0 8t2 [T ]

2yt
v = �v �xv,t� ⇠

t
v +

X

s2Tv

⇣
t
s 8t2 [T ],8v 2 Vt

2yt
v = �v � ⇠

t
v +

X

s2Tv

⇣
t
s 8t2 [T ],8v 2 [V ]\Vt.

Note the above SDP formulation has T semidefinite constraints of dimension V +1, and thus may

run into computation time and memory issues when V and T are large. Note also in general the

complexity of SDP is higher than ECP (which is the same as SOCP): Obtaining ✏-optimal solu-

tions to SDP can be found in O(n2
k
2.5 log(1/✏)) arithmetic operations via interior point methods,

where n is the number of decision variables and k is the dimension of the symmetric matrices in

the SDP constraints; obtaining ✏-optimal solutions to ECPs requires O(n2
k
1.5 log(1/✏)) arithmetic

operations, where n is the number of decision variables and k is the number of exponential cone

constraints (see, e.g., Nesterov and Nemirovskii 1994).

6. Joint Pricing and Scheduling

We consider an extension of the model in §3 to maximize the expected profit by jointly optimizing

the pricing of charging service fees and scheduling of EVs. We specify the formulation of this

extended model in §6.1. We solve this model by leveraging the ECP approximations from §4 and

consider the uncapacitated and capacitated cases in §6.2 and §6.3, respectively.

6.1. Problem Formulation

Service fee structure. We use one of the most common pricing schemes in practice, where the

service fee is proportional to the quantity of electricity charged (also known as kWh-based) (Tesla

2020, Blink 2020). This means that in our model customers of type v pay puv for the EV charging

service, where p2 [p, p] is the decision of unit service fee.

Price-dependent arrival rate. For ease of exposition and computational tractability, we assume

that the customer arrival rate is linearly decreasing in the price:

�v = �̄v(1� rvp), 8v 2 [V ], (16)

where �̄v is the maximum possible arrival rate of type v customers (e.g., when the EV charging

service is free), and rv > 0 is the price sensitivity of customer type v. Consistent with the literature
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in the pricing of service operations (e.g., Mendelson and Whang 1990), this price-dependent arrival

rate represents aggregating the individual customer’s decision of whether to use the charging service

according to their service valuations, which follow a uniform distribution F (·) between [0,1/rv]:

Since only customers with valuation higher than p join the service at the charging station, the

e↵ective arrival rate of type v customers is given by �v = �̄v(1�F (p)) = �̄v(1� rvp).

Objective function. The objective is to jointly optimize the pricing decision p and the scheduling

decision x to maximize the expected total profit, i.e., the total revenue minus total cost, as follows:

max
p2[p,p],x2X

EPC

2

4
X

v2[V ]

puvz̃v � c(x, z̃)

3

5 . (17)

Note the problem (17) is much more challenging than the scheduling problem (3) because the

underlying distribution PC in (17) depends on the pricing decision p. To solve (17) e�ciently, we

leverage our ECP approximations in §4 for both the uncapacitated and capacitated cases.

6.2. The Uncapacitated Case

Proposition 4. When C =1, the optimal value of JPS-U is a lower bound of (17):

sup
x2X ,p2[p,p],µ>0,�,,�

X

v2[V ]

puv�v � d(+ �)�
X

s2[T ]

esfs(x,�)

s.t. (5a), (8), (16).

(JPS-U)

The ECP formulation in Proposition 4 is labeled JPS-U, representing “joint pricing and schedul-

ing” for the “uncapacitated” case. Note that unlike ECP-U, which is convex, JPS-U is non-convex

as (8) defining JPS-U is non-convex due to the fact that p (and equivalently �v) is a decision

variable. Therefore, we propose an optimization procedure to solve JSP-U e�ciently by alternating

between fixing p and fixing x and µ: Both of the resulting formulations are convex and can be

easily solved using o↵-the-shelf solvers. Specifically, first, given p, the arrival rates �v are given in

(16) and thus fixed, so we can follow Proposition 1 to reformulate JPS-U as the following convex

optimization problem with only scheduling decisions:

sup
x2X ,µ>0,,�,⇠,⇣

X

v2[V ]

puv�v � d(+ �)�
X

s2[T ]

esfs(x,�)

s.t. (5a)� (5d).

(18)

Second, given x and µ, JPS-U can also be reformulated as the following convex optimization

problem as in Proposition 1:

sup
p2[p,p],�,,�,⇣

X

v2[V ]

uv�̄v(p� rvp
2)� d(+ �)�

X

s2[T ]

esfs(x,�)

s.t. (5a), (5d), (9), (16).

(19)
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Therefore, we can solve JSP-U by alternatingly solving problems (18) and (19) with the following

algorithm, the convergence of which is shown in Proposition 5.

Algorithm 1: Alternating optimization for JPS-U

1. Initialization Set initial price p
(0) 2 [p, p], iteration counter i 1

2. Scheduling optimization Solve model (18) with input p(i�1) and let x⇤ and µ
⇤ be the

optimal solution; set x(i�1) x
⇤ and µ

(i�1) µ
⇤. Store optimal value val

(i)
1 ;

3. Pricing optimization Solve model (19) with inputs x(i�1) and µ
(i�1), and let p⇤ be the

optimal solution; set p(i) p
⇤. Store optimal value val

(i)
2 ;

4. Termination If |val(i)2 � val
(i)
1 |< � (where �> 0 is a given small tolerance), set p⇤ p

(i),
solve model (18) with input p(i) to obtain x

⇤, output p⇤ and x
⇤, and then stop. Otherwise,

set i i+1 and go back to Step 2.
Output: Pricing decision p

⇤ and scheduling decision x
⇤

Proposition 5. The sequence of optimal values {val(i)1 , val
(i)
2 } in Algorithm 1 is non-decreasing

and converges to a finite value.

6.3. The Capacitated Case

Next, we develop an ECP approximation of model (17) for the capacitated case. We first derive

a convex upper bound for the expected revenue in Proposition 6. Then this upper bound on

the expected revenue minus the upper bound on the expected cost in Proposition 3 gives an

approximation of the expected profit in (17). Note that in the capacitated case, there is only an

approximation, di↵erent from the uncapacitated case where we obtain a lower bound.

Proposition 6. The optimal value of the following convex optimization problem is an upper

bound of the expected revenue EPC

hP
v2[V ] puvz̃v

i
:

sup
g�0

X

v2[V ]

gvuv

s.t. �̄v(p� rvp
2)� gv 8v 2 [V ] (20a)

Cp�
X

v2Vt

gv 8t2 [T ] (20b)

Proof. Suppose EPC [z̃] = �, then EPC

hP
v2[V ] puvz̃v

i
=
P

v2[V ] puv�v. We know �  � due to

arrival truncation in capacitated case. And PC [z̃ 2Z] = 1 implies
P

v2Vt
�v C, 8t2 [T ], from (1).

Hence,

sup
b�0

8
<

:
X

v2[V ]

puvbv : b�,

X

v2Vt

bv C,8t2 [T ]

9
=

; (21)

is an upper bound of
P

v2[V ] puv�v as � is feasible in problem (21). Next, we perform a change of

variable by gv = pbv. Since p > 0, problem (21) is equivalent to

sup
g�0

8
<

:
X

v2[V ]

uvgv : g�p,

X

v2Vt

gv Cp,8t2 [T ]

9
=

; . (22)
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Substituting (16) into the model (22) concludes the proof. ⇤
Combining Propositions 6 and 3, which give tractable approximations of the expected revenue

and cost, respectively, we obtain the following approximation of the expected profit:

sup
x2X ,p2[p,p],�,a,b�0,⌫�0,y�0,
µ>0,,�,↵,��0,⇠,⇣,⇢�0,g�0

X

v2[V ]

gvuv � d (+ �+↵+�
0
�)� a� b

0
�

s.t. (13a)� (13h), (16), (20a)� (20b)

(JPS-C)

As in the uncapacitated case, we can perform alternating optimization to e�ciently solve prob-

lem JPS-C using an algorithm analogous to Algorithm 1: Fixing p (or equivalently �) in JPS-C,

we obtain the scheduling optimization, which is an ECP; fixing all variables except p,g,�,�, in

JPS-C, we obtain the pricing optimization, which is a conic program involving exponential cones

and second-order cones. This algorithm has a similar convergence property as Algorithm 1 and is

omitted for brevity.

7. Numerical Study

In this section, we examine the performance of our ECP approximation in benchmark with the SAA

and DRO approaches using numerical instances calibrated to real data for both the main model

and the extended model with the pricing decision. We also discuss how they perform considering

several practical implementation issues. Lastly, we use ECP to generate managerial insights.

7.1. Experiment Settings

We consider the planning horizon of a service provider to be one day as there are very few EVs

charging across two consecutive days in public charging stations, as shown in our data below. Each

period represents 15 minutes, which is used in practice to compute demand charges for most utility

companies, such as Southern California Edison. Therefore, the number of periods T equals 96.

Electricity tari↵ calibration. We use Southern California Edison’s electricity tari↵ Schedule GS-2

General Service (Neubauer and Simpson 2015), which is the tari↵ an electricity user such as an

EV charging service provider is subject to. Under this tari↵, we obtain the unit energy charge and

demand charge depending on the hour of the day as follows:

êt =

8
><

>:

$0.1466/kWh if 13 dt/4e  18 (on-peak hours)

$0.0895/kWh if 9 dt/4e  12 or 19 dt/4e  23 (mid-peak hours)

$0.0582/kWh otherwise (o↵-peak hours),

d̂t =

8
><

>:

$0.465/kW 8t2 [T ]=̇[96] (all-period)

$0.540/kW if 13 dt/4e  18 (on-peak hours)

$0.165/kW if 9 dt/4e  12 or 19 dt/4e  23 (mid-peak hours),

where dt/4e represents the hour index of period t (as one hour has four periods). Note that these

demand charge parameters for the horizon of a day are obtained by dividing those for a month by
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30 to maintain the same proportion of the demand charge relative to the total cost. More details on

the calibration can be found in Online Appendix B. Note that the demand charge is the sum of all-

period demand charge (applicable to all periods), on-peak demand charge, and mid-peak demand

charge: Though the models in §4 and §6 have only all-period demand charge for the expositional

simplicity, the ECP models for the case with multiple demand charges are constructed analogously

to those in §4 and §6.

EV arrival rate calibration. In this study, we use the public EV charging data from the U.K.

Department for Transportation. While we acknowledge the discrepancies in EV charging behaviors

across di↵erent markets, we use the U.K. charging events to approximate general EV arrival pat-

terns in the computational experiments. The dataset in the U.K. contains all of the charging events

from 27 local authorities in England from January 1 to December 31, 2017 (U.K. Department

for Transport 2018). For each charging event, it provides the start time, end time, and electricity

supplied. In particular, we consider the data of both rapid and fast chargers where the charging

speed are above 22 kW and below 22 kW, respectively. The average charging duration for rapid

chargers is short, about 35 minutes, and for fast chargers is long, about 4.7 hours. Though the

value of using our model is higher for long-duration charging than for short-duration as the former

gives more room for optimization, we focus on the latter instead due to the following reason: While

ECP scales well and can be solved for both the short- and long-duration charging, SAA does not

scale well and cannot be solved to a satisfactory level for long-duration cases. Hence, unless spec-

ified explicitly otherwise, all the results mentioned below pertain to the short-duration charging

case. We demonstrate that the value of our model remains high even for short-duration charging.

Limited experiments show that this value is much higher in the case of long-duration charging.

