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In this paper, we propose the concepts of substitutability and complementarity in discrete choice models.

These concepts concern whether the choice probability of one alternative in a choice model increases or

decreases with the utility of another alternative, and they play important roles in capturing certain practical

choice patterns, such as the halo effect. We study conditions on discrete choice models that will lead to

substitutability and complementarity. Particularly, we show that the random utility model only allows sub-

stitutability between different alternatives, while the representative agent model and the welfare-based choice

model allow more flexible substitutability/complementarity patterns. We also present ways of constructing

choice models that exhibit complementary property.

1. Introduction

In this paper, we propose and study the concepts of substitutability and complementarity in discrete

choice models. Discrete choice models are useful tools to model choices made by individuals when

facing a finite set of alternatives. For instance, they can be used to model consumers’ choices

among a set of products, passengers’ choices among a set of transportation modes, and many

other choice scenarios. Because of the adaptability, flexibility and analytical convenience, discrete

choice models have gained a lot of attention in the economics, marketing, operations research and

management science communities in the last few decades. In particular, such models have been

used as the underlying behavioral model for many operational decision-making problems, such as

transportation planning, assortment optimization, multi-product pricing, etc.

A variety of discrete choice models have been proposed in the literature. In this paper, we focus

on those that map a vector of utilities of each alternative to a vector of choice probabilities. Many

important classes of discrete choice models take such a form, including the random utility models,

the representative agent models, and the recently proposed welfare-based choice models (Feng et al.
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2016). We will provide a more detailed review of these models and their relations in the end of this

section.

In this paper, we define two useful properties in choice models — substitutability and complemen-

tarity — and study how such properties can be reflected in choice modeling. The two properties

concern whether the choice probability of one alternative will increase or decrease when the utility

of another alternative increases. We show that the random utility models only allow substitutabil-

ity between alternatives. However, in certain applications, it is desirable to allow some alternatives

to exhibit complementarity in certain range, in order to explain certain phenomenon observed in

practice, such as the halo effect (or the synergistic effect). For that, we derive conditions under

which a choice model exhibits substitutable/complementary properties. In addition, we show a

few examples of choice models that allow complementarity between alternatives and propose a

few ways to construct choice models with complementary patterns. As far as we know, this is the

first formal study of such properties in choice models. We believe that this study will open new

possibilities in the design of choice models by enlarging its horizon and capturing more practical

choice patterns.

In the remainder of this section, we review several classes of discrete choice models that are

related to the discussions in our paper, including the random utility model, the representative

agent model and the welfare-based choice model.

1.1. Random Utility Model

One most popular class of discrete choice models is the random utility model (RUM) (see Anderson

et al. 1992 for a comprehensive review). In the random utility model, a random utility is assigned

to each alternative, and each individual picks the alternative with the highest realized utility. Here,

the randomness in the utilities could originate from the lack of information of the alternatives for

a particular individual or the idiosyncrasies of preferences within a population. As an output, the

random utility model predicts a vector of choice probabilities among the alternatives. Mathemat-

ically, suppose there are n alternatives denoted by N = {1,2, ..., n}, then in the random utility

model, the utility of alternative i is ui = πi + εi, ∀i∈N , where π = (π1, ..., πn) is the deterministic

part of the utility and ε = (ε1, ..., εn) is the random part, following a joint distribution θ. Then the

probability of alternative i being chosen is (we assume θ is absolutely continuous in our discussion,

which ensures that the choice probabilities are well-defined):

qi(π) = Pε∼θ

(
i = argmax

k∈N
(πk + εk)

)
. (1)
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And the expected utility an individual can get is:

w(π) = Eε∼θ

[
max
i∈N

πi + εi

]
. (2)

By choosing different distributions for the random components, one can obtain different random

utility models. Among them, the most widely used one is the multinomial logit (MNL) model, first

proposed by McFadden (1974). In the MNL model, (ε1, ..., εn) follows i.i.d. Gumbel distributions

with scale parameter η, and the choice probability can be written as:

qmnl
i (π) =

exp(πi/η)∑
k∈N

exp(πk/η)
.

