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In this paper, we study the relation between several well known classes of discrete choice models, namely

the random utility model (RUM), the representative agent model (RAM) and the semi-parametric choice

model (SCM). Using a welfare based model as an intermediate, we show that the RAM and the SCM are

equivalent. Furthermore, we show that both models as well as the welfare based model strictly subsume the

random utility model when there are three or more alternatives, while the four are equivalent when there

are only two alternatives. Thus, this paper presents a complete picture on the relation between these choice

models.

Key words : welfare function, random utility model, representative agent model, semi-parametric choice

model

History : This version: December 22, 2016

1. Introduction

In this paper, we study the discrete choice models. Discrete choice models are used to model choices

made by people among a finite set of alternatives. As examples, this includes examining which

product to purchase for a consumer and which mode of transportation to take for a passenger.

In the past few decades, discrete choice models have attracted great interest in the economics,

marketing, operations research and management science communities. Specifically, such models

have been viewed as the behavioral foundation in many operational decision-making problems,

such as transportation planning, assortment optimization, multiproduct pricing, etc.

In the past few decades, researchers have proposed a variety of discrete choice models. Among

them, the most popular one is the random utility model, in which a utility is assigned to each alter-

native. In the random utility model, the utility is composed of a deterministic part and a random

part. Each individual then chooses the alternative with the highest utility, given the realization of

the random part. Different choice models arise when different distributions for the random part

are used. Some examples of the random utility model can be found in McFadden (1974, 1980) and

1

Published in Operations Research, Volume 65, Issue 6, November-December 2017, Pages 1516-1525
https://doi.org/10.1287/opre.2017.1602



2

Daganzo (1980). Another popular choice model is the representative agent model, in which a rep-

resentative agent makes the choice on behalf of the population. In the representative agent model,

there is again a utility associated with each alternative, and the representative agent maximizes a

weighted utility of the choice (which is a vector of proportions for each alternative) plus a regular-

ization term, which typically encourages diversification of the choice (Anderson et al. 1988). More

recently, a class of semi-parametric choice models has been proposed (Natarajan et al. 2009). This

model is similar to the random utility model. However, instead of specifying a single distribution

for the random utility, a set of distributions is considered. Then an extreme distribution in that

set is chosen to determine the choice probabilities. There are other choice models based on the

dynamics of choice decisions or other non-parametric ideas. We will provide a more detailed review

of these models in Section 2.

Although these models (the random utility model, the representative agent model and the semi-

parametric choice model) have all provided excellent explanations, both theoretically and empir-

ically, for how people make choices in practice, a central question remains as what is the exact

relation between these choice models. In this paper, we present a complete answer to this ques-

tion. To answer this question, we view from another perspective of choice models and consider a

welfare-based approach. The welfare-based approach is based on the observation that many exist-

ing choice models take the form of mapping a utility vector to a probability vector and admit a

welfare function of the utilities whose gradient gives the choice probability vector. By summarizing

properties that are satisfied by welfare functions of existing choice models, we define the class of

welfare-based choice models.

By using the welfare-based choice model as an intermediate model, we show that the representa-

tive agent model and the semi-parametric model are the same. More precisely, under mild regularity

assumptions, given either a regularization function (which defines a representative agent model) or

a distribution set (which defines a semi-parametric model), one can construct the other to define

exactly the same choice model. This is somewhat surprising because they seem to have very differ-

ent origins. In addition, our proof of the equivalence of these three models is constructive, therefore,

it gives methods to convert one model to another in an explicit way, potentially alleviating the

need to construct correspondences in a case by case manner as is done in the literature.

Furthermore, we study the relation between the above three models and the random utility

model. We show that when there are only two alternatives, the random utility model is equivalent

to the above three models. We also demonstrate that this is not true in general if there are three
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or more alternatives, in which case the above three models strictly subsume the random utility

model. This result is an improvement upon the current known result.