We observe that the average charging speeds (electricity supplied divided by the stay duration,

the time between arrival and departure) for most charging events are not at the maximum. This

observation holds at the aggregate level across all locations, at the individual charging location

(local authority) level, and at the individual charger level. This observation corroborates the need

to optimize the scheduling of EV charging with various customer types, as studied in this paper.

In the rest of the paper, we use the arrival pattern aggregated across all locations unless specified

otherwise.

After pre-processing the dataset (see details in Online Appendix B), we obtain an average of

278.65 daily charging events. We then discretize time into 15-minute (shortened as 15-min) inter-

vals. In particular, we count any partial arrival/departure period as a full period: For example, a

car that arrives at 12:56 and leaves at 13:22 is treated as staying between 12:45 to 13:30, i.e., it



Chen, He, and Zhou: An Exponential Cone Programming Approach for Managing EV Charging 21

Figure 1 (Color Online) Normalized histogram of customer stay duration and electricity charged at rapid chargers

in 2017 (U.K. Department for Transport 2018)

(a) Normalized histogram of stay duration (b) Normalized histogram of electricity charged

stays for three 15-min periods5. Then we compute all policies based on this 15-min discretization.

We can easily convert this 15-min policy to a policy that is implementable on a 1-min discretization

using a simple translation algorithm (see more details in §7.4.1). We show that the performance of

this converted policy is close to that of the policy computed on the 1-min discretization, and the

performance comparison between the converted ECP and converted SAA is the same as that on 15-

min discretization. In addition, there are two more reasons to use 15-min discretization: First, it is

consistent with the measurement for the demand charge used by utility firms in the U.S., and thus

often used in the literature (Glassmire et al. 2012, Zhang et al. 2017, and Zhang and Augenbroe

2018); second, finer time discretization levels are computationally more challenging due to memory

and CPU time limitations, for instance, the number of random variables and decision variables

under 1-min discretization is 152 and 153, respectively, times of those under 15-min discretization.

We plot in Figure 1 the resulting density (or normalized frequency) of EV stay duration (time

between arrival and departure) and electricity charged. The mean (standard deviation) of stay

duration is 35.83 (27.92) minutes; the mean (standard deviation) of electricity charged is 10.69

(7.64) kWh. We then estimate the arrival rate of each type as the average number of charging

events of each type per day within the entire horizon. Note that as our data spans a year, each type

has 365 data points for estimating its arrival rate: For each day, each type has one realization of

its arrivals, even if the number of arrivals on that day is zero. Subsequently, among about 80,000

customer types with distinct start times, departure times, and total electricity charged, we identify

14,284 customer types with positive arrival rates. We use these arrival rates for the given truncated

5
We also tried time discretization by rounding up the stay duration to the integer multiple of 15 minutes, i.e.,

dstay duration/15e ⇥ 15. We find that it performs worse as it gives a higher total expected cost for both ECP and

SAA.
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Poisson distributions in our SP model to compare the performances of all policies. While we assume

Poisson arrivals with known rates, there may be estimation errors in arrival rates due to insu�cient

data and model mis-specification of the arrival distribution in practice, and we therefore consider

these two cases in §7.4.2.

Next, we consider managing a hypothetical charging station to charge EVs. We plot in Figure 2

the expected number of EVs at the charging station in a 1-day horizon under various values of

the number of chargers C to achieve di↵erent service levels (the probability that a customer finds

a charger upon arrival). As seen, the expected number of customers at the station follows a daily

pattern: It starts low from midnight to 6 am, increases significantly to the peak at around 1 pm,

and finally decreases significantly until midnight. When C = 30, there is almost no lost customer

(with service level 99.86%): The corresponding line in Figure 2 almost coincides with that for the

uncapacitated case. However, with C = 25,20, and 15, the service level drops quickly, to 98.83%,

94.07%, and 82.54%, respectively.

Figure 2 (Color Online) Average number of EVs at the charging station

Other parameters. We use the specifications of Nissan Leaf, a popular customer type. Specifically,

we set Û = 62 kWh using the energy capacity of Nissan Leaf (Nissan 2019); K̂ = 10.75 kWh/period

based on the rapid AC chargers with power at 43 kW (Zap-Map 2019); and ⌘̂ = 0.9 using the

e�ciency of lithium-ion battery in Nissan Leaf (Karlsson and Kushnir 2013).

Note that our 96-period instance is large-scale: There are in total 80,736 random variables and

692,702 decision variables. In this case, the benchmark DRO-C cannot be solved, and thus we

focus on comparing ECP with SAA in the rest of this section. We also consider a numerical setup

with small problem instances where there are only 6 periods and DRO-C can be solved. See Online

Appendix C for more details of the comparisons among all three approaches.
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7.2. Computation

We implement SAA using the following two methods: Solving the extensive form by the interior

point (also known as barrier) method as well as the L-shaped method (also known as Benders

decomposition) with either single cut or multi-cut (Birge and Louveaux 2011). In the L-shaped

method, we first generate optimality cuts (as our problem has complete recourse) by solving N

subproblems over a simplex and then add these cuts to the master problem. In our multi-cut

implementation, we do not add generated cuts for all the scenarios in each iteration, as the master

problem (where the computational burden lies) is so large that we can only perform four iterations

within 12 hours (our specified maximum computation time). Instead, we add into the master

problem in each iteration the 100 cuts which have the largest gaps between the recourse function

and its piecewise a�ne lower bound at the current solution. We use dual simplex without presolve

to solve all the linear programming problems in the L-shaped method.

As in our SP model the arrival distribution is given, we compute and evaluate ECP and SAA

using the same calibrated arrival distribution. In particular, we generate 8,000 sample paths to

compute the actions x
S under SAA. (Note that computing the action x

E under ECP does not

require samples; only evaluating the action under ECP does.) After solving for xE and x
S using the

calibrated arrival distributions and other parameters, we generate from the same distribution via

Monte Carlo simulation 10,000 samples to evaluate both, su�cient to show statistically significant

performance comparison between both approaches. (The results do not change when using more

samples in the evaluation step.) We evaluate x
E and x

S on these samples by computing the mean

and standard deviation of c(xE
, z̃) and c(xS

, z̃), respectively. We implement SAA five times as

the solutions obtained from SAA are sample-dependent and report the final performance as the

average of these five instances.

All of our numerical experiments are conducted in Python while using the MOSEK 9.2 solver on

a Windows-OS 64-bit with 24 GB of RAM and an Intel i7-8750H CPU@2.20GHz Processor. All

the problem instances except the L-shaped method are solved via the interior point method. For

all methods, we set both primal and dual feasibility tolerance 10�8 and relative duality gap 10�8.

When the solver cannot find solutions to this accuracy, we accept the solution if it is feasible but

not necessarily optimal.

7.3. Comparing ECP with SAA

Table 1 compares under di↵erent values of C the performances of ECP and SAA. In this table,

SAA uses the interior point method, as it is faster than the L-shape method with either single

cut or multi-cut (see such experiments on small, six-period instances in Online Appendix C). As

mentioned in §7.2, SAA uses 8,000 samples in computation, as SAA with a larger sample size
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cannot be solved within 12 hours (see more details on SAA with di↵erent sample sizes in Figure 11

in Online Appendix D). This table shows that compared with SAA, ECP results in not only a lower

standard deviation of the mean cost but also a lower mean cost itself. (Note that this di↵erence

in mean cost is significant compared to the standard error, which is the standard deviation of the

total cost divided by the square root of the evaluation sample size of 10,000.) For instance, when

C equals 30, ECP-C has a standard deviation and mean cost of 67.55 and 805, respectively, lower

than those of SAA, which are 69.94 and 816.39, respectively. That is, the robustness of ECP-C

(or lower standard deviation) does not come at the cost of a higher mean cost, contrary to known

tradeo↵ (e.g., Choi and Ruszczyński 2008, Hao et al. 2020). Similar results are also observed when

comparing ECP with SAA using each arrival pattern from the three charging locations (local

authorities) that have the largest number of charging events in the U.K. data.6 ECP-C beats SAA

on robustness as expected because ECP-C leverages the ambiguity set inspired by DRO approaches

(see §4.2). Compared to ECP models, SAA results in a high mean cost because it does not scale

well and is thus hard to solve to optimality on large-scale instances.

Table 1 Performance comparison between ECP-C (or ECP-U) and SAA

C Method Total cost CPU

Mean Std Time (s)

15
ECP-C 600.40 35.20 312.33

SAA 608.91 36.76 13015.66

20
ECP-C 717.73 44.42 354.66

SAA 727.38 46.22 15806.33

25
ECP-C 783.66 57.13 445.66

SAA 794.04 59.44 16207.17

30
ECP-C 805.00 67.55 320.56

SAA 816.39 69.94 16005.50

1
ECP-U 808.90 71.30 194.22

SAA 819.80 73.64 17673.80

To illustrate the reason why SAA has a higher mean cost than ECP, Figure 3 plots the extrap-

olation on the objective value of SAA (i.e., that of (14)) and the evaluation of SAA (i.e., ⇡S) at

di↵erent sample sizes given C = 30: The number of samples required for ⇡
S to be lower than ⇡

E

at C = 30 (which is 805, see Table 1) is large (about 23,000); that required for solving SAA to

6
Details are omitted for brevity and are available upon request.
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Figure 3 (Color Online) Expected cost under SAA at di↵erent sample sizes given C = 30

Figure 4 (Color Online) Objective value and total CPU time of solving SAA with 38,000 samples using the

L-shaped method with multi-cut given C = 30

(a) Objective value (b) Total CPU time (in hours)

optimality is even larger (about 38,000), resulting in an estimated optimal mean cost of 799.30.

However, this mean cost is not attainable because solving SAA to near-optimality on our instances

with 38,000 samples is computation-prohibitive, where we use the L-shaped method with multi-cut

(as the interior method cannot be used due to memory issues). To demonstrate that, Figure 4

shows that SAA cannot converge even within 36 hours: Figure 4(a) plots both the lower bound of

the objective value (obtained as the optimal value of the master problem) and the upper bound

(obtained as the objective value of SAA at current solution), and Figure 4(b) shows that the CPU

time per iteration increases exponentially when the number of iteration is large. The SAA solution

using 38,000 samples at 36 hours leads to a mean cost of 866.06 and a standard deviation of 77.21,

larger than those of SAA in Table 1.

Table 1 also lists the CPU computation time (excluding the evaluation time) of ECP and SAA

in the last column. As seen, ECP computes about 50 times faster than SAA, suggesting that ECP

is a more e�cient computational approach to solve large-scale instances.
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The superior performance of ECP over SAA is even more pronounced on numerical instances of

long-duration charging, about 4.7 hours with fast chargers (see §7.1). Table 2 displays the mean and

standard deviation of the total cost under both approaches, which shows that both measures under

ECP-C are about 10% lower than those of SAA. This is mainly because SAA does not scale well, so

we can compute SAA with only 1,000 sample paths due to memory limit: The number of customer

types is much larger in the long-duration charging case, so we can no longer use the same number

of sample paths (i.e., 8,000) for computing x
S from SAA as in the short-duration charging case.

(Note that when evaluating both ECP-C and SAA, we continue using 10,000 sample paths from

the arrival distributions calibrated for long-duration instances.) As such, we use short-duration

charging cases in the rest of the paper.

Table 2 Performances of ECP-C and SAA on long-duration instances

C Method Total cost E{Demand charge

Mean Std /total cost}

60
ECP-C 404.33 31.52 0.58

SAA(1,000) 454.71 38.31 0.64

50
ECP-C 372.67 27.93 0.58

SAA(1,000) 417.55 34.53 0.64

40
ECP-C 327.68 25.78 0.58

SAA(1,000) 350.92 29.93 0.62

Notes. The number in the parenthesis after SAA indicates the number of sample paths used to compute SAA.

