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Multimodal Learning with Deep Boltzmann Machine for
Emotion Prediction in User Generated Videos

Lei Pang, Chong-Wah Ngo
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

leipang3-c@my.cityu.edu.hk, cscwngo@cityu.edu.hk

ABSTRACT
Detecting emotions from user-generated videos, such as“anger”
and “sadness”, has attracted widespread interest recently.
The problem is challenging as effectively representing video
data with multi-view information (e.g., audio, video or text)
is not trivial. In contrast to the existing works that extrac-
t features from each modality (view) separately followed by
early or late fusion, we propose to learn a joint density model
over the space of multi-modal inputs (including visual, audi-
tory and textual modalities) with Deep Boltzmann Machine
(DBM). The model is trained directly on the user-generated
Web videos without any labeling effort. More importantly,
the deep architecture enlightens the possibility of discovering
the highly non-linear relationships that exist between low-
level features across different modalities. The experiment
results show that the DBM model learns joint representa-
tion complementary to the hand-crafted visual and auditory
features, leading to 7.7% performance improvement in clas-
sification accuracy on the recently released VideoEmotion
dataset.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Performance, Experimentation

Keywords
Emotion analysis; Multimodal learning; Deep Boltzmann
Machine

1. INTRODUCTION
While intensive research efforts have been devoted to e-

motion analysis on documents or images, emotion prediction
on user-generated videos is still a relatively new and largely
untapped research area. With the popularity of social web-
sites and mobile devices with high quality cameras, there is a
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Figure 1: The multimodal DBM that models the
joint distribution over visual, auditory and textual
features. All layers but the first (bottom) layers
use standard binary units. Gaussian RBM model is
used to model the distributions over the visual and
auditory features. Replicated Softmax topic model
is applied for mining the textual features.

large volume of unedited videos generated by users to record
all kinds of activities in our life. Automatically understand-
ing the emotions from these videos with diverse contents is in
high demand for many applications [5]. For example, when
searching information about a resort, the retrieved videos
can be reranked based on their emotions to provide implicit
comments. In addition, when asking opinion-related ques-
tions about hot events, providing emotion tags for retrieved
videos helps users more quickly understand the sentiment of
public’s view.

While there have been significant progresses made on the
emotion prediction in images [2, 6, 15], previous efforts on
video emotion analysis are mainly conducted in movie do-
main [1, 11, 12, 14]. In these works, a variety of visual and
auditory features have been exploited, including low-level
features [1, 5] such as HOG (Histogram of Gradients) from
visual features and zero-crossing rate from auditory features,
and semantic-level features [2, 5, 6] such as concept features
from SentiBank [2]. Although jointly using visual and audi-
tory features improves the performance and shows promis-
ing results on emotion classification of Hollywood movies [1,
11, 12, 14], little effort has been devoted to learn a joint
representation over visual and auditory modalities. In [12],
SVM classifiers are trained on the fused feature vectors that
concatenate both visual and auditory features. The same
early fusion is also adopted in [14], but with Conditional
Random Field (CRF) to model the temporal information
for classification. In [11], two Baysian classifiers are trained
on visual and auditory features separately and the output
scores are linearly fused to generate the final prediction. In
[1], late fusion is adopted to linearly combine outputs of
SVM classifiers. In short, these works adopt either early or
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late fusion to combine the visual and auditory modalities. A
more advanced approach is proposed in [5], where multiple
kernels defined for individual features are linearly fused to
learn a kernel SVM classifier. We argue that these methods
may work well for combining different features in the same
modality, but poorly for different modalities. The reason is
that different modalities have different kinds of representa-
tions and correlational structures, making it difficult for a
shallow combination to discover relationships across modal-
ities, especially the highly non-linear relationships [10].
In this paper, we focus on how to learn a joint represen-

