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ABSTRACT
Answering query with semantic concepts has long been the main-
stream approach for video search. Until recently, its performance
is surpassed by concept-free approach, which embeds queries in
a joint space as videos. Nevertheless, the embedded features as
well as search results are not interpretable, hindering subsequent
steps in video browsing and query reformulation. This paper inte-
grates feature embedding and concept interpretation into a neural
network for unified dual-task learning. In this way, an embedding
is associated with a list of semantic concepts as an interpretation
of video content. This paper empirically demonstrates that, by us-
ing either the embedding features or concepts, considerable search
improvement is attainable on TRECVid benchmarked datasets. Con-
cepts are not only effective in pruning false positive videos, but
also highly complementary to concept-free search, leading to large
margin of improvement compared to state-of-the-art approaches.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems → Video search.

KEYWORDS
Ad-hoc video search, concept-based search, concept-free search,
interpretable video search
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1 INTRODUCTION
Ad-hoc video search (AVS) is to retrieve video segments for textual
queries. As no visual example is provided along with the textual
query, AVS is also known as zero-example video retrieval. The task
is challenging due to the semantic gap between the high-level se-
mantics expressed in terms of textual description and the low-level
signals embedded in videos. Furthermore, AVS is ad-hoc for assum-
ing the scenario of open vocabulary, where the composition of a
query using words or concepts new to a search engine is allowed.
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In the literature, TRECVid AVS is the most known activity that
conducts benchmark evaluation for this task [5]. The evaluation is
conducted on a large video collection, e.g., V3C1 corpus [7] com-
posed of one million video segments, with no training data or labels
being provided. The testing query is non-verbose, e.g., Find shots
of a woman wearing a red dress outside in the daytime. Achieving
satisfactory performance in face of large datasets, short query in-
formation and open vocabulary problem is certainly difficult, as
evidenced from the evaluation results of TRECVid on automatic
search [2–5].

The mainstream approaches are devoted to query understanding,
either relying on concept classifiers (i.e., concept-based [1, 41, 44,
48]) or learning embedding features common to text and video
(i.e., concept-free [14, 21, 49]) for search. Concept-based approach
explicitly maps a user query to concept tokens. Capitalizing on
the pre-trained convolutional neural network (CNN), a variety
of concepts (e.g., object, action, scene) in videos are indexed and
then matched against the tokens extracted from query description.
As similarity is semantically enumerated based on their common
concepts, the search result is explainable. The progress of concept-
based search is bottlenecked by a number of issues, including the
selection of concepts for query [44] and the reliability of concept
classifiers [41]. Concept-free approach, in contrast, bypasses these
issues and performs matching between query and video by their
embedded features. The features are learnt in a black box manner
by minimizing the distances of video-text pairs. As features are not
interpretable, the result of matching cannot be unrolled to recount
the commonality between video-text pairs as in concept-based
search.

The success of concept-based approach for AVS has been ev-
idenced in [41, 44], by building a large visual vocabulary to ac-
commodate for tens of thousands of semantic concepts. Screening
these concepts to represent user queries, however, is not a trivial
issue. Human intervention is often required. As studied in interac-
tive search [25], human is excellent in picking the right concepts
for video search. Concept-free approach, which is relieved from
the burden of concept screening, has recently surpassed the re-
trieval performance of concept-based approach in automatic search
[2, 4, 21]. Nevertheless, being not interpretable, its utility for brows-
ing is questionable when user inspects the search result. Unlike
concept-based search, there is also no explicit way to identify the
mismatch of a video from the query when the performance is not
satisfying.

While both concept-based and concept-free approaches have
their respective merit and limitation, there is no research studying
the complementarity between them. This paper proposes a new
network architecture to equip concept-free approach with the capa-
bility of inferring concepts from an embedded feature. The network
performs dual tasks, i.e., learning cross-modal embedding features
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while enforcing the features to explicitly recount the concepts un-
derlying a video. The network is trained end-to-end to force the
consistency between features and concepts. This results in each
video being associated with an embedding feature for search and a
concept list for interpretation. Empirically, this paper shows that,
by combining both features and concepts for search, superior per-
formance is attainable on the TRECVid benchmarked datasets. The
main contribution of this paper is the proposal of a new architecture
along with its novel loss function for concept decoding. This paper
also paves new insights of how concept-free and concept-based
approaches can possibly see eye-to-eye for a number of issues in
AVS. These issues include using the decoded concepts to verify the
result of concept-free search, and the ability of handling Boolean
queries.

