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ABSTRACT
Retrieving recipes corresponding to given dish pictures facilitates
the estimation of nutrition facts, which is crucial to various health
relevant applications. The current approaches mostly focus on recog-
nition of food category based on global dish appearance without
explicit analysis of ingredient composition. Such approaches are
incapable for retrieval of recipes with unknown food categories,
a problem referred to as zero-shot retrieval. On the other hand,
content-based retrieval without knowledge of food categories is
also difficult to attain satisfactory performance due to large visual
variations in food appearance and ingredient composition. As the
number of ingredients is far less than food categories, understand-
ing ingredients underlying dishes in principle is more scalable than
recognizing every food category and thus is suitable for zero-shot
retrieval. Nevertheless, ingredient recognition is a task far harder
than food categorization, and this seriously challenges the feasi-
bility of relying on them for retrieval. This paper proposes deep
architectures for simultaneous learning of ingredient recognition
and food categorization, by exploiting the mutual but also fuzzy
relationship between them. The learnt deep features and semantic
labels of ingredients are then innovatively applied for zero-shot re-
trieval of recipes. By experimenting on a large Chinese food dataset
with images of highly complex dish appearance, this paper demon-
strates the feasibility of ingredient recognition and sheds light on
this zero-shot problem peculiar to cooking recipe retrieval.

Keywords
Food categorization; ingredient recognition; zero-shot retrieval; multi-
task deep learning

1. INTRODUCTION
While there is a large number of cooking recipes posted on the

Internet, finding a right recipe given a picture of dish remains a
challenge yet to be fully explored. The major problem underly-
ing this challenge is the recognition of food categories as well as
their ingredients. Indeed, the problem is commonly shared among
health-related applications. For example, food-log management
[1], which records daily food intake for dietary habit monitoring,
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Figure 1: Variations in visual appearance and composition of
ingredients show the challenges of predicting ingredients even
for dishes within the same food category. The first row shows
three examples of dishes for the category “fried green peppers”,
followed by “yuba salad” ad “steam egg custard” in second and
third rows respectively.

often requires manual input of food intake. In addition to time-
consuming, the process is error-prone. As investigated in [11], self-
reporting data obtained from unfriendly acquired process tends to
underestimate the actual food intake. These concerns motivate the
use of mobile devices as a convenient means in capturing pictures
of food intake for automatic recognition [24] [14] [25] [3] [16].

This paper studies the recognition of ingredients for recipe re-
trieval in the domain of Chinese dishes. Different from food cate-
gorization, which is to identify the name of a dish (e.g., fried green
pepper shown in Figure 1), ingredient recognition is to uncover the
ingredients inside a dish (e.g., green pepper, black bean, chopped
garlic). In the literature, associating food categories to their re-
spective recipes is regarded as a general pipeline that facilitates the
estimation of calories and nutrition facts [35] [14]. The pipeline is
effective for recognizing restaurant dishes and the food categories
with standardized cooking method (e.g., fast food) that often have
similar visual appearance with the same ingredients. However,
most dishes in Chinese food have no standardized cooking method,
food presentation and ingredient composition. Direct mapping be-
tween dishes and recipes, by using the names of food categories,
is not likely to attain satisfactory retrieval rate, not mentioning the
imperfect performance in food recognition. The difficulty of this
task is probably alleviated, nevertheless, with the presence of GPS
and restaurant menus as utilized by Im2Calories [24] and Menu-
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Match [2]. However, restaurant information are difficult to acquire
as stated in [24] and such context-aware recognition is only limited
to restaurant food. Therefore, this paper argues the need of in-
gredient recognition beyond food categorization for general recipe
retrieval.

In the domain of Chinese food, two major obstacles in recog-
nition are diverse appearances of dishes and wild composition of
ingredients. Figure 1 shows some examples of Chinese dishes. Au-
tomatic recognition is challenged by the wildly different ways of
mixing and placing ingredients even for the same food category.
For the food category “steamed egg custard” (last row of Figure
1), there is even no overlap in ingredients except egg. Retriev-
ing recipes without explicitly naming the underneath ingredients is
expected to include false positives. Basically, ingredients can be
treated as attributes of food categories. As the number of food cat-
egories is generally far larger than the number of ingredients, rec-
ognizing attributes is more feasible than food categories in terms
of scale. Furthermore, ingredient recognition also gives light to
the retrieval of recipes for unknown food categories during model
training, a problem generally referred to as zero-shot recognition or
retrieval [29].

Generally speaking, ingredient recognition is more difficult than
food categorization. As observed in Figure 1, the size, shape and
color of ingredients can exhibit large visual differences due to di-
verse ways of cutting and cooking, in addition to changes in view-
points and lighting conditions. Recognizing ingredients alone with-
out food category in mind is likely to result in unsatisfactory per-
formance. This paper considers simultaneous recognition of food
and ingredients, aiming to exploit the mutual relationship between
them for enhancing the robustness of recognition. The key ingredi-
ents of a category remain similar despite composing with different
auxiliary ingredients. Knowing food category basically eases the
recognition of ingredients. On the other hand, the prediction of
ingredients also helps food categorization, for example, the ingre-
dient “fungus” has a higher chance than “pork” to appear in the
food “yuba salad”. Hence, learning food categories with the com-
position of ingredients in mind, and vice versa, in principle shall
lead to better performance.

