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ABSTRACT
Mix dish recognition, whose goal is to identify each of the dish
type presented on one plate, is generally regarded as a difficult
problem. Themajor challenge of this problem is that different dishes
presented in one plate may overlap with each other and there
may be no clear boundaries among them. Therefore, labeling the
bounding box of each dish type is difficult and not necessarily
leading to good results. This paper studies the problem from the
perspective ofmulti-label learning. Specially, we propose to perform
dish recognition on region level with multiple granularities. For
experimental purpose, we collect two mix dish datasets: mixed
economic rice and economic beehoon. The experimental results on
these two datasets demonstrate the effectiveness of the proposed
region-level multi-label learning methods.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks → Network reliability.

KEYWORDS
Mix dish recognition, Multi-label recogniition, region-wise, multi-
scale
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1 INTRODUCTION
Automatic dietary recording service is becoming increasingly im-
portant today with the attractive concept of “health lifestyle". With
automatic dietary assessment tools, people can easily track their
food log and get the nutrition analysis. Therefore, food recognition,
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which is the key technology for such kind of automatic dietary
assessment tool, has become a hot research topic in recent years.
Recent efforts on food recognition mostly devoted to recognize food
images that only contain one type of dish [7] [9], yet problem of
multiple food recognition, especially the situation where different
types of dish presented in one plate, has been less studied.

While various technologies and attempts are booming, one thing
that cannot be ignored is the recognition of mix dish. It’s not prac-
tical to study just individual dishes and ignore set meals, and in
many cases, such as in canteens and food courts, several dishes
are placed on one same plate especially for Chinese food stalls.
This kind of mix dish is very popular and widely distributed, and
asking users to take several separate photos of each dish in the
plate and uploading them one by one will definitely kill their thin
patience soon. Study of mix dish can help us get nutrition or other
information for set meals without repetitive heavy labor. One photo
of all dishes is enough for analysis. Till now, many scholars have
studied food recognition. With the development of various smart
applications, simple usage of deep learning methods such as CNN
for identifying single-dish photos has been difficult to meet actual
needs. In this sense, multi-dish classification reduces the burden on
users. Faster R-CNN, proposed by Ross Girshick et al. [16] in 2014
which detects objects as well as their bounding boxes, can be used
as a very effective classifier. In addition, segmentation algorithms
which can get accurate pixel-wise prediction area of each object
is also helpful for food-ness problem such as calorie estimation,
considering that calorie of a dish has a significant proportional
relationship with its amount. Unfortunately, the above methods has
either limited effect or high cost on the mix dish problem where all
dishes are on the same plate.

In our case, the shape of each dish is irregular. Overlap among
dishes is quite common, and borders of dishes are not clear. There-
fore, square bounding boxes may not accurately frame the position
of each dish during process of both annotation and prediction. For
segmentation, overlap and boundary mixing may be a problem,
and it has higher labeling cost and more complicated algorithm.
We want to solve the problem with a simple and effective solu-
tion, reducing unnecessary manual labeling and excessive running
time. Therefore, we study this problem from the perspective of
multi-label classification.

Advantages of treating mix dish problem as multi-label learning
problem are obvious: it requires neither bounding box annotation
nor pixel-wise annotation, and aims at only categories, rather than
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the location of each dish, which will greatly reduce the burden of an-
notation work and simplify the design of the network. Conversely,
problems that can be brought about are equally obvious: it is already
very difficult to correctly identify each one of the dishes in a food
image, not to mention that we only use image-level annotation.
Without help of detailed labeling information, the supervision in-
formation available during training is greatly weakened, and mixed
margins of dishes will make recognition more difficult. How to get
acceptable and competitive classification results for such a trou-
blesome recognition problem under weak supervision, this is an
important issue that we need to consider.

To this end, we propose a multi-label learning framework that
performs dish recognition at region level under different scales.
Region-level recognition enables to detect dish locations for better
recognition performance while multi-scale recognition enables to
handle the variations in dish size. Besides, to transfer the knowl-
edge learned from single dish image, we initialize the weights of
convolutional layers with the DCNN model trained on a large sin-
gle food image dataset. Compared to detection and segmentation
schemes, our approach has lower cost, less processing time and
potentially better results, and compared to other multi-label classi-
fication methods, our method achieves much higher accuracy. The
contribution of this work can be summarized as follows:

• We study the problem of mix dish recognition from the per-
spective of multi-label learning and propose a framework
that recognize the dish at region level with multiple granu-
larities.