We next show that ECP is near optimal as its optimality gap is at most around 4% in all

instances. We estimate the optimality gap of ECP (i.e., (⇡E � ⇡
⇤)/⇡⇤ ⇥ 100%) using the optimal

value of SAA (not listed in Table 1) as a lower bound of ⇡⇤ (Shapiro et al. 2009). For instance,

when C = 30, this optimality gap of ECP-C is at most (805.00� 773.67)/773.67⇥ 100%⇡ 4.05%,

where ⇡E is 805.00 (see Table 1) and the optimal value of SAA given sample size 8,000 is 773.67. If

we use the estimated optimal value 799.30 in Figure 3, the gap decreases to only 0.71%. Note that

we can also similarly estimate the optimality gap of ECP-U to be at most 4.24%. This gap is much

smaller than that computed using the theoretical bound in (12), 214.67, divided by ⇡
E = 808.90

(see Table 1), which gives the optimality gap of 26.5%, as the former optimality gap is computed

after solving ECP-U while the latter is computed before solving it.

In sum, ECP performs better than other common approaches and achieves a near-optimal total

cost. In §7.4, we consider di↵erent practical implementation issues in the numerical study. In §7.5,

we also use ECP to generate managerial insights to demonstrate its practical relevance further.
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7.4. Practical Considerations in Implementation

7.4.1. Time discretization. As mentioned in §7.1, we discretize time into increments of

15 minutes and compute all policies on this discretization, and cannot discretize time into finer

discretization, such as 1-min, due to multiple reasons including CPU and memory limitations. We

next examine the e↵ect of our discretization by comparing the performance of our 15-min policies

with those on 1-min discretization. To this end, we have to first convert our 15-min policies to be

implementable (i.e., feasible) on 1-min discretization. Note that if we simply divide the charging

quantity for each type in each 15-min period by the number of 1-min’s within this period, the

resulting 1-min level charging quantities in the arrival and departure periods are not necessarily

feasible as they may violate the corresponding charging speed limit constraint in X . For example,

if the 15-min policy in the arrival period is to charge at the maximum speed (i.e., the charging

quantity is K/⌘), the 1-min policy is to charge K/(S⌘), where S is the number of 1-min intervals

in the arrival period: If S < 15, this exceeds K/(15⌘), the charging speed limit under 1-min. Thus,

before the division step, we have to shift the charging quantity on both the arrival and departure

periods to the middle periods of the charging time window.

Specifically, we develop Algorithm 2. Note that in this algorithm, if sv = ⌧v (i.e., the arrival period

is the same as the departure period), the division step (on Line 22) is su�cient to convert the 15-

min policy to be 1-min implementable. Hence, the algorithm needs to shift only when sv < ⌧v (see

Line 7 onward). Lines 8-13 (14-19) shift the excess charging quantity from the arrival (departure)

period to the middle periods of the charging time window. To demonstrate the e↵ectiveness of

Algorithm 2, we compare the following two policies:

• Opt-15minTo1min policy: the 1-min charging policy transformed via Algorithm 2 from the

optimal charging policy solved on 15-min discretization.

• Opt-1-min policy: the optimal charging policy solved directly on 1-min discretization.

Using the optimal policies allows us to isolate the e↵ect of approximation and focus on the per-

formance of Algorithm 2 itself. Therefore, we have to use small 1-min numerical instances where

we can obtain optimal policies by solving SAA with su�ciently many samples. In particular, we

choose a one-hour horizon (i.e., 5 am-6 am), where the number of types with positive arrival rates is

2,439. On such instances, 8,000 samples are su�cient for SAA to generate optimal policies for the

SP. Our experiments on other one-hour horizons with a similarly small number of types show the

same qualitative results, which are omitted for brevity. For obtaining the Opt-15minTo1min policy,

we first compute the optimal 15-min policy under SAA by generating 8,000 samples from Poisson

distributions of customer arrivals with 15-min discretization and then convert it using Algorithm

2. For obtaining the Opt-1-min policy under SAA, we use 8,000 samples generated from Poisson
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Algorithm 2: Transform a 15-min charging policy x into a 1-min implementable policy y

Input: 15-min charging policy xv,t

1 for 1-min customer type v
0 2 [V 0] do

2 set sv dsv0/15e, ⌧v d⌧v0/15e, v (sv, ⌧v, uv0);

3 for 15-min period t2 {sv, ..., ⌧v} do
4 compute the actual 1-min stay duration St of EV of type v

0 in period t;

5 compute x̄v,t K/(15⌘) ·St;
6 end

7 if sv < ⌧v then
8 compute the excess charging quantity in arrival period E max{0, xv,sv � x̄v,sv};

9 update xv,sv  xv,sv �E; set t sv +1;

10 while E > 0 do
11 update xv,t xv,t +E; compute E max{0, xv,t� x̄v,t};

12 update xv,t xv,t�E; set t t+1;
13 end

14 compute the excess charging quantity in departure period E max{0, xv,⌧v � x̄v,⌧v};

15 update xv,⌧v  xv,⌧v �E; set t ⌧v � 1;

16 while E > 0 do
17 update xv,t xv,t +E; compute E max{0, xv,t� x̄v,t};

18 update xv,t xv,t�E; set t t� 1;
19 end
20 end

21 for 1-min period t
0 2 {sv0 , ..., ⌧v0} do

22 set t dt0/15e; set yv0,t0 xv,t/St;

23 end
24 end

Output: 15minTo1min implementable charging policy yv0,t0

distributions of customer arrivals with 1-min discretization. (Note that our SP model on 15-min

discretization can be easily extended to obtain one on 1-min discretization.) We then evaluate both

the Opt-15minTo1min and Opt-1-min policies on new 10,000 samples generated from the same

Poisson distributions with 1-min discretization. We display the mean and standard deviation of

the total cost from both policies in Table 3.

As seen from Table 3, the mean total costs between the Opt-15minTo1min and Opt-1-min policies

are close. This shows that our Algorithm 2 is e↵ective in converting a 15-min policy to a 1-min

implementable policy without losing much optimality.
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Table 3 Performance over a one-hour time horizon (5 am-6 am) with 1-min discretization

Hour Policy Total cost Ratio of

Mean Std demand charge

5am-6am
Opt-1-min 1.046 1.144 0.361

Opt-15minTo1min 1.061 1.163 0.370

Table 4 Performances of ECP and SAA over di↵erent 1-hour time horizons with 1-min discretization

Hour Policy Total cost Ratio of

Mean Std demand charge

8am-9am
ECP-15minTo1min 4.173 2.094 0.340

SAA(3,000)-15minTo1min 4.191 2.131 0.342

12pm-1pm
ECP-15minTo1min 19.015 6.938 0.282

SAA(2,000)-15minTo1min 19.157 7.024 0.287

Notes. The number in the parenthesis after SAA indicates the number of samples used to compute SAA.

Lastly, we show that if we use Algorithm 2 to convert ECP and SAA policies obtained on 15-min

discretization to their respective 1-min policies, their performance comparison is the same as that

under 15-min discretization. We focus on one-hour horizons where the customer types with positive

arrival rates are large, which means the computation is intensive. In particular, we choose 8 am-9

am and 12 pm-1 pm, where the number of types is 16,633 and 23,086, respectively. Consequently,

SAA cannot be computed with 8,000 samples due to memory limit, and we have to use 3,000 and

2,000 computation samples, respectively. In contrast, ECP can be solved easily as it scales well and

does not require samples in computation. (Note that we continue to use 10,000 sample paths for

evaluating both policies.) We display the mean and standard deviation of the total expected costs

under both ECP-15minTo1min and SAA-15minTo1min in Table 4. As seen, similar to the result

on 15-min discretization in Table 1, in either hour, ECP results in both a lower mean and a lower

standard deviation of the total cost than SAA.

In sum, our Algorithm 2 is e↵ective in converting any 15-min policy to a 1-min policy, and the

performance comparison of these converted policies is consistent with those on 15-min discretiza-

tion. Therefore, due to the computational challenges of 1-min discretization, we focus on 15-min

discretization in our numerical experiments.

7.4.2. Data-driven settings. Though in our SP model we assume Poisson arrival distri-

butions with known arrival rates, we next consider the data-driven setting where there may be

estimation errors in the arrival rate (due to various reasons including insu�cient data) or mis-

specification of arrival distribution (e.g., which may not be truncated Poisson). We consider in such
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settings whether ECP or SAA is more a↵ected by comparing their out-of-sample performances.

We benchmark them with two other approaches. The first approach is empirical risk minimization

(ERM), which minimizes the empirical cost on training samples. It di↵ers from SAA used in our

paper in that ERM directly uses the training samples to calculate the empirical cost, whereas SAA

approximates the expected cost by generating new samples from the truncated Poisson distribu-

tions with calibrated arrival rates. The second approach is a robust version of the ECP approach,

labeled RECP. Under this approach, each arrival rate is assumed to be in an interval centered at

the estimated arrival rate, and then we minimize the worst-case total expected cost, which occurs

when the arrival rate is the largest as the cost is non-decreasing in each arrival rate. Specifically,

if we denote the ECP model as minx2X g
E(x,�), the RECP model is obtained by allowing � to

be in the interval [�,�], where � and � are the given lower and upper bounds of �, respectively.

Then we have

min
x2X

max
���

g
E(x,�)()min

x2X
g
E(x,�),

where the equivalence of the two formulations is due to the fact that g
E(x,�) is non-decreasing

in �. We choose �= �̂+M ·
✓P

v2[V ] �̂vp
NV

◆
1, where �̂ is the estimated arrival rates, M is a hyper-

parameter, which we set as 0.5 based on cross-validation, and N is the number of training samples.

Estimation errors in arrival rates. We first examine how estimation errors in arrival rates

a↵ect the performances of all policies where the arrival distribution is correct. To this end, we

use the same distribution (i.e., truncated Poisson) for generating training and testing samples. In

particular, we generate N 2 {50,100,200,365} i.i.d. training samples (recall 365 is the number of

data points for calibrating the arrival rate of each type in our numerical study), which we use to

estimate arrival rates �̂. As N increases, there is more data and thus a smaller estimation error.

We then feed these estimated arrival rates into ECP, SAA, and RECP to compute their respective

policy actions. Note that SAA uses �̂ to generate 8,000 new samples to compute its actions, while

ERM directly uses the N training samples as inputs for the optimization. We then generate from

the original truncated Poisson distribution 10,000 testing samples to compute the out-of-sample

performances of all policies.

The results are shown in Table 5 for C = 30. (Results for when C = 15, 20, and 25 are qualitatively

similar, which are omitted for brevity.) Among all policies, ERM has the highest total expected

cost and the highest associated standard deviation and thus performs the worst. SAA improves

significantly on ERM, as di↵erent from ERM it can generate new samples to represent scenarios

other than the training samples. ECP performs better than both ERM and SAA for any training

sample size. This shows that our ECP continues to perform better than SAA (and a related

approach ERM) in the presence of estimation errors. The performance of ECP can be further
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Table 5 Policy performances in the presence of estimation errors when C = 30

N Method Total cost Ratio of

Mean Std demand charge

50

ECP 835.39 72.97 0.56

ERM 876.84 80.20 0.58

SAA 839.45 73.83 0.56

RECP 804.88 67.65 0.55

100

ECP 823.28 71.12 0.56

ERM 875.77 79.49 0.58

SAA 829.56 72.32 0.56

RECP 804.14 67.47 0.55

200

ECP 815.55 69.86 0.55

ERM 867.05 77.93 0.58

SAA 823.58 71.14 0.56

RECP 803.81 67.36 0.55

365

ECP 810.29 68.78 0.55

ERM 857.30 76.10 0.57

SAA 820.46 70.59 0.56

RECP 803.58 67.27 0.55

improved if we add some robustness to it, i.e., using RECP, which significantly improves on ECP,

especially when the training sample size N is small (for instance, when N = 50 or 100).