Figure 2 gives an overview of the proposed framework, which
is composed of two modules: ingredient recognition and zero-shot
recipe retrieval. The first module formulates the recognition of in-
gredients as a problem of multi-task learning using deep convolu-
tion neural network (DCNN). Given a picture of dish, the module
outputs the name of dish along with a histogram of ingredients.
The developed DCNN can recognize 172 Chinese food categories
and 353 ingredients. To the best of our knowledge, there is no re-
sult published yet for ingredient recognition on such a large scale.
The second module performs zero-shot retrieval, by matching the
predicted ingredients against a large corpus containing more than
60,000 recipes. The corpus includes some food categories as well
as ingredients unknown to the multi-task DCNN. To boost retrieval
performance, a graph encoding the contextual relationship among
ingredients is learnt from the recipe corpus. Using this graph, con-
ditional random field (CRF) is employed to probabilistically tune
the probability distribution of ingredients to reduce potential recog-
nition error due to unseen food category.

To summary, this paper contributes by developing multi-task learn-
ing technique for ingredient recognition and demonstrates its ap-
plication for zero-shot recipe retrieval. Our work differs from the
existing works, which mostly focus on recognition of food cate-
gories and operate in domains such as western and Japanese food
[4] [22]. To our knowledge, zero-shot recipe retrieval, which re-
quires knowledge of ingredients, has not yet been considered in the

literature. Along with this paper, we will release the collected Chi-
nese food dataset, VIREO Food-172, which contains 172 food and
353 ingredient labels. The dataset is larger than the publicly avail-
able datasets such as Food-101 [4], UEC Food-100 [22] and PFID
[6], each with around 100 western or Japanese food categories but
without ingredient labels.

2. RELATED WORK
Variants of recognition-centric approaches have been investigated

for different food-related applications. These efforts include food
quantity estimation based on depth images [7], image segmentation
for volume estimation [25], context-based recognition by GPS and
restaurant menus [3], taste estimation [23], multi-food recognition
[22], multi-modal fusion [13] and real-time recognition [14]. This
section mainly reviews previous works on recognition of food and
ingredients using deep and hand-crafted features.

The challenge of food recognition comes from visual variations
in shape, color and texture layout. These variations are hard to
be tackled by hand-crafted features such as SIFT [21], HOG [8]
and color [30]. Instead, deep features extracted from DCNN [17],
which is trained on ImageNet [9] and fine-tuned on food images,
often exhibit impressive recognition performance [24] [36] [34].
Combination of multi-modal features sometimes also leads to bet-
ter recognition performance, as reported in [15] [34]. One of best
the performances on UEC Food-100 dataset is achieved by fusion
of DCNN features with RootHOG and color moment [15], and sim-
ilarly for UPMC Food-101 dataset by fusion of textual and deep
features [34]. Different from these works which directly adopt
DCNN for food recognition, this paper proposes new architectures
based upon DCNN for simultaneous recognition of food categories
and ingredients.

Compared to food categorization, recognition of ingredients re-
ceives fewer attentions. One early model is PFD (pairwise local
feature distribution) [37], which leverages the result of ingredient
recognition for food categorization. In PFD, based upon the ap-
pearance of image patches, pixels are softly labeled with ingredient
categories. The spatial relationship between pixels is then mod-
eled as a multi-dimensional histogram, characterized by label co-
occurrence and their geometric properties such as distance and ori-
entation. With this histogram representation, PFD shows impres-
sive food recognition performance. PFD, nevertheless, is hardly
scalable to the number of ingredients. Using only eight categories
of ingredients as demonstrated in [37], the histogram already grows
up to tens of thousands of dimensions, not mentioning 353 cate-
gories as in our paper where the number of dimensions could be
as high as ten millions. Our work is more scalable and based on
multi-task learning, in contrast to the two-step recognition in PFD
without the feedback loop.

Few recent works explore spatial layout [12], feature mining [4]
and image segmentation [24] for ingredient or food item recogni-
tion. In [12], ingredient regions are detected by shape and texture
models, where the shape is based on DPM (deformable part-based
model) while the texture is based on STF (semantic texton forest).
Similar to PFD [37], the regions are encoded into a histogram mod-
eling spatial relationship between them for food recognition. The
spatial relationship is not statistically encoded as in [37], but rather
explicit relationships such as “above”, “below” and “overlapping”
are modeled. Such relationships are helpful for recognizing food
such as dessert and fast food, but difficult to be generalized such
as for Chinese dishes. In [4], an interesting work which mines the
composition of ingredients as discriminative patterns is proposed
for food classification. A drawback of this approach is the require-
ment of image segmentation, which is sensitive to parameter setting
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Figure 2: Framework overview: (a) ingredient recognition, (b) zero-shot recipe retrieval. Given a picture of dish with unknown food
category, the framework retrieves a recipe for the dish. The recipe is originally in Chinese and Google translated to English.

and can impact recognition performance. As reported in [4], the
performance is not better than of DCNN without image segmenta-
tion on Food-101 dataset. Similar to [25], image segmentation is
employed in [24], but using a more advanced technique based on
conditional random field (CRF) with unary potentials provided by
DCNN [5]. The promising performance in segmentation for west-
ern food, nevertheless, comes from the price for requiring train-
ing labels that need manual segmentation of food items for model
learning. For Chinese food, collecting such training labels is ex-
tremely difficult, given the fuzzy composition and placement of in-
gredients as shown in Figure 1.