The existence of a closed-form formula for the MNL model makes it a very popular choice model.

We refer to Ben-Akiva and Lerman (1985), Anderson et al. (1992) and Train (2009) for more

discussions about the MNL model. In addition to the MNL model, there are other random utility

models that are studied in the literature, including the probit model (see, e.g., Daganzo 1980), the

nested logit model (see, e.g., McFadden 1980) and the exponomial choice model (Alptekinoğlu and

Semple 2016).

1.2. Representative Agent Model

Another way to model choices is through a representative agent model (RAM). In the represen-

tative agent model, a representative agent makes a choice among n alternatives on behalf of the

entire population. In particular, this agent may choose any fractional amount of each alternative,

or equivalently, a vector x = (x1, ..., xn) on the (n− 1)-dimensional simplex ∆n−1. When making

his/her choice, the agent maximizes the expected utility while preferring some degree of diversifi-

cation. More precisely, the representative agent solves the following optimization problem:

wr(π) = maximizex∈∆n−1
πT x−V (x). (3)

Here π = (π1, ..., πn) is the deterministic utility of each alternative, which is similar to that in

the random utility model. V (x) : ∆n−1 7→ R is a regularization term such that −V (x) rewards

diversification. In this paper, without loss of generality, we assume V (x) is convex and lower semi-

continuous.1 Moreover, if for any π, there is a unique solution to (3), then we define

qr(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
(4)

1 This assumption is without loss of generality because if V (x) is not convex or lower semi-continuous, then we can
replace V (x) with a convex and lower semi-continuous function V ∗∗(x) = supy{yT x−wr(y)} and the equation (3)
still holds (Borwein and Lewis 2010). See Feng et al. (2016) for similar discussions.
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to be the choice probability vector given by the representative agent model.

In Hofbauer and Sandholm (2002), the authors show that for any random utility model with

continuously distributed random utility, there exists a representative agent model that gives the

same choice probability (i.e., the same mapping from π to the choice probability vector q). Fur-

thermore, they show that the reverse statement is not true when n≥ 4. Thus the representative

agent model strictly subsumes the random utility model.

1.3. Welfare-Based Choice Model

Recently, Feng et al. (2016) propose a welfare-based choice model after noticing that both the

RUM and the RAM allow a welfare function w(π) that captures the expected utility an individual

can get from the choice model, and the choice probability vector can be viewed as the gradient of

w(π) with respect to π. They first define the choice welfare function as follows2:

Definition 1 (Choice Welfare Function). Let w(π) be a mapping from Rn to R̄ =

R
⋃
{−∞,∞}. w(π) is called a choice welfare function if w(π) satisfies the following properties:

1. (Monotonicity): For any π1, π2 ∈Rn and π1 ≥π2, w(π1)≥w(π2);

2. (Translation Invariance): For any π ∈Rn, t∈R, w(π + te) = w(π)+ t;

3. (Convexity): For any π1, π2 ∈Rn and 0≤ λ≤ 1, λw(π1)+ (1−λ)w(π2)≥w(λπ1 +(1−λ)π2).

For a differentiable choice welfare function w(π), the welfare-based choice model derived from

it is defined by q(π) =∇w(π). Feng et al. (2016) prove the equivalence between the welfare-based

choice model and the representative agent model as shown in Proposition 1 below:

Proposition 1. For a choice model q :Rn 7→∆n−1, the following statements are equivalent:

1. There exists a differentiable choice welfare function w(π) such that q(π) =∇w(π);

2. There exists an essentially strictly convex 3 function V (x) such that

q(π) = argmax
{
πT x−V (x)

∣∣∣x∈∆n−1

}
.

They further prove that when there are only two alternatives, the class of random utility models

is equivalent to the class of welfare-based choice models (thus also the representative agent models).

However, when the number of alternatives n ≥ 3, the welfare-based choice model (thus also the

representative agent model) strictly subsumes the random utility model.