2 RELATEDWORK
Ad-hoc video search, being a long-lasting task annually evaluated
in TRECVid, can date back to as early as year 2003 [39]. The task
is, presented with a topic (i.e., textual descriptions of information
need), a search system formulates query and then returns a ranked
list of video shots. Since its beginning, the utilization of concepts
for search has become the main focus of study [42]. The progress
evolves from the early efforts of concept bank development and
ontology reasoning [20, 32, 43] to the recent advances in concept
screening, representation and combination [1, 18, 28, 36, 47]. This
branch of approaches is generally referred to as concept-based
search. The most recent approaches mostly focus on the linguistic
analysis for concept selection on large vocabulary [18, 47]. To deal
with out-of-vocabulary (OOV) problem, query expansion with on-
tology influencing [47] and webly-label learning by crawling online
visual data [18] are commonly adopted. Despite numerous progress
[8, 19, 35], automatic selection of concepts to capture query seman-
tics as well as context remains highly difficult. Human intervention
is often required in practice, for example, by manually removing un-
desired concepts after automatic matching [34] or by hand-picking
query phrases that should be matched with concepts [45].

Concept-based search is superior in finding videos when the
concepts required for a query topic can be precisely identified for
search. The associated problem, however, is the inherent expression
ambiguity when using a sparse list of concepts to describe a complex
information need. For example, a topic of Find shots of a person
holding a tool and cutting something is hard to be expressed precisely
using the concepts like “holding”, “cutting”, and “tool”, especially
if these concepts are treated independently during search. To this
end, concept-free search, which embeds the entire video shot
and information need as high-dimensional features, is recently
shown to be more effective in capturing compositional concepts
[14, 18, 21]. Nevertheless, the performance of concept-free search
is not always predictable. For example, the queries Find shots of
people queuing and Find shots of people standing in line, despite being
similar in meaning, can end up in considerably different retrieval
performances.

With the availability of image and video captioning datasets
(e.g., MSCOCO [10], MSVD [9], MSR-VTT [50]), the training of
visual-text embedding models is greatly facilitated. Various models
have been attempted for AVS, including VideoStory [17], visual

semantic embedding (VSE++) [15], intra-modal and inter-modal
attention networks [18], Word2VisualVec (W2VV) [13] and dual
encoding [14]. These models differ mainly in ways of how query
topics are represented and encoded. For instance, VSE++ employs
a recurrent network to encode the word sequence [15], while atten-
tion networks weight the text and visual elements for embedding
[18]. More sophisticated approach is W2VV [13], which encodes
bag-of-words, word2vec and word sequence altogether. The exten-
sion of W2VV (W2VV++) is the first model that shows significant
improvement in AVS over the concept-based approaches [4]. Build-
ing on top of W2VV++, the most recent dual encoding network
[14] reports state-of-the-art performance by multi-level encoding.
Three different levels of information are considered, including the
short-term pooling of local features and mean pooling of word and
sequence features respectively. Different from other models, the
network treats a video frame as a word and processes video shot in
a similar fashion as a text sequence. Similar approach is adopted in
[49], with the use of graph convolutional network and VLAD for
encoding.

A hybrid of concept-based and concept-free approaches has
also been studied [16, 18, 33, 38, 41, 45, 47]. The early works in-
clude the fusion of VideoStory embedding and concept features
[41], which leads to improvement over individual features. In the
recent TRECVid benchmarking, late fusion of concept-based and
concept-free approaches has become a norm [16, 18, 33, 38, 45, 47].
Although being shown to be complementary, the fact that both
features are generated using two separate models trained using
different forms of data has tremendously increased the system com-
plexity. Different from these works, the proposed dual-task model
is end-to-end trained using the same set of data for generating both
embedding and concept features. This results in significant save of
effort in training and housekeeping models, while maintaining the
consistency between two different natures of features.

3 DUAL-TASK NETWORK
Figure 1 illustrates the architecture of dual-task network, which
is composed of visual-textual embedding (Task-1) and multi-label
concept classification (Task-2). Both tasks share visual encoding
network for video feature extraction. Taking user query as input,
Task-1 trains a textual encoding network to project the query into
the same latent space as video features. Task-2, on the other hand,
trains a visual decoding network to predict the concepts underlying
a video feature. Given a video-text pair, Task-1 aims to minimize
the pairwise distance, while Task-2 is to recover the query words
from the video embedding. It is worth noting that a query usually
describes only one perspective of video content. Hence, the loss
function of decoder is novelly designed to emphasize more on
missing query words than the words outside of a query. To this
end, as both tasks are learnt simultaneously, the video features are
learnt iteratively to accommodate both tasks.