Our work is also related to multi-task learning [10] [31] [32]
and fine-grained classification [18] [20] [19]. In [10], multi-task
DCNN models are proposed for simultaneous categorization and
pose estimation of general objects (e.g., airplane, sofa, car). In
[31], a deep network is designed for the tasks of face classification
and verification. As concluded by [31], adding one more supervi-
sory signals for feature learning greatly improves the performance
of face verification. Similarly for cascade network [18] [20] and
bilinear model [19] which couple multiple deep models for fine-
grained classification. Nevertheless, these models mostly focus on
localization, alignment and classification of object parts, which are
not directly applicable to our problem. As ingredients can scatter
around a dish and occlude each other (e.g., “yuba salad” in Figure
1), localization and alignment of ingredients are hardly applied for
food domain. To the best of our knowledge, there is no multi-task
learning model yet developed for food recognition.

3. MULTI-TASK DEEP LEARNING
The conventional DCNN is an end-to-end system with input as

picture and output as the prediction scores of class labels. DCNN
models such as AlexNet [17] and VGG [28] are trained under the
single-label scenario, specifically, there is an assumption of exactly
one label for each input picture. As ingredient recognition is a
multi-label problem, i.e., more than one labels per image, a differ-
ent loss function needs to be used for training DCNN. On the other

hand, directly revising DCNN with appropriate loss function for in-
gredient recognition may not yield satisfactory performance, given
the varying appearances of an ingredient in different dishes. To
this end, we propose to couple food categorization problem, which
is a single-label problem, together with ingredient recognition for
simultaneous learning.

3.1 Architecture Design
We formulate food categorization and ingredient recognition as

a multi-task deep learning problem and modify the architecture of
DCNN for our purpose. The modification is not straightforward for
involvement of two design issues. The first issue is about whether
the prediction scores of both tasks should directly or indirectly in-
fluence each other. Direct influence means that the input of one task
is connected as the output of another task. Indirect influence de-
couples the connection such that each task is on a different path of
the network. Both tasks influence each other through updating the
shared intermediate layers. The second issue is about the degree in
which the intermediate layers should be shared. Ideally, each task
should have its own private layer(s) given that the nature of both
tasks, single versus multi-labeling, is different. In such a way, the
updating of parameters can be done more freely for optimization of
individual performance.

Based on the two design issues, we derive four different deep
architectures as depicted in Figure 3, respectively name as Arch-A
to Arch-D. The first design (Arch-A) considers stacked architecture
by placing food categorization on top of ingredient recognition, and
vice versa. As the composition of ingredients for different dishes
under the same food category can be different, this architecture has
the risk that model learning converges slowly as observed in the
experiment. The second design (Arch-B) is similar except that in-
direct influence is adopted and both tasks are at different pathways.
Both designs are relatively straightforward to implement by adding
additional layers to DCNN. The next two architectures consider the
decoupling of some intermediate layers. The third design (Arch-C)
allows each task to privately own two intermediate layers on top
of the convolutional layers for parameter learning. The last design
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Figure 3: Four different deep architectures for multi-task learning of food category and ingredient recognition.

(Arch-D) is a compromise version between the second and third
architectures, by having one shared and one private layer. Arch-
D has the peculiarity that the shared layer can correspond to the
high or mid-level features common between two tasks at the early
stage of learning, while the private layer preserves the learning of
specialized features useful for optimizing the performance of each
task.

3.2 Implementation
The architectures are modified from VGG 16-layers network [28].

In terms of design, the major modification is made on the fully
connected layers. For the private layers in Arch-D, there are 4,096
neurons for food categorization, and 1024 neurons for ingredient
layers. Due to different natures of the tasks, we adopt multino-
mial logistic loss function L1 for single-label food categorization,
and cross-entropy as the loss function L2 for multi-label ingredient
recognition. Denote N as the total number of training images, the
overall loss function L is as following:

L = − 1

N

N∑
n=1

(L1 + λL2) (1)

where λ is a parameter trading off the loss terms. This loss function
is also widely used in other works such as [31]. During training,
the errors propagated from two branches are linearly combined and
the weights of first 11 layers shared between two tasks will be up-
dated accordingly. The updating will subsequently affect the last
two layers simultaneously, adjustify the features separately owned
by food and ingredient recognition. Let q̂n,y as the predicted score
of an image xn for its ground-truth food label y, L1 is defined as
following:

L1 = log(q̂n,y) (2)

where q̂n,y is obtained from softmax activation function. Further-
more, denote pn ∈ {0, 1}I , represented as a vector in I dimen-
sions, as the ground-truth ingredients for an image xn. Basically
pn is a binary vector with entries of value 1 or 0 indicating the pres-
ence or absence of an ingredient. The loss function L2 is defined
as

L2 =

I∑
c=1

pn,clog(p̂n,c) + (1− pn,c)log(1− p̂n,c) (3)

where p̂n,c denotes the probability of having ingredient category c
for xn, obtained through sigmoid activation function.

4. ZERO-SHOT RETRIEVAL
Training a deep network for recognizing all available food cate-

gories is not feasible. In addition to the reality that there exist more
than tens of thousands of categories, collecting training examples
for each of the categories can be a daunting task. Hence, a practical

problem is how to leverage the limited knowledge learnt in a net-
work for recognizing dishes of previously unseen category. As the
proposed architectures are capable of predicted ingredients, in prin-
ciple the problem can be addressed by retrieving recipes through
matching of ingredients. We refer this problem to as zero-shot re-
trieval, which is to find recipes for test pictures of unseen food cat-
egories. Two scenarios are considered here. Suppose each recipe
is associated with a picture of the dish. The first scenario is to use
the FC7 features, specifically the features extracted from the private
layer(s) of Arch-C or Arch-D, to represent images for retrieval. In
other words, the search of recipe is equivalent to image retrieval.
The second scenario assumes absence of pictures in recipes, and
uses the predicted scores of ingredients as the semantic labels for
text-based retrieval of recipes. As the approach for the first scenario
can be straightforwardly implemented, this section focuses on the
presentation of the second scenario. The idea is to incorporate ex-
ternal knowledge to refine the predicted ingredient scores for more
realistic way of zero-shot retrieval.