Before we end this section, we comment that there are other types of choice models studied in the

literature beyond the aforementioned ones. Some examples include the Markov chain-based choice

2 We use e to denote a vector of all ones, and x≥ y to denote x is componentwise greater than y.

3 For detailed definition of essentially strictly convex function, see Rockafellar (1974). Note that any strictly convex
function is essentially strictly convex.
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model (see Blanchet et al. 2016), the two-stage choice model (see Jagabathula and Rusmevichien-

tong 2016), the generalized attraction model (see Gallego et al. 2014) and the non-parametric

model (see Farias et al. 2013). However, they do not take the form of mapping a utility vector to a

choice probability vector. Thus they are less related to this work. For the sake of space, we choose

not to include a detailed review for those choice models in this paper.

2. Substitutability and Complementarity in Choice Models

In this section, we propose two concepts in choice models, substitutability and complementarity, and

discuss their practical implications. We show that if a choice model is derived from a random utility

model, then the alternatives can only exhibit substitutability. However, the representative agent

model and the welfare-based choice model allow for more flexible substitutability/complementarity

patterns. We also show how these properties can be reflected through the choice welfare function in

a welfare-based choice model or through the regularization term in a representative agent model.

Before we formally define these two concepts, we first introduce the definition of local monotonicity:

Definition 2 (Local Monotonicity). A function f(x) :R 7→R is locally increasing at x if

there exists δ > 0 such that f(x − h) ≤ f(x) ≤ f(x + h), ∀ 0 < h < δ. Similarly, f(x) is locally

decreasing at x if there exists δ > 0 such that f(x−h)≥ f(x)≥ f(x+h), ∀ 0 < h < δ.

Now we introduce the definition of substitutability and complementarity in choice models:

Definition 3. Consider a choice model q(π) :Rn 7→∆n−1. For any fixed π and i, j ∈N :

1. (Substitutability) If qj(π) is locally decreasing in πi at π, then we say alternative i is substi-

tutable to alternative j at π. Furthermore, if qj(π) is locally decreasing in πi for all π, then we

say alternative i is substitutable to alternative j;

2. (Complementarity) If qj(π) is locally increasing in πi at π, then we say alternative i is comple-

mentary to alternative j at π. Furthermore, if qj(π) is locally increasing in πi for all π, then

we say alternative i is complementary to alternative j.

3. (Substitutable and Non-Substitutable Choice Model) If alternative i is substitutable to alter-

native j for all i 6= j, then we say q(π) is a substitutable choice model. Otherwise, we say q(π)

is a non-substitutable choice model.

We note that the complementary property is closely related to the halo effect, which is first

conceptualized by Thorndike (1920). The halo effect is a cognitive bias in which an observer’s overall

impression of a person, company, brand or product influences the observer’s feelings and thoughts

about that entity’s character or properties (McShane and Von Glinow 2015). For a comprehensive

review and discussion about the halo effect, we refer the readers to the book of Rosenzweig (2014).
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In the context of consumer theory and marketing, the halo effect is the phenomenon that the choice

probabilities of certain existing products increase after a new product (usually of the same brand)

is introduced.4 In a choice model that maps a vector of utilities to a vector of choice probabilities,

introducing a new product can be viewed as increasing the utility of that product from negative

infinity to some finite value. Therefore, the notion of complementarity defined in Definition 3

provides an alternative characterization of the halo effect in the context of choice modeling. We

believe that this notion could provide convenience for future studies of such effects.

In the following, we investigate some basic facts about substitutability and complementarity.

Proposition 2. Consider a choice model q(π) :Rn 7→∆n−1 that is derived from a differentiable

choice welfare function w(π). For any i, alternative i must be complementary to itself. Furthermore,

if w(π) is second-order continuously differentiable and alternative i is substitutable (complemen-

tary, resp.) to alternative j at π, then alternative j must be substitutable (complementary, resp.)

to alternative i at π.