• We collect two challenging mix dish datasets and provide
them with image-level labels. To the best of our knowledge,
they are the only datasets for mix dish.

• We verify the proposed framework on two datasets.

2 RELATEDWORK
Food recognition has attracted lots of research interest in recent
few years. Existing efforts include deep-based recognition [7] [23]
[22] that leverage different deep models for food recognition, con-
text based recognition by GPS and restaurant menus [3] [17] [2],
personalized food recognition by history data [19], multiple-food
recognition [1] [14] [24], multi-modal fusion [18] and real-time
recognition [20] [26]. This section mainly reviews previous works
on multiple food recognition as well as multi-label learning in food
domain.

Compared with single food recognition, multiple food recogni-
tion receives fewer research attentions. Early works on multiple
food recognition mainly follow a two-step pip-line [24], which
performs plate detection with circle detector or deformable part
models (DPM) [15] followed by feature fusion based food recogni-
tion method on the detected plate regions. Recent works are mostly
based on deep models [5], such as YOLO [27] or faster-RCNN [28]
for dish detection and recognition [13] [14]. For example, in [13],
Ege el al. proposed to leverage faster-RCNN to obtain the candidate
bounding box of the dish, then apply multi-task learning on the
candidates for simultaneously dish recognition and calories esti-
mation. Later, Ege el al. [14] proposed a framework that leverage
YOLO for simultaneously bounding box detection, food recogni-
tion and calorie estimation. To further boost the performance of

multiple dish recognition, Aguilar et al. [1] proposed to combine
semantic segmentation model with YOLO for dish detection and
recognition. In this work, semantic segmentation is applied to seg-
ment food and non-food regions, to refine the dish detection results
from YOLO. Since both semantic segmentation and YOLO model
are trained in fully supervised fashion, this work requires both
bounding-box-level and pixel-level labels. Different to all the works
mentioned above, Shimoda et al. [29] proposed to generate foodness
proposals with a fully convolutional neural network for multiple
dish recognition. Compared to Faster-RCNN based or YOLO based
food detection methods, this work does not require any bounding
box labels. Nevertheless, the aforementioned approaches were pro-
posed under the assumption that different dishes are in different
containers and each plate only contains one type of dish, which is
different from the situation we consider in this work.

There are also a few works that aim to recognize multiple dish
items which are presented on one plate. These works are mostly
based on semantic segmentation, whose goal is to assign the dish
label to each pixel [25] [12]. For example, Myers et al. [25] proposed
to use the CNNmodel and conditional random field (CRF) to predict
pixel-level labels for multiple dish segmentation. In [12], Dehais
et al. proposed a CNN-based food border map to guide the region
growing for food segmentation. Both methods have shown quite
promising semantic segmentation results on western food, where
each food item mostly contains one single ingredient. Since we
are dealing with a more challenging situation where each food
item may composite of multiple ingredients, these methods are not
directly applicable to our problem.

Multi-label learning has also been studied in food domain in
recent years [4] [7] [8]. Nevertheless, most of these works are fo-
cused on ingredient recognition. For example, Marc Bolanos et al.
[4] propose a deep multi-ingredients recognition method which
uses Inception-V3 and ResNet-50 as basic deep architectures. For
both deep models, the last layer is modified to apply multi-label clas-
sification overN possible outputs to predict the list of ingredients in
a food image. In [7], Chen et al. also study ingredients recognition
problem through multi-label learning by proposing a deep multi-
task learning model to simultaneously recognize food categories as
well as their ingredients. In addition, conditional random field (CRF)
are utilized to incorporate the co-occurrence context information to
refine the ingredient recognition performance. In [8], a multi-task
learning model is proposed to recognize ingredient, cooking and
cutting attributes of a food picture. They divided the Pool5 feature
correspond to the last convolution layer intom ×m grids and ap-
plied region-level dependency pooling on these grids. Meanwhile,
instead of fixed resolution of grids, multi-scale recognition is used
to handle the change in scale. Compared to the previous two pa-
pers, this paper uses a very efficient region-wise method which
significantly improves the results. Different to the aforementioned
works that focus on ingredient recognition, this paper studies the
problem of mix dish recognition with multi-label learning.