4.1 Ingredient Refinement with CRF
While the composition of ingredients is fuzzy in Chinese food,

the mixing is not purely random. Intuitively, certain groups of in-
gredients co-occur more often (e.g., corn and carrot), while some
ingredients are likely exclusive of each other (e.g., fish and beef).
Such statistics can be mined from training data and utilized for ad-
justing the predicting scores of ingredients. Nevertheless, consid-
ering the zero-shot problem and potentially the limited knowledge
in deep network, we mine the statistics from a large corpus com-
posed of more than 60,000 Chinese cooking recipes. The major
advantage of doing so is to learn a graph modeling ingredient rela-
tionships, where their correlations are more generalizable and not
restricted by training data, and hence enhance the success rate of
zero-shot retrieval.

We extract ingredients from recipes and construct a graph model-
ing their co-occurrences based on conditional random field (CRF).
Denote N = {c1, ..., cI} as the set of available ingredients and
I as its set cardinality. The graph G is composed of the elements
of N as vertices and their pairwise relationships, denoted as φi(·),
as edges. Further let li as an indication function that signals the
presence or absence of an ingredient ci. The joint probability of
ingredients given the graph is

p(l1, ...lI) =
1

Z(φ)
exp(

∑
i,j∈N

liljφ(i, j)) (4)

where Z(·) is a partitioning function. To learn the graph, we em-
ploy Monte Carlo integration to approximate Z(·) and the gradient
descent to estimate φ(·) to optimize the data likelihood [26]. Given
a test image, CRF inferences a label sequence y based on the graph
G. The energy function for inference is composed of unary and
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pairwise potentials, defined as

E(y) =
∑
c∈N

ψu(yc) +
∑

(c,v)∈ε

ψp(yc, yv) (5)

where ε denotes the set of pairwise cliques. The unary term is set as
ψu(yc) = −log(xc), where xc is the predicted score by the deep
network for ingredient c. The pairwise potential is defined as

ψ(yu, yv) =

{
0 if yu = yv

φ(yu, yv) if yc 6= yv
(6)

where the value of φ(·) is obtained from the graph G. Through in-
ferencing, CRF searchs for the optimal label sequence of y that
agrees with the predicted scores and the contextual relationship
captured in the graph G. We employ off-the-shelf algorithm, loopy
belief propagation [33], for minimize Eqn-5. The output label se-
quence y will indicate the presences or absences of ingredients and
their probabilities.

4.2 Recipe Search
With the output sequence y by CRF, a query image is represented

as a vector Qi. Every element in Qi corresponds to an ingredient
and its value indicates the probability output by CRF. On the other
hand, the ingredients extracted from a recipe is represented as a
binary vector O. The matching score, si, between them is defined
as

si =
∑

c∈O∩c∈Qi

xc (7)

Note that the score is not normalized in order not to bias recipes
with a small number of ingredients. As a result, Eqn-7 tends to
give a higher score for the recipes with excessive number of in-
gredients. To prevent such cases, the matching between Qi and O
is performed only for the top-k predicted ingredients with higher
probability scores. The value of k is empirically set to 10 as there
are few recipes with more than 10 ingredients in our dataset.

5. DATASET COLLECTION
We construct a large food dataset specifically for Chinese dishes,

namely VIREO Food-1721, which is made publicly available. Dif-
ferent from other publicly available datasets [4] [22] [6], both food
category and ingredient labels are included. In addition, a large
corpus of recipes along with dish pictures is also collected.

5.1 VIREO Food-172
The food categories were compiled from “Go Cooking” 2 and

“Meishi” 3, which are two websites for popular Chinese dishes.
We combine the categories from both websites by removing du-
plication. All the images in the dataset were crawled from Baidu
and Google image search. For each category, the name was is-
sued as keywords in Chinese to search engines. Categories with no
more than 100 images returned were removed from the list. For the
remaining categories, we manually checked each crawled images
up to the depth of 1,300, for excluding images with the resolution
lower than 256 × 256 or suffer from blurring, images with more
than one dishes, and false positives. This process ends up with 172
food categories in the dataset.

The 172 categories cover eight major groups of food, as shown in
Figure 5. The group meat contains the most number of categories,
1 http://vireo.cs.cityu.edu.hk/VireoFood172/
2https://www.xiachufang.com/category/
3http://www.meishij.net

with examples include “braised pork” and “sautéed shredded pork
in sweet bean sauce”. On the other hand, there are only eight cate-
gories under the group bean product, and examples include “Mapo
tofu” and “braised tofu”. All the images in the dataset were crawled
from Baidu and Google image search. The names of food cate-
gories, were issued as keywords in Chinese to search engines, and
1,300 images are crawled per food category. Figure 4 shows some
examples of food categories in VIREO Food-172.