Proof: Since w(π) is convex and differentiable, for any π ∈ Rn and any t > 0, we have w(π +

tei)−w(π)≥ teT
i ∇w(π) = tqi(π) and w(π)−w(π+ tei)≥−teT

i ∇w(π+ tei) =−tqi(π+ tei). From

these two inequalities, we have qi(π + tei)− qi(π)≥ 0, for all t > 0 and π. Thus, alternative i is

complementary to itself.

Furthermore, if w(π) is second-order continuously differentiable, then we have ∂qi
∂πj

= ∂2w
∂πi∂πj

=
∂2w

∂πj∂πi
= ∂qj

∂πi
. Thus, if alternative i is substitutable (complementary, resp.) to alternative j at π,

then alternative j is substitutable (complementary, resp.) to alternative i at π. �

Proposition 2 implies that when w(π) is second-order continuously differentiable, the substi-

tutability (complementarity, resp.) property is a reciprocal property. In these cases, we shall say i

and j are substitutable (complementary, resp.) in the following discussions.

In the following, we investigate the substitutability and complementarity in choice models. First

we show that random utility models are all substitutable:

Theorem 1. Any random utility model q(π) is a substitutable choice model.

Theorem 1 directly follows from the definition of random utility models. It states that in a random

utility model, if the utility of one alternative increases while the utilities of all other alternatives

stay the same, then it must be that the choice probabilities of all other alternatives decrease. This

is certainly plausible in practice, especially if π is interpreted as how much a consumer values each

4 Such phenomenon is also called the synergistic effect, see Davis et al. (2014).
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product. However, as we show in the following example, sometimes it might be desirable to allow

certain alternatives to exhibit certain degrees of complementarity. This is especially true if we allow

more versatile meanings of the utility π.

Example 1. Suppose a customer is considering to buy a camera from the following three alter-

natives: a Canon-A model, a Canon-B model and a Sony-C model. On a certain website, there are

customer review scores for each model, which we denote by v1, v2 and v3, respectively. We assume

that the customer’s choice is solely based on those review scores (suppose other factors are fixed).

That is, the choice probability q is a function of v = (v1, v2, v3). Suppose at a certain time, a new

review for the Canon-A model comes in, rating it favorably. How would it change the purchase

probability of the Canon-B model?

The answer to the above question may depend. There might be two forces. On one hand, due to

a new favorable rating given to the Canon brand, the probability of choosing the Canon-B model

might increase. On the other hand, the favorable rating for the Canon-A model might switch some

customers from the Canon-B model to the Canon-A model. Either force might be dominant in

practice. If the former force is stronger, then it is plausible that one additional favorable rating for

the Canon-A model might increase the choice probability of the Canon-B model (this scenario can

be viewed as a case of the halo effect). �

The above example illustrates that sometimes it might be desirable to have a choice model

in which a certain pair of alternatives exhibit complementarity. One may notice that the above

example may be reminiscent of the nested logit model, in which the customers first choose a nest (in

this case, the brand), and then choose a particular product. However, we note that the nested logit

model with dissimilarity parameters within (0,1] is essentially a random utility model (see, e.g.,

Anderson et al. 1992). Therefore, it is impossible to capture complementarity between alternatives

through such a nested logit model. In Section 3, we show that complementarity of alternatives

can be captured through a general nested logit model, in which the dissimilarity parameters are

allowed to be greater than one. We will also show other ways to construct choice models in the

next section.

Now we present conditions for a choice model to be substitutable or non-substitutable. In the

following discussion, we consider choice models q(π) that are derived from differentiable choice

welfare functions w(π) (thus equivalently they can be derived from representative agent models).

We provide necessary (sufficient, resp.) conditions for a choice model to be substitutable, and

consequently also obtain sufficient (necessary, resp.) conditions for a choice model to be non-

substitutable. We have the following theorem:
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Theorem 2. Consider a choice model q(π) :Rn 7→∆n−1 that is derived from a differentiable

choice welfare function w(π). Then

1. q(π) is a substitutable choice model if and only if w(π) is submodular.

