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ABSTRACT

In this paper, we study the problem of estimating the price of an American option and its price sensitivities
via Monte Carlo simulation. Compared to estimating the option price which satisfies a backward recursion,
estimating the price sensitivities is more challenging. With the readily-computable pathwise derivatives in
a simulation run, we derive a backward recursion for the price sensitivities. We then propose nonparametric
estimators, the k-nearest neighbor estimators, to estimate conditional expectations involved in the backward
recursion, leading to estimates of the option price and its sensitivities in the same simulation run. Numerical
experiments indicate that the proposed method works well and is promising for practical problems.

1 INTRODUCTION

An American option is a derivative contract in which the holder has the right to exercise it at any time prior
to the expiry. Pricing American options is one of the most challenging problems in financial engineering.
Typically, no closed-form formulas are available for prices of the American options except in the simplest
cases. Thus one has to resort to numerical methods. Partial differential equation (PDE) approaches and
Monte Carlo simulation are among the most popular numerical methods. Compared to PDE approaches
that are often fast and accurate in solving low-dimensional problems, Monte Carlo simulation allows for
more general model settings and may work for high-dimensional problems. In this paper, we focus on
simulation methods.

Over the past two decades, significant progress has been made towards computing the price of an
American option. Notable examples include the regression-based methods of Carrière (1996), Longstaff
and Schwartz (2001) and Tsitsiklis and Van Roy (2001), the stochastic mesh method of Broadie and
Glasserman (2004). These methods estimate the continuation value of the optimal stopping problem with
some simulation procedures, based on which the option price can be approximated. Another stream of
research focuses on the dual formulation of the problem, which was established by Haugh and Kogan
(2004) and Rogers (2002). The dual minimizes an expectation over a class of martingales, thus leading to
an upper bound of the option price; see, e.g., Anderson and Broadie (2004) for simulation algorithms. For
a comprehensive overview of the existing methods, interested readers are referred to Glasserman (2004).

While computing the price of an American option is one objective in Monte Carlo simulation, the
accurate estimation of the price sensitivities with respect to some market parameters is arguably equally
important but much more challenging. These price sensitivities are also referred to as Greek letters or
hedging parameters, which play a crucial role in risk management. For instance, the sensitivity of the
option price with respect to the initial value of the underlying asset is called delta, which indicates the
quantity of the underlying asset one should hold in order to hedge the option position (Hull 2009). The
sensitivity of the option price with respect to the volatility of the underlying asset is called vega, which
reflects how changes in the volatility will affect the option price.
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Compared to the vast literature on computing American option price, the computation of price sensitivities
remains a challenging task, and has received increasing attention among researchers recently. Kaniel,
Tompaidis, and Zemlianov (2008) construct confidence intervals for delta and gamma by combining the
likelihood ratio method and the duality formulation of the optimal stopping problem. But it is not clear
how their method can be applied to estimate other Greek letters such as vega. Wang and Caflisch (2010)
propose a perturbed version of the least-squares method of Longstaff and Schwartz (2001) to estimate
the price sensitivities, which is especially suitable for computing delta. Recently, Chen and Liu (2012)
generalize the classical pathwise method to American-style options. Given suboptimal exercise policies,
their method performs sensitivity estimation in a straightforward manner and resolves the difficulty caused
by discontinuity of the optimal decision with respect to the market parameter.

In this paper, we consider the estimation of the option price and its sensitivities in a single simulation
run. In particular, by employing the pathwise derivatives that are readily computable from the simulation
run, we derive a backward recursion for the price sensitivities. While the pathwise method (also referred
to as infinitesimal perturbation analysis (IPA); see Ho and Cao (1983)) has been studied extensively for
European options (see, e.g., Broadie and Glasserman (1996)), the backward recursion derived in this paper
can be viewed as an extension of the pathwise method to American-style options. We then propose a
nonparametric estimation method, the k-nearest neighbor method, to estimate conditional expectations
involved in the backward recursion, leading to a nonparametric simulation algorithm for estimating both
the option price and its sensitivities.