3.1 Visual-text Embedding
We use the same architecture as dual encoding network [14] to
extract multi-level video and text features. The visual encoding
network has three sub-networks. The first sub-network captures
the global information of a video segment by mean pooling its CNN
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Figure 1: An overview of the end-to-end dual-task network architecture

features over the video frames. The second sub-network extracts
the temporal information of video by mean pooling the features of
the bidirectional GRU [11] (biGRU) across all time steps. The final
sub-network further extracts the local information in the temporal
sequence of video by performing 1-d CNN on the top of the biGRU
features from the second sub-network. A multi-level video feature
is formed by concatenating the global, temporal and local informa-
tion extracted from these sub-networks. The visual embedding is
denoted as

f (v) = [f
(1)
v , f

(2)
v , f

(3)
v ] (1)

where f
(i)
v (i = 1, 2, 3) denotes the feature extracted from the first,

second and third sub-networks for a video v . The video feature
f (v) is further mapped to the common space of d dimensions by
using a fully connected layer (FC) and a batch normalization layer
(BN) as following

ϕ(v) = BN (Wv f (v) + bv ),ϕ(v) ∈ R
d (2)

where BN(·) denotes the batch normalized layer. The matrix Wv
and the vector bv are weight and bias of the fully connected layer
in the visual encoding network.

The query q is encoded similarly using the texture encoding
network. Each word in q is represented as a one-hot vector mi
and then concatenated as a matrix Mq = {m1,m2, ...,mi , ...,mn }

to represent the sentence q. The first level feature f
(1)
q is obtained

by taking the mean value of the matrix Mq over all the vectors
of sentence words. A denser vector is further generated for every
word bymultiplying its one-hot vector with a pre-trainedWord2Vec
matrix. The second-level feature of the query f

(2)
q is obtained by

mean pooling of the features output by each stage of biGRU [11]
over the sequence of dense vectors. The third-level feature f

(3)
q is

extracted by conducting 1-d CNN over the biGRU features obtained
from the second level. Finally, a multi-level feature for the query q
is formed by concatenating all of the features as

f (q) = [f
(1)
q , f

(2)
q , f

(3)
q ] (3)

The feature is subsequently mapped to the common space as the
video feature by a fully connected layer and a batch normalize layer

τ (q) = BN (Wq f (q) + bq ),τ (q) ∈ R
d (4)

where Wq and bq are the weight and bias of the fully connected
layer in the textual encoding network. The textual embedding has
the same output dimension d as visual embedding.

Finally, the similarity of the input query q and the video v is
computed as S(v,q) = sim(ϕ(v),τ (q)). The visual-textual embed-
ding matching task is trained in an end-to-end manner by using
improved marginal ranking loss [15]. The loss in this matching task
is defined as

lossmatchinд(v,q) =max(0, c + S(v_,q) − S(v,q))

+max(0, c + S(v,q_) − S(v,q))
(5)

where c is the margin. The visual-text pair is indicated by the
notations v and q respectively. The query q is associated with a
negative sample v−, and similarly v is associated with a negative
query q−. The visual-textual embedding matching task is trained
to minimize this loss.

3.2 Multi-label Concept Decoding
Video content is multi-perspective. The content can be narrated
from different perspectives depending on the subjects or contexts of
interest in the topic of discussion. Even for one perspective, there ex-
ists a variety of ways expressing the same semantics using different
words. Hence, given a video, Task-2 is to train a decoder such that
all the words in its descriptions are activated with high probability.
The activated words that are absent from the descriptions do not
necessarily belong to false positives. Instead, these words may be
just not mentioned than being classified incorrectly. In general, the
challenge of training such a decoder is beyond concept prediction
as in the conventional CNN. The novelty of Task-2 is the design of
a loss function to maximize the intersection between the classified
concepts of a video embedding and the words mentioned in the
captions.
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The visual decoding network is comprised of a fully connected
layer and a batch normalization layer. The output is denoted as

д(v) = BN (Wdϕ(v) + bd ) (6)

whereWd and bd are weight and bias of the network. The sigmoid
function is performed over the output to obtain the probability
distribution ŷv for a video embedding д(v)

ŷv = siдmoid(д(v)). (7)

where ŷv = [ŷv1, ŷv2, ..., ŷvi , ..., ŷvm ] (ŷvi ∈ R
+) form = 11, 147

numbers of concept classes. The value ofm is compiled from the
training set, by including the words that appear in at least five
descriptions and removing the words in the NLTK stopword list.
For a video v , the words that appear in its captions are labeled as
ground-truth yv = [yv1,yv2, ...,yvi , ...,yvm ], where yvi ∈ {0, 1}
indicates whether a word is present in the captions of v .