To assess how the presence of estimation errors a↵ects the performance of each policy compared

to the case without estimation error, we compare Table 5 with the row for C = 30 in Table 1. We

see that the presence of estimation errors undermines the performances of both ECP and SAA

as the total expected costs for each policy given any N in Table 5 are higher than those in the

row for C = 30 in Table 1 as expected, especially for small N . However, when N = 365 (again the

number of data points for calibrating the arrival rate of each type in our numerical study), the

mean total costs for ECP and SAA are 810.29 and 820.46, respectively, which are close to those

of ECP and SAA with accurate arrival rates in Table 1, i.e., 805 and 816.39, respectively. This

indicates that though our SP model (where ECP and SAA derive their formulation from) has a

large number of customer types and thus may seem over-parameterized, the performance of this

model is satisfactory even in the presence of estimation errors.

Model mis-specification of arrival distribution. We next consider the case when there is

model mis-specification, i.e., the arrival distribution may not be truncated Poisson. To this end,

we use our real arrival data, where the distribution is not necessarily Poisson, and evaluate the

performances of all policies to see which one is a↵ected the most.

We repeat the following experiment five times. In each experiment, we randomly equally partition

the 365 data points (each corresponding to a day) into 5 subsamples, where 4 subsamples are used
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Table 6 Policy performances with model mis-specification when randomly partitioning real data at C = 30

No. of Method Total cost Ratio of

experiment Mean Std demand charge

1

ECP 809.10 102.53 0.55

ERM 851.41 108.06 0.57

SAA 818.18 103.24 0.56

RECP 792.59 95.92 0.54

2

ECP 808.65 101.64 0.55

ERM 850.69 107.33 0.57

SAA 818.14 102.36 0.56

RECP 792.31 94.55 0.54

3

ECP 808.89 101.38 0.55

ERM 854.26 108.25 0.58

SAA 815.82 101.21 0.55

RECP 792.44 95.74 0.54

4

ECP 808.55 101.07 0.55

ERM 851.60 110.38 0.57

SAA 816.48 103.44 0.55

RECP 792.53 95.25 0.54

5

ECP 809.37 102.32 0.55

ERM 853.07 107.42 0.57

SAA 816.54 103.11 0.56

RECP 792.55 96.18 0.54

for training and the remaining one for testing. We use the training subsamples to estimate the

arrival rates and feed the estimates into ECP, SAA, and RECP approaches. (Again, ERM directly

uses the training subsamples without estimating the arrival rates.) Then we evaluate the solutions

obtained for each policy on the testing subsample and report their out-of-sample performances.

We present the results for each experiment given C = 30 in Table 6 (those for other C values are

omitted for brevity). As seen, the results are qualitatively very similar to the case with estimation

errors in arrival rate. In particular, ERM performs the worst, while SAA improves significantly on

ERM. ECP performs better than both ERM and SAA. RECP performs the best. These qualitative

results continue to hold if we partition real data into training and testing in chronological order

for given di↵erent numbers of chargers (see results in Table 7), i.e., when we use the first 4/5 of

the entire data set for training and the rest for testing.

In sum, we show that in the presence of arrival rate estimation errors or arrival distribution

mis-specification, our ECP approach continues to outperform SAA and a related approach (ERM).

The performance of ECP can be significantly improved if we add simple robustness to it. All these

results demonstrate the practical use of ECP in data-driven settings.
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Table 7 Policy performances with model mis-specification when partitioning real data in chronological order

C Method Total cost Ratio of

Mean Std demand charge

30

ECP 794.89 76.14 0.56

ERM 831.82 85.90 0.58

SAA 805.14 72.85 0.57

RECP 774.37 64.35 0.55

25

ECP 776.61 71.46 0.56

ERM 819.65 82.42 0.58

SAA 786.99 72.97 0.56

RECP 757.07 58.54 0.55

20

ECP 718.94 58.13 0.54

ERM 763.17 61.79 0.57

SAA 729.55 54.97 0.55

RECP 699.37 50.36 0.53

15

ECP 609.64 42.91 0.53

ERM 657.45 43.06 0.57

SAA 616.17 42.07 0.54

RECP 587.95 40.68 0.52

7.4.3. Adaptive EV charging setting. As our ECP policy is static and menu-based that

is tailored to customer types, we next examine how well it performs in an adaptive setting where

the uncertainty is revealed over time. We benchmark it with a practically-implementable adaptive

equal charge policy and the rolling horizon implementation of an LP and our ECP.

Equal charge policy: This policy is motivated by Blink and ChargePoint. For instance, Blink

Charging (2022) “allows equal output to each charger based on the number of stations being used

at one time. When one EV is charging, the EV will receive the maximum output. When others

connect, the load will be equally shared between them.” ChargePoint (2022) uses a very similar

policy. We implement their “equal charge” (EQC) policy to ensure the feasibility constraints in X

by first determining the total charging rate X � 0 for all periods and then setting in period t the

charging quantity xv,t for each v 2 Vt as

xv,t =min

(
K,uv � ⌘

t�1X

`=sv

xv,`,max

(
⌘XP
v2Vt

zv
, uv � ⌘

t�1X

`=sv

xv,`�K(⌧v � t)

))
/⌘. (23)

(23) shows that ⌘xv,t is no larger than any of the three terms: The charging speed limit K (first

term), the remaining charging requirement uv � ⌘
Pt�1

`=sv
xv,` (second term), and the third term.

The third term itself is the max of two expressions: The first distributes equally the total charging

rate ⌘X to all the EVs available for charging at the station (i.e.,
P

v2Vt
zv); the second, uv �

⌘
Pt�1

`=sv
xv,` �K(⌧v � t), is the minimum charging quantity in period t to ensure satisfying the

charging requirement before the departure time: The di↵erence between the remaining charging
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requirement (i.e., uv � ⌘
Pt�1

`=sv
xv,`) and the maximum possible quantity that can be charged in

the remaining periods (i.e., K(⌧v � t), which is the maximum speed times the number of periods

left). Note that when X is large enough, EQC becomes the “maximum-speed charging” policy,

which we discuss in §7.5.1. Lemma 2 below shows that this EQC policy is feasible, i.e., x 2X . In

the experiment, we adopt a golden-section search procedure to determine the optimal X over the

interval [0, X̄], where X̄ is a large number.

Lemma 2. Given X � 0, for x under the EQC policy specified by (23), we have x2X .

Rolling horizon implementation of LP and ECP: We implement the rolling horizon version

of a linear program (RH-LP) and our ECP (RH-ECP) similar to Lee et al. (2020). Specifically,

in each period, given the system’s status (e.g., the number of EVs at the station and remaining

charging requirements), RH-LP resolves the deterministic counterpart of our SP model until the

end of the horizon by replacing the future arrivals with their mean values. This deterministic

optimization can be rewritten equivalently as an LP. Please find more details and our Algorithm 3

to implement RH-LP in Online Appendix E.1. We implement RH-ECP in a similar rolling fashion

and relegate the details and our algorithm to Online Appendix E.2.

We next compare ECP with all three benchmark policies. In particular, we compare ECP with

EQC on the large-scale (96-period) numerical instances, and with RH-LP and RH-ECP on the

small-scale (six-period) instances (discussed in Online Appendix C). This is because even though

both RH-LP and RH-ECP can be computed e�ciently on large-scale instances and are thus prac-

tically implementable, it is computational-prohibitive to evaluate both RH-LP and RH-ECP on

these large-scale instances. Both are practically implementable because the computation time in

each period for RH-LP and RH-ECP, respectively, is 3.75 seconds and 2.8 minutes on average

(with 5 minutes at maximum), both of which are su�cient for most practical purposes as they only

need to resolve every 15 minutes or longer. But in terms of evaluation time, recall that we have

to evaluate their performances over 10,000 sample paths, and the evaluation on one sample path

already takes about 3.75 sec/period ⇥ 96 periods = 6 minutes and 2.8 min/period ⇥ 96 periods

⇡ 4.5 hours, respectively: This is because both approaches need to resolve in each period with the

realized uncertainty.

We first show the performances of ECP and EQC evaluated with 10,000 samples in Table 8.

Although ECP is static and menu-based while EQC is adaptive based on the realized uncertainty,

we find ECP outperforms EQC on each instance. This is because, while EQC optimizes only over

the total load X, ECP optimizes the entire charging schedule tailored to each customer type. The
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Table 8 Performances of ECP and EQC on large-scale (96-period) charging instances

C Method Total cost E{Demand charge
Mean Std /total cost}

30
ECP 805.00 67.55 0.55
EQC 810.54 69.93 0.55

25
ECP 783.66 57.13 0.54
EQC 791.32 60.74 0.54

20
ECP 717.73 44.42 0.53
EQC 731.87 49.09 0.53

15
ECP 600.40 35.20 0.51
EQC 620.20 39.59 0.52

10
ECP 441.34 27.71 0.50
EQC 462.77 31.19 0.52

5
ECP 250.43 19.43 0.51
EQC 267.75 21.73 0.54

Table 9 Performances of ECP, RH-LP, and RH-ECP on small-scale (6-period) instances

C d Method Total cost E{Demand charge
Mean Std /total cost}

12

0.23
ECP 6.00 1.76 0.43
RH-LP 6.02 1.76 0.46
RH-ECP 5.99 1.72 0.43

0.46
ECP 8.64 2.53 0.60
RH-LP 8.81 2.63 0.63
RH-ECP 8.59 2.46 0.60

0.93
ECP 13.91 4.08 0.75
RH-LP 14.40 4.40 0.77
RH-ECP 13.77 3.93 0.75

10

0.23
ECP 5.75 1.52 0.44
RH-LP 5.77 1.53 0.46
RH-ECP 5.71 1.48 0.43

0.46
ECP 8.28 2.18 0.60
RH-LP 8.44 2.29 0.63
RH-ECP 8.18 2.10 0.60

0.93
ECP 13.49 3.56 0.75
RH-LP 13.80 3.85 0.77
RH-ECP 13.12 3.37 0.75

8

0.23
ECP 5.41 1.25 0.43
RH-LP 5.26 1.22 0.47
RH-ECP 5.23 1.19 0.43

0.46
ECP 8.08 1.84 0.61
RH-LP 7.72 1.83 0.64
RH-ECP 7.59 1.69 0.60

0.93
ECP 13.00 2.95 0.76
RH-LP 12.65 3.09 0.78
RH-ECP 12.15 2.70 0.75

superiority of ECP over EQC is much more pronounced in long-duration charging instances, which

we omit for brevity.

We next compare ECP with RH-LP and RH-ECP on the small-scale (six-period) numerical

instances in Table 9. We find that RH-ECP performs the best among all the policies in terms



36 Chen, He, and Zhou: An Exponential Cone Programming Approach for Managing EV Charging

of both the mean and standard deviation of the total cost. When C is large, even the (static)

ECP performs better than the sensible adaptive policy RH-LP on many instances. This suggests

our proposed ECP approach is su�ciently adaptive to customer types (arrival/departure time and

charging requirement) and time period.