The rest of the paper is organized as follows. We develop the mathematical framework and formulate
the problem in Section 2. A backward recursion formulation of price sensitivities is derived in Section
3, and a nonparametric method based on the backward recursion is proposed in 4. Numerical results are
illustrated in Section 5, followed by conclusions in Section 6.

2 MATHEMATICAL FRAMEWORK

In this section we specify the mathematical framework for the price of an American option and its sensitivity
with respect to a market parameter.

Consider an American option that is written on one or more underlying assets. Let St be a Markov
process representing the price dynamics of the underlying assets. Suppose that St depends on a market
parameter θ , which may represent, e.g., the initial value or the volatility of an underlying asset. Without
loss of generality, we assume that θ is one-dimensional with θ ∈ Θ, where Θ is an open set. When θ is
multi-dimensional, one may consider each dimension separately while fixing other dimensions constants.
To allow for more clarity, the price dynamics is written as St(θ). We consider a general setting in which
the payoff of the option depends on St(θ) and a path-dependent function Jt(θ), which is a function of
{Su(θ) : 0 ≤ u ≤ t}, if the option is exercised at time t. In other words, the option is allowed to be
path dependent. Examples of the path-dependent function Jt in practical problems include the average
value and running maximum (minimum) of an underlying asset. It can be seen that the Markov process
{(St(θ),Jt(θ))} governs the evolution of the price of the American option.

Throughout the paper we work with American options that can be exercised at a finite number of time
points. Sometimes these options are also referred to as Bermudan options in the literature. Suppose that
the American option can be exercised at {ti,1 ≤ i ≤ m} with 0 < t1 < t2 < .. . < tm = T , where T is the
maturity date of the option. Following the convention in the literature, we assume that the option cannot be
exercised at time 0. For notational ease in the following presentation, we let (Si,Ji) denote (Sti(θ),Jti(θ))
for i = 1, . . . ,m, where the explicit dependence of (St ,Jt) on the market parameter θ is suppressed when
there is no confusion. If exercised at time ti, the discounted payoff to the holder of the option is denoted
by hi(Si,Ji) for i = 1, . . . ,m. Then the price of the American option at time 0 is

V0(θ) = sup
τ∈T

E [hτ(Sτ ,Jτ)] ,
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where T is the class of stopping times taking values in {1, . . . ,m}, and the expectation is taken under the
pricing martingale measure. Note that the initial state of (St ,Jt), (S0,J0), is fixed and known.

Computing the price of the American is usually the first task for participants in the financial markets,
and a number of simulation methods have been proposed to address this issue. In addition to the price,
one is also interested in computing the price sensitivities. In our setting, the price sensitivity of interest is
represented as

α =
d

dθ
V0(θ).

The focus of this paper is on the accurate computation of V0(θ) and dV0(θ)/dθ .

3 A BACKWARD RECURSION FOR PRICE SENSITIVITIES

For i= 1, . . . ,m, letVi(x,y;θ) denote the value function of the American option at time ti given (Si,Ji) = (x,y).
Then it is well known that a backward recursion formulation of the value functions is specified by

Vm(Sm,Jm;θ) = hm(Sm,Jm),

Vi(Si,Ji;θ) = max(hi(Si,Ji),E [Vi+1(Si+1,Ji+1;θ)|Si,Ji]) , i = m−1, . . . ,1.

The price of the American option is then

V0(θ) = E[V1(S1,J1;θ)].

Define the continuation value function

Ci(x,y;θ) = E [Vi+1(Si+1,Ji+1;θ)|(Si,Ji) = (x,y)] , i = 1, . . . ,m−1.

Then Vi(x,y;θ) = max(hi(x,y),Ci(x,y;θ)).
While the option price can be computed by the above backward recursion formulation, it remains a

question whether the price sensitivity α can be characterized by a similar backward recursion. Motivated
by the pathwise method of Broadie and Glasserman (1996), we show that the answer is affirmative. We
derive a backward recursion formulation for α in the rest of this section.

We first examine the simulation procedure in greater detail. Note that in a simulation run, for i= 1, . . . ,m,
Si can be viewed as a function of (Si−1,Ui,θ), where Ui denotes a uniform (0,1) random vector that is
independent of Si−1. We denote this function by F , i.e., Si = F(Si−1,Ui;θ)1. Furthermore, we assume that
Ji is a function of (Si,Ji−1), and let ν denote this function, i.e., Ji = νi(Si,Ji−1).