Binary cross entropy (BCE) loss is widely adopted for multi-label
classification task. However, BCE cannot be directly applied for
treating each class equally by penalizing the predictions different
from the ground-truth labels. In general, the number of words
used to describe a video is much smaller than the total number of
concepts. Using BCE will cause the amount of loss being dominated
by the words not mentioned in video captions. The decoder trained
in this way will play trick to predict almost all classes as zero in
order to get an overall low BCE loss. Thus, a class-sensitive loss is
proposed, by computing the loss of mentioned words separately
from those that do not appear in the captions, as following

lossclassif ication (v,yv ) = λ
1∑m

i yvi

m∑
i
yviBCElossi

+(1 − λ)
1∑m

i (1 − yvi )

m∑
i
(1 − yvi )BCElossi ,

(8)

BCElossi = −[yvi loд(ŷvi ) + (1 − yvi )loд(1 − ŷvi )]. (9)

Eq. (9) is the BCE loss function that computes the binary cross-
entropy for a class i . The proposed function in Eq. (8) is the summa-
tion of two BCE terms. The first term computes the losses of those
classes mentioned in the captions, i.e., yvi = 1 in the ground truth
of a video. The second term computes the losses of the remaining
classes, i.e., yvi = 0. Note that the proportion of concepts involved
in the first and second terms is highly imbalanced. Eq. (8) effectively
assigns higher weights to the mentioned concepts. In this way, the
decoder is trained to play a more active role in maximizing the
overlap between the predicted and ground-truth concepts. Never-
theless, to avoid an excessive number of concepts being predicted as
positive, a hyper parameter λ ∈ [0, 1] is required to keep a balance
between activating mentioned words and suppressing irrelevant
concepts. When λ equals to 1 or 0, it represents the extreme case
of whether to penalize only the concepts being mentioned (i.e.,
λ = 1) or vice versa (i.e., λ = 0). In practice, the value of λ should
bias towards the second term to restrict the number of activated
concepts. This is also justified in the experiment, where the value is
learnt as λ = 0.2, when verified using validation set. The multi-class
classification is trained in an end-to-end manner to minimize the
lossclassif ication .

3.3 Dual-task Learning and Inference
We have designed one loss for each task and they are lossmatchinд
and lossclassif ication . The dual-task loss is set as

losscombined = lossmatchinд + lossclassif ication . (10)

In the training stage, we compute the average dual-task loss over
all input video-text pairs in a batch and update all the parameters
of the model simultaneously by using this loss.

In the inference stage, we have two trained models for video
search. One model is from the visual-textual embedding match-
ing task (denoted as DTembeddinд ) and the other model comes
from the multi-label video concept classification task (denoted as
DTconcept ). The embedding model DTembeddinд and the concept
model DTconcept have the same parameters in the visual encoding
network. For all videos in the collection, we first use the trained
visual encoding network to extract their visual embeddings and
apply the trained visual decoding network of DTconcept to get
their predicted concepts offline. As a result, each video v in the
dataset is indexed with an embedding ϕ(v) ∈ Rd and a predicted
concept vector ŷv ∈ Rm+. Given a test query, the embedding model
DTembeddinд applies its textual encoding network to encode the
test query as a textual embedding τ (q) ∈ Rd . Then, DTembeddinд
will give each video v a score (score(v,q)embeddinд ) according to
the similarity of its embedding with the textual embedding of the
query q

score(v,q)embeddinд = sim(ϕ(v),τ (q)). (11)
DTembeddinд will output a list of videos for the query ranked ac-
cording to the scores. The top-1 in the list has the highest score
which represents the video best matches the input query. Mean-
while, the concept model DTconcept will generate a one-hot vec-
tor for the given test query. It maps the query sentence q over
the constructed concept list from the classification task to get a
one-hot query vector cq = [cq1, cq2, ..., cqi , ...cqm ], cqi ∈ {1, 0}. If
cqi = 1, it means that ith concept of the concept list is wanted
by the query. Then, DTconcept will also give each video v a score
(score(v,q)concept ) based on the similarity of its predicted concept
vector ŷv and the query vector cq .

score(v,q)concept = sim(ŷv , cq ). (12)

Another ranked list is output by the concept modelDTconcept based
on this score. A linear function is used to combine two models
together. We give a combined score (score(v,q)combined ) for each
video v with respect to the input query q as

score(v,q)combined = (1 − θ )(score(v,q)embeddinд)

+θ (score(v,q)concept ).
(13)

where θ is a hyper parameter to control the contributions of the
embedding model DTemebddinд and the concept model DTconcept
to the final retrieval score. We denote the model which uses the
score(v,q)combined for video search as DTcombined . Normally, we
use the combined modelDTcombined to retrieve videos for an input
query in the experiments.

4 EXPERIMENTS
We begin by describing the datasets, followed by ablation studies
to justify the proposed class-sensitive loss function and parameter
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Table 1: Datasets information.

name #video #caption #AVS test query
Training set:
MSR-VTT [50] 10,000 200,000
TGIF [23] 100,855 124,534
Validation set:
TV2016TRAIN [5] 200 400
Classification test set:
MSVD [9] 1,907 80,837
AVS test set:
IACC.3 [5] 335,944 90
V3C1 [7] 1,082,659 30

choices. Performance comparison with state-of-the-art techniques
is then presented. Finally, we provide insights on the potential
of dual-task model in interpreting search result and answering
Boolean queries.