tation of visual and auditory modalities for emotion predic-
tion. To learn the highly non-linear relationships among d-
ifferent modalities with very different statistical properties,
we adopt the Multimodal Deep Boltzmann Machine (DB-
M) [10]. The learning of DBM is unsupervised and thus is
suitable for our case as a plenty of unlabeled video data is
available on the Web. Among the user-generated videos, the
textual information (e.g., title and description) is somewhat
invariant to large changes in the visual and auditory modal-
ities [2]. For example, the videos expressing “joy” emotion
range from showing a wedding party with romantic music to
recording a single person enjoying delicious food, while the
textual information always conveys similar words (i.e., hap-
py night). As discussed in [10], this invariance provides a
rich learning signal for mapping the variant visual and audi-
tory features to the coherent concept level features. Hence,
we expand the multimodal DBM in [10] from two pathways
to three pathways, which includes visual, auditory and tex-
tual information as shown in Figure 1. In the model, all
layers but the first (bottom) layers are binary-valued. All
the modalities are first modeled with a two-layer DBM [8]
separately. In this stage, the visual and auditory modalities
are modeled with Gaussian Restricted Boltzmann Machines
(RBMs) [4], which have been widely used for modeling real-
valued inputs for speech and vision tasks, whereas the tex-
tual modality is modeled with Replicated Softmax model
[9], which has been shown to be effective in modeling sparse
word count vectors. An additional layer of binary hidden
units is added on top of the final layer of each modality to
learn the joint representation over the three modalities.
The main contribution of this work is the learning of

a joint representation over multiple modalities using un-
labeled user-generated videos on the Web. Basically, this
work demonstrates a promising way to make use of the large
amount of unlabelled user-generated videos for improving
the performance of emotion prediction.

2. MULTIMODAL DEEP BOLTZMANN MA-
CHINE

Let vm ∈ RM and va ∈ RA denote the real-valued input
from visual and auditory inputs. Meanwhile, vt ∈ {1, . . . ,K}
denotes associated metadata (i.e., title and description) con-
taining N words, with vtk denoting the count for the kth

word. In addition, the hidden layers of visual pathway are
denoted as h(1m) ∈ {0, 1}F

m
1 , h(2m) ∈ {0, 1}F

m
2 . Meanwhile,

h(1a) ∈ {0, 1}F
a
1 , h(2a) ∈ {0, 1}F

a
2 are for auditory pathway

and h(1t) ∈ {0, 1}F
t
1 , h(2t) ∈ {0, 1}F

t
2 are for textual path-

way.
As shown in Figure 1, each modality is first modeled with

a separate two-layer DBM [8]. The probability that gener-
ates a visible vector vm by the visual-pathway DBM with

Gaussian RBM [4] is given by

P (vm; θm) =
1

Z(θm)

∑
h(1m),h(2m)

exp(−E(vm,h(1m),h(2m); θm)

(1)
where Z(θm) is the partition function and the free energy E
is given by

E(vm,h(1m),h(2m); θm) =
M∑
i=1

(vmi − bmi)
2

2δ2mi

−
M∑
i=1

Fm
1∑

j=1

vmi

δmi
W

(1m)
ij h

(1m)
j −

Fm
1∑

j=1

Fm
2∑

l=1

h
(1m)
j W

(2m)
jl h

(2m)
j

(2)

Note that for brevity, the bias terms on the hidden layers are
omitted. The probability for an auditory vector va is similar
to that of visual-pathway DBM. Here, we only give the for-
mula of free energy E from textual-pathway with Replicated
Softmax [9]

E(vt,h(1t),h(2t); θt) = −
K∑

k=1

btkv
t
k −

K∑
k=1

F t
1∑

j=1

W
(1t)
k,j h

(1t)
j vtk

−
F t
1∑

j=1

F t
2∑

l=1

W
(2t)
jl h

(1t)
j h

(2t)
l −N

F t
1∑

j=1

b
(1t)
j h

(1t)
j −

F t
2∑

l=1

b
(2t)
l h

(2t)
l

(3)