2. If q(π) is a substitutable choice model, then there exists an essentially strictly convex V (·) with

V̄i(·) supermodular on Rn−1 for all i, such that q(π) = argmax
{
πT x−V (x)

∣∣∣x∈∆n−1

}
, where

V̄i(z) =

{
V
(
z1, z2, ..., zi−1,1−

∑n−1

j=1 zj, zi, ..., zn−1

)
, if eT z ≤ 1 and z ≥ 0,

+∞, otherwise.
(5)

Furthermore, the reverse is true if n = 3.

Proof: In this proof, we use the following lemma from Murota (2003).

Lemma 1. Let f :Rn 7→ R∪ {∞} be a function such that there exists at least one π such that

f(π) <∞. Let g(x) = maxπ{πT x− f(π)} be the convex conjugate of f . We have

1. If f is submodular, then g is supermodular.

2. If n = 2 and f is supermodular, then g is submodular.

Now we use this lemma to prove the theorem. To prove the first part, by Simchi-Levi et al.

(2014), a differentiable function w(π) is submodular in π if and only if ∂w(π)

∂πi
is decreasing in πj

for all i 6= j. By the definition of q(π) =∇w(π), the result holds.

For the second part, let V (x) = maxπ{πT x−w(π)} be the convex conjugate of w(π). Therefore,

V (x) is essentially strictly convex and q(π) = argmax
{
πT x−V (x)

∣∣∣x∈∆n−1

}
. For any y ∈Rn−1

and i∈N , define fi(y) = w(y1, y2, ..., yi−1,0, yi, ..., yn−1). Also define π−i = (π1, ..., πi−1, πi+1, ..., πn),

then we have

V̄i(z) = max
π
{πT

−iz +πi(1−eT z)−w(π)}= max
π,πi=0

{πT
−iz +πi(1−eT z)−w(π)}= max

y
{yT z− fi(y)},

where the second equality is due to the translation invariance property of w(π). The submodularity

of w(π) implies the submodularity of fi(y) for all i ∈N . Thus V̄i(z), as the convex conjugate of

fi(y), is supermodular by Lemma 1.

For the last statement, since V (·) is an essentially strictly convex function, q(π) =

argmax
{
πT x−V (x)

∣∣∣x∈∆n−1

}
is well-defined. By Theorem 2 in Feng et al. (2016), q(π) =

∇w(π) where w(π) = sup
{
πT x−V (x)

∣∣x∈∆n−1

}
. For any y ∈ Rn−1 and i ∈ N , define fi(y) =

w(y1, y2, ..., yi−1,0, yi, ..., yn−1). Also define x−i = (x1, ..., xi−1, xi+1, ..., xn), then we have

fi(y) = max
x∈∆n−1

{
xT
−iy +0(1−eT x−i)−V (x)

}
= max

x∈∆n−1

{
xT
−iy− V̄i(x−i)

}
= max

eT
n−1x−i≤1, x−i≥0

{
xT
−iy− V̄i(x−i)

}
= max

z

{
yT z− V̄i(z)

}
,
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where the last equality holds since V̄i(z) = +∞ for all z /∈ {β ∈ Rn−1|eT
n−1β ≤ 1, β ≥ 0}. From

Lemma 1, given that n = 3 and thus y ∈R2, fi(y) is submodular. It remains to show that w(π) is

also submodular. According to Theorem 2, it suffices to show that qi(π) is locally decreasing with

πj for all j 6= i for all π. Fix i, j and let k 6= i, j. We assume i > j without loss of generality. We have

qi(π − πke) = qi(π) from the translation invariance property. But qi(π − πke) = ∂fk(πi−πk,πj−πk)

∂πi

is non-decreasing with πj due to the submodularity of fk. Thus w(π) is submodular and q(π) =

∇w(π) is a substitutable choice model. �

Theorem 2 provides some sufficient and necessary conditions for q(π) to be substitutable. We

note that the supermodularity of V̄i(·) has nothing to do with the supermodularity of V (·). In fact,

since V (x) is only defined on ∆n−1, it can always be extended to a supermodular function in Rn

by defining V (x) = +∞ for all x /∈∆n−1. The definition of V̄i(·) reduces a redundant variable in

V (·), making the condition meaningful.