5.2 Ingredient labeling
We compiled a list of more than 300 ingredients based on the

recipes of 172 food categories. The ingredients range from popu-
lar items such as “shredded pork” and “shredded pepper” to rare
items such as “codonopsis pilosula” and “radix astragali”. Label-
ing over hundreds of ingredients for over hundred thousands of im-
ages could be extremely tedious, not mentioning the challenge of
ingredient annotation. First, some ingredients are difficult to be
recognized, for example, ingredients under soup or sauce. Second,
some ingredients are invisible in flour-made food categories such
as dumpling and noodle. Third, certain ingredients such as egg ex-
hibit large visual variations (see Figure 6) due to different ways of
cutting and cooking. Hence, the labeling considers only the annota-
tion of visible ingredients. In addition, we create additional labels
for ingredients with large visual appearance, for example, we have
13 different labels for “egg”, such as “preserved egg slices” and
“boiled egg”.

We recruited 10 homemakers who have cooking experience for
ingredient labeling. The homemakers were instructed to label only
visible and recognizable ingredients. They were also allowed to
annotate new ingredients not in the list, which would be explic-
itly checked by us. To guarantee the accuracy of labeling, we pur-
posely awarded homemakers with cash bonus as incentives to pro-
vide quality annotation, in addition to regular payment. For this
purpose, we checked a small subset of labels and provided imme-
diate feedback to homemakers such that they were aware of their
performance. The whole labeling process ended in two weeks. By
excluding images with no ingredient labels, VIREO Food-172 con-
tains a total of 353 ingredient labels and 110,241 images, with the
average of 3 ingredients per image. Figure 7 shows the distribution
of positive examples in food and ingredient categories. On aver-
age, there are 640 positive samples per food category, and 745 per
ingredient.

5.3 Recipe Corpus
The corpus was compiled from a popular website “Xinshipu” 4.

The website offers ontology for 530 key ingredients in Chinese
food. Using all of these ingredients as queries, a total of 65,284
Chinese cooking recipes were crawled from this website. Each
recipe basically contains four sections, including brief introduction,
ingredient list, cooking procedure, and a picture showing the ap-
pearance of the dish. The recipes were uploaded by Internet users,
and thus there may be multiple recipes sharing the same name
but with different ingredient lists. Conversely, there are also few
recipes about the same dish but in different names.

6. EXPERIMENTS
We split the experiments into three parts, verifying the perfor-

mances of multi-task learning (Section 6.1), the impact of CRF
(Section 6.2) and the application for zero-shot retrieval (Section
6.3). The first part aims to evaluate different deep architectures for
multi-task learning in comparison to single-task DCNN. The last

4http://www.xinshipu.com
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Figure 4: Examples of food categories in VIREO Food-172.
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Figure 5: The distribution of food categories under eight major
food groups in VIREO Food-172.

Figure 6: The ingredient “egg” shows large difference in visual
appearance across different kinds of dishes.

part aims to demonstrate the merit of leveraging ingredient labels
for novel recipe retrieval.

6.1 Deep Architectures
The experiments are conducted mainly on VIREO Food-172 dataset.

In each food category, 60% of images are randomly picked for
training, while 10% for validation and the remaining 30% of im-
ages for testing. For performance evaluation, the average top-1
and top-5 accuracies are adopted for food categorization, which are
standard measures for the single-label task. For ingredient recog-
nition which belongs to multi-label, micro-F1 and macro-F1 that
take into account both precision and recall for each ingredient are
employed.
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Figure 7: The distribution of food categories (a) and ingredients
(b).

The evaluation compares baseline, single and multi-task learn-
ings. The baseline includes SVM classifiers trained using hand-
crafted (Gist [27] and color moment [30]) and deep (FC7 of DCNN
[17]) features. The single-task learning includes the AlexNet and
VGG networks fine-tuned on training and validation sets. Note
that for baseline and single-task, different classifiers and networks
need to be trained separately for food categorization and ingredi-
ent recognition. Specifically, multi-label SVM (MSVM) is trained
for baseline, and cross entropy loss function (Eqn-3) is used for
single-task DNN. The multi-task learning includes the four deep
architectures illustrated in Figure 3. Note that we experiment two
variants of Arch-A, with the layer of food categorization on top of
ingredient recognition (Arch-A1) and vice versa (Arch-A2).

Grid search of parameters is performed to find the best possi-
ble model settings for all the compared approaches, based on the
training and verification sets. As ingredient recognition involves
multiple labels, a threshold is required to gate the selection of la-
bels. The threshold is set to be the value of 0.5 following the stan-
dard setting when sigmoid is used as the activation function. For
multi-task deep architectures, the learning rate is set to 0.001 and
the batch size to 50. The learning rate decays after every 8,000 it-
erations. Using Arch-D as example, Figure 8 shows the impact of
λ parameter in Eqn-1. Basically, the Top-1 and Mirco-F1 measures
fluctuate within the range of 0.06, when the value of λ varies from
0.1 to 1.0. The best performances attained for food categorization
(Top-1) is when λ = 0.1, and for ingredient recognition (Micro-F1)
when λ = 0.3. To balance the performances, we use F1 of Top-1
and Micro-F1 measures to pick the optimal value, where λ = 0.2
as shown in Figure 8.
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Figure 8: Sensitivity of λ parameter in Eqn-1 for multi-task
deep architecture Arch-D.