The multimodal DBM is formed by adding an additional
binary-valued layer h(3) ∈ {0, 1}F3 on top of the second
hidden layers from different pathways (h2m,h2a,h2t). Then,
the joint density distribution over the multimodal inputs is
given by

P (vm,va,vt; θ) =
∑

h(2m),h(2a),h(2t),h(3)

P (h(2m), h(2a), h(2t), h(3))

(
∑

h(1m)

P (vm, h(1m), h(2m)))(
∑
h(1a)

P (va, h(1a), h(2a)))

(
∑
h(1t)

P (vt, h(1t), h(2t)))

(4)

2.1 Network training
Multiple layers of hidden units and multiple modalities

make the learning difficult [10]. Therefore, the learning is
split into two stages. First, each RBM component of mul-
timodal DBM is pretrained by using the greedy layerwise
pretraining strategy [8]. Then, the learnt parameters are
used to initialize the parameters of all layers in multimodal
DBM, and the mutlimodal DBM is trained to finetune d-
ifferent modalities in an unified way. As discussed in [3],
1-step contrastive divergence (CD1) is adopted for pretrain-
ing. Meanwhile, persistent contrastive divergence (PCD) is
used for the whole multimodal DBM learning, which learns
significantly better models than CD1 but costs more time
than CD1.

2.2 Feature Extraction and Classification
Based on the joint distribution of multimodal DBM (E-

quation 4), we can easily infer the conditional distribution
over the joint representation layer as the final features ex-
tracted from the model by logistic function σ(x):

p(h
(3)
p = 1|h(2)) = σ(

Fm
2∑

l=1

W
(3m)
lp h

(2m)
l +

Fa
2∑

l=1

W
(3a)
lp h

(2a)
l

+

F t
2∑

l=1

W
(3t)
lp h

(2t)
l + b

(3)
p )
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When extracting the features, we adopt the mean-field up-
date to approximate the true posteriors [8]. Since the multi-
modal DBM is a fully generative model, we can still generate
the joint feature representation even when some modalities
are missing by unclamping the missing inputs and updating
them after each mean-field update. The inputs are updated
based on the conditional distribution as follows:

vmi |h(1m) ∼ N (δi

Fm
1∑

j=1

W
(1m)
ij h

(1m)
j + bmi , δ2i )

vai |h(1a) ∼ N (δi

Fa
1∑

j=1

W
(1a)
ij h

(1a)
j + bai , δ

2
i )

p(vtik = 1|h(1t)) =
exp(

∑F t
1

j=1 h
(1t)
j W

(1t)
jk + btk)∑K

q=1 exp(
∑F t

1
j=1 h

(1t)
j ∗W 1t

jq + btk)

The multimodal DBM can effectively fill in the missing modal-
ities. The generated modalities can serve as a plausible prox-
y for extracting the final output joint representation [10].
With the joint representation as feature, emotion predic-

tion models can be easily trained with linear or non-linear
classifiers. In this paper, we adopt the standard Gaussian
RBF kernel SVM, which shows good classification perfor-
mance on real-valued features [5]. One-against-all strategy
is adopted to train a separate classifier for each emotion cat-
egory, and a test sample is assigned to the category with the
highest prediction score.