For notational ease, we let Vi,1(x,y;θ), Vi,2(x,y;θ) and Vi,3(x,y;θ) denote the partial derivatives of
Vi(x,y;θ) with respect to its three arguments, i.e., ∂xVi(x,y;θ), ∂yVi(x,y;θ) and ∂θVi(x,y;θ), respectively.
We similarly define Ci,k(x,y;θ) as partial derivatives of Ci(x,y;θ) for k = 1,2,3. We further let hi,k(x,y)
and νi,k(x,y) denote the partial derivatives of hi(x,y) and νi(x,y) respectively for k = 1,2, and F1(x,U ;θ)
and F3(x,U ;θ) denote ∂xF(x,U ;θ) and ∂θ F(x,U ;θ) respectively.

Let X and Y denote the state space of St and Jt respectively. To facilitate the analysis, we make the
following assumptions.
Assumption 1 For any i ∈ {1, . . . ,m}, there exists a random variable K that may depend on θ such that
E(K)< ∞, and with probability 1 (w.p.1),

|Si(θ +∆θ)−Si(θ)| ≤ K|∆θ |, |Ji(θ +∆θ)− Ji(θ)| ≤ K|∆θ |,

when |∆θ | is small enough.

1For notational ease, we suppress the possible dependence of F on the time step i. Results in this paper can be easily
adapted to this case.
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Assumption 2 For any i ∈ {1, . . . ,m}, there exist constants c1 and c2 such that

|hi(x1,y)−hi(x2,y)| ≤ c1|x1− x2|, |hi(x,y1)−hi(x,y2)| ≤ c2|y1− y2|, ∀x,x1,x2 ∈X ,y,y1,y2 ∈ Y .

Assumption 3 For any i ∈ {1, . . . ,m}, there exist constants c3 and c4 such that

|νi(x1,y)−νi(x2,y)| ≤ c3|x1− x2|, |νi(x,y1)−νi(x,y2)| ≤ c4|y1− y2|, ∀x,x1,x2 ∈X ,y,y1,y2 ∈ Y .

Assumption 4 There exist functions Q(·) and G(·) such that ∀x,x1,x2 ∈X ,θ ,θ1,θ2 ∈Θ,

|F(x1,U ;θ)−F(x2,U ;θ)| ≤ Q(U,θ)|x1− x2|, |F(x,U ;θ1)−F(x,U ;θ2)| ≤ G(x,U)|θ1−θ2|, w.p.1.

Furthermore, E[g(Si)] < ∞ for i = 1, . . . ,m, and supθ∈Θ E[Q(U,θ)] ≤ ∞, where g(·) is defined by g(x) =
E[G(x,U)].

Assumption 1 is a Lipschitz continuity requirement on (Si,Ji). It is a standard assumption in the
sensitivity estimation literature; see, e.g, Broadie and Glasserman (1996), Liu and Hong (2011), and Chen
and Liu (2012). Assumptions 2-4 essentially require the functions hi, F and νi to be Lipschitz continuous.
Given the payoff function of an American option, Assumptions 2 and 3 are easy to verified. Typically, for
American options with continuous payoff functions, these two assumptions are satisfied. Assumption 4 is
on the price dynamics of the underlying assets. It is typically satisfied for commonly used models such as
the Black-Scholes model.

Given the above assumptions, a representation of the price sensitivity α can be obtained, which is
summarized in the following theorem. Proof of the theorem is provided in the appendix.
Theorem 1 Suppose that for i = 1, . . . ,m, (Si,Ji) is differentiable w.p.1, and hi and νi are differentiable
almost everywhere. If Assumptions 1-3 are satisfied, then

α =
d

dθ
V0(θ) = E [V1,1(S1,J1;θ)∂θ S1 +V1,2(S1,J1;θ)∂θ J1 +V1,3(S1,J1;θ)] ,

where ∂θ S1 and ∂θ J1 denote respectively the pathwise derivatives of S1 and J1 with respect to θ .
Theorem 1 shows that the price sensitivity α can be written as an expectation, in which the integrand

involves partial derivatives of the value functions and pathwise derivatives of the price dynamics of the
underlying asset. Based on Theorem 1, α can be computed via the following backward recursion.