7.4.4. Role of entropic dominance constraints. We now examine the role of entropic

dominance constraints in constructing our ECP formulation. Recall in §4.2, we obtain our ECP

by leveraging the DRO framework and use the ambiguity set F , which is the intersection of F1,

containing the entropic dominance constraints, and F2, a commonly used ambiguity set with the

support and mean information. To examine the role of F1, we compare the DRO formulation

with F1, which is DRO-Ent (in turn approximated by ECP-C as seen in §4.2), with another DRO

formulation without F1 as follows:

min
x2X

sup
P2F2

EP [c(x, z̃)] . (No-Ent)

In other words, No-Ent is the same as DRO-Ent except that the ambiguity set is F2 instead of F .

Hence, we need to compare ECP-C with No-Ent, which can be reformulated as a tractable LP.

Table 10 Objective values and performances of ECP-C and No-Ent

C Method Objective Total cost
Mean Std

30
ECP-C 899.21 805.00 67.55
No-Ent 1366.00 834.90 71.43

25
ECP-C 891.43 783.66 57.13
No-Ent 1227.68 818.03 60.40

20
ECP-C 854.78 717.73 44.42
No-Ent 1082.74 756.78 46.25

15
ECP-C 779.44 600.40 35.20
No-Ent 916.34 639.09 36.35

10
ECP-C 639.18 441.34 27.71
No-Ent 701.80 478.87 29.32

5
ECP-C 411.01 250.43 19.43
No-Ent 421.15 282.86 19.72

Table 10 compares the objective values and performance evaluations of ECP-C and No-Ent given

di↵erent values of the number of chargers C. We see that as C decreases, the objective value of

ECP-C tends to coincide with that of No-Ent. For instance, when C = 5, their objective values are

very close, di↵ering by about 2%. Nevertheless, when the solutions from ECP-C and No-Ent are

evaluated on 10,000 sample paths, the mean total cost of ECP-C is about 11% smaller than that

of No-Ent. This observation holds for all values of C considered in the table. This highlights the

important role entropic dominance constraints play in the ambiguity set in constructing ECP.
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7.5. Managerial Insights in EV Charging Scheduling

We use ECP-C to first study the value of customer desired departure time information and then

examine the e↵ect of the composition of demand charge on electricity load.

7.5.1. Value of desired departure time information. We study this value by comparing

the performance of ECP-C with that of the maximum-speed charging policy, which charges vehicles

using maximal charging speed (power capacity) until completion on a first-come-first-served basis

and is often used in practice and literature (Zhang et al. 2021). Denote by x
M the charging decision

under this maximum-speed charging policy. Then x
M
v,t =max{0,min{K,uv � (t� sv) ·K}} for all

v 2 [V ] and t 2 Tv. We evaluate the maximum-speed charging policy in terms of both the mean

and standard deviation of the total cost analogous to the evaluation of ECP-C. We also evaluate

under both policies the mean of the maximum electricity load during the entire horizon, on-peak

hours, mid-peak hours, and o↵-peak hours. Table 11 lists all the performance measures of ECP-C

relative to those of the maximum-speed charging policy. Using column 2 as an example, if we

denote ⇡
M =EPC [c(x

M
, z̃)], column 2 represents (⇡M �⇡

E)/⇡M ⇥ 100%.

Table 11 Performance improvement of ECP-C over the maximum-speed charging policy

C Total cost Expected maximum load

Mean Std Overall On-peak Mid-peak O↵-peak

15 13.60% 27.87% 23.64% 23.56% 21.43% 10.33%

20 12.12% 25.49% 20.99% 20.68% 18.56% 8.41%

25 11.22% 21.80% 18.91% 19.00% 16.03% 8.70%

30 10.99% 19.02% 17.94% 18.89% 13.65% 8.59%

Notes. The 2nd and 3rd columns are the percentage reduction in the mean and standard deviation, respectively, of

the total cost of ECP-C compared with the maximum-speed charging policy. Analogously, the 4th to 7th columns

are the percentage di↵erence of the mean of the maximum load over the entire time horizon, on-peak hours,

mid-peak hours, and o↵-peak hours, respectively. Note also that the expected maximum load over the entire horizon

(4th column) di↵ers from the maximum of the expected maximum load during di↵erent time intervals (in the 5th to

7th columns), as the maximum load may occur in di↵erent time intervals.

As seen in Table 11, compared with the maximum-speed charging policy, ECP-C results in a

lower mean and standard deviation of the total cost, e.g., with 30 chargers, 10.99% and 19.02%,

respectively. This lower cost of ECP-C is reflected in the lower expected maximum electricity load

during any time interval, implying a more smooth load. Moreover, the lower expected maximum

load from ECP-C alleviates the potential overcharge to EVs under the maximum-speed charging

policy, and thus ECP-C can also lower the risk of EV battery degradation (Thompson 2018). When

station capacity decreases, the di↵erence between ECP-C and the maximum-speed charging policy
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increases. This di↵erence can be regarded as the value of information on the customer departure

time, as ECP-C di↵ers from the maximum-speed charging policy in that while the former uses this

information, the latter does not. This value is even higher for the long-duration charging instances,

which we omit for brevity. These results suggest that a charging station can benefit significantly

from incorporating the customer desired departure information, as our SP model does, to smooth

the electricity load and reduce the total cost.

7.5.2. E↵ect of the composition of the total demand charge on electricity load. The

rate structure of most utility firms has three common components of Time-Of-Use (TOU) demand

charges, namely on-peak, mid-peak, and all-period demand changes (see their corresponding hours

in Figure 5). We examine the following compositions of the total demand charge: (i) without any

demand charge; (ii) with only on-peak demand charge; (iii) with only mid-peak demand charge;

(iv) with both on-peak and mid-peak demand charges; (v) with only all-period demand charge;

and (vi) with both all-period and on-peak demand charges. We compare these with the baseline

case where all three components exist. Given each composition of the total demand charge, we

compute x
E, the optimal solution to ECP-C, and then use it to compute the mean and standard

deviation of the electricity load in the charging station for each period, which we plot in Figure 5.

We make the following observations:

Observation 1. In the absence of any demand charge, the TOU energy charge creates an artificial

electricity load spike around the transitions between any two time intervals. As seen in Figure 5a,

the expected load swings significantly around the hours between any two sets of time intervals:

around hour 9 (between o↵-peak and mid-peak hours) and around hours 12 and 18 (between mid-

peak and on-peak hours). This means that the TOU energy charge (see tari↵ structure in §7.1)

alone is not su�cient to smooth the electricity load and may even create artificial spikes, putting

undue stress on the electric grid. This is consistent with the observation in a similar setting in

practice (Zhang and Qian 2018): At midnight, there is a huge spike in electricity charging load

from residential customers, because their electricity tari↵ structures do not include any demand

charge while their electricity price at midnight is lower than that at hour 11 pm. We show this

observation holds when the decisions are near optimal in the EV charging management setting.

Observation 2. Either an on-peak or mid-peak demand charge alone cannot smooth the electricity

load and may even create a larger load swing than the case without any demand charge. As shown in

Figure 5b, when only an on-peak demand charge exists, the electricity load is smoothed only within

on-peak hours, but not over time. In particular, there are some artificial spikes in the load around

all transition hours (i.e., between on-peak and mid-peak hours and between mid-peak and o↵-peak

hours) because the charging station simply shifts the high load from on-peak hours to other hours.
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Figure 5 (Color Online) Electricity load under ECP-C for di↵erent compositions of the demand charge given

C = 30

(a) No demand charge (b) On-peak demand charge

(c) All-period demand charge
(d) All-period, on-peak, and mid-peak demand
charge

Notes. The black, white, and gray regions on the x-axis represent on-peak hours (hours 13 to 18), mid-peak hours

(hours 9 to 12 and hours 19 to 23), and o↵-peak hours (hours 1 to 8 and hour 24), respectively.

These spikes are even higher than those within the same hours when there is no demand charge,

and thus impose more stress on the electric grid. When there is only a mid-peak demand charge,

an analogous pattern occurs (the corresponding figure is omitted for brevity). Similarly, when both

an on-peak demand charge and mid-peak demand charge exist, the load is smoothed only during

these combined hours, and load spikes occur around hours between mid-peak and o↵-peak hours

(figure omitted for brevity).

Observation 3. An all-period demand charge alone is su�cient to smooth electricity load over

time. In contrast to the case in which there is no demand charge or only either an on-peak or

mid-peak demand charge, an all-period demand charge results in a smooth electricity load (see

Figure 5c). The load curve for this case almost coincides with that for the case in which all three

components of demand charge exist (see Figure 5d). This is because, with an all-period demand
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charge alone, the charging station is incentivized to reduce the highest load over the entire time

horizon.

7.6. Joint Pricing and Scheduling

We use both ECP and SAA approaches to solve the joint pricing and scheduling problem in (17).

For simplicity, we set C = 30; we use only all-period demand charge and set d= $0.930/kW; we set

[p, p] as [0.3,0.7], rv = 4/3 for all v 2 [V ], and �̄v so that the resulting arrival rates when p= 0.5

(the mid point of [p, p]) are the same as those in §7.1. We set the stopping tolerance �= 0.01.

Figure 6 (Color Online) Performance of the alternating optimization algorithm on JPS-C

(a) Initial p= 0.3 (b) Initial p= 0.7

Notes. The objective values on the dotted line at integer number of iterations correspond to the optimal values of

the scheduling optimization, while those at the half-integer number of iterations correspond to the optimal values of

the pricing optimization. The asterisks (⇤) correspond to the expected profit in (17) evaluated at JPS-C solutions

after each iteration.

We solve (17) using JPS-C with an alternating optimization algorithm analogous to Algorithm 1.

Figure 6 plots the objective values of JPS-C and evaluations of JPS-C (i.e., substituting the JPS-C

solutions to (17) on 10,000 sample paths) at two di↵erent initial values of p, 0.3 and 0.7. We find

that the algorithm converges in four iterations to give the same price p= 0.49. Hence, our method

is fast and not sensitive to the initial price p. Although our algorithm is not guaranteed to converge

to a globally optimal solution of JPS-C, it performs well on our numerical instances, where p= 0.49

can be numerically verified as the globally optimal price.

We also solve (17) using SAA, for which we cannot directly extend (14) as the arrival rates of

Poisson random variables, �, depend on the pricing decision, p. Thus, we first enumerate p and solve

for each value of p the corresponding SAA problem to obtain an expected profit, and finally select

the value of p which results in the highest expected profits. We use 8,000 samples and enumerate p

from 0.3 to 0.7 with a stepsize of 0.005. Figure 7 plots the expected profits under SAA at di↵erent
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p2 [0.45,0.54] (while the rest of the range is omitted), which shows that the optimal p under SAA

is 0.48. (Note that JPS-C does not need to enumerate p and instead uses the alternating algorithm

mentioned above, so there is only one objective value under JPS-C in Figure 7.)

Figure 7 (Color Online) Expected profits under SAA and JPS-C

We evaluate SAA by substituting its solutions into (17) on 10,000 samples to obtain the cor-

responding expected profits. The optimal price p= 0.48 under SAA leads to an evaluation of the

expected profits under SAA to be 739.62, lower than the expected profits under JPS-C, which is

749.91. The di↵erence between these two is significant as the standard error of the expected profits

under both is 0.72, which is very low compared to the di↵erence between their expected profits.

The superiority of JPS-C is due to ECP-C’s better performance in scheduling optimization than

SAA, as mentioned in §7.3. Moreover, JPS-C runs much faster, while SAA requires solving 81

large-scale SAA instances, each of which can be time-consuming. In sum, ECP (or JPS-C) is a

better approach than SAA in solving the joint pricing and scheduling problem.