3. EXPERIMENTS

3.1 Dataset and Model Learning
The multimodal DBM is trained on 156,219 videos crawled

from YouTube. To make sure that the dataset consists of
emotion-related videos and has a balanced distribution over
all kinds of emotion-related high-level concepts, the Adjec-
tive Noun Pairs (ANPs) provided by SentiBank [2] are used
as searching keywords. These ANPs are all emotion-related
concepts, such as “happy kids” or “creepy spider”. In this
work, all the 3,244 ANPs are used. For each ANP, at most
100 videos are collected and the duration of each video is
limited to 2 minutes since a long video usually has multiple
different concepts. We adopt the same visual and audio fea-
ture sets used in [5]. The visual features include Dense SIFT,
HOG, SSIM, GIST, and LBP. The MFCC and Audio-Six
are extracted as audio clues. Among these features, Dense
SIFT, HOG, SSIM and MFCC are quantized into a bag-
of-words representation. The visual features are extracted
using the codes from the authors of [13] and the audio fea-
tures are extracted using the software by [7]. Finally, the
visual and auditory information are represented as 20,651-
dimensional and 4,000-dimensional features respectively. By
adopting the same features as [5], the effectiveness of the
joint representation by multimodal DBM can be more objec-
tively evaluated. In addition to visual and auditory informa-
tion, we also make use of the textual description associated
with videos. Each associated metadata is represented using
a vocabulary of the 3,413 most frequent words (whose fre-
quencies are larger than 800). The average number of words
associated with a video is 7.13 with a standard deviation of
6.21.
The visual-pathway consists of a Gaussian RBMwith 20,651

visible units followed by 2 standard binary-valued layers

Category h(1m) h(2m) h(3) h(2a) h(1a)

Anger 0.297 0.364 0.294 0.124 0.112
Anticipation 0.040 0.080 0.067 0.024 0.034
Disgust 0.228 0.277 0.267 0.311 0.145
Fear 0.415 0.406 0.395 0.211 0.233
Joy 0.428 0.397 0.442 0.291 0.385
Sadness 0.154 0.176 0.217 0.226 0.235
Surprise 0.676 0.669 0.666 0.665 0.643
Trust 0.093 0.130 0.136 0.117 0.077
Overall 0.350 0.360 0.371 0.302 0.290

Table 1: Prediction accuracies for each emotion cat-
egory of VideoEmotion dataset [5] obtained by ap-
plying one-vs-all SVM to representations learned at
different layers. The highest accuracy of each cate-
gory is highlighted.
with 2048 and 1024 hidden units. The auditory-pathway has
the same settings as visual-pathway except that the number
of visible units is 4,000. Meanwhile, the textual-pathway
consists of a Replicated Softmax Model with 3,413 visible
units followed by 2 layers of 1,024 hidden units. The joint
layer contains 3,072 hidden units. As mentioned in Section
2.1, each pathway is pretrained using a stack of modified
RBMs by CD1 for initializing the DBM model. During pre-
training and DBM learning, each dimension of visual and
auditory features is mean-centered and normalized to unit
variance to avoid the instability problem [3]. In addition, to
avoid running separate Markov chains for each word count to
get sufficient statistics for model distribution, all word count
vectors are scaled so that they sum to 5 [10]. The model is
implemented upon the open source tool “deepnet”1.

3.2 Classification Performance
The emotion prediction is conducted on VideoEmotion

dataset [5], which consists of 1,101 videos and the videos
are classified into 8 categories. To measure the effectiveness
of DBM, three different combination settings are adopted.
Section 3.2.1 shows the performance achieved on combining
visual and auditory features. Section 3.2.2 compares the per-
formance of using visual or auditory features to that of using
SentiBank [2]. Section 3.2.3 reports the result of combining
DBM with [5] by average late fusion.

3.2.1 Multimodal Inputs
Since the associated metadata of each video is not provid-

ed in VideoEmotion [5], the input to the textual-pathway
in DBM is initialized to zeros. The model is allowed to up-
date the state of the textual input layer when performing
mean-field update. In this experiment, we run the mean-
field update for 5 times [10]. Table 1 shows the prediction
performance for each emotion category. The representations
extracted at different layers are used to train the one-vs-all
SVM classifiers based on the training data given in [5]. From
the table, we can see that the joint representation from join-
t hidden layer (h(3)) achieves the best performance on the
whole dataset, which improves that of the second visual hid-
den layer and auditory hidden layer by 3.1% and 22.8% re-
spectively. We have also observed that the classifier trained
on the representation from the second hidden layer outper-
forms that from the first hidden layer in both visual and
auditory pathways. Although the joint representation does
not always achieve the best performance, the performance
on joint representation is the most consistent one, which is

1https://github.com/nitishsrivastava/deepnet
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Figure 2: Prediction accuracies. Unimodal-Video
and Unimodal-Audio are the classifiers trained on
the joint representation generated by using only the
visual or auditory information through DBM.

mostly attributed to the well balance over the visual and
auditory features in the joint representation.