4.1 Experimental Settings
Datasets. Table 1 lists the datasets used in the experiments. The
proposed model is trained and validated on the captioning datasets.
These datasets are also used by other approaches such as W2VV++
[21] and dual coding [14]. The number of captions per video varies
from 2 in TV2016TRAIN [5] to as many as 40 in MSVD [9]. The
performance of AVS is evaluated on two large video collections.
Both are TRECVid benchmarked datasets, where IACC.3 [5] is used
during the years 2016 to 2018 and V3C1[7] in the year 2019. As
TRECVid evaluates 30 query topics per year, a total of 120 queries
are involved in the evaluation. For convenience, we name the query
sets as tv16, tv17, tv18 and tv19, and each set contains the 30 queries
being evaluated on that year. The full set of queries is listed in the
supplementary document.

Evaluation metric. We use extended inferred average precision
(xinfAP) to evaluate ad-hoc video search results [2]. For the overall
performance of a search system, we report the mean xinfAP of all
test queries as results.

Implementation details. We use the PyTorch code provided by
the dual coding model [14] to set up the basic architecture of visual
encoding network and textual encoding network. Following [14],
we set the output dimension of both networks as d = 2, 048, and
the margin in the triplet loss function (Eq. (5)) as c = 0.2. We use
the pre-trained ResNet-152 [12] and ResNext-101 [41] to extract
a feature of 4,096 dimensions for each video frame. For the visual
decoding network, the concept list is composed of m = 11, 147
words, compiling from the captions of TGIF and MSR-VTT. We use
a learning rate of 0.0001 and Adam optimizer to train the model.
The batch size is 128. The hyper-parameter is set as λ = 0.2 (Eq.
(8)) based on validation set, and we report θ = 0.3 (Eq. (13)) as our
combined model.

4.2 Ablation Studies
BCE loss. We first compare the proposed class-sensitive loss (Eq.
(8)) to the normal BCE in the design of multi-label concept de-
coder. The evaluation is conducted by counting the number of

Figure 2: TheAVSperformance comparison between thenor-
mal BCE loss and our proposed BCE loss.

Table 2: Comparison between dual-task and two single-task
models

Datasets IACC.3 V3C1
Query sets tv16 tv17 tv18 tv19 Mean
Single-task models:
STconcept 0.134 0.137 0.068 0.104 0.111
STembeddinд 0.156 0.222 0.115 0.160 0.163
Dual-task models:
DTconcept 0.148 0.147 0.091 0.115 0.125
DTembeddinд 0.163 0.232 0.118 0.168 0.170

classified concepts that are mentioned in video captions. On MSVD
dataset [9] with 1,907 video clips, the proposed BCE loss attains re-
call@10=0.532. In other words, on average there are more than 50%
of concepts in the top-10 list are mentioned by the video captions.
This performance is significantly better than the normal BCE loss
which only manages to reach recall@10=0.293.

Figure 2 further contrasts the retrieval performances between
the proposed class-sensitive and normal loss functions on four
sets of TRECVid queries. Note that in the figure, two groups of
performances are shown for each query set. Each group separately
lists three performances for using embedding feature only (i.e.,
DTembeddinд ), concept only (i.e., DTconcept ) and late fusion of
them (i.e., DTcombined ). The performances based on the models
trained with normal and proposed BCE losses are visualized with
bars of lighter and darker colors respectively. As shown in the figure,
the models trained with the proposed class-sensitive loss function
show consistently better retrieval rate across all the four query
sets. For concept-only retrieval, the average performance over 120
queries is five times higher than the model trained with normal
BCE. We attribute the performance gain due to higher accuracy
in concept prediction. The result indicates the merit of the new
BCE loss function for dual-task learning. With class-sensitive loss,
the performance of DTembeddinд also improves. The performance
difference is almost double (xinfAP =0.170) when comparing to the
model trained by the normal BCE (xinfAP = 0.091). Furthermore,
by using the proposed BCE loss, the late fusion of concept-only and
embedding-only features always leads to performance boost across
the four query sets. In contrast, the model trained with normal BCE
only manages to show improvement on tv19.
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Dual-task learning. Next, we verify the merit of dual-task
learning versus training two single tasks independently. Specif-
ically, the encoders for Task-1 (visual-text embedding) and the
encoder-decoder for Task-2 (multi-level concept classification) are
trained separately. For notation convenience, we call the two single-
task models as STconcept and STembeddinд respectively. As shown
in Table 2, consistent improvement is noticeable for dual-task model
when performing retrieval using either concept-only or embedding-
only feature. DTembeddinд improves 69 out of 120 queries over
STembeddinд . Using query-556 Find shots of a person wearing a blue
shirt as an example, xinfAP is significantly boosted from 0.144 to
0.198. Benefited from dual-task learning, true positives are ranked
at higher positions in DTembeddinд . At xinfAP@100, the average
improvement of DTembeddinд over STembeddinд is 18.3%. Similar
trend of improvement is also observed in DTconcept , where xinfAP
is boosted for 66 out of 120 queries. Benefited from DTembeddinд ,
some true positives originally out of the search depth of 1,000 are
ranked high. Examples include query-577 Find shots of two or more
people wearing coats, where DTconcept brings forward more than
100 positive videos. As a consequence, xinfAP is boosted for 173%
from 0.1793 to 0.4898 for query-577. Nevertheless, there are 19
queries drop for both DTembeddinд and DTconcept . These are the
queries where either STconcept or STembeddinд performs poorly.
As training is conducted using video captioning datasets, dual-task
learning may have been confused if the results of both tasks are in
conflict with each other.