1. Initial condition: For all (x,y)∈ (X ,Y ), Vm(x,y;θ) = hm(x,y), Vm,k(x,y;θ) = hm,k(x,y) for k = 1,2,
Vm,3(x,y;θ) = 0, and hi,3(x,y)≡ 0 for i = 1, . . . ,m.

2. For i = m−1, . . . ,1,, define

Di+1,1 = Vi+1,1(Si+1,Ji+1;θ)F1(Si,Ui+1;θ)+Vi+1,2(Si+1,Ji+1;θ)νi+1,1(Si+1,Ji)F1(Si,Ui+1;θ),

Di+1,2 = Vi+1,2(Si+1,Ji+1;θ)νi+1,2(Si+1,Ji),

Di+1,3 = Vi+1,1(Si+1,Ji+1;θ)F3(Si,Ui+1;θ)+Vi+1,2(Si+1,Ji+1;θ)νi+1,1(Si+1,Ji)F3(Si,Ui+1;θ)

+Vi+1,3(Si+1,Ji+1;θ),

and set

Vi(x,y;θ) = max(hi(x,y),Ci(x,y;θ)) ,

Ci(x,y;θ) = E [Vi+1(Si+1,Ji+1;θ)|(Si,Ji) = (x,y)] ,
Ci,k(x,y;θ) = E[Di+1,k|(Si,Ji) = (x,y)], k = 1,2,3,
Vi,k(x,y;θ) = hi,k(x,y) ·1{hi(x,y)≥Ci(x,y;θ)}+Ci,k(x,y;θ) ·1{hi(x,y)<Ci(x,y;θ)}, k = 1,2,3,

where 1{A} denotes the indicator function that is equal to 1 if the event A occurs, and 0 otherwise.
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3. The price of the American option is V0 = E[V1(S1,J1;θ)], and the price sensitivity is

α = E [V1,1(S1,J1;θ)∂θ S1 +V1,2(S1,J1;θ)∂θ J1 +V1,3(S1,J1;θ)] .

A key step in the above backward recursion is the computation of the conditional expectations Ci(x,y;θ)
andCi,k(x,y;θ) for k= 1,2,3. Once these conditional expectations can be computed, the price of the American
option and its price sensitivities can be obtained in the same simulation run. Essentially, this backward
recursion exploits the pathwise derivatives in a simulation run, and can be viewed as an extension of the
pathwise method of Broadie and Glasserman (1996) to American-style options.

4 A NONPARAMETRIC ESTIMATION METHOD

The backward recursion established in Section 3 leads immediately to simulation algorithms for estimating
the price of the American option and its price sensitivities. Key components of such algorithms are
procedures to estimate the conditional expectations Ci(x,y;θ) and Ci,k(x,y;θ) for k = 1,2,3. A number of
existing procedures are readily applicable to accomplish this task, notable ones including the regression-
based method (see, e.g., Carrière (1996), Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001))
and the stochastic mesh method (Broadie and Glasserman 2004).

In this paper we study a nonparametric method to estimate these conditional expectations, the k-nearest
neighbor (kNN) estimators; see, e.g., Härdle (1990) and Li and Racine (2007) for overviews. Essentially,
the kNN method is a local smoothing method that approximates a regression function by the average of
samples in a neighborhood.

Suppose we generate n samples paths of the price dynamics, and we let the superscript j denote the
pathwise information recorded for the jth sample path. For a general function r(·, ·), the kNN estimator
approximates the conditional expectation E[r(Si+1,Ji+1)|(Si,Ji) = (x,y)] by using the average of kn samples
that are nearest to (x,y), where the positive integer kn is the user-specified smoothing parameter. In particular,
let A (x,y) denotes index set of the kn samples among {(S j

i ,J
j
i ),1 ≤ j ≤ n} that are nearest to (x,y) in

terms of Euclidean distance. Then a kNN estimator of E[r(Si+1,Ji+1)|(Si,Ji) = (x,y)] is specified by

1
kn

∑
j∈A (x,y)

r(S j
i+1,J

j
i+1).