2.1 Methodology
Figure 1 presents an overview of the proposed framework. Given
an image I , a pyramid of multi-resolution images is generated and
input to a deep convolutional network. The corresponding feature
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Figure 1: Framework overview. d is the dimension of embedding feature, and c is the number of classes. Given an image,
multi-scale region-wise classification is performed first, then max pooling is done across regions and scales to get the global
probability distribution.

maps are transformed into embedded features for the prediction of
dishes. Max-pooling is done across different regions and scales to
get the global probability distribution.

2.2 Region-wise classification
Our DCNN architecture uses the Inception-V4 [30] network. We
obtain the feature map from 3× Inception-C layers, which retain
the spatial information of the original image. The obtained feature
map is divided into n × n grids, where each grid is presented by
a vector of 1536 dimensions. The value of n varies depending on
the image size. For an image of size 299 × 299, n = 8 and each
grid corresponds to a receptive field of 37 × 37 resolution. The
classification is performed on each region with the assumption that
each grid contains part of one dish among all categories. In this way,
we make sufficient use of the regional information of a food image.
For each grid, a shared fully connected layer is applied. Denote the
feature vector for ith grid as fi , we have

vi = tanh(WI fi + bI ) (1)

where vi ∈ Rc is a vector of c dimensions corresponding to the ith

region fi ∈ Rd . c is the number of dish categories. Therefore, vi
can also be considered as the response vector of dish categories.
WI ∈ Rc×d is the learnt transformation matrix and bI ∈ Rc is the
bias term. Then these response vectors will be max pooled to get
the global response vector V .

V =max
{
vi |n

2

i=1

}
(2)

whereV ∈ Rc is a vector whose dimensions are the same as number
of dish categories.

2.3 Multi-scale classification
When dealing with food pictures, one thing to note is that the angle
and distance of the shot, as well as the size of the area occupied by

each dish in the picture, are not fixed. Therefore, choosing fixed-size
grids as basic units of recognition may affect the results to some
extent. Based on this consideration, we introduce the multi-scale
food recognition method. It provides us with multi resolution of the
image, combining different granularity of features to predominantly
enhance model efficiency.

Our model is easy to extend to multi-scale recognition. Instead of
single-scale, pyramid images in multiple resolutions are put into the
network, resulting in regions with different amounts and receptive
fields. An image of size 299 × 299 obtains 8 × 8 grids after feature
embedding layer, while an image of size 598 × 598 obtains 17 × 17
grids. All these regions experience the same operation as above,
the only difference is that the vectors obtained by different scales
will be put together for max pooling. The process is as follows:

vs,i = tanh(WI fs,i + bI ) (3)

Where vs,i ∈ Rc is a vector of c dimensions corresponding to the
ith small region fs,i ∈ Rd with scale s ,WI ∈ Rc×d is the learned
transformation matrix and bI ∈ Rc is the bias term.

V =max
{
max

{
vs,i |n

2

i=1

}
|Ss=1

}
(4)

whereV ∈ Rc is a vector whose dimensions are the same as number
of categories, n2 is the number of divided grids, s is a certain scale,
and S is the number of scales.

2.4 Loss Function
Binary Cross Entropy Loss. As mix dish recognition is a multi-
label classification problem, we hence use binary cross entropy
as the loss function. As the value of V is in the range of [−1, 1],
hence sigmoid is applied to transform the response into category
probabilities.

P =
1

1 + e−V
, (5)
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Table 1: Statistics of food datasets. Ecominc rice and Economic beehoon are the mixed dish datasets collected by this work. (∗

UEC food-100 contains both single and multiple dish images, and the number of multiple image is 1,027.)

Dataset #image #class Multiple food Mix dish #dishes/image
PFID [9] 4,545 61 × × -

Chinese Food Dataset [10] 5,000 50 × × -
VIREO Food 172 [7] 100,241 172 × × -
UEC Food-256 [21] 31,397 256 × × -

Food-101 [6] 101,000 101 × × -
UNIMIB2016 [11] 1,027 73 ✓ × -

School Lunch Image Dataset [13] 3,940 21 ✓ × -
UEC Food-100 ∗ [24] 9,060 100 ✓ × -

Economic Rice 9,254 164 ✓ ✓ 4.07 ± 0.59
Economic Beehoon 2,851 54 ✓ ✓ 3.71 ± 1.71

where P ∈ Rc is the learned possibility distribution whose dimen-
sions are the same as number of categories. Then binary cross
entropy loss is calculated as follows:

L = −
c∑
i=1

(дi loд(pi ) + (1 − дi )loд(1 − pi )), (6)

where pi is the predicted probability for ith dish while дi ∈ {0, 1} is
the ground-truth label. During the training process, the error will
propagate through the whole network, and weights of the network
will be updated to optimize the recognition performance.