Late fusion. In general, concept-only search performs better
when a query topic can be uniquely described by a few concepts
independently. In contrast, embedding-only search is superior for
complex queries, such as query-543 Find shots of a person commu-
nicating using sign language, where collective understanding of
query terms is required. As both search methodologies are com-
plementary, late fusion is employed. Figure 3 shows the sensitivity
of hyper-parameter θ (Eq. (13)) that linearly combines the rank
lists of both methods. The extreme values represents retrieval by
embedding-only (i.e., θ = 0) and concept-only (i.e., θ = 1.0). As
observed, the retrieval performance varies slightly when θ is set
in the range of [0.2, 0.4]. Considering the capability of answering
complex queries, we set θ = 0.3 to bias embedding-only more than
concept-only retrieval in the late fusion. The detailed performances
of our models on every query are list in the supplementary material.

Figure 3: Sensitivity of hyper-parameter θ in the late fusion
of embedding-only and concept-only searches.

4.3 AVS Performance Comparison
We compare dual-task model to the existing methods based on
embedding-only, concept-only and hybrid search. Embedding-only
search includes W2VV++ [21] and dual coding [14], which report
the state-of-the-art performance on TRECVid datasets. Concept-
based search includes mainly [29, 44–47]. QKR (query and keyframe
representation) [29] performs linguistic analysis to select concepts
for queries. Through word2vec [31], the concept lists of queries
and keyframes are projected into an embedding space for similarity
comparison. Large concept bank (ConBank) composed of about
55,000 words is leveraged in [44, 45, 47]. Multi-level query analysis
from words, phrases to sentences is conducted for concept mapping.
As this process is error-prone, manual selection of query words and
phrases for mapping with concepts is also performed in [44–47] to
contrast the performances between automatic and manual searches.
The performances of hybrid approaches are mostly reported in
TRECVid benchmarking only. For reference, the top-3 performances
benchmarked in TRECVid are listed for comparison.

Table 3 lists the performance comparison. Except on tv16, the
proposedDTembeddinд shows better performances than its counter-
parts including W2VV++ and dual coding. Among the embedding-
only approaches, DTembeddinд shows the highest xinfAP in 43 out
of 120 queries. Through dual-task training, DTembeddinд shows
higher ability in answering queries with unique concepts such as
“scarf” in query-558 and “coats” in query-577. For concept-only
search, DTconcept outperforms most of its counterparts including
QKR. Despite that the number of concepts is almost five times
smaller than the large concept bank [44, 45, 47], DTconcept still
shows competitive performance. Nevertheless, DTconcept is not
competent with [44, 46, 47] when human intervention is allowed
for concept selection. DTcombined , as a hybrid model, outperforms

Table 3: Comparison with other approaches. The results are
cited directly from the papers. The symbol ‘/’ indicates the
result is not reported. Results based on hybrid search are
marked with asterisk.

Datasets IACC.3 V3C1
Query sets tv16 tv17 tv18 tv19
TRECVid top results:
Rank 1 0.054 [36] 0.206* [41] 0.121 [21] 0.163 [49]
Rank 2 0.051 [30] 0.159 [44] 0.087* [18] 0.160 [22]
Rank 3 0.040 [24] 0.120* [33] 0.082 [6] 0.123 [45]
Embedding only:
VideoStory [17] 0.087 0.150 / /
VSE++ [15] 0.123 0.154 0.074 /
W2VV [13] 0.050 0.081 0.013 /
W2VV++ [21] 0.163 0.196 0.115 0.127
Dual coding [14] 0.165 0.228 0.117 0.152
Concept only:
QKR [29] 0.064 / / /
ConBank (auto) / 0.159 [44] 0.060 [47] /
ConBank (manual) 0.177 [46] 0.216 [44] 0.106 [47] 0.114 [45]
Dual-task:
DTconcept 0.148 0.147 0.091 0.115
DTembeddinд 0.163 0.232 0.118 0.168
DTcombined 0.185* 0.241* 0.123* 0.185*
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Figure 4: Visualization showing (a) the improvement of DTcombined over DTembeddinд and (b) composition of true positives
in DTcombined within the search depth of 1,000. The x-axis shows the query topic ID. Each column in (b) visualizes the true
positives that a method can retrieve with a different color.

all the existing approaches, including the top performers bench-
marked in TRECVid. The performance also surpasses [44–47] which
is based on manual search. Compared to the best reported result
by dual coding [14], the xinfAP gain is as large as 12.1% and 21.7%
on tv16 and tv19 respectively. To verify the performance is not
by chance, we conduct randomization test [40]. At the p-value ≤
0.01, the test shows that the dual-task model is significantly better
than other approaches including dual coding, W2VV++ and the
best reported performance in TRECVid.

