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ABSTRACT

The recent works in cross-modal image-to-recipe retrieval pave a

new way to scale up food recognition. By learning the joint space

between food images and recipes, food recognition is boiled down

as a retrieval problem by evaluating the similarity of embedded

features. The major drawback, nevertheless, is the difficulty in

applying an already-trained model to recognize different cuisines

of dishes unknown to the model. In general, model updating with

new training examples, in the form of image-recipe pairs, is required

to adapt a model to new cooking styles in a cuisine. Nevertheless,

in practice, acquiring sufficient number of image-recipe pairs for

model transfer can be time-consuming. This paper addresses the

challenge of resource scarcity in the scenario that only partial data

instead of a complete view of data is accessible for model transfer.

Partial data refers to missing information such as absence of image

modality or cooking instructions from an image-recipe pair. To cope

with partial data, a novel generic model, equipped with various loss

functions including cross-modal metric learning, recipe residual

loss, semantic regularization and adversarial learning, is proposed

for cross-domain transfer learning. Experiments are conducted

on three different cuisines (Chuan, Yue and Washoku) to provide

insights on scaling up food recognition across domains with limited

training resources.

CCS CONCEPTS

• Information systems → Multimedia and multimodal re-

trieval.
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1 INTRODUCTION

The demand for huge number of training examples is known to

be a problem for supervised learning of neural networks. In the

domain of food recognition, the problem is prevalent as image an-

notation requires not only category-level labels [3, 6, 22] but also
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their attributes such as ingredients [2, 6, 23], cooking and cutting

methods [8]. In practice, the number of categories can easily go

beyond a thousand for a city-scale food dataset [24]. Acquiring

sufficient number of positive examples for all food categories poses

a huge challenge, not mentioning the required efforts for data clean-

ing and labeling. Despite these daunting demands, transferring of

an already-trained model to a new domain (e.g., a different city or

cuisine) still requires intensive effort in crawling and annotating

new food images.

Food recognition is recently posted as a problem of cross-modal

retrieval [7, 29]. Specifically, instead of predicting food categories

and attributes [6, 8], the recipes of query images are retrieved. As a

recipe typically contains three sections, i.e., title, ingredients and

cooking steps, food recognition is achieved by extracting recipe

titles and relevant attributes. Instead of training a neural network

for food classification, this new paradigm learns to embed image

and recipe features in a common space for similarity comparison.

The annotation effort is keep to minimum as the required training

examples are simply image-recipe pairs that can be acquired from

cooking sharing websites [7, 29]. Due to its potential in scaling up

food recognition, this cross-modal retrieval paradigm has spurted

various research interests, including ingredient recognition [2, 6],

cooking causality analysis [35], recipe and food image synthesis [28,

35].

Based upon these prior works [4, 7, 9, 29, 33, 36], this paper ex-

tends from cross-modal to cross-domain food retrieval. Leveraging

on image-recipe pairs in a source domain, we consider the problem

of food transfer as recognizing food in a target domain with new

food categories and attributes. The training resources in a target do-

main is assumed incomplete. Specifically, only partial data of dishes,

for instance, titles and ingredients instead of their recipes, are avail-

able. Food images may be available but are possibly not annotated

or linked to recipes. The consideration of resource incompleteness

can be mapped to the following real scenarios when transferring

food recognition to an unknown domain. First, considering that

only a sparse list of dish names written in text are available in a

target domain. The list may be crawled from the menus of local

restaurants in the new domain and is incomplete. In this case, food

transfer is to leverage the sparse list of dishes to train a model for

recognizing dishes not only new to the source domain but also

unseen in the provided list of dish titles. Second, it is not strange

to see that the restaurant menus provide both dish titles and their

ingredients for reference. In this case, the model can be trained with

additional food attribute information. Third, when images, whether

being annotated with food names, are also available, the model

can be further trained with multiple modalities. Finally, if pairing

information between image and text are also available for some of

the data, the model can be trained in cross-modal manner [7, 29] to

embed text and image features in a common space.
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Table 1: Partial data in a target domain, summarized from the scarcest resource (Case 1) to near sufficiency (Case 10). Note that

“pair" refers to the cases that the image-text pairing relations are available for some resources.

Methods Cases
Recipe

Image Pair
Title Ingredients Instructions

Unsupervised

Case 1 �
Case 2 � �
Case 3 � � �
Case 4 �
Case 5 � �
Case 6 � � �
Case 7 � � � �

Semi-supervised

Case 8 � � �
Case 9 � � � �
Case 10 � � � � �

In this paper, we refer the situation of incomplete data as resource

scarcity in a target domain. The aim of food transfer is to utilize the

incomplete data, together with complete data in a source domain, to

train a cross-domain cross-modal neural network for food retrieval.