Negative Sampling As each food image only contains a small
number or dishes out of the available c dish categories, the ground-
truth vectorG is very sparse. So we adopt negative sampling during
the training process. Denote R ∈ Rc as the randomly generated
binary vector. The binary mask vector M ∈ Rc is obtained as
follows:

M = R | д, (7)
where | is the or operation, used to make sure that all the positive
samples are selected for loss calculation, and д is the binary ground-
truth label vector. With negative sampling, the loss function can be
rewrite as follows:

LNS =
−∑c

i=1(дi loд(Mipi ) + (1 − дi )loд(1 −Mipi ))∑c
i=1Mi

(8)

where LNS is the binary cross entropy with negative sampling, pi
is the predicted probability for ith dish, Mi ∈ {0, 1} is the binary
mask and дi ∈ {0, 1} is the ground-truth label.

3 DATASET
There are several public food datasets, including PFID [9], Chi-
nese Food Dataset [10], VIREO Food-172 [7], UEC Food-100 [24],
UEC Food-256 [21], Food-101 [6], UNIMIB2016 [11] and School
lunch image dataset [13]. Table 1 summarizes the statistics of the
above mentioned datasets. Basically, most of these food datasets are
collected for single dish recognition. Exceptions include UEC Food-
100, School lunch image dataset and UNIMIB2016. Nevertheless,
all there three datasets are relatively small dataset, ranging from
1,027 to 3,940 multiple-item food images that covers less than 100
dish categories. Besides, in these three datasets, different dishes are

presented in different plates which is the simplest situation for mul-
tiple food recognition. Different to these datasets, we collect two
mix dish datasets: Economic Rice and Econonmic Beehoon, which
contains 9,254 and 2,851 food images respectively. Both datasets
contain 4 dishes per image on average. We followed the principles
listed below at the time of shooting: (1) All the dishes on the plate
should appear in the photo so that each dish can be seen and recog-
nized. (2) The camera-to-plate distance should not be too far, and
the plate should occupy at least two-thirds area of the entire photo.
(3) Angle changes should be made instead of shooting all the plates
from directly above.

Economic rice. Economic rice is one of the most common food
type in southeast Asia and most popular lunch/dinner choice for
general public in Singapore since it is cheap and can be served
quickly. To this end, we collect a economic rice dataset where food
images are captured by cell phones from 6 different canteens. At
the same time, we also collect the list of dish names among the
canteens to instruct the labeling process and hire 7 students for
labeling work. In total, 9,254 food images in 164 dish categories
are collected, and for each image, only the dish names are labeled.
Figure 2(a) shows several examples of Economic rice. As can be
seen, this dataset is quit challenging as different dishes may mix
with each other and there may be no clear boundaries between two
dishes. Besides, even the same dish cooked by different canteen
may have large visual variance because of different cooking/cutting
methods, which brings certain challenges to the recognition. Figure
3(a) further shows the distribution of positive examples in dish
categories. On average, there are 225 positive samples per dish
category.

Economic beehoon. To demonstrate the effectiveness of our
method more convincingly, we further collect the economic bee-
hoon dataset. Economic beehoon is a popular food type for breakfast
in Singapore and is also a type of mix dish that usually combines
several dish categories on one plate, however, the number of dish
categories are much less compared to economic rice. Figure 2(b)
shows several examples of the dataset. Basically, the visual appear-
ance of dish is quite standard in beehoon dataset and there is less
visual variance among dishes in the same categories. Therefore,
the recognition of economic beehoon is less challenging compared
to economic rice. In total, we collect 2,851 images in 54 dish cat-
egories of economic beehoon from different hawker centers, and
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(a) Economic Rice (b) Economic beehoon

Figure 2: Sample images of the collected datasets.