Next we provide an easy-to-check sufficient condition for a choice model to be substitutable. The

following theorem shows that choice models derived from separable V (·)s are always substitutable:

Theorem 3. If V (x) =
∑

i∈N Vi(xi) on ∆n−1 where Vi(xi) : [0,1] 7→R is a strictly convex func-

tion for all i∈N . Then q(π) defined by q(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
is a substitutable

choice model.

Proof: We first consider the case where Vi(xi) is differentiable for all i ∈ N . Let λ(π) be the

Lagrangian multiplier of the constraint
∑

i xi = 1. The KKT conditions (see Bertsekas 2003) for

problem max
{
πT x−V (x)

∣∣x∈∆n−1

}
can be written as:

πi−V ′
i (qi(π))−λ(π)≤ 0, ∀i∈N ;

πi−V ′
i (qi(π))−λ(π) = 0, ∀i s.t. qi(π) 6= 0;

qi(π)≥ 0, ∀i∈N ;∑
i∈N qi(π) = 1.

Now we consider any two points π0 and π0+tei where ei is a unit vector along the i-th coordinate

axis and t > 0. Suppose that there exists a j 6= i such that qj(π0 + tei) > qj(π0). Since Vj is strictly

convex, V ′
j (qj(π0 + tei)) > V ′

j (qj(π0)). There are two possible cases for qj(π0):

• qj(π0) > 0: In this case, we have πj −V ′
j (qj(π0 + tei))−λ(π0 + tei) = 0 and πj −V ′

j (qj(π0))−

λ(π0) = 0, therefore, we have λ(π0 + tei) < λ(π0).

• qj(π0) = 0: In this case, πj−V ′
j (qj(π0))−λ(π0)≤ 0, which implies that πj−V ′

j (qj(π0 + tei))−

λ(π0) < 0. But πj −V ′
j (qj(π0 + tei))−λ(π0 + tei) = 0, we have λ(π0 + tei) < λ(π0).
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In both cases, λ(π0 + tei) < λ(π0). This implies that qj(π0 + tei) ≥ qj(π0) for all j 6= i. Note

that we also have qi(π0 + tei) > qi(π0) by Proposition 2. Therefore, we have
∑

j∈N qj(π0 + tei) >∑
j∈N qj(π0) = 1, which contradicts with that q(π0 + tei) ∈ ∆n−1. Thus we have qj(π0 + tei) ≤

qj(π0) for all j 6= i. Since this is true for all π0 and t > 0, q is substitutable.

If Vi(xi) is not differentiable, we need to replace the derivative with the subgradient in the above

argument. Since Vi is strictly convex, g1 > g2 for all g1 ∈ ∂Vi(x1) and g2 ∈ ∂Vi(x2) if x1 > x2, the

above argument is still valid. �

3. Examples and Constructions of Non-Substitutable Choice Models
3.1. General Nested Logit Model

The nested logit model, first proposed by Ben-Akiva (1973), is perhaps the most widely used choice

model other than the MNL model. In this model, it is assumed that the set of alternatives is

partitioned into K subsets (nests) denoted by B1,B2, ...,BK . The probability of choosing alternative

i, given that i∈Bk is

qnl
i (π) =

exp(πi/λk)
(∑

j∈Bk
exp(πj/λk)

)λk−1

∑K

l=1

(∑
j∈Bl

exp(πj/λl)
)λl

, (6)

where λk is called the dissimilarity parameter for the k-th nest. Train et al. (1987) interpret the

dissimilarity parameters as a measure of substitutability among alternatives: if λk ∈ (0,1), then

the substitution is greater within nests than across nests, while if λk > 1, then the substitution is

greater across nests than within nests. In McFadden (1977), the authors show that the nested logit

model is consistent with the RUM for all π ∈Rn if and only if λk ∈ (0,1] for all k = 1, ...,K.