We propose to use the kNN estimators to estimate the conditional expectations in the backward recursion
established in Section 3. Specifically, sequentially for i=m−1, . . . ,1, the conditional expectationsCi(x,y;θ)
and Ci,k(x,y;θ) for k = 1,2,3 are estimated by

C̃n
i (x,y;θ) =

1
kn

∑
j∈A (x,y)

Ṽ n
i+1(S

j
i+1,J

j
i+1;θ),

and
C̃n

i,k(x,y;θ) =
1
kn

∑
j∈A (x,y)

D̃ j
i+1,k,

respectively, where

Ṽ n
i (x,y;θ) = max

(
hi(x,y),C̃n

i (x,y;θ)
)
,

Ṽ n
i,k(x,y;θ) = hi,k(x,y) ·1{hi(x,y)≥C̃n

i (x,y;θ)}+C̃n
i,k(x,y;θ) ·1{hi(x,y)<C̃n

i (x,y;θ)},

and D̃i+1,k is an approximate counterpart of Di+1,k, obtained by replacing Vi+1,k with Ṽ n
i+1,k in Di+1,k.
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Performance of the kNN method relies on appropriate selection of the smoothing parameter kn. Typically,
kn is required to satisfy kn→ ∞ and kn/n→ 0 as n→ ∞. In practical implementation, one may choose the
“best” kn among a number of user-specified candidates based on a least-squares cross-validation procedure.
Intuitively, the cross-validation leads to a kn that minimizes the least-squares error of the regression estimate.
Due to page limit, details of the least-squares cross-validation procedure is omitted.

5 NUMERICAL EXPERIMENTS

In this section we conduct numerical experiments to examine the performance of the proposed nonparametric
method. In particular, we measure the performance of an estimator by its relative root mean square error
(RRMSE), which is defined as the percentage of the root mean square error to the absolute value of
the quantity being estimated.2 When implementing the kNN estimator, a least-squares cross-validation
procedure is applied to choose the best kn among a set of candidates. All RRMSEs reported are estimated
based on 1000 independent replications.

We consider four examples to examine the performance of the proposed nonparametric method.
Numerical results for these examples are summarized in Tables 1-4 respectively. The first example is an
American put option with a large number of exercise dates. Results in Table 1 show that the proposed
estimators work very well for both the option price and its sensitivities. The second example is an American
lookback put option. Its payoff at an exercise date ti is (K− Ŝi)

+, where Ŝi denotes the running maximum
of the underlying asset up to ti and K denotes the strike price. Results in Table 2 shows that the proposed
method leads to highly accurate estimates for the option price, delta and vega, where all relative errors are
within 0.5%. The third example is an American max-call option written on two assets, where the payoff
depends on the maximum of two assets. In particular, its payoff at an exercise date ti is (max(S1

i ,S
2
i )−K)+,

where S1
i and S2

i denote the values of the two underlying assets at ti. For this max-call option, we consider
the performance of the proposed nonparametric method for different coefficients of correlation. Results in
Table 3 show that the estimators perform quite well. We further consider an American max-call option on
five assets to test the performance of the proposed method when dimension becomes larger. Results in 4
show that the proposed method performs reasonably well, with relative errors ranging from 2% to 8%.

While it is well recognized that performance the kNN estimators may deteriorate as dimension increases,
it is not fully clear what is the threshold on dimension for kNN estimators to be practically viable. Further
investigation on this issue is desirable, and is left as a topic for future research. Given that dimensions of
most practical problems are usually not very high, numerical experiments in this section indicate that the
proposed nonparametric method could be a promising tool in practice.

Table 1: Performance of estimators for an American put option written on a single asset with the Black-
Scholes model. Results are shown for different strike K. Parameters: S0 = 40, risk-free interest rate
r = 4.88%, volatility σ = 20%, maturity T = 7/12, and number of exercise dates m = 400. Sample size
used in the estimation is n = 105.

RRMSE (%)

K price delta vega

35 2.1 2.0 2.1
40 1.1 0.9 1.1
45 0.8 0.9 1.4

2During the implementation, we approximate the true value of the quantity being estimated using an accurate point estimate
from the existing literature when available. When only interval estimates but not point estimates are available, we calculate
the RRMSE using either the lower or the upper estimates of the intervals, depending on which one lead to larger RRMSEs.