Table 1 lists the performance for food categorization. The gen-
eral trend is that deep architectures significantly outperform base-
lines with either deep or hand-crafted features, while large perfor-
mance gap is also observed between the results of VGG network
and AlexNet. Among the deep architectures for multi-task learn-
ing, the designs based on simple modification of DCNN, i.e., Arch-
A and Arch-B, show slightly worse performance in Top-1 accuracy
compared with single-task VGG. Since the recognition results for
both food and ingredients are imperfect, layer stacking as in Arch-
A actually could hurt each other’s performance. Specifically, the
inaccurate prediction in one task will directly affect the other task.
On the other hand, while having separate paths as in Arch-B leads
to better performance, the improvement is rather minor by the fact
that both tasks share the same lower layers. Basically the perfor-
mances of Arch-C and Arch-D show the merit of having separate
paths and layers for both tasks. Arch-C, which only shares convolu-
tion layers, improves slightly over single-task VGG. We speculate
that the design of Arch-C eventually trains two independent leaners
and hence the advantage over single-task is not obvious. Arch-D,
which shares one layer while also learning separate layers tailor-
made for different tasks, attains the best performance among all the
compared approach for both average Top-1 and Top-5 accuracies.

Table 2 shows the performance of ingredient recognition, and
similar trends are observed as food categorization. For multi-task
learning, all deep architectures but except Arch-A outperform single-
task VGG, and with larger performance gaps compared with food
categorization. The result basically verifies the merit of joint learn-
ing for both tasks. Different from food categorization, sharing
layers appears to be a better design choice for ingredient recog-
nition when comparing Arch-B and Arch-C. The best result is at-
tained by Arch-D, which could be viewed as a compromised design
between Arch-B and Arch-C. To verify that the improvement is
not by chance, we conduct significance test to compare multi-task
(Arch-D) and single-task (VGG) using the source code provided by
TRECVID5. The test is performed by partial randomization with
100,000 numbers of iterations, with the null hypothesis that the im-
provement is due to chance. At a significance level of 0.05, Arch-D
is significantly different from VGG in both food categorization and
ingredient recognition by Top-1 accuracy and Macro-F1, respec-
tively. The p-values are close to 0, which reject the null hypothesis.

To validate the proposed work on other food domain, we also
conduct experiments on UEC Food-100 [22] dataset for Japanese
dishes. The dataset contains 100 categories of food and totally
12,564 images. Each category has at least 100 positive examples.
Nevertheless, ingredient labels are not provided. Similar to VIREO

5http://www-nlpir.nist.gov/projects/t01v/trecvid.tools/
randomization.testing

Method Top-1 (%) Top-5 (%)

Baseline
FC7 48.02 72.01
Gist 15.39 31.85
CM 16.54 39.76

Single-task AlexNet 64.91 85.32
VGG 80.41 94.59

Multi-task

Arch-A1 78.58 94.24
Arch-A2 78.63 94.10
Arch-B 79.05 94.70
Arch-C 80.66 95.05
Arch-D 82.06 95.88

Table 1: Average top-1 and top-5 accuracies for single-label
food categorization on VIREO Food-172 dataset.

Method Micro-F1 (%) Macro-F1 (%)

Baseline
FC7 42.94 32.22
Gist 23.01 19.45
CM 21.08 14.06

Single-task AlexNet 47.63 34.81
VGG 60.81 43.73

Multi-task

Arch-A1 55.17 43.75
Arch-A2 59.69 43.48
Arch-B 66.32 44.85
Arch-C 63.44 44.26
Arch-D 67.17 47.18

Table 2: Performance of multi-label ingredient recognition on
VIREO Food-172 dataset.

Food-172, we compiled a list of 190 ingredients for Japanese food
and conducted manual labeling. A total of 1,997 images are ex-
cluded from experiments for no ingredient labels. The experiment
is conducted based on 5-fold cross-validation, using the same data
split and settings as [36]. In [36], DCNN based on AlexNet is
first pre-trained with 2,000 categories in ImageNet, including 1,000
food-related categories. The network is then fine-tuned with train-
ing examples in the dataset. Table 3 lists the detailed performance.
Note that, although not using 1,000 food categories for pre-training,
Arch-D still manages to outperform [36] by 3.5% in terms of aver-
age top-1 accuracy for food categorization. Overall, similar to the
performance on VIREO Food-172, Arch-D attains the best perfor-
mances for both tasks.

Method Categorization Ingredient recognition
Top-1 (%) Top-5 (%) Micro-F1 (%) Macro-F1 (%)

FC7 58.03 83.71 52.80 32.51
Gist 30.53 58.80 23.93 11.84
CM 24.11 46.42 16.01 7.830

AlexNet 75.62 92.43 55.62 35.63
VGG 81.31 96.72 57.38 38.62
[36] 78.77 95.15 – –

Arch-D 82.12 97.29 70.72 43.94

Table 3: Performance comparision on UEC Food-100 dataset.

6.2 Effect of CRF
This section verifies the use of CRF in refining the predicted in-

gredients. All the 65,284 recipes are used for the construction of
CRF. A special note is that most recipes do not include the fine-
grained description of ingredients. For example, a recipe will sim-
ply list “egg” as ingredient, instead of explicitly stating whether
the ingredient as either “sliced egg” or “boiled egg”. Rather such
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Figure 9: The F1 scores of 15 ingredients that achieve large
margin of improvement after CRF.

information can only be inferred from cooking procedure, such as
“leaving the eggs boil for 4 minutes”. In this experiment, we do not
perform natural language processing to obtain the fine-grained de-
scription of ingredients. As a consequence, some labels in VIREO
Food-172 are merged and this ends up to 257 ingredient labels
for experimentation. For the deep architectures, max pooling is
adopted to merge the results of fine-grained ingredients. Specifi-
cally, if a network predicts “boiled egg” with the probability of 0.5
and “sliced egg” with 0.1, the probability for “egg” is set to be 0.5
in the CRF.