There have been many studies on the case when λk is greater than one for some k. Most of

those studies focus on how to relate this case with the RUM. For example, Börsch-Supan (1990)

shows that qnl(π) is consistent with the RUM for certain ranges of π. Kling and Herriges (1995)

and Herriges and Kling (1996) provide tests for consistency of the nested logit model with utility

maximization.

When λk > 1 for some k, the nested logit model can possess some interesting properties. In

particular, when a new product is introduced to a nest k with λk > 1, the probability of choosing

certain existing products in that nest may increase in some circumstances, thus certain pairs of

products may exhibit complementarity relationship (Davis et al. 2014). In fact, as the next propo-

sition shows, complementarity property exists in any nested logit model with certain dissimilarity

parameter greater than one.
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Proposition 3. Consider a nested logit model with at least two nests. For any nest k with

dissimilarity parameter λk > 1 and any two distinct alternatives i and j in that nest, there always

exists π ∈Rn such that ∂qnl
i (π)

∂πj
> 0.

Proof: By simple algebra, we have:

∂qnl
i (π)
∂πj

= K(π)

− 1
λk

(∑
s∈Bk

exp(πs/λk)

)λk

+
λk − 1

λk

∑
l 6=k

(∑
s∈Bl

exp(πs/λl)

)λl
 , (7)

where

K(π) =
exp((πi +πj)/λk)

(∑
s∈Bk

exp(πs/λk)
)λk−2

(∑K

l=1

(∑
s∈Bl

exp(πs/λl)
)λl
)2 > 0.

Clearly, − 1
λk

(∑
s∈Bk

exp(πs/λk)
)λk

< 0 and λk−1

λk

∑
l 6=k

(∑
s∈Bl

exp(πs/λl)
)λl

> 0. Therefore, when

π is chosen such that
(∑

s∈Bk
exp(πs/λk)

)λk

≤ (λk − 1)
∑

l 6=k

(∑
s∈Bl

exp(πs/λl)
)λl

, ∂qnl
i (π)

∂πj
≥ 0.

Finally we note that one can always choose π such that the inequality holds. This is because we

can choose πs large enough for some s∈Bl, l 6= k. �

3.2. Quadratic Regularization

Another way to generate non-substitutable choice models is to start from the representative agent

model and to choose V (·) as a quadratic function. Remember that V (·) has to be a convex function

in the representative agent model. Thus, a quadratic function could be used as an approximation.

We have the following proposition about the substitutability and complementarity in such models.

Proposition 4. Consider a choice model q(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
with V (x) =

xT Ax where A is a positive definite matrix. If the choice model is substitutable, then Ajk −Aik −

Aij + Aii ≥ 0 for all distinct i, j, k ∈ N , where Aij is the (i, j)-th entry of A. Furthermore, the

reverse is true if n = 3.

Proof: According to Theorem 2, it suffices to prove that

V̄i(z) =

{
V
(
z1, z2, ..., zi−1,1−

∑n−1

j=1 zj, zi, ..., zn−1

)
, if eT z ≤ 1 and z ≥ 0,

+∞, otherwise

is supermodular if and only if Aj,k−Ai,k−Ai,j +Ai,i ≥ 0 for all distinct i, j, k ∈N . For i∈N , V̄i is an

n−1 variate quadratic function. Let H i denote the Hessian matrix of V̄i(z). For j, k ∈ {1,2, ..., n−1}

and j 6= k, the off-diagonal element H i
j,k = Aj̃,k̃ −Ai,k̃ −Ai,j̃ +Ai,i, where

j̃ =
{

j, if j < i,
j +1, if j ≥ i; and k̃ =

{
k, if k < i,

k +1, if k≥ i.
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Thus, V̄i(z) is supermodular if and only if H i
j,k ≥ 0 for all j, k ∈ {1,2, ..., n− 1} and j 6= k, which is

equivalent to Aj,k −Ai,k −Ai,j +Ai,i ≥ 0 for all distinct i, j, k ∈N . �

By Proposition 4, we know that when n = 3 and V (x) = xT Ax with A� 0, the choice model

defined by q(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
is substitutable if and only if

A12 +A33 ≥A13 +A23, A13 +A22 ≥A12 +A23 and A23 +A11 ≥A12 +A13.