We generalize the issue of resource scarcity into ten different cases

listed in Table 1. Ourmain contribution is proposal of a food transfer

model that is generic to deal with various situations when data is

incomplete.While cross-domain transfer is not a new problem [5, 17,

27], framing the problem from the perspective of resource scarcity

has not been addressed. Particularly, food transfer is considered in

the setting of cross-modal learning, where model adaptation across

domains is required to align within and across modalities under

the situation of resource scarcity. Note that our work is different

from the recent studies in cross-modal transfer [5, 17] which define

different modalities as domains. Instead, domains refer to different

cuisines of dishes. A domain is composed of multimedia resources

describing dish preparation. To expedite food transfer, only limited

resources are acquired in the target domain for training. To the best

of our knowledge, this is the first work that addresses the problem

of domain transfer for the topic of food recognition.

2 RELATEDWORK

Domain adaptation is not a new problem and has been intensively

studied in [12, 20, 21, 25, 26, 31, 32]. The goal is to transfer the

knowledge learnt in a source domain to annotate data in a target

domain. The challenges of transfer attribute to various reasons,

such as different sources where data are acquired [12, 21], limited

amount of training data in the target domain [16, 37] and different

modalities between source and target domains [5, 17]. A general

solution to this problem is by aligning the feature distribution of two

domains. The representative approaches include minimizing data

gap by maximum mean discrepancy (MMD) [21, 32] and learning

domain invariant features by adversarial learning [12, 31]. In the

literature, most works are dedicated to single modality transfer, for

examples, image-to-image [12, 21] and text-to-text [1, 37] between

two domains.

Recently, multi-modal [27] and cross-modal [17] transfers are

proposed. In [27], the data in both domains are composed of visual-

audio pairs. Transfer is carried out by learning intra-modality and

inter-modality domain invariant features using generative adversar-

ial network (GAN). Inter-modality transfer refers to the generation

of attention-layer and fusion-layer features that are indistinguish-

able by the domain discriminator in GAN. The learning is unsuper-

vised as class labels are assumed not available for target data. In [17],

the source and target domains are allowed to have data in different

modalities. The goal is to learn modality invariant shared represen-

tation, such that knowledge learnt in a modality is transferable to

a new modality unseen by the source domain. To achieve this, the

pairing information between different modalities and their category

labels are required to be known in the target domain. In this case,

not only domain discriminator as in [27] but also category-level

regularization are employed for learning shared representation.

While similar in spirit as [17, 27], our work is more generic in

dealing with various situations that may arise in a target domain.

First, different from [17, 27], we deal with variants of representa-

tion within a single modality. Specifically, within the text modality,

there are recipe title (i.e., a phrase or short sentence in few words),

ingredient list (i.e., a sparse set of categories describing dish con-

tent) and cooking steps (i.e., a stepwise procedural description of

cooking methods). Under the scenario of resource scarcity, the data

within a modality can be incomplete. For example, only recipe title

is available but not ingredients and cooking steps. In other words,

the proposed food transfer needs to handle incomplete data within a

single modality. Second, different from [17, 27], pairing information

across different modalities may not be available. In other words,

while the model in source domain is trained with paired modalities,

in contrast to [27], the target domain may contain only one of the

modalities. Furthermore, different from [17], neither pairing nor

category-level information may be available for training. Among

the ten cases consider in this paper (see Table 1), only cases 7 and

10 are the situations where [27] and [17] deal with respectively.

Finally, as our model is specifically design for food recognition, a

rich set of domain discriminators and regularizers are considered

as loss functions. These include multi-label classification of ingre-

dients as semantic regularizer as in [33], image and text domain

discriminators as in [12], and reconstruction of images from recipes

for shared representation learning [33, 36].

While food recognition has recently captured numerous research

attentions [3, 6, 8, 11, 18, 24], there are yet to have any studies in
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Figure 1: The architecture of cross-domain food transfer.

cross-domain transfer learning for food recognition. The works

in [18] and [34] pose few-shot food recognition as a problem of

meta-learning using relation and prototypical networks respec-

tively. These works are formulated under 𝐶-way 𝐾-shot classifi-
cation, where 𝐶 is generally a small value, for example, referring

to 20 food categories in [18] and 5 categories in [34]. Extending 𝐶
to over hundreds of dish categories as in this paper is not a trivial

problem. Finally, these works [18, 34] assume that a complete view

of data is accessible for learning, which is fundamentally different

from our work to address learning from partial data view. In [11],

knowledge graphs, which model the relations between different

cooking attributes, are leveraged to annotate ingredients unseen

during training. The relations include ingredient hierarchy, co-

occurrence and the association with cooking and cutting methods.

These relations, nevertheless, are expected to vary across different

cuisines due to variations in taste and food favour which will result

in different use of ingredients and cooking techniques.