(a) Economic Rice (b) Economic beehoon

Figure 3: Sample distribution.

dish names of each images are labeled similar to economic rice
dataset. Figure 3(b) shows the distribution of positive examples in
dish categories. On average, there are 191 positive samples per dish
category.

4 EXPERIMENT
4.1 Experimental Setting
Our Inception-V4 network is pre-trained on a large single dish
dataset, which covers 264,048 Singapore food images from 751
categories. The top-1 recognition accuracy on this dataset is 77%.
Through pre-training, we hope to transfer the knowledge learned
from single dish for mix-dish recognition. On both mixed dish
datasets, 70% of images are picked for training, 10% for validation
and the remaining 20% for testing. For training, RMSprop [31] is
chosen as the optimizer with learning rate set to 0.01, and batch size
is set to 32. The model is trained around 20 epochs. For multi-scale
recognition, we used two-level of pyramid images, respectively at
resolutions of 598 × 598 and 299 × 299, also, due to memory limita-
tions, batch size is set to 8 here. Considering number of categories
and average dishes per image, the final prediction result is obtained
by P in formula (5) retaining the probability values of top-4 with
length of 164 and 54 respectively. A multi-hot predicted label is

obtained by setting reserved values to ‘1’ and other values to ‘0’.
Due to the sparsity of ground truth, the sampling rate of negative
sampling is set to 0.1, that is, 10% of negative samples are randomly
selected for training. Note that we set 4 as the number of predicted
labels because average number of dishes per image in Economic
Rice dataset is very close to 4 with a small variance. As for Eco-
nomic Beehoon dataset, the calculated mean number of dishes is
4, and our experiment also proved that the selection of 4 is better
than 3 or 5 considering overall effect.

4.2 Recognition performance
We first study the effects of negative sampling as well as pre-
training. Table 2(a) and Table 2(b) list the performances of economic
rice and economic beehoon recognition, respectively. Basically, mix
dish recognition is a challenging task as the recall, precision and
F1 score are very low on both datasets. From the results, we have
following observations. First, pre-training on single dish dataset
improves the performance of mix dish recognition, which demon-
strates that the knowledge learned from single dish is also useful
for mix dish recognition. In terms of F1, pre-training improves 9%
on economic rice and 5% on economic beehoon. Second, negative
sampling is also effective in improving the mix dish recognition per-
formance. With negative sampling, the recognition performances
has gained more than 13% of improvement on economic rice and
more than 6% of improvement on economic beehoon. Therefore,
we adopt both negative sampling and pre-training in the following
experiments as both of them have been demostrated to be effective
in improving the mixed dish recognition performance.

Next, we evaluate the performances of region-wise mix dish
recognition as well as multi-scale recognition. The difference be-
tween image-level method and region-wise method is illustrated
in Figure 4. As can been seen, region-wise recognition performs
recognition on each region of the image while image-wise recogni-
tion pools the feature maps as a vector and perform recognition on
the pooled vector. Table 3 summarizes the performances. Basically,
region-wise recognition performs much better than image-level
recognition. It improves the recognition performance around 18%
on economic rice dataset and 9% on economic beehoon dataset in
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Table 2: Comparison between the model with (*) and with-
out pre-training on single dish dataset, as well as with and
without NS (Negative sampling).

(a) Economic Rice

Recall Precision F1
Inception-V4 0.254 0.293 0.271
Inception-V4* 0.362 0.364 0.360
Inception-V4 + NS 0.447 0.447 0.434
Inception-V4* + NS 0.504 0.502 0.498

(b) Economic Beehoon

Recall Precision F1
Inception-V4 0.456 0.507 0.459
Inception-V4* 0.566 0.502 0.508
Inception-V4 + NS 0.602 0.532 0.541
Inception-V4* + NS 0.645 0.561 0.571

Table 3: Mix dish recognition comparison: image-level ver-
sus region-wise; single-scale versus multi-scale.