Note that the above condition is different from A being positive semidefinite. Indeed, the following

example shows a case where the choice model is not substitutable even if V (x) is strictly convex and

supermodular (this example was also shown in Feng et al. 2016 for showing that the representative

model strictly subsumes the random utility model even when there are only three alternatives):

Example 2. Consider q(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
, where V (x) = xT Ax with A = 3 2 0

2 3 2
0 2 3

� 0. It is easy to see that V (x) is strictly convex and supermodular. However, it doesn’t

satisfy that A13 +A22 ≥A12 +A23. By some further calculations, we obtain that

V̄2(z) = zT

(
2 −1
−1 2

)
z− [−2;−2]T z +3,

which is not supermodular. Therefore q(π) is not a substitutable choice model by Theorem 2. �

3.3. Crossing Transformation

Crossing transformation is a systematic way to generate non-substitutable choice models from

existing substitutable choice models by using the welfare-based approach. Let A be an m × n

matrix with Aij ≥ 0 and Aen = em, where e` refers to an `-dimensional column vector of ones.

Given an existing choice welfare function w̄(·) :Rm 7→ R̄ and its choice probabilities q̄(·), we can

easily verify that w(π) = w̄(Aπ) is still a choice welfare function that maps Rn to R̄ and the

corresponding welfare-based choice model is q(π) =∇πw(π) = AT∇w̄(Aπ) = AT q̄(Aπ). By some

calculation, we have ∇2w(π) = AT∇2w̄(Aπ)A.

Even if w̄(π) is submodular, i.e., the off-diagonal entries of ∇2w̄(π) are all negative, it is still

possible to construct matrix A such that AT∇2w̄(Aπ)A has positive off-diagonal entries. There-

fore, by choosing some proper matrix A, we can construct non-substitutable choice model w(π)

from substitutable choice model w̄(π). We call this method the crossing transformation and the

corresponding matrix A the crossing matrix. Particularly, it is possible that the original choice

model q̄(·) is a substitutable choice model, while q(·) is no longer substitutable.

In the following, we give an example of constructing a non-substitutable choice model from the

MNL model using the crossing transformation.5

5 This example was also shown in Feng et al. (2016) as an example that the welfare-based choice model strictly
subsumes the random utility model even when there are only three alternatives.
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Example 3. Let w̄(x) = log (ex1 + ex2 + ex3 + ex4) be the choice welfare function for an MNL

model for 4 alternatives. Let the crossing matrix A =


1 0 0
0 1 0
0 0 1

0.5 0.5 0

. Then the new welfare-based

choice model becomes w(π) = log
(
eπ1 + eπ2 + eπ3 + e0.5(π1+π2)

)
with choice probability q(π) =

1

eπ1+eπ2+eπ3+e0.5(π1+π2)

(
eπ1 + 1

2
e0.5(π1+π2), eπ2 + 1

2
e0.5(π1+π2), eπ3

)
. It is easy to check that ∂q1(π)

∂π2
=

∂q2(π)

∂π1
is positive if and only if eπ3 ≥ 4e0.5π1+0.5π2 + eπ1 + eπ2 . Therefore, under this choice model,

when both π1 and π2 are small enough (compared to π3), alternatives 1 and 2 are complementary.

Otherwise, they are substitutable.

4. Conclusion

In this paper, we propose and study the concepts of substitutability and complementarity in choice

models. Such concepts are fundamental for choice models and are very useful in capturing practical

choice patterns. We show how substitutability and complementarity can be reflected in the con-

struction of choice models and thus how to construct choice models with complementarity property.

We believe our work is useful for future studies of choice models.
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