8. Conclusions and Future Work

We use an ECP approach to examine the EV charging management of a service provider who faces

uncertain arrivals of customers with heterogeneous arrival/desired departure times and charging

requirements. We formulate this problem as an SP where customer arrivals follow a joint Poisson

distribution to minimize the expected total electricity cost which includes demand charges. As the

SP is large-scale, we develop ECP approximations. When the service provider is uncapacitated,

we develop an ECP approximation by bounding the largest order statistic, introduced by the

demand charge, using exponential cones based on the epigraph of MGFs of the Poisson customer

arrivals. We show that this ECP gives an upper bound of the SP and characterize a bound on
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the gap between their theoretical performances. In the capacitated case, we develop another ECP

approximation by also using the idea from DRO of employing an entropic dominance ambiguity

set. Rather than mitigating distributional ambiguity, we use DRO to derive an ECP as a tractable

upper bound of the corresponding SP. Moreover, we extend our ECP approach to jointly optimize

pricing and scheduling and propose an alternating optimization algorithm to solve the resulting

ECP approximations e�ciently.

We then benchmark our ECP approach with two common approaches in solving SPs, SAA and

DRO, on numerical instances calibrated to real tari↵ and EV customer arrival data. As our numer-

ical instances are large-scale (with about 80,000 random variables and 700,000 decision variables),

we show that DRO cannot be solved on these instances; ECP runs about 50 times faster than

SAA and results in not only a lower standard deviation of the total cost but also a lower mean

of this cost because SAA does not scale well and cannot be solved to optimality in a reasonable

amount of time. We also find the optimality gap of ECP is at most around 4% on all instances.

The superior performance of ECP over SAA continues to hold when considering three practical

implementation issues: a finer time discretization, a data-driven setting when there are estimation

errors in the arrival rate (due to insu�cient data) or even the mis-specification of the arrival distri-

bution, and an adaptive charging setting where uncertainty is revealed over time. In the extended

model of joint pricing and scheduling, ECP results in a higher expected profit than SAA and also

runs faster. In addition, ECP is a deterministic approximation, while SAA depends on samples

generated. Therefore, ECP emerges as the best approach in solving the EV charging problem.

We finally use our ECP approach to generate insights on a similar set of data-calibrated numerical

instances and find the following: First, it is beneficial for the charging service provider to use the

customer departure information, as the ECP approach outperforms by about 11% a commonly-used

maximum-speed charging policy which ignores such information. Second, a TOU energy charge

alone (i.e., without any demand charge) creates artificial spikes in the electricity load, consistent

with the observation in practice, which we show to hold when the decisions are near optimal in the

EV management setting. While either an on-peak or mid-peak demand charge shifts the artificial

spikes and could not smooth the electricity load, an all-period demand charge alone can result in

a load as smooth over time as the case in which all three types of demand charge exist.

Our ECP approach is appealing for use in practice by a charging service provider as it outper-

forms various benchmarks considering di↵erent practical implementation issues. The managerial

insights can give guidance for charging service providers in terms of the value of collecting depar-

ture time information from customers as well as policymakers in designing the electricity tari↵

structure to smooth electricity load.
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There are a few promising avenues to extend this work. First, our SP model assumes that the

departure time provided by customers is accurate. In practice, customers may underreport their

departure time to reduce the risk of insu�cient charge upon pickup, and thus it is potentially

beneficial for the service provider to charge less aggressively to minimize the total expected cost.

Considering this behavior should prove to be fruitful. Second, our methods to construct ECP

approximations may be applicable to other two-stage stochastic linear programs with fixed recourse.
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Online Appendix for An Exponential Cone Programming
Approach for Managing Electric Vehicle Charging

Appendix A: Proofs.

Proof of Theorem 1. For simplicity, we denote h(x),EP1 [c(x, z̃)]; for any given µ> 0, let

h̄(x;µ),
X

s2[T ]

esfs(x,�)+ d

0

@µ ln
X

t2[T ]

exp

 
X

v2Vt

�v� (xv,t/µ)

!
+max

t2[T ]
ft(x,�)

1

A ;

h(x),
X

s2[T ]

esfs(x,�)+ d

✓
max
t2[T ]

ft(x,�)

◆
.

Let (x̄, µ̄) be the optimal solution to infx2X ,µ>0 h̄(x;µ), or equivalently the optimal solution to ECP-U by

(6) in the proof of Proposition 1, and µ
⇤ be the optimal solution to infµ>0 h̄(x⇤;µ). Note that h(x) is a lower

bound of h(x) for any x2X because maxt2[T ] ft(x,z) is convex in z. So due to Jensen’s inequality, we have
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And h̄(x;µ) is an upper bound of h(x) from Proposition 1 for any µ > 0. Based on the lower bound and

upper bound of x̄, we bound the performance of x̄ in the following:
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where in the first inequality we have h(x̄) h̄(x̄; µ̄) and h̄(x̄; µ̄) h̄(x⇤;µ⇤) due to definition of (x̄, µ̄) and

h̄(x;µ). Note that for any x2X and µ> 0, we have
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is increasing. Thus, by taking the minimum

over µ> 0, we obtain the performance guarantee for x̄ in (12).

Proof of Lemma 1. F1\F2 ✓F is clearly true because F1\F2 includes all the constraints in F . To prove

F ✓F1 \F2, we next show that any z̃ that satisfies the following also satisfies EP [z̃]�:

lnEP [exp (✓
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For each v 2 [V ], consider ✓v , (0, ...,✓v,0, ...,0), i.e., every component is 0 except one, which is strictly

positive. Then we have lnEP [exp (✓0
z̃)] = lnEP [exp (✓v z̃v)] �v(e✓v�1). Taking exponential function on both
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sides we have an equivalent inequality EP [exp (✓v z̃v)] exp (�v(e✓v � 1)) . Using Taylor’s expansion on both

sides of the inequality, we have for each ✓v > 0
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where the second equality is from Fubini’s theorem. After simplifying and dividing ✓v on both sides of
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then letting ✓v! 0+, we get EP [z̃v] �v for each v 2 [V ]. Hence EP [z̃]�. ⇤
Proof. of Proposition 2. The support constraint of PC in (1) are in the third line in the definition of

F . Let z̃ ⇠ PC and w̃ ⇠ P1 (i.e., the vector of independent Poisson random variables w̃v with arrival rate

�v > 0), and denote the joint distribution of (z̃, w̃) as P̄. By the definition of z̃, we know z̃  w̃ holds almost

surely. Then ✓
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w̃ holds for all ✓� 0 with probability one. So we have
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where the inequality is due to the monotonicity of lnEP̄ [exp(·)] and the third equality follows from (4). Hence

PC 2F . ⇤
To prove Proposition 3, we establish the next lemma first.

Lemma 3. For a piece-wise linear convex function g(z),maxi2[I] {x0
Aiz} and any random vector z̃ ⇠ P,

we have
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Proof of Lemma 3. Note (25) holds when y= 0 for all i2 [I], we have
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Note that for all z and y, we have g(z) maxi2[I] {y0
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conclusion. ⇤
Proof of Proposition 3. Since DRO-Ent is an upper bound of (3), we then obtain an upper bound of

DRO-Ent, which then becomes an upper bound of (3). We can then bound supP2F EP [c(x, z̃)] as follow,
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Then we derive an upper bound for each of the two terms on the RHS of (26). For the first term, due to the

fact F ✓F2 (based on Lemma 1), we have
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Using standard duality results, we have

sup
P2F2

EP

2

4
X

s2[T ]

esfs(x, z̃)

3

5= inf
a,b�0

a+ b
0
�

s.t.
X

s2[T ]

esfs(x,z) a+ b
0
z 8z 2Z

= inf
a,b�0

a+ b
0
�

s.t. sup
z2Z

X

s2[T ]

esfs(x,z)� b
0
z  a

(27)

Note that the dual of supz�0

nP
s2[T ] es

P
v2Vs

xv,szv �
P

v2[V ] bvzv |
P

v2Vt
zv C,8t2 [T ]

o
 a is

inf
⌫�0

8
<

:C

X

t2[T ]

⌫t |
X

s2Tv

xv,ses� bv 
X

t2Tv

⌫t,8v 2 [V ]

9
=

; a,

which is equivalent to equation (13g) and (13h). Therefore, (27) becomes
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We next obtain an upper bound of supP2F EP
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. Since c(x,z) is a piece-wise linear

convex function of z given x, we have
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{ft(x�y, z̃)}
��

,

(29)

where the equality is from Lemma 3 and the second inequality is from Lemma 1. We next bound

supP2F1 EP
⇥
maxt2[T ] ft(x, z̃)

⇤
and supP2F2 EP

⇥
maxt2[T ] ft(x, z̃)

⇤
. Similar to the proof of Proposition 1, for

any y� 0, we have

sup
P2F1

EP


max
t2[T ]

ft(y, z̃)

�
= sup

P2F1

EP


max
t2[T ]

{ft(y, z̃)� ft(y,�)+ ft(y,�)}
�

 sup
P2F1

EP


max
t2[T ]

{ft(y, z̃)� ft(y,�)}
�
+max

t2[T ]
ft(y,�)

 µ ln
X

t2[T ]

sup
P2F1

EP [exp ((ft(y, z̃)� ft(y,�))/µ)] +max
t2[T ]

ft(y,�)

 µ ln
X

t2[T ]

exp

 
X

v2Vt

�v

�
e
yv,t/µ� 1� yv,t/µ

�
!
+max

t2[T ]
ft(y,�),

which has the same form as (7). By the same argument as in the proof of Proposition 1, we can bound

supP2F1 EP
⇥
maxt2[T ] ft(y, z̃)

⇤
by

inf
,�,µ>0,⇠,⇣

d (+ �)

s.t. (13a)� (13d).
(30)
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Similar to (28), we bound supP2F2 EP
⇥
maxt2[T ] {ft(x�y, z̃)}

⇤
using the strong duality results, i.e.,

sup
P2F2

EP


max
t2[T ]

{ft(x�y, z̃)}
�
= inf

↵,��0
↵+�

0
�

s.t. ft(x�y,z) ↵+�
0
z 8z 2Z, t2 [T ]

= inf
↵,��0

↵+�
0
�

s.t. sup
z2Z

ft(x�y,z)��
0
z  ↵ 8t2 [T ]

= inf
↵,⇢�0,��0

↵+�
0
�

s.t. (13e), (13f)

��v 
X

k2Tv

⇢
k
t 8t2 [T ], v 2 [V ]\Vt

(31)

Note ��v 
P

k2Tv
⇢
k
t are redundant. Combining bound (26), (28), (29), (30), and (31) and optimizing

over x, we get an upper bound of the objective function supP2F EP [c(x, z̃)] for any x2X as ECP-C. ⇤
Proof of Theorem 2. We denote ECP-C for the case when capacity equals C1 and C2 (C1 C2) by ECP-

C1 and ECP-C2, respectively. Any feasible solution to ECP-C2 is also feasible to ECP-C1: See constraints

involving C in ECP-C. Hence, compared to ECP-C1, the feasible region for ECP-C2 is no larger. Since the

objective function of ECP-C does not depend on C, the optimal value of ECP-C2 is higher than that of

ECP-C1.