3 CROSS-DOMAIN FOOD TRANSFER

The aim is to perform food recognition on a target domain with

incomplete training data. It is assumed that there exists a source

domain with complete training data. Hence, the problem is defined

as annotating images in a target domain with partial resources by

leveraging the complete resources available in a source domain.

The resource types include image 𝑉 , recipe 𝑅, food title 𝑇 , title and
ingredients𝑇𝑖𝑛 , and recipe-image pair (𝑉 , 𝑅). The complete training

data refers to the set of recipe-image pairs for fully supervisedmodel

training [10, 33, 36]. In the remaining sections, we abbreviate the

source and target domains with the superscripts 𝑠 and 𝑡 respectively.
Let the resources in a source domain as Ds = {(𝑟𝑠𝑖 , 𝑣

𝑠
𝑖 )}

𝑁 𝑠

𝑖=1, with 𝑁
𝑠

recipe-image pairs.

There are ten possible cases to describe resource scarcity in a

target domain, as listed in Table 1. For example, Case-3 contains

recipes and hence the full set of textual information (i.e., title, in-

gredients and cooking instructions) is available. In contrast, Case-1

only has the dish titles while Case-2 has both titles and ingredients

but no cooking steps. Images are available for cases 4 to 7, but the

pairing between images and other resources are unknown. Due to

missing of pairing information, only unsupervised training can be

conducted on the target domain for cases 1 to 7. In practice, pairing

relations among the available sources may exist. For example, a

restaurant menu comes with dish titles along with their images or

even ingredients. These situations are included in cases 8 and 9.

Finally, Case-10 represents the situation that recipe-image pairs can

be downloaded, for example, from the cooking sharing websites.

As pairing information usually only exists for some popular dishes,

not all resources in a target domain can be linked. In the experi-

ment, we assume that there are at most 5,000 pairs available for

training. Therefore, model training under the cases with pairing re-

lations being partially observed is characterized by semi-supervised

learning.
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3.1 Model Overview

Figure 1 depicts the design of network architecture. As other net-

works [17, 27], the design includes encoders for supervised feature

learning and discriminators for adversarial learning. The novelties

are the proposals of recipe encoder and recipe residue block (RRB).

The former selectively extracts various cooking data depending

on resource availability. The latter deals with partial data learning.

RRB is generic to enable either unsupervised or semi-supervised

learning for all the ten cases in Table 1.

The training starts by encoding the source recipes and images

into latent features by their respective encoders. As these infor-

mation are paired, metric learning, such as cosine similarity [29]

and triplet ranking loss [4, 10, 33, 36], can be employed to ensure

cross-modal feature closeness in the latent space. Different from

other architecture designs [4, 10, 29, 33, 36], the proposed recipe

encoder learns three separate features corresponding to different

sections (title, ingredient, cooking steps) of a recipe. In case where

only food titles are available in the target domain (i.e., Case-1 in

Table 1), the recipe features are generated based on titles only. RRB

is the module that, leveraging on complete recipe information in

the source domain, learns to enrich the recipe features transformed

from partial data. The various embeddings generated by RRB are

then forwarded to discriminators for cross-modal transfer learning.

The objective of unsupervised learning is:

𝐿 = 𝐿𝑠𝑚𝑙 + 𝜆𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 + 𝛾𝐿𝑑 + 𝜎𝐿𝑟𝑒𝑔 , (1)

where 𝐿𝑠
𝑚𝑙

, 𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 , 𝐿𝑑 and 𝐿𝑟𝑒𝑔 represent metric learning loss for

source data, residual loss (Section 3.2), domain loss (Section 3.3) and

regularization loss respectively. The losses are linearly combined

with trade-off hyper-parameters 𝜆, 𝛾 and 𝜎 . Note that the 𝐿𝑠
𝑚𝑙

and

𝐿𝑟𝑒𝑔 terms are similar as other models [4, 10, 33, 36]. The former,

𝐿𝑠
𝑚𝑙

, is learnt with triplet ranking loss [30]. The latter, 𝐿𝑟𝑒𝑔 , is a
regularizer composed of two parts: multi-labeling of ingredients for

an image embedding [33] and reconstruction of food image from a

recipe embedding [33, 36].

When pairing information are available for some of the target

data (Cases 8-10), metric learning can also be conducted for the

target pair data. In this case, semi-supervised learning is carried

out with the objective function:

𝐿𝑠𝑒𝑚𝑖 = 𝐿 + 𝜇𝐿
𝑡
𝑚𝑙 , (2)

where 𝜇 balances the relative importance of the two parts.