696



Feng, Liu, and Sun

Table 2: Performance of estimators for an American lookback put option written on a single asset with the
Black-Scholes model. Results are shown for different strike K. Parameters: S0 = 40, risk-free interest rate
r = 8%, volatility σ = 20%, maturity T = 1/4, and number of exercise dates m = 10. Sample size used
in the estimation is n = 105.

RRMSE (%)

K price delta vega

42 0.2 0.1 0.5
47 0.04 0.01 0.5
52 0.02 0.01 0.5

Table 3: Performance of estimators for an American max-call option written on two assets with the Black-
Scholes model. Results are shown for different coefficients of correlation between these two assets, denoted
by ρ . Parameters: initial stock prices are 100 for both assets, strike K = 100, risk-free interest rate r = 5%,
dividends δ1 = δ2 = 10%, volatility σ1 = σ2 = 20%, maturity T = 3, and number of exercise dates m = 9.
Sample size used in the estimation is n = 105.

RRMSE (%)

ρ price delta vega

−0.75 0.7 5.2 0.8
−0.5 1.2 3.0 1.1
−0.25 1.1 2.7 1.0

0 1.2 3.6 1.7
0.25 1.5 4.9 1.3
0.5 1.2 5.1 0.8

0.75 1.6 4.8 1.7

6 CONCLUSIONS

In this paper we study the problem of pricing and hedging American options via Monte Carlo simulation.
We derive a backward recursion formulation for the price sensitivities of an American option, based on
which we propose a nonparametric method to estimate both the option price and its sensitivities in the same
simulation run. Numerical experiments show that the proposed method is promising for solving practical
problems.
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Table 4: Performance of estimators for an American max-call option written on five assets with the Black-
Scholes model. These five assets are assumed to be independent and follow the same distribution. Results
are shown for different initial values of the underlying assets S0. Parameters: strike K = 100, risk-free
interest rate r = 5%, dividend δ = 10%, volatility σ = 20%, maturity T = 3, and number of exercise dates
m = 9. Sample size used in the estimation is n = 105.

RRMSE (%)

S0 price delta vega

90 5.5 2.7 6.2
100 3.6 4.1 7.4
110 2.4 4.2 7.5

A APPENDIX: Proof of Theorem 1

Proof. Based on the dominated convergence theorem (Durrett 2005) and Assumption 1, it suffices to show
that Vi(x,y;θ) is Lipschitz continuous in (x,y) with a Lipschitz constant c0, i.e., there exists a constant c0
such that for all x,x1,x2 ∈X , y,y1,y2 ∈ Y , and θ ∈Θ

|Vi(x1,y;θ)−Vi(x2,y;θ)| ≤ c0|x1− x2|, (1)
|Vi(x,y1;θ)−Vi(x,y2;θ)| ≤ c0|y1− y2|, (2)

for i = 1, and there exists a function r(·) satisfying E [r(S1,J1)]< ∞ such that for all (x,y) ∈ (X ,Y ),

|Vi(x,y;θ +∆θ)−Vi(x,y;θ)| ≤ r(x,y)|∆θ |, (3)

for i = 1, when |∆θ | is small enough.
We first show Eqn.(1)-(2) by backward recursion. Note that Vm(x,y;θ) = hm(x,y) for any (x,y) ∈

(X ,Y ). Then by Assumption 2, it can be seen that Vm(x,y;θ) satisfies Eqn.(1)-(2) by setting c0 =
max(c1,c2). Suppose that Vi+1(x,y;θ) satisfies Eqn.(1)-(2) with Lipschitz constant c′0. Then for any
x1,x2 ∈X and y ∈ Y ,

|Ci(x1,y;θ)−Ci(x2,y;θ)|
= |E [Vi+1(F(x1,Ui+1;θ),νi+1(F(x1,Ui+1;θ),y);θ)−Vi+1(F(x2,Ui+1;θ),νi+1(F(x2,Ui+1;θ),y);θ)]|
≤ E