Next, we prove the optimal value of ECP-C is less than that of ECP-U for any given value of C. We

substitute a= 0, bv =
P

s2Tv
xv,ses, ⌫ = 0, y = x, ⇢= 0, ↵= 0, and �= 0 into ECP-C: i) all the constraints

are degenerated to the constraints in ECP-U; ii) the objective function becomes

a+ b
0
�+ d (+ �+↵+�

0
�) =

X

s2[T ]

es

X

v2Vs

xv,t�v + d (+ �) =
X

s2[T ]

esfs(x,�)+ d (+ �) ,

which is the same as that of ECP-U. This means that there always exists a feasible solution in ECP-C that

attains the optimal value of ECP-U. Therefore, the optimal value of ECP-C for any C is upper bounded by

that of ECP-U.

Since the optimal value of ECP-C is monotonic in C and bounded by the optimal value of ECP-U, it

converges to a value upper bounded by the optimal value of ECP-U as C!1. ⇤
Derivation of DRO-C. Note that EP

⇥PT

s=1 esfs(x, z̃)
⇤
=
PT

s=1 esfs(x,µ) for any P2F⌃. The dual of the

maximization problem supP2F⌃
EP
⇥
maxt2[T ] ft(x, z̃)

⇤
is

inf
↵,�,�⌫0

↵+�
0
µ+� • (µµ0 +⌃)

s.t. ↵+�
0
z+� • zz0 � ft(x,z) 8z 2Z,8t2 [T ].

(32)

As �⌫ 0, the constraint in (32) can be written as ↵+�
0
z+�•zz0 �

P
v2Vt

xv,tzv 8z 2Z, which is equivalent

to infz2Z,U⌫zz0 ↵+�
0
z+� •U �

P
v2Vt

xv,tzv � 0. The left-hand side of this constraint is equivalent to

inf
z�0,U

↵+�
0
z+� •U �

P
v2Vt

xv,tzv

s.t.

2

4 1 z
0

z U

3

5⌫ 0

P
v2Vs

zv C 8s2 [T ]
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because U ⌫ zz
0 is equivalent to

2

4 1 z
0

z U

3

5 ⌫ 0 based on Schur’s complement. Note that Slater’s condition

holds for the above conic linear program. The optimal value of this above conic linear program equals its

dual optimal value, which is given as

sup
,⇣t�0,⇠t�0,yt

↵��C
P

s2[T ] ⇣
t
s

s.t.

0

@  y
t0

y
t �

1

A⌫ 0

2yt
v = �v �xv,t� ⇠

t
v +
P

s2Tv
⇣
t
s 8t2 [T ],8v 2 Vt

2yt
v = �v � ⇠

t
v +
P

s2Tv
⇣
t
s 8t2 [T ],8v 2 [V ]\Vt.

As we have ↵��C
P

s2[T ] ⇣
t
s � 0, (32) is equivalent to the following:

min
↵,�,�,

⇠t�0,⇣t�0,yt,8t2[T ]

↵+�
0
µ+� • (µµ0 +⌃)

s.t.

0

@↵�C
P

s2[T ] ⇣
t
s y

t0

y
t �

1

A⌫ 0 8t2 [T ]

2yt
v = �v �xv,t� ⇠

t
v +
P

s2Tv
⇣
t
s 8t2 [T ],8v 2 Vt

2yt
v = �v � ⇠

t
v +
P

s2Tv
⇣
t
s 8t2 [T ],8v 2 [V ]\Vt

This formulation then gives the SDP formulation of DRO-C in §5.2.

Proof of Proposition 4. Note EPC

hP
v2[V ] puv z̃v

i
=
P

v2[V ] puv�v. Combining it with epigraph (8) in

Proposition 1 and the model in (17), we conclude the proof. ⇤
Proof of Proposition 5. Since the problems (18) and (19) are maximizing concave functions over convex

sets, the objective values should be larger after optimization since they are globally optimal. Hence, the

objective value is non-decreasing in Algorithm 1. Note the objective function in JPS-U is continuous with

respect to pricing decision p and p is in a compact interval, and thus the objective value must be bounded.

Therefore, the sequence of optimal values generated by Algorithm 1 must converge since it is monotone and

bounded. ⇤
Proof of Lemma 2. As mentioned in §3, for any type v 2 [V ], we have uv  K(⌧v � sv + 1). For type

v 2 [V ] with sv = ⌧v and thus uv K, (23) gives xv,⌧v =min
n
K,uv,max

n
⌘XP

v2Vt
zv
, uv

oo
/⌘ = uv/⌘, which

trivially satisfies both constraints in X . For type v 2 [V ] with sv < ⌧v, by the construction of xv,t, we note

that xv,t K/⌘ (the maximum-speed constraint in X ) and
Pt

`=sv
⌘xv,`  uv for all t2 Tv. We also note that

xv,t =min

(
K,uv �

t�1X

`=sv

⌘xv,`,max

(
⌘XP
v2Vt

zv
, uv �

t�1X

`=sv

⌘xv,`�K(⌧v � t)

))
/⌘

�min

(
K,uv �

t�1X

`=sv

⌘xv,`,
⌘XP
v2Vt

zv

)
/⌘� 0,

where the last inequality follows from
Pt�1

`=sv
⌘xv,`  uv and X � 0. Thus, the second constraint in X holds.

We next show the first constraint in X holds by proving
Pt

`=sv
⌘xv,` � uv �K(⌧v � t) for all t 2 Tv via

induction.
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In the first period t = sv, (23) gives xv,sv = min

⇢
K,uv,max

⇢
⌘XP

v2Vsv
zv
, uv �K(⌧v � sv)

��
/⌘ �

min{K,uv, uv �K(⌧v � sv)}/⌘= (uv�K(⌧v� sv))/⌘: The last equality is due to min{K,uv}� uv�K(⌧v�

sv), which in return results from K(⌧v � sv) � 0 and K(⌧v � sv + 1) � uv. Thus, the hypothesis holds for

t= sv. Suppose the hypothesis holds for all t t
0� 1, we next prove this holds for t= t

0 2 Tv. Note that

⌘xv,t0 �min

(
K,uv �

t0�1X

`=sv

⌘xv,`, uv �
t0�1X

`=sv

⌘xv,`�K(⌧v � t
0)

)
= uv �

t0�1X

`=sv

⌘xv,`�K(⌧v � t
0),

where the equality is because
Pt0�1

`=sv
⌘xv,` � uv�K(⌧v� t

0 +1) by the induction hypothesis for period t
0� 1.

This completes the induction of
Pt

`=sv
⌘xv,` � uv �K(⌧v � t).

When t= ⌧v, we obtain
P⌧v

`=sv
⌘xv,` = uv by noting that

P⌧v
`=sv

⌘xv,`  uv and
P⌧v

`=sv
⌘xv,` � uv from the

above. In sum, the EQC policy defined in (23) is feasible. ⇤

Appendix B: Data Calibration

Demand charge calibration. d̂t is obtained by dividing the sum of three demand charges in a month by

30 (i.e., scaling to those of a day): all-period demand charge (termed “facility-related demand charge” in

the tari↵ structure, and applicable to all periods throughout the horizon at $13.94/kW); peak-hour demand

charge (applicable only to on-peak hours at $16.20/kW); and mid-peak demand charge (applicable only to

mid-peak hours at $4.95/kW).

Preprocess EV charging data. We preprocess the data as follows: We remove those charging events where

either the plug-in duration (the time interval between start time and end time) is more than 4 hours (as

most are less than 4 hours), or the charging power (total electricity charged divided by plug-in duration) is

larger than 43 kW, or the total electricity charged is either less than 0.5 kWh or greater than 62.5 kWh. In

the end, we retain 93.53% of the original charging events and obtain 101,707 charging events in total, i.e.,

278.65 daily charging events on average. Note that the sample size for calibrating each type is 365 as each

day has a data point.

Long-duration charging problem setup. The problem setup is the same as the short-duration charging

setup, except we use the data for fast chargers, where the maximal charging rate is 22 kW. In this case, the

stay duration is longer, and we assume the longest stay duration is 8 hours, i.e., L= 32, greater than that

of 70% of the charging events in the data. This duration is also reasonable for workplace charging. We set

the maximal charging requirement to be 30 kWh, which is larger than that of 98% of the charging events

in the data. In this case, the expected number of EVs each day is 196.91, and the number of types V is

85,536, among which 21,426 have positive arrival rates. (Note that if the longest stay duration is a whole

day, i.e., L = 96, we have 269,856 types, among which 33,177 have positive arrival rates. It is much more

computationally intensive.) We plot the average number of EVs at the station in Figure 8.

Appendix C: Details of computation results on small, six-period instances

Experiment settings. The longest stay duration for all EVs is 3 periods. We set U = 6 kWh and u2 [U ];

K = 3 kW/period; and ⌘= 0.9. We set the unit energy charge in period t to be ê16t (see §7.1). Let us denote

the calibrated arrival rates for the 96-period instances by �̂. We then set the arrival rate for the 6-period
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Figure 8 Average number of EVs at the charging station for the long-duration charging case

instances to be �̂ taken every 16 periods, and multiply them by 16 times in order to have a comparable

number of charging events in the horizon as in the 96-period case, i.e., the arrival rate for type (s, ⌧, u) equals

16�̂16s,16s+(⌧�s),3u. We also vary the number of chargers, C, from the set {12,10,8}, for which the service

level is 98.69%, 95.65%, and 88.55%, respectively.

Computation and evaluation. For DRO-C, we generate 5,000 samples and use the sample mean and

covariance as µ and ⌃ in the ambiguity set (15), respectively. We use SAA with a 5,000 sample size, which

already converges, and implement SAA five times and take the average performance of these five solutions.

We use the interior point method of SAA (converging within 0.5 seconds for all values of C and d considered,

see Table 12), faster than the L-shaped method with multi-cut, which is faster than this method with single

cut. Figure 9(a) and (b) plot for the L-shaped method with single cut both the lower and upper bounds of

the objective value and CPU time in each iteration; those of multi-cut version are plotted in Figure 9(c)

and (d). As seen, the multi-cut version converges within four seconds, while the single cut version cannot

converge within 12 hours and converges very slowly after several iterations.

Performance of ECP-C, SAA, and DRO-C. Table 12 lists for all three approaches under di↵erent values

of C and d the performance evaluated on 10,000 sample paths, including the mean and standard deviation

of the total cost, expected ratio of the demand charge and the total cost, and CPU time. Among all three

approaches, SAA has the lowest mean cost, which is statistically significant given the small standard error

of the mean cost under any approach. This is expected as it converges to the optimal solution.