3.2 Recipe Residual Block (RRB)

The spirit of RRB is to interpolate missing information when recipe

feature is generated from partial data such as title-only (e.g., Case-1)

or title and ingredients only (e.g., Case-2). The motivation comes

from the fact that there exists correlation between ingredients and

cooking methods. Specifically, given a set of ingredients as a prior

knowledge, the likelihood of cooking steps can be predicted. In

other words, the ways of cooking are not in random but restricted

by the available ingredients. In general, dish title is expected to be

informative to include main ingredients and cooking methods. In

some cases, the title even gives clue to the visual appearance of

a dish. Hence, even in the case when only title is known but not

ingredients, it is possible to imagine how a dish will possibly be

prepared and its visual appearance. RRB leverages the full recipe in-

formation available in source domain to ensure consistency among

features extracted from different parts of recipes. For example, the

feature extracted from a title should resemble to the feature encoded

by the sequence of cooking steps. Furthermore, with the paired

information between recipes and images, the learned features are

also enforced to be consistent with image features through metric

learning. In brief, RRB aims to synchronize various information

extracted from recipes as well as their paired images, and then

transfer to target domain with partial data.

Denote 𝐸𝑡 , 𝐸𝑖𝑛𝑔 , 𝐸𝑖𝑛𝑠 as features extracted by the recipe encoder,
corresponding to title, ingredients and cooking steps respectively.

RRB routes these features through three pathways as depicted in

Figure 2. Along a pathway includes an optional fusion layer for

feature integration and a fully connected (FC) layer for feature

embedding. The first pathway transforms 𝐸𝑡 to 𝐸𝑟_𝑡 , while the

third pathway integrates both 𝐸𝑡 and 𝐸𝑖𝑛𝑔 before transforming to

𝐸𝑟_𝑡𝑖𝑛 . Similarly for the second pathway that fuses all the three

features to produce 𝐸𝑟_𝑓 𝑢𝑙𝑙 . The embedded features, having the

same dimensionality, are trained to resemble of each other in RBB.

Specifically, supervised by 𝐸𝑟_𝑓 𝑢𝑙𝑙 that encapsulates the entire in-
formation of a recipe, 𝐸𝑟_𝑡 , 𝐸𝑟_𝑡𝑖𝑛 learn to interpolate missing data

through residual loss, as following:

𝐿𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =
�
�𝐸𝑟_𝑓 𝑢𝑙𝑙 − 𝐸𝑟_𝑡

�
�2
2
+ ‖𝐸𝑟_𝑓 𝑢𝑙𝑙 − 𝐸𝑟_𝑡𝑖𝑛 ‖

2
2 . (3)

Note that the three pathways are activated simultaneously during

training in the source domain. When only partial data is available

in target domain, the pathways are selectively in function. In the ex-

treme case when only title is available, RBB simply performs feature

transformation based on knowledge learnt in source domain.

3.3 Cross-modal Adversarial Transfer

Inspired by [12, 13], adversarial learning is employed to reduce

the gap between source and target domains. A discriminator is

trained to predict whether an embedding feature originates from

source or target domain. The discriminator and RRB play a min-max

game to align the feature distributions in both domains. Additional

discriminator to distinguish image embeddings is also trained, when

images are available in the target domain (Cases 4-10). The domain
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Table 2: Dataset overview. The last three rows show the av-

erage number of ingredients, cooking steps and images per

recipe.

Cuisines Chuan Yue Washoku

Num. of recipes 42,797 27,256 9,626

Num. of images 155,750 119,758 48,485

Avg. num. of ingredients 6.9 6.1 6.2

Avg. num. of instructions 7.2 7.8 8.5

Avg. num. of images 3.6 4.4 5.0

loss is formalized as:

𝐿𝑑 =E𝑟𝑠∼𝑝𝑠𝑟 [log𝐷1 (𝑟
𝑠 )] + E𝑟𝑡∼𝑝𝑡𝑟 [log (1 − 𝐷1 (𝑟

𝑡 )]
︸��������������������������������������������������������︷︷��������������������������������������������������������︸

recipe discriminator

+

E𝑣𝑠∼𝑝𝑠𝑣 [log𝐷2 (𝑣
𝑠 )] + E𝑣𝑡∼𝑝𝑡𝑣 [log (1 − 𝐷2 (𝑣

𝑡 )]
︸��������������������������������������������������������︷︷��������������������������������������������������������︸

image discriminator

,
(4)

where 𝐷1 and 𝐷2 are recipe and image discriminators respectively

to predict the domain of an embedding. Note that only 𝐷1 is con-

sidered in Cases 1-3 due to absence of image, and similarly only 𝐷2

in Case 4 due to absence of recipe.

4 EXPERIMENT SETTING

Dataset. Three datasets, corresponding to Sichuan (“Chuan”), Can-

tonese (“Yue”) and Washoku (“Japanese”) cuisines, are constructed.

The datasets are composed of image-recipe pairs crawled from one

of the most popular Chinese recipe sharing websites “xiachufang” 1.