Economic rice Economic beehoon
Recall Prec. F1 Recall Prec. F1

Image-level 0.504 0.502 0.498 0.645 0.561 0.571
Region-wise 0.681 0.680 0.675 0.748 0.646 0.662
Multi-scale 0.719 0.721 0.714 0.776 0.685 0.697

terms of F1 measure. By considering multi-scale recognition, the
F1 score can be as high as 0.71 and 0.70 on economic rice and eco-
nomic beehoon datasets, respectively. The results demonstrate that
region-wise multi-scale recognition is effective in improving the
mix dish recognition performances. In addition, from the results,
the improvement gained from region-wise multi-scale recognition
on economic beehoon dataset is much less than that on economic
rice dataset. This is probably due to the fact that dishes in economic
beehoon images are not as mixed as dishes in economic rice and
there are still clear boundaries among them.

To get deep insights on how region-wise multi-scale model im-
proves the mix dish recognition performance, we visualize the
top-4 predictions for three examples, which is shown in Figure 5.
As shown in the figure, the image-level recognition model predicts
“white rice" or “beehoon" with the highest probability for all three
examples, because these two types of dish are most common in
economic rice and beehoon dataset, which is a manifestation of
data imbalance that means certain label(s) are extremely frequent
among all labels and may have an impact on prediction results. As
we can see, in the third example, the model wrongly predicts “kway
teow" as “beehoon". This basically indicates that despite the assis-
tance of pre-trained model and negative sampling, the image-level
recognition model is easy to be affected by the unbalanced data and
has a certain tendency to randomly guess the predictions.

Results of region-wise and multi-scale are much better. For the
third example, both of them correctly predict “kway teow" with

(a) Image-level

(b) Region-wise

Figure 4: Comparison of image-level and region-level. d is
the dimension of embedding feature, and c is the number of
classes. For image-level method, classification is performed
on the global image feature vector that obtained by aver-
age pooling operations on feature maps, while region-wise
method performs dish classification on the feature vector of
each region and max pools the results across regions to get
the global probability distribution.

the highest probability, and the latter even does not take “beehoon"
in the top-4 predictions. Region-wise method divides the feature
map into multiple grids and uses the same classifier on each small
region which intuitively contains a small piece of a dish, thus, it
can capture more information than directly processing the whole
feature map. And multi-scale approach further enhances the model
with generation of pyramid images instead of single-scale ones.
This multi-granular approach helps handling images with different
angles and camera-to-dish distances more flexibly. As can be ob-
served from the third example, with finer resolution regions, the
multi-scale recognition model is able to predict “luncheon meat"
successfully, while the single-scale region-wise model ignores “lun-
cheon meat" as it occupies a small region in the image. Besides,
considering finer resolutions for recognition can better capture the
textual information of dish, hence helps to reduce the confusion
between the dishes with similar appearances. In the first and second
example, with finer resolution regions, the multi-scale recognition
model is able to successfully predict “braised chicken", while the
single-scale region-wise model confuses it as “stir fired eggplant"
or “beancurd skin strips".

The above experimental results and examples demonstrate the
effectiveness of region-wise and multi-scale methods. In addition,
we also found that although all images have only image-level anno-
tations, the response mapvs,i (in Equation 3) obtained by the model
can form rough bounding areas of the dishes. As shown in Figure 6,
even we don’t provide any location information of the dish during
the training process, the areas of “beehoon”, “fish cake” and “spring
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Figure 5: Examples of mix dish prediction. False positives are marked in read.

Figure 6: Detection visualization

roll” can still be roughly detected on the response map. This is ow-
ing to the advantages of performing classification at regional level.
For a given dish category, the regions with higher response will be
highlighted with region-wise recognition, which helps to localize
the dish. Generally speaking, the better the result of localization is,
the higher the prediction accuracy can be achieved.

5 CONCLUSION
In this paper, we studied mix dish recognition problem from the
perspective of multi-label learning, and performed dish recognition
on region level with multiple scales. Accompanied with Negative
Sampling and targeted pre-trained model, we use several simple
yet efficient methods to improve performance of the classification
model and got competitive results with image-level annotation. For
the difficult mix dish problem, our approach eliminates the heavy
labor of manual labeling and significantly increased all indicators
comparing to plain multi-label classification. We collected two real
data sets and experimented on them, yielding convincing results.
The experimental results show that the proposed method is very
effective.

Future Work The effectiveness of region-wise has been well
proven, but the division of grids is still a manual work. If the process
of region-wise and choice of multi-scale resolutions can be done
automatically according to the characteristics such as camera-to-
dish distance of the image, then better results may be achieved. In
the future, we plan to explore adaptive pooling to further reduce
manual setup work and improve classification accuracy.
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