3.2.2 Unimodal Input
In this section, we want to verify the effectiveness of DBM

when some modalities are missing. The method proposed
in [2] is a good baseline, which also models the emotion
prediction task in a hierarchical way by first training ANP
detectors and then training SVM-based emotion classifier-
s on the responses from ANP detectors. In addition, only
visual information is used in [2]. For comparison, we gen-
erate the joint representation from DBM by using only vi-
sual information (Unimodal-Video) or auditory information
(Unimodal-Audio). In Unimodal-Video, the auditory and
textual information are initialized with zeros and these in-
formation are updated when performing mean-field update.
Similarly for the Unimodal-Audio, the visual and textual
information are initialized with zeros and updated in the
same way. As shown in Figure 2, Unimodal-Video outper-
forms SentiBank by 2.7%. Unimodal-Video exhibits better
performance than SentiBank in 4 categories, especially in
those categories where Unimodal-Audio achieves better per-
formance. This shows that the DBM model effectively fills
in the missing modalities.

3.2.3 Average Fusion
To see whether DBM model learns unique correlation be-

tween visual and auditory information, the prediction s-
cores from DBM and [5] are averagely fused. Generally
speaking, the joint representation from DBM can be treat-
ed as latent attributes. Therefore, two fusion settings are
adopted. First, the DBM score is combined with the pre-
diction score from [5] using only visual and auditory fea-
tures (V.+Au.+DBM). Second, the DBM score is fused with
the score from [5] using visual, auditory and attribute fea-
tures (V.+Au.+At.+DBM). From the Table 2, we can see
that V.+Au.+DBM achieves better performance than both
V.+Au. and V.+Au.+At., which indicates that DBM mines
more information than the attribute features used in [5]. In
addition, we also observe that V.+Au.+At.+DBM improves
the accuracy of V.+Au.+At. by 7.7%, which is so far the
best reported performance on this dataset to the best of our
knowledge. This result basically indicates that the joint rep-
resentation is complementary to hand-crafted features, by
providing additional latent attributes modeling non-linear
relationships among different modalities.

4. CONCLUSION
We have presented the learning of joint representation

from multiple modalities with DBM. The joint representa-

Category V.+Au.
V.+Au.
+DBM

V.+Au.
+At.

V.+Au.
+At.+DBM

Anger 0.549 0.527 0.527 0.509
Anticipation 0.028 0.067 0.067 0.034
Disgust 0.399 0.381 0.438 0.399
Fear 0.396 0.484 0.471 0.545
Joy 0.480 0.557 0.484 0.590
Sadness 0.289 0.274 0.208 0.217
Surprise 0.746 0.802 0.767 0.828
Trust 0.311 0.327 0.287 0.312
Overall 0.451 0.484 0.463 0.499

Table 2: Prediction accuracies by late fusion with
the features from [5]. The notations V., Au., and
At. represent visual, auditory and attribute features
respectively.
tion has demonstrated the effectiveness of learning unique
correlation among different modalities, and being capable of
dealing with the problem when some modalities of training
or testing examples are missing. Currently, the model stil-
l needs hand-crafted features as inputs. We will leverage
the strength of RBMs and Convolutional Neural Network to
learn features directly from raw inputs in the future.

5. ACKNOWLEDGMENTS
The work described in this paper was supported by a

grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (CityU 11210514),
and a grant from the National Hi-Tech Research and De-
velopment Program (863 Program) of China under Grant
2014AA015102. The Tesla K40 used for this research was
donated by the NVIDIA Corporation.

6. REFERENCES
[1] Y. Baveye, J.-N. Bettinelli, E. Dellandreá, L. Chen, and
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