A list of ingredients common to all the three cuisines are compiled

from the recipes. A total of 1,635 ingredients are kept after exclud-

ing those found in less than 20 recipes. Note that some ingredients

are common in one cuisine but rare in other cuisines. For example,

“Sichuan pepper” is frequent in Chuan (found in 5,642 recipes) but

rare in Washoku (only in 154 recipes). Among the 1,635 ingredients,

“egg” are popular in all the three cuisines.

The dataset statistics is listed in Table 2. Chuan has a relatively

larger number of ingredients per recipe on average, while Washoku

has the most number of cooking steps per recipe. We split each

cuisine into three subsets, 70% for training, 10% for validation and

20% for testing. Please refer to the supplementary document for

details about the dataset, including sample images and recipes, word

cloud of each cuisine and general discussion about the difference

of these three cuisines.

Performance Evaluation. The experiment is conducted in the

setting of cross-modal food retrieval, similar as [10, 33, 36]. Specif-

ically, given a query image, the task is to retrieve either the dish

title or recipe of the image from a dataset. The availability of re-

sources in a dataset follows the ten cases listed in Table 1. In cases

3, 7 and 10, recipes will be retrieved and ranked based on their

similarity to a query image. For other cases, dish titles are ranked.

The performance will be mainly evaluated by median rank (MedR),

which is the median rank of ground-truth titles or recipes for all

the testing queries. Recall at top-K (R@K) is also reported when

1https://www.xiachufang.com/

necessary. During testing, depending on the number of data in a

target domain, we randomly sample either 1,000 or 5,000 recipes

from testing data for experiment. The corresponding image of each

recipe is then issued as testing query. For fair comparison, we re-

peat the experiment for 10 times and report the average MedR. The

setting closely follows [10, 33, 36], where each test involves at least

1,000 different dishes for recognition. The proposed approach can

also be applied for searching images when a query is title or recipe,

as in [10, 33, 36]. Due to space limitation, we only present the result

of image search in the supplementary document.

Implementation details. The dimensions of recipe and image

embeddings are set to 1024. The backbone of image encoder is

ResNet-50 [14] pre-trained on ImageNet, by replacing the last fully-

connected layer with 1024 neurons. Bidirectional LSTM [15] is em-

ployed by title and ingredient encoders for feature transformation.

The text features are undergone word2vec embedding and then

projected as vectors of 300 dimensions. As cooking steps are much

lengthy, hierarchical LSTM [29] is adopted by instructor encoder.

Words are embedded sequentially and then followed by sentences

into a vector of 1024 dimensions. Both recipe and image discrimi-

nators are implemented as a differentiable three-layer perceptron

for domain classification. The model is trained end-to-end from

scratch using Adam optimizer [19] with batch size of 32 in all exper-

iments. We set the balance hyperparameters to be 𝜆 = 1, 𝛾 = 0.01
and 𝜎 = 0.002 in Equation 1. For semi-supervised learning, we set

𝜇 = 0.1 in Equation 2. Additional 5,000 pairing information, i.e.,

title-image pairs for cases 8-9 and recipe-image pairs for Case-10,

are randomly sampled from a target domain for model training.

5 RESULT ANALYSIS

5.1 Impact of Resource Scarcity

We first study the impact of resources on model training based

on the 10 cases defined in Table 1. The performances are then

benchmarked against two oracle runs that assume all resources are

available for training. Both runs, Oracle-1 and Oracle-2, are fully

supervised learnt based on the architecture proposed in Figure 2.

Oracle-1 leverages all the resources (i.e., recipe-image pairs) in

source and target domains for training. Oracle-2 does not have

knowledge of source domain and the model training involves only

resources in the target domain.

As Yue andWashoku are relatively smaller than Chuan in dataset

size, we set them as target domains in this experiment. Figure 3

shows the result of three different transfers on testing data size of

1,000. The general trend is that recipe is an essential resource that

guarantees better MedR. When the domain gap is relatively small

(e.g., Chuan→Yue), recipe-only attains MedR=4.2 which is fairly

close to MedR=2.7 of Oracle-1. In other words, having a subset of

recipes in a target domain can sufficiently train a model with decent

recognition performance. When comparing image-only (Case-4) to

recipe-only (Case-3), the improvement introduced by image modal-

ity is less. Particularly in Chuan→Washoku, where the domain gap

is expected to be the largest among the three transfers, the MedR

of recipe-only is 63.2% better than image-only. The result basically

verifies that recipes, which are textually resourceful, are more ef-

fective than images in domain transfer. When pairing information
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Figure 3: MedR performance (y-axis) varies across ten dif-

ferent cases of resource scarcity (x-axis) given in Table 1. T:

title-only, Tin: title and ingredient only, R: recipe, I: image-

only. The first seven bars refer to cases 1-7 under unsuper-

vised learning (U). The last three bars refer to cases 8-10

under semi-supervised learning (S). The two oracles (dotted

line) show the results of fully supervised models.

between recipes and images are available for semi-supervised learn-

ing, MedR values approach the performance of Oracle-1 for all the

three transfers. In the case of transferring to Washoku, where the

gap is expected to be larger, pairing information improves MedR

almost by double from Case-3 to Case-10.