Method Micro-F1 (%) Macro-F1 (%)
Baseline
(recipe)

Food category 40.75 37.47
Food ingredient 37.39 33.69

Single-task Without CRF 63.94 46.81
With CRF 66.23 48.25

Multi-task Without CRF 68.84 49.98
With CRF 71.25 51.18

Table 4: Ingredient recognition with contextual modeling using
CRF.

In addition to assessing the effect of CRF for single and multi-
task learnings, we also compare the results against the baseline that
directly infers the ingredients from a retrieved recipe. More specif-
ically, given a predicted food category by VGG network, the cor-
responding recipe is retrieved based on name matching. The pre-
dicted labels are then based on the ingredients listed in the recipes.
This strategy is often used by some approaches [14] for estima-
tion of nutrition facts. We compare to two baselines, based on the
predicted names of food categories or ingredients. Note that as a
few recipes have the same name despite using different ingredients,
and hence multiple recipes could be retrieved. In this case, we only
show the result for the recipe which obtains the highest F1 score.

Table 4 lists the performance of different approaches. Note that
the performance of multi-task is based on Arch-D. Basically, CRF
improves the performance of both single and multi-task learnings.
All variants of baseline perform poorly in this experiment, far lower
than directly using the ingredients predicted by deep architectures.
The result is not surprising due to the fact that, for Chinese food, the
composition of ingredients for dishes under the same category can
vary depending on factors such as geographical regions, weather
and culture.

A few ingredients record large improvement as shown in Fig-
ure 9. The examples include “black rice” (F1 score = 0.1 to 0.33),
“sweet potatoes” (F1 score = 0 to 0.14), and “cherry tomato” (F1
score = 0.13 to 0.2). CRF successfully captures the knowledge
that “black rice” often co-occurs with “rice” and “soybeans” for

food categories involving “cereal porridge”. Similarly for the co-
occurrence among “cherry tomato”, “corn” and “lettuce” for food
categories related to “vegetable salad”. Figure 10 shows a few of
success and fail examples refined by CRF. While CRF successfully
improves the F1 score and particularly the precision of detection,
the recall for few labels is also dropped as noticed in Figure 10(e)
and Figure 10(f). Overall, the average precision (micro) is boosted
from 0.795 to 0.833, with 193 out of 257 ingredients show im-
provement. The average recall (micro) is also boosted from 0.607
to 0.623, with 91 ingredients show improvement and 88 ingredients
dropped.

6.3 Zero-shot Recipe Retrieval
This section assesses the use of predicted ingredients for re-

trieving recipes for food categories unknown in VIREO Food-172
dataset. We compile a list of 20 food categories as shown in Ta-
ble 6 for the experiment. Each category is associated with 1 to 20
recipes. For each category, we make sure that at least its key in-
gredients are known to VIREO Food-172. On average, there are
3 key ingredients per category. Among the 20 categories, 4 out
of them include ingredients that are not seen in VIREO Food-172.
For each category, a total of 50 images are crawled from Baidu for
testing. The experiment is conducted by, given a test image, the
system searches against 65,284 recipes in the corpus and returns
top-10 recipes. The performance is measured by top-10 hit rate,
which counts the percentage of test images where the ground-truth
recipes is found in the top-10 rank list.

We compare three major groups of approaches: image retrieval,
ingredient matching (Eqn-7) and their combination. For image re-
trieval, only the pictures associated with recipes are involved. We
compare the effectiveness of different features for retrieval. For
VGG, FC7 feature is extracted from the model trained for ingre-
dient recognition. Similarly for Arch-D, where the deep feature is
extracted from the private layer specialized for ingredient labels.
For ingredient matching, we compare the performances of single
(VGG) and multi-task (Arch-D) learnings, where the ingredient
prediction scores are both adjusted by CRF. Finally, late fusion is
performed for Arch-D and VGG by combining the scores obtained
from image retrieval and ingredient matching. Min-max normal-
ization is employed to convert the scores into the range of [0,1].
The fusion is based on joint probability, specifically 1− (1−pi)×
(1− pj), where pi and pj are scores from different approaches.

Method Top-10 hit rate

Image
Retrival

Gist 0.039
Color moment 0.035

VGG 0.439
Arch-D 0.523

Ingredient
matching

VGG 0.447
Arch-D (without CRF) 0.462

Arch-D 0.554

Fusion VGG 0.464
Arch-D 0.570

Table 5: Performance of zero-shot recipe retrieval.

Table 5 lists the performance of different approaches. For im-
age retrieval, deep features perform significantly better than hand-
crafted features. Our proposed model Arch-D outperforms VGG,
showing the superiority of multi-task learning not only in recog-
nition but also feature learning. For text-based ingredient match-
ing, Arch-D also shows better performance than VGG, attributed
mainly to the lower recognition error made in ingredient predic-
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Figure 10: Example of test images showing effect of CRF in refining ingredient labels. The “-” sign means the false positives that are
successfully excluded after CRF, while the “+” sign means the false negatives that are recalled by CRF. The “!” sign indicates true
positives that are erroneously removed by CRF.

tion, especially after CRF refinement. Further fusion of both results
from Arch-D achieves the overall best performance among all the
compared approaches.