In TRECVid [5], the 120 query topics are classified into 12 differ-
ent types of complexities based on the composition of object, scene,
action and location. Comparing to dual coding,DTembeddinд is bet-
ter in answering person-related queries, especially, the combination
of person, object and location. The performance of DTembeddinд
exceeds dual coding on all queries in this kind, e.g., query-624 Find
shots of a person in front of a curtain indoor. Compared with dual
coding and W2VV++, DTconcept has higher xinfAP on detecting
object-only queries. For some queries such as query-512 Find shots
of palm trees, xinfAP is as much as 167.8% better than W2VV++
and 82.7% than dual coding. The hybrid model, DTcombined out-
performs dual coding in 76 out of 120 queries, and the xinfAP gain
ranges from 0.3% to 158.4%. These queries correspond to person-
related or object-related queries, e.g., 121.8% gain on query-509 Find
shots of a crowd demonstrating in a city street at night, and 100.0%
gain on query-572 Find shots of two or more cats both visible simulta-
neously. The remaining queries suffering from xinfAP degradation
mostly are those queries that DTconcept fails miserably. The drop
ranges from 0.2% to 87.5%. For example, dual coding has a xinfAP
of 0.194 on query-514 Find shots of soldiers performing training or
other military maneuvers, whileDTcombined only manages to attain
xinfAP = 0.181. For this particular query, the performance gap be-
tween DTembeddinд (xinfAP=0.191) and DTconcept (xinfAP=0.079)
is relative large. Further late fusion hurts the overall retrieval rate.

To provide further insights, Figure 4 visualizes the composition
of true positives in the rank lists of DTcombined . As observed, 72
out of 120 queries share more than 50% of true positives common
between DTembeddinд and DTconcept . Among them, 50 queries
show improvement in xinfAP due to elevation of ranking positions
for true positions after score combination. Overall, performance
improvement is more apparent for queries where true positives
are separately contributed by embedding-only and concept-only

searches. Finally,DTcombined manages to pull true positives outside
of 1,000 search depth from both DTembeddinд and DTconcept for
76 queries, and the number ranges from 1 to 20. However, as these
positives are still ranked low in the list, their contributions to overall
xinfAP are not significant.

4.4 Interpretability of Concept-free Search
Concept-free search suffers from the black-box retrieval of results.
With dual-task model, nevertheless, interpretation of search result
is feasible by listing out the decoded concepts alongside the re-
trieved videos. Here, we conduct an experiment to verify the top-10
retrieved videos of DTembeddinд by the decoded concepts. A video
is pruned from search list if the required keywords are not present
among the list of decoded concepts. For example, the required key-
word for query-625 Find shots of a person wearing a backpack is
“backpack”. Any retrieved videos without the “backpack” concept
will be eliminated from the search result.

The experiment is conducted as follows. A total of 30 queries,
where DTconcept exhibits higher xinfAP values, are selected for
experiment. The top-10 retrieval accuracy averaged over queries is
82%. Among these query topics, 1-3 keywords are manually speci-
fied as the required concepts to present in a retrieved video. Any
videos without all the required keywords present within the list of
top-30 decoded concepts will be marked as negative videos. The
result shows that, by dual-task model, 44.27% of false positives re-
trieved by DTembeddinд can be successfully eliminated from the
search list. Nevertheless, 10.67% of true positives are also being
erroneously pruned. Generally, for queries involving unique con-
cepts such as “helmet”, “plane”, “ballon”, the accuracy of pruning
is high. Query-572 Find shots of two or more cats both visible simul-
taneously, by listing “two” and “cat” as keywords, more than 60%
of false positives are removed. The method is relatively weak in
interpreting queries with compositional concepts such as “bird in
the tree” (query-638), only 20% of false positives can be pruned.

Note that the setting is realistic in the scenario of interactive
search. Concretely, a searcher can specify a few keywords to quickly
locate a small number of true positives among the search list. These
true positives identified in a short period of time can serve multiple
purposes. For example, the positives are leveraged for example-
based video search [37], online training of classifier [27] and dis-
covery of contextually relevant concepts for query refinement
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Table 4: Boolean query answering: comparison of dual-task model with dual coding [14] and concept search [34].