In the most resource scarcity situation (Case-1) where only title

is available for unsupervised learning, the performance in terms of

MedR is suboptimal. Despite this, theMedR of title-only is still 17.0%

better than image-only in Chuan→Washoku. The result potentially

implies that, when the gap is large, title is more informative than

image modality for domain transfer. Surprisingly, when both titles

and images are available but without pairing information (Case-5),

the improvement compared to title-only is insignificant for all the

transfers. Improvement becomes significant only if title-image pair-

ing information (Case-8) are available. Compared to image modality,

ingredient appears to be more complementary to title. In all the

transfers, using both title and ingredient (Case-2) result in perfor-

mance leap compared to using title-only. The result is even close

to that of using recipe-only (Case-3). In other words, among the

Query Recipe Case-1 Case-2 Case-3

1 1 1

23 1 1

8 3 1

Schnauzer Rice Ball

cheese, rice, sesame salt,

seaweed…

1. Put the sesame salt into 

the beating bowl…

2. 2/3 of the rice is mixed 

with sesame salt, and the 

remaining 1/3...

Rice Ball Lunch

shrimp, seaweed, carrot, rice,

butter, Sesame oil, ginger…

1. Shrimps are soaked and 

chopped…

2. Take out the ginger slices, 

shred the carrots, then 

chop them...

Steamed Japanese Tofu 
with Shrimp

Japanese tofu, shrimp, salt, 

flour, sugar.

1. Peel the shrimp and draw 

the string.

2. Cut the Japanese tofu into 

pieces, don't break it…

(a)

(b)

(c)

Figure 4: The retrieved dish title for a query image by using

different information for transfer: title-only (Case-1), title

and ingredient (Case-2), recipe (Case-3).

three text-based resources (title, ingredients, cooking instructions),

ingredients appear to be essential to bridge the domain gap. Figure 4

shows three typical examples illustrating how different information

in recipes are helpful for transfer. In Figure 4(a), the recipe title

already captures all the visible ingredients in the dish. Hence, dish

title can be retrieved at the top-1 position with title-only informa-

tion for transfer. If a title only partially captures some ingredients,

such as in 4(b), further using ingredients for transfer is required to

rank the recipe at top position. For popular Washoku dishes such

as “rich ball lunch” in 4(c), there could exist several similar recipes.

In this case, cooking steps which give clue to the ingredient shapes,

for example “chopped shrimp” and “shredded carrot”, are required

to distinguish different versions of similar dishes for retrieval.

In all the transfers, additional use of image modality without

pairing information with text modality only manages to introduce

slight improvement. We believe that this is due to large visual

variation between different cuisines. For example, Chuan dishes

are mostly spicy and, as a result, the presentations are apparently

different from other two cuisines in terms of color and texture.

The large difference causes difficulty for image encoder to fool

discriminator in adversarial learning. When pairing information

is available, nevertheless, improvements in MedR are consistently

observed. This is mainly because pairing information enables metric

learning such that text and image embeddings are learnt to be

compatible of each other. To provide further insights, Figure 5 shows

the consistent improvement in MedR with the increase number of

pairs. The pairing information is particularly useful if only recipe

titles are available for transfer. When ingredients are also available

for transfer, nevertheless, the impact of having pairing information

is less obvious. For example, the improvement in MedR is less

than 2 ranks by increasing the number of pairs from 1K to 5K.

On the other hand, when the entire recipes are available, constant

gradual improvement is noticeable. This is due to the fact that the

pairing information enables not only metric learning, but also the

reconstruction of food images from recipes for adversarial transfer

learning. In addition, fine-grained cooking and cutting methods

can be more effectively leveraged to disambiguate recipes of similar

ingredients composition.

Using resources in target domain only (i.e., Oracle-2) is consis-

tently outperformed by Oracle-1, which uses all resources in source
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Table 3:MedR performances for different cuisine transfers. The size of testing dataset (1K or 5K) is indicated in the parenthesis.

The baselines are trained using all the training examples in the source domain and then applied to answer queries by retrieving

from the partial resources available on the target domain. For ease of visualization, the runs that using the same type of

resources for retrieval are marked with the same color. For example, the light cyan color indicates the runs that their recipe

resources are formed by dish titles only.