Category Image Ingredient Fusionretrival matching
Assorted corn (12) 0.92 0.84 0.86
Braised noodles with lentil (16) 0.44 0.42 0.46
Braised chicken & potato (8) 0.42 0.34 0.34
Cucum. & fungus with eggs (2) 0.68 0.34 0.56
Carrot & kelp (4) 0.78 0.64 0.72
Cabbage & vermicelli (5) 0.30 0.54 0.44
Corn, carrot & ribs soup (19) 0.62 0.64 0.70
Dried tofu & pepper(8) 0.48 0.80 0.68
Griddle cooked chicken∗(7) 0.36 0.40 0.44
Loofah egg soup (15) 0.76 0.98 0.92
Mustard pork noodles (10) 0.34 0.74 0.70
Noodles with peas & meat∗(4) 0.30 0.22 0.30
Pepper & bitter gourd (7) 0.68 0.60 0.68
Ribs claypot (5) 0.16 0.50 0.12
Sichuan cold noodles (12) 0.86 0.82 0.84
Soybeans & pork leg soup (12) 0.48 0.46 0.54
Sausage claypot (19) 0.30 0.66 0.60
Spicy crab∗(20) 0.82 0.38 0.56
Shredded chicken & pea sprouts∗(1) 0.20 0.08 0.08
Tomato & egg noodles (18) 0.56 0.94 0.86

Table 6: Recipe retrieval performance on 20 unknown food
category. The parenthesis indicates the number of recipes for
a category. The categories containing unseen ingredients in
VIREO Food-172 are indicated by “*”.

Table 6 shows the detailed performance of Arch-D on 20 un-
known food categories. The performance of image retrieval is influ-
enced by the quality of pictures associated with recipes, particularly
for the pictures in low resolution, having different appearances or
lighting conditions than the queries. Such examples include “mus-
tard pork noodle” and “tomato & egg noodles”. On the other hand,
solely matching ingredient lists is limited by the fact that the same
set of ingredients can be used for different food categories. One
such example is “cucumber & fungus with eggs”, where the ingre-
dients are also found in several other food categories, despite differ-
ent visual appearance due to different ways of cooking and cutting.
Image retrieval using the deep features, which are trained to deal
with these visual variations, generally shows better performance.
Fusion basically compromises both performances and produces the
overall best performance. There are four categories where fusion
successfully boosts the performances of both approaches. In these
cases, image retrieval helps by “disambiguating” the rank lists gen-
erated by ingredient matching.

The retrieval performance is also affected by occlusion of ingre-
dients. For example, the “chicken” in “shredded chicken & pea

sprouts” is hardly visible under “pea sprouts”, which is an ingredi-
ent unseen in VIREO Food-172. In this case, ingredient matching
performs poorly as seen in Table 6. Image retrieval also performs
unsatisfactorily due to diverse dish appearances for test images un-
der this category. Another example is “spicy crab”, where crab is
hidden under other ingredients. Image retrieval, however, performs
surprisingly well for this category because of the unique color and
texture of the dishes. Finally, there are four categories that have
unseen ingredients. Except “spicy crab”, the performance of these
categories is below average, showing the challenges of retrieval for
recipes with unknown ingredients.

7. CONCLUSIONS
We have presented two main pieces of our work: ingredient

recognition and zero-shot recipe retrieval. The former is grounded
on a deep architecture (Arch-D) that exploits the joint relation-
ship between food and ingredient labels through multi-task learn-
ing. The latter extends the knowledge of Arch-D for the out-of-
vocabulary scenario, by learning contextual relationships of ingre-
dients from a large textual corpus of recipes. Experimental results
on a challenging Chinese food dataset (VIREO Food-172) show
that, while the performance of food categorization is enhanced slig-
htly, the improvement in ingredient recognition is statistically sig-
nificant compared to the best single-task VGG model. The supe-
riority in performance is not only noticed in VIREO Food-172 but
also UEC Food-100, a large-scale Japanese food dataset. More im-
portantly, when extracting the deep features (FC7) from the special-
ized or private layer learnt for ingredient recognition, the features
show highly favorable performance for zero-shot recipe retrieval,
in comparison to hand-crafted features and single-task model. The
performance of ingredient recognition is also successfully enhanced
with the contextual relationship modeling of ingredients and CRF.
The experiment also indicates that using our proposed architecture
and CRF for ingredient prediction can produce better performance
than directly inferring ingredients from recipes searched by VGG.
When further using the predicted ingredients for matching recipes
of unknown food categories, our model also demonstrates impres-
sive performance, including when fusing with the deep features.

While encouraging, the current work is worth further investiga-
tion in two directions. First, cooking method (e.g., frying, steam-
ing, grilling) is not explicitly considered in the developed deep ar-
chitecture. In the experiment, we notice that some dishes have the
same ingredients but appear visually different mainly due to differ-
ent cooking methods. Our current approach basically cannot distin-
guish recipes for this kind of dishes. Similarly for ways of cutting
ingredients (e.g., chop, slice, mince) which may demand hierarchi-
cal way of ingredient recognition in deep network. In addition, our
multi-task model could not deal with ingredients (e.g., honey, soy-
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bean oil) that are not observable or visible from dishes. Secondly,
while this paper considers the zero-shot problem of unknown food
categories, how to couple this problem together with unseen ingre-
dients remains unclear. Future work may include learning of em-
bedded space that can capture the inherent “translation” between
dish pictures and textual recipes, for dealing with the problem of
unknown food and ingredient labels.
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