DRO-C has the second-lowest mean total cost, lower than ECP-C. This may be because DRO-C gives

a sharper upper bound of the SP model than ECP-C does on small instances. However, the performance

of DRO-C should deteriorate as the problem size increases. We illustrate this by comparing the upper

bound of EP
⇥
maxv2[V ] z̃v

⇤
computed using both DRO and ECP where z̃v ⇠ Poisson(�v) and V is the

dimension of the random vector, which represents the problem size. We set �v equal to 7 and 75 so that
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Table 12 Performance of ECP-C, SAA, and DRO-C on small, six-period instances

C d Method Total cost E{Demand charge CPU

Mean Std /total cost} Time (s)

12

0.23

ECP-C 6.00 1.76 0.43 0.08

SAA 5.96 1.74 0.45 0.50

DRO-C 5.97 1.75 0.44 1354.95

0.46

ECP-C 8.64 2.53 0.60 0.06

SAA 8.57 2.49 0.61 0.49

DRO-C 8.60 2.51 0.60 1223.42

0.93

ECP-C 13.90 4.08 0.75 0.06

SAA 13.74 4.01 0.75 0.50

DRO-C 13.80 4.05 0.75 1039.48

10

0.23

ECP-C 5.75 1.52 0.44 0.05

SAA 5.72 1.52 0.45 0.49

DRO-C 5.73 1.52 0.44 1365.50

0.46

ECP-C 8.28 2.19 0.60 0.06

SAA 8.23 2.18 0.61 0.48

DRO-C 8.25 2.19 0.60 1304.83

0.93

ECP-C 13.49 3.56 0.75 0.05

SAA 13.20 3.51 0.75 0.50

DRO-C 13.25 3.53 0.75 1027.80

8

0.23

ECP-C 5.41 1.25 0.43 0.06

SAA 5.22 1.22 0.45 0.43

DRO-C 5.23 1.22 0.44 1217.52

0.46

ECP-C 8.08 1.84 0.61 0.05

SAA 7.51 1.75 0.60 0.43

DRO-C 7.54 1.76 0.60 1202.28

0.93

ECP-C 12.99 2.95 0.76 0.05

SAA 12.04 2.83 0.75 0.42

DRO-C 12.11 2.83 0.75 1114.59

EP
⇥
maxv2[V ] z̃v

⇤
is close to the expected peak load under the optimal solution in the 6-period and 96-period

instance (i.e., EP
⇥
maxt2[6] ft(x⇤

, z̃)
⇤
and EP

⇥
maxt2[96] ft(x⇤

, z̃)
⇤
), respectively. Figure 10 plots the upper

bound of EP
⇥
maxv2[V ] z̃v

⇤
obtained by DRO and ECP compared with the true value of EP

⇥
maxv2[V ] z̃v

⇤

obtained via Monte-Carlo estimation. As seen, ECP bound becomes much sharper than DRO for large V

(see Figure 10b). Therefore, even if DRO-C can be solved for a large instance, its solution may not be as

good as ECP-C.

In addition, ECP-C is around eight times faster than SAA, both of which are thousands of times faster

than DRO-C because DRO-C solves an SDP.

Appendix D: Performance of SAA

Figure 11 plots the performance of SAA at di↵erent sample sizes, where Figure 11(a) shows that at the

largest sample size considered (i.e., 8,000), SAA has the lowest mean and standard deviation of the total

cost, though also the longest computation time (in Figure 11(b)).
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Figure 9 Comparison of single cut and multi-cut L-shaped methods on six-period instances (C = 10, d= 0.46)

(a) Objective value under single cut (b) Total CPU time (in seconds) under single cut

(c) Objective value under multi-cut (d) Total CPU time (in seconds) under multi-cut

Figure 10 Upper bound of EP
⇥
maxv2[V ] z̃v

⇤
obtained by DRO and ECP where z̃v ⇠ Poisson(�v)

(a) �v = 7 (b) �v = 75

Notes. In (b), note that DRO for the cases when the dimension V > 46 cannot be solved to the desired accuracy and

thus is not shown.

Appendix E: Rolling horizon implementation of LP and ECP

For notational convenience, for any t2 [T ], we write [V ] = [V ]t+ [ [V ]t�, where [V ]t+ = {v 2 [V ] : sv � t} and

[V ]t� = {v 2 [V ] : sv  t� 1}, denoting the customer types that will arrive from period t onward and those

that have arrived by period t� 1, respectively. Recall from §3 that Vt0 is the set of customer types at the
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Figure 11 Performance of SAA on 96-period instances with di↵erent sample sizes at C = 30

(a) Mean and standard deviation of total cost (b) Total CPU time in seconds

Notes. In (a), the number in the parenthesis of the legend represents the sample size.

station in period t
0. For any t

0 � t2 [T ], we denote Vt+
t0 = {v 2 Vt0 : sv � t} and Vt�

t0 = {v 2 Vt0 : sv  t� 1} as

those from the set Vt0 that arrive at the station between period t and period t
0 and that arrive by period

t � 1, respectively. For each t 2 [T ], we denote the implemented decision x̂v,s for s  t � 1 and v 2 [V ]t�

given uncertainty realization ẑv for all v 2 [V ]t�. Given x̂v,s, the feasible set for the decision variable xt =

(xv,s)s�t,v2Vs is given as follows:

Xt ,

8
>><

>>:
xt :

0 xv,s K/⌘

⌧vX

s=t

xv,s = uv/⌘�
t�1X

s=sv

x̂v,s 8v 2 [V ] with ⌧v  t

9
>>=

>>;
. (33)

That is, xt 2 Xt. Note we associate variables defined in the main text with subscript t to indicate these

variables update in each period t and omit their definition when no confusion arises. Let f̂
max
t denote the

maximum per-period charging quantity up to period t, so f̂
max
t ,maxs2[t]{fs(x̂, ẑ)}, where we set f̂max

0 = 0.

E.1. RH-LP

The RH-LP policy can be regarded as a “predict-then-optimize” approach, which is implemented in Algo-

rithm 3. In each period t, we first solve a deterministic LP problem over the remaining time horizon, i.e.,

from period t to T . In particular, we replace in the corresponding SP model the past arrivals (z̃v)v2[V ]t� by

realizations ẑv and future arrivals (z̃v)v2[V ]t+ by their mean values µv =EP [z̃v], in (34). Note that in (34) the

energy charge from period t to T has two terms:
P

v2Vt�
s

xv,sẑv, representing energy charge of vehicles that

have arrived before t but have not finished charging yet, and
P

v2Vt+
s

xv,sµv, representing energy charge of

vehicles that have not arrived yet. The two constraints in (34) are the linearization of the max operator in

the peak load max
n
f̂
max
t�1 ,maxs2{t,...,T}

nP
v2Vt�

s
xv,sẑv +

P
v2Vt+

s
xv,sµv

oo
.

We then implement the decisions only in the current period (step 2) and finally update the implemented

decisions x̂v,t, the feasible set Xt+1 using (33), and f̂
max
t (step 3).

E.2. RH-ECP

We develop Algorithm 4 to implement RH-ECP. Algorithm 4 is exactly the same as Algorithm 3 except in

the first step Algorithm 4 resolves in each period t an ECP problem over the remaining time horizon (from
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Algorithm 3: Rolling Horizon LP (RH-LP)

for t= 1,2,3, ..., T do
1. Given uncertainty realization ẑv for all v 2 [V ]t�, solve the following (deterministic) LP:

min
xt2Xt

d�+
TX

s=t

es

0

@
X

v2Vt�
s

xv,sẑv +
X

v2Vt+
s

xv,sµv

1

A

s.t. f̂
max
t�1  �
X

v2Vt�
s

xv,sẑv +
X

v2Vt+
s

xv,sµv  � 8s� t

(34)

2. Observe uncertainty realizations ẑv with sv = t and implement xv,t with v 2 Vt.

3. Update x̂v,t xv,t for v 2 Vt, Xt+1 using (33), and f̂
max
t  max

n
f̂
max
t�1 ,

P
v2Vt

x̂v,tẑv

o

end

period t to T ) similar to the static version of the ECP. To obtain this ECP formulation in each period t,

note that given the realized arrivals z̃v = ẑv for all v 2 [V ]t�, we update the support Zt for the future arrivals

z̃t , (z̃v)v2[V ]t+ , which di↵ers from (1) and is given as follows:

Zt ,

8
<

:zt � 0 :
X

v2Vt+
s

zv C �
X

v2Vt�
s

ẑv,8s2 {t, ..., T}

9
=

; .

We then update the ambiguity set Ft by updating Zt and [V ]t+ in the definition of Ft as follows:

Ft ,

8
>>><

>>>:
P2P0

⇣
R|[V ]t+|

⌘

���������

z̃t , (z̃v)v2[V ]t+ ⇠ Pt

lnEPt

h
exp

⇣P
v2[V ]t+ ✓v z̃v

⌘i

P

v2[V ]t+ �v(e✓v � 1), 8✓� 0

Pt [z̃t 2Zt] = 1

9
>>>=

>>>;
.

The entropic dominance constraints (the second constraint in Ft) are the same as those in F except restricting

to future arrivals. Hence, we can still interpret these constraints as the truncation on independent Poisson

variables in the corresponding uncapacitated case. Similar to the static ECP, we can write Ft = F1
t \ F2

t

where

F1
t ,

n
Pt 2P0(R|[V ]t+|)

��� z̃t , (z̃v)v2[V ]t+ ⇠ Pt; lnEPt

h
exp

⇣P
v2[V ]t+ ✓v z̃v

⌘i

P

v2[V ]t+ �v(e✓v � 1), 8✓� 0
o

F2
t ,

n
Pt 2P0(R|[V ]t+|)

��� z̃t , (z̃v)v2[V ]t+ ⇠ Pt;EPt [z̃t]�t;Pt [z̃t 2Zt] = 1
o

Similar to DRO-Ent, we aim to solve the following DRO problem in each period:

min
xt2Xt

sup
Pt2Ft

EPt

2

4dmax

8
<

:f̂
max
t�1 , max

s2{t,...,T}

8
<

:
X

v2Vt�
s

xv,sẑv +
X

v2Vt+
s

xv,sz̃v

9
=

;

9
=

;+
TX

s=t

es

0

@
X

v2Vt�
s

xv,sẑv +
X

v2Vt+
s

xv,sz̃v

1

A

3

5 ,

(35)

where (35) di↵ers from DRO-Ent in the following: (i) the objective function is from period t to T ; (ii)

the feasible set Xt depends on the implemented decision x̂v,s for s t� 1 and v 2 [V ]t�; (iii) past arrivals
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Algorithm 4: Rolling Horizon ECP (RH-ECP)

for t= 1,2,3, ..., T do
1. Given uncertainty realization ẑv for all v 2 [V ]t�, solve

min
xt2Xt,a,b�0,⌫�0,y0�0,y�0,

µ>0,,�,↵,��0,⇠,⇣,⇢�0

d

0

@+ �+↵+
X

v2[V ]t+

�v�v

1

A+ a

+
X

v2[V ]t+

bv�v +
TX

s=t

es

X

v2Vt�
s

xv,sẑv

s.t. y
0  �
X

v2Vt�
s

yv,sẑv +
X

v2Vt+
s

yv,s�v  � 8s� t

(⇠v,s, µ, yv,s)2Kexp 8s� t, v 2 V t+
s0

@⇣s, µ,�+
X

v2Vt+
s

�v(⇠v,s� yv,s�µ)

1

A2Kexp 8s� t

TX

s=t

⇣s  µ

f̂
max
t�1 � y

0  ↵

TX

k=t

0

@C �
X

v2Vt�
k

ẑv

1

A⇢
k
s  ↵�

X

v2Vt�
s

(xv,s� yv,s)ẑv 8s� t

xv,s� yv,s��v 
X

k2Tv

⇢
k
s 8s� t,8v 2 [V ]t+

TX

s=t

0

@C �
X

v2Vt�
s

ẑv

1

A⌫s  a

X

s2Tv

xv,ses� bv 
X

s2Tv

⌫s 8v 2 [V ]t+

(36)

2. Observe uncertainty realizations ẑv with sv = t and implement xv,t with v 2 Vt.

3. Update x̂v,t xv,t for v 2 Vt, Xt+1 using (33), and f̂
max
t  max

n
f̂
max
t�1 ,

P
v2Vt

x̂v,tẑv

o
.

end

(z̃v)v2[V ]t� are replaced by their realizations (ẑv)v2[V ]t� ; and (iv) the peak load is the maximum of historical

peak load f̂
max
t�1 and future peak load from period t to T .

We then develop a tractable upper bound of (35) in (36), in Algorithm 4, which then becomes the upper

bound of the corresponding SP problem. We omit the derivation as it is similar to that in the proof of

Proposition 3.
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