Methods Resources C→Y (1K) C→Y (5K) C→W (1K) Y→C (1K) Y→C (5K) Y→W (1K)

Baseline

Title 10.0 44.9 26.7 19.1 87.6 31.4

Title+Ingredients 5.4 22.5 13.8 10.4 45.6 16.4

(source-only) Recipe 4.8 19.6 33.6 12.5 54.7 19.2

Unsupervised

Case-1 9.1 42.8 26.4 17.6 80.5 31.2

Case-2 5.3 20.4 13.5 9.9 42.7 15.7

Case-3 4.2 16.6 11.7 8.8 38.6 15.7

Case-4 4.6 17.6 31.8 11.6 52.2 17.3

Case-5 9.1 40.6 26.0 17.3 79.7 31.1

Case-6 5.2 20.3 13.2 9.8 42.5 15.7

Case-7 4.1 15.9 10.8 8.3 37.4 13.9

Semi-supervised

Case-8 6.7 28.6 13.8 11.3 49.4 15.4

Case-9 4.8 18.7 11.0 7.2 31.1 11.5

Case-10 3.0 11.9 6.6 6.0 25.5 8.4

Fully-supervised
Oracle-2 6.2 25.3 19.4 3.6 13.6 19.4

Oracle-1 2.7 8.7 4.9 2.0 6.7 8.0

and target domains. The result indeed implies that food recogni-

tion is highly transferable even when the domain gap is large (e.g.,

Chuan→Washoku). Under the aid of source domain, using only

ingredients and their titles in a target domain for unsupervised

learning already surpasses Oracle-2 in all the transfers. Indeed,

Oracle-2 basically only performs better than the most scarcity case

where only titles are available for training.

In summary, we can characterize the impact of resources on

performance as followings. When only dish titles are known, recog-

nition performance are likely to be suboptimal. However, the perfor-

mance is expected to boost significantly and surpass Oracle-2 if the

ingredients of dishes are involved in training. Images are not nec-

essary useful unless if pairing information is available. Under this

situation, even if pairings are only exists for some data (5,000 pairs

in the experiment), cross-modal embedding of features can intro-

duce noticeable improvement in MedR. The performance is close to

Oracle-1 when recipe-image pairs are available for semi-supervised

learning.

5.2 Impacts of Domain Gap and Datasize

In practice, the difficulty of transfer depends on the domain gap.

For example, transferring from Chuan to Washoku is potentially

more challenging than Chuan to Yue. Table 3 lists the details of

performances for transferring between different cuisines. Note that

the baselines are the fully supervised models trained with the train-

ing data in a source domain only. When being employed for food

recognition, the same baseline could exhibit different MedR per-

formances depending on the resource available in a target domain.

Using the transfer from Chuan to Yue (C→Y) as example, the base-

line achieves better MedR when the testing dataset is composed

of recipes rather than dish titles. In general, when domain gap is

smaller, such as C→Y, constant improvement in MedR is observed

10.4
9.7

8.5 7.9
7.0 6.6

13.0 12.6 12.0 11.6 11.3 11.0

24.6
23.4

19.4

16.7

14.3 13.8

4.0

9.0

14.0

19.0

24.0

0.5K 1K 2K 3K 4K 5K

Me
dR

Number of Pairs

Recipe Title+Ingredients Title

Oracle-1 4.9

Figure 5: Performance trendwith increasing number of pair-

ing information available for linking text and image modal-

ities (Chuan→Washoku). The performance of Oracle-1 is in-

dicated with asterisk for reference.

for unsupervised and semi-supervised learnings when more re-

sources are available for training and retrieval. Comparing C→W

to C→Y, the domain gap is larger as observed from the higher

MedR value. An interesting fact is that, when the gap is larger,

the baseline can perform the worst (MedR=33.6) when the target

dataset is composed of recipes. In C→W, the larger gap attributes

to different cooking techniques in two cuisines. As a result, food

recognition by retrieving recipes is not necessarily an ideal solution.

Instead, applying the baseline to retrieve dish titles alone can attain

better performance. Nevertheless, when the recipes of a target do-

main are available for training, the performance boost is significant.

For example, the MedR is boosted to 11.7 (Case-3) under unsuper-

vised learning and to 6.6 (Case-10) under semi-supervised learning,

closely following the performance of Oracle-1 (MedR=4.9).

Note that domain gap is not symmetric, for example, the per-

formance in C→Y is not necessarily similar to Y→C. Instead, the

performance depends largely on the number of training examples

available in a source domain. As the number of image-recipe pairs
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Table 4: Ablation study conducted on C→Y transfer for

Case-7. RRB: recipe residual block; Adv: Adversary learn-

ingwith recipe discriminator (Adv_R) and image discrimina-

tor (Adv_V); Reg: semantic regularization with multi-label

ingredient recognition (Reg_R) and recipe-to-image genera-

tion (Reg_V).