(
c′0|F(x1,Ui+1;θ)−F(x2,Ui+1;θ)|+ c′0|νi+1(F(x1,Ui+1;θ),y)−νi+1(F(x2,Ui+1;θ),y)|

)
≤ E

[
(c′0 + c′0c3)Q(Ui+1,θ)|x1− x2|

]
≤ (c′0 + c′0c3) sup

θ∈Θ

E[Q(U,θ)]|x1− x2|,

where the second inequality follows from Assumptions 4 and 3.
Similarly we can show that for any x ∈X and y1,y2 ∈ Y ,

|Ci(x,y1;θ)−Ci(x,y2;θ)| ≤ c′0c4|y1− y2|.

Because Vi(x,y;θ) = max(hi(x,y),Ci(x,y;θ)), it can be seen that for any x,x1,x2 ∈X and y,y1,y2 ∈ Y ,

|Vi(x1,y;θ)−Vi(x2,y;θ)|

≤ |hi(x1,y)−hi(x2,y)|+ |Ci(x1,y;θ)−Ci(x2,y;θ)| ≤
{

c1 +(c′0 + c′0c3) sup
θ∈Θ

E[Q(U,θ)]

}
|x1− x2|,

and

|Vi(x,y1;θ)−Vi(x,y2;θ)| ≤ |hi(x,y1)−hi(x,y2)|+ |Ci(x,y1;θ)−Ci(x,y2;θ)| ≤ (c2 + c′0c4)|y1− y2|.
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If we set c′′0 = max(c1 +(c′0 + c′0c3)supθ∈Θ E[Q(U,θ)],c2 + c′0c4), then it can be seen that Vi(x,y;θ)
satisfies Eqn.(1)-(2) with the Lipschitz constant c′′0. Recursively we can show that Eqn.(1)-(2) are satisfied
for i = 1, . . . ,m.

Then we only need to show Eqn.(3) for i = 1, . . . ,m. Note that Vm(x,y;θ) satisfies Eqn.(3) by letting
r(x,y) = 0. Then by Eqn.(1)-(2) and Assumptions 4,

|Cm−1(x,y;θ +∆θ)−Cm−1(x,y;θ)|
= |E [Vm(F(x,Um;θ +∆θ),νm(F(x,Um;θ +∆θ),y);θ +∆θ)−Vm(F(x,Um;θ),νm(F(x,Um;θ),y);θ)]|
≤ E(c0|F(x,Um;θ +∆θ)−F(x,Um;θ)|+ c0|νm(F(x,Um;θ +∆θ),y)−νm(F(x,Um;θ),y)|)
≤ (c0 + c0c3)E [G(x,Um)] |∆θ |.

Recall that for i = 1, . . . ,m,

|Vi(x,y;θ +∆θ)−Vi(x,y;θ)|
= |max(hi(x,y),Ci(x,y;θ +∆θ))−max(hi(x,y),Ci(x,y;θ))| ≤ |Ci(x,y;θ +∆θ)−Ci(x,y;θ)|.

Thus for any (x,y) ∈ (X ,Y ),

|Vm−1(x,y;θ +∆θ)−Vm−1(x,y;θ)| ≤ (c0 + c0c3)E [G(x,Um)] |∆θ |.

In a similar manner, we can show that

|Vm−2(x,y;θ +∆θ)−Vm−2(x,y;θ)| ≤ (c0 + c0c3)(E[G(x,Um−1)]+E [G(F(x,Um−1;θ),Um)]) |∆θ |.

Recursively, we have

|V1(x,y;θ +∆θ)−V1(x,y;θ)| ≤ (c0 + c0c3)

(
E[G(x,U2)]+

m−1

∑
k=2

E [G(Sk,Uk+1)]

)
|∆θ |,

basing on the fact that Si = F(Si−1,Ui;θ) for i = 1, . . . ,m where Ui is independent of Si−1.
Let r(x,y) = (c0 + c0c3)

(
E[G(x,U2)]+∑

m−1
k=2 E [G(Sk,Uk+1)]

)
. Then by Assumption 4 it can be seen

that E[r(S1,J1)]< ∞. Therefore, Eqn.(3) is satisfied for i = 1, which completes the proof.
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