Type
Concept-free Concept-based

Single query Multiple sub-queries
Dual coding DT_embedinд Dual coding DT_embeddinд Nguyen et al. [34] DT_concept

AND 0.249 0.260 0.073 0.089 0.293 0.454
OR 0.714 0.686 0.737 0.775 0.356 0.864
NOT 0.045 0.049 0.353 0.406 0.067 0.133

[26]. We repeat the experiment by randomly sampling another
30 queries from the remaining 90 queries, where the performance
of DTembeddinд is generally better than DTconcept . Among the
top-10 retrieved videos, there are 168 true positives and 132 false
positives, implying accuracy of 56.0%. By dual task model, 90 false
positives are successfully pruned and 123 true positives are retained.
The accuracy is boosted from 54% to 74.5%. With this, a searcher
can potentially speed up the time, by skipping more than 50% of
false positives, to identify a small number of true positives for
subsequent search actions.

4.5 Boolean Queries
Boolean expression of query terms has been exploited in manual
[46] and interactive search [34]. An example of query is Find shots of
drinking beverage but not wine or beer. The performance of concept-
free search are generally unpredictable when the entire Boolean
query is embedded as a single vector [22]. A feasible way is by
decomposition of query into multiple sub-queries, such as “drink-
ing beverage”, “wine” and “beer” as three separate sub-queries for
retrieval. The results are then merged with Boolean combination.
The experiment here aims to study the limit of dual-task model in
answering Boolean queries by DTembeddinд and DTconcept .

As TRECVid queries are non-Boolean, we compile 15 Boolean
queries for experiment, and conduct retrieval on V3C1 dataset
[7]. The list of queries is listed in supplementary document. For
DTembeddinд and dual coding [14], we contrast their performances
when a query is treated as a single vector and multiple vectors
by query splitting. We also compare DTconcept with the recent
work in [34] which performs Boolean based concept search us-
ing a vocabulary size of 16,263 that is similar to dual-task model.
We use the measures in [34] for late fusion of search lists from
multiple sub-queries for all the compared methods. As shown in
Table 4, both DTembeddinд and DTconcept generally exhibit better
performances than their respective counterparts. Concept-based
search by DTconcept shows higher xinfAP not only than [34] but
also concept-free search when query is not split.

An interesting note is that, when query decomposition is per-
formed, the performance of concept-free search is boosted signif-
icantly for queries with NOT operators. Query splitting is also
helpful for queries with OR operator, but is likely to hurt the per-
formance for queries with AND operator. Nevertheless, when a
query involves not only NOT but also AND or OR, answering with
multiple sub-queries will bring significant improvement in retrieval.
In other words, concept-free approach fails to embed the semantics
of NOT in the feature space. Explicit handling of NOT operator by
multiple sub-queries processing is required. The performance trend
is consistent for both DTembeddinд and dual coding.

The result gives clues of how to exploit concept-free and concept-
based search for Boolean queries. For example, when the query
terms are logically rather than linguistically compositional, concept-
based is likely a better choice than concept-free search. When NOT
operator is involved, however, concept-free with query splitting
strategy should be adopted. As dual-task model is interpretable
with the result of DTembeddinд being verified by DTconcept (as
in Section 4.4), appropriate search strategies can be flexibly im-
plemented. For example, the result of concept-free search can be
pruned by manually expressing the required concepts of a query
with boolean expression. In general, these strategies are expected
to be practical for interactive search.

5 CONCLUSION
We have presented a dual-task model to enable interpretability
of concept-free (or embedding-only) search. The proposed class-
sensitive BCE loss is essentially critical in guaranteeing the proper
decoding of concepts. Empirical studies verify the merit of this loss
function in mutually boosting the performances of both concept-
free and concept-based searches under the dual-task learning strat-
egy. A significant margin of improvement is attained when lately
fusing both search lists, leading to the new state-of-the-art retrieval
performances on the TRECVid datasets.

The experimental results reveal three main findings towards an-
swering some research questions in AVS. First, the complement in
search comes from different abilities in modeling the complexity of
semantics. Concept-based search is limited by its ability to interpret
compositional semantics that is built up from phrasal or sentence
meaning. Concept-free search, on the other hand, appears less sen-
sitive to lexical semantics that deals with individual word meaning.
Late fusion of both search paradigms can lead to considerable boost
in performance. Second, as proven in the empirical studies, using
decoded concepts to interpret the result of concept-free search is
potentially an effective strategy to eliminate false positives that
rank high in the list. Such functionality will be highly practical for
interactive search, where user can rapidly make sense of search
result for query refinement. The final remark is that both search
paradigms react differently to Boolean queries, and there is no clear
way of fusion, such as by late fusion, to take advantage of each other.
NOT statement, especially, remains highly difficult to be embedded
and interpreted. Explicit query splitting is required to answer such
queries.
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