Models MedR R@10 R@50

Full model w/o RRB 4.1 63.81 83.18

Full model w/o Adv 4.4 63.51 82.73

Full model w/o Adv_R 4.3 63.52 82.81

Full model w/o Adv_V 4.2 63.58 82.84

Full model w/o Reg 4.8 62.47 80.89

Full model w/o Reg_R 4.4 63.40 82.20

Full model w/o Reg_V 4.2 63.62 83.18

Full model 4.1 63.86 83.40

in Yue cuisine is only about half of that in Chuan cuisine, Y→C is

a harder transfer than C→Y as seen in Table 3. Nevertheless, the

performance gain by transferring a source model using partial data

in the target domain is almost the same. For example, through semi-

supervised learning with titles and images, the rank is improved by

40.8% from MedR=19.1 (baseline) to 11.3 (Case-8). Similar margin of

improvement is noticed, i.e., 33.0% from MedR=10.0 to 6.7 in C→Y.

It is also worth noticing that, the performance difference between

two source models does not just depend on the number of training

data. For example, in terms of cooking techniques, Washoku is more

similar to Yue than Chuan. Hence, despite that the source model

in Chuan cuisine is trained with more examples, its performance

for retrieving Washoku recipes is worse than the source model

trained in Yue cuisine. Furthermore, due to relative large difference

in visual appearance of Chuan and Washoku dishes, using only the

images in Washoku cuisine for unsupervised learning (Case-4) does

not perform better than directly using the source model trained in

Yue cuisine.

Increasing the size of testing dataset from 1K to 5K also impacts

the performance considerably. Nevertheless, constant improvement

is also noticeable when leveraging partial resource in a target do-

main for model transfer. The degree of performance gains across

different cases are indeed bigger if comparing to the dataset of small

size. For instance, in C→Y, using titles for unsupervised learning

(Case-1) elevates the MedR by 2.1 ranks versus 0.9 rank in 1K-size

dataset. Larger degree of gain is obtained in Y→C, where the MedR

is elevated by 7.1 ranks versus 1.5 ranks in 1K dataset. When pairing

information is available, semi-supervised training using title-only

manages to improve MedR by 16.3 ranks (C→Y) and 38.2 ranks

(Y→C).

5.3 Ablation Study

As this is the first work that address transfer learning with partial

data in target domain, we are not able to draw any relevant prior

work for direct comparison. Instead, ablation study assessing im-

pact of different network components is conducted. Our network

architecture is similar in spirit as [17] for Case-7. The major differ-

ence from [17] is the use of recipe residual block (RRB) to deal with

problem of data incompleteness, in addition to loss functions such

as recipe-to-image generation and ingredient recognition specific

to the application. Table 4 lists the performances when one out of

three components is taken away from the proposed model. Note

that each of the adversary learning and semantic regularization has

two sub-components. In Case-7, since recipes are available, RRB

can be omitted and replaced by concatenating the three embed-

dings from recipe encoder. This is a common setting adopted by

cross-modal recipe retrieval [33, 36]. As shown in Table 4, RRB

does not impact the model negatively, showing almost the same

performances as the ordinary feature concatenation. Similar as

other reported works in the literature [12, 17, 27], adversarial learn-

ing (Adv) is essential for learning domain-invariant embedding.

Without Adv, the MedR drops by 0.3 rank. Recipe discriminator

shows slightly greater contribution than image discriminator when

one of them is considered by the model. We also replace Adv with

the commonly adopted maximum mean discrepancy (MMD) mea-

sure in [21]. However, no improvement is noted. Comparatively,

semantic regularization shows larger margin of degradation when

being taken away from the model. The result is consistent with

the conclusion made in [36]. When either ingredient prediction

(Reg_R) or image generation (Reg_V) is incorporated, noticeable

improvement in MedR is observed.

6 CONCLUSION

We have presented a new perspective of scaling up food recognition

across different cuisines by dealing with partial data view, either

due to missing of multi-modality information or incomplete textual

resource. The network architecture, with the proposal of recipe

residual block (RRB), can deal withmissing data in a generic manner.

The empirical studies, under the ten different scenarios of resource

scarcity, reveals the feasibility and impact of different resources in

performing domain adaptation. Even when using dish title-only

for model transfer, incremental improvement can be noticed. In-

gredients play a vital role in model transfer. In all the experiments,

ingredients contribute more significantly than image modality if

pairing information between them do not exist. Cooking instruction,

while proven as important for within-cuisine food recognition [10],

may hurt performance if domain gap is large and source model

is applied without adaptation. In this case, model transfer using

recipe-only resources can lead to significant performance boost.

Cross-modal pairing information introduces consistent improve-

ment. The degree of improvement is proportional to the increase

number of pairings and the type of resources. Specifically, dish

titles and recipes are benefited more from pairing information than

ingredients. Finally, the improvement due to model transfer is also

shown to be more evident in larger than smaller testing dataset.

Currently, our work can only deal with recipes of the same lan-

guage. The future work includes extension to cross-lingual and

cross-domain food transfer.
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