Notations. Throughout the paper, the following notations will be used. We use notation R
to denote the set of real numbers, and R̄ = R ∪ {−∞,+∞} to denote the set of extended real

numbers. We use e to denote a vector of all ones, ei to denote a vector of zeros except 1 at the

ith entry, and 0 to denote a vector of all zeros (the dimension of these vectors will be clear from

the context). Also, we write x≥ y to denote a componentwise relationship and ∆n−1 to denote the

(n−1)-dimensional simplex, i.e., ∆n−1 = {x|eT x = 1,x≥ 0}. In our discussions, ordinary lowercase

letters x, y, . . . denote scalars, boldfaced lowercase letters x,y, . . . denote vectors.

2. Review of Existing Discrete Choice Models

In this section, we review several prevailing classes of discrete choice models that are related to the

discussion in this paper.

2.1. Random Utility Model

Perhaps the most popular class of discrete choice model is the random utility model (RUM),

proposed first by Thurstone (1927) and later studied in a vast literature in economics (see Anderson

et al. 1992 for a comprehensive review). In such a model, a random utility is assigned to each of the

alternatives, and an individual will pick the alternative with the highest realized utility. Here, the

randomness in utilities could be due to the lack of information of the alternatives for a particular

individual or to the idiosyncrasies of preferences among a population. As the output, the random

utility model predicts a vector of choice probabilities among the alternatives, rather than a single

deterministic choice. Mathematically, suppose there are n alternatives denoted by N = {1,2, ..., n},
then the random utility model assumes that the utility of alternative i takes the following form:

ui = πi + εi, ∀i∈N , (1)

where π = (π1, ..., πn) is the deterministic part of the utility and ε = (ε1, ..., εn) is the random part.

In the random utility model, it is assumed that the joint distribution θ of ε = (ε1, ..., εn) is known.

Then the probability that alternative i will be chosen is (to ensure the following equation is well-

defined, we assume θ is absolutely continuous, an assumption we make for all the random utility

models we discuss later):

qi(π) = Pε∼θ

(
i = argmax

k∈N
(πk + εk)

)
. (2)

Random utility models can be further classified by the distribution function of the random

components. The most widely used one is the multinomial logit (MNL) model, first proposed by
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McFadden (1974). The MNL model is derived by assuming that (ε1, ..., εn) follow independent and

identically distributed Gumbel distributions with scale parameter η. Given this assumption, the

choice probability in (2) can be further written as follows:

qmnl
i (π) =

exp(πi/η)∑
k∈N

exp(πk/η)
.

And the expected utility an individual can get under the MNL model is:

wmnl(π) =Eε∼θ

[
max
i∈N

πi + εi

]
= η log

(∑
i∈N

exp(πi/η)

)
.

The existence of a closed-form formula for the MNL model makes it a very popular choice model.

We refer the readers to Ben-Akiva and Lerman (1985), Anderson et al. (1992) and Train (2009) for

more discussions on the properties of the MNL model. In addition to the MNL model, there are

other choices for the random part in (1) that lead to alternative choice models. Some popular ones

among them are the probit model (in which ε is chosen to be a joint normal distribution, see, e.g.,

Daganzo 1980), the nested logit model (in which ε is chosen to be correlated general extreme value

distributions, see, e.g., McFadden 1980) and the exponomial choice model (in which ε is chosen to

be negative exponential distributions, see Alptekinoğlu and Semple 2016).

2.2. Representative Agent Model

Another popular way to model choices is to use a representative agent model (RAM). In such a

model, a representative agent makes a choice among n alternatives on behalf of the entire popula-

tion. In particular, this agent may choose any fractional amount of each alternative, or equivalently,

his/her choice is a vector x = (x1, ..., xn) on ∆n−1. To make his/her choice, the agent takes into

account the expected utility while preferring some degree of diversification. More precisely, the

representative agent solves an optimization problem as follows:

wr(π) = maximizex∈∆n−1
πT x−V (x). (3)

Here π = (π1, ..., πn) is the deterministic utility of each alternative, which is similar to that in

the random utility model. V (x) : ∆n−1 7→ R is a regularization term such that −V (x) rewards

diversification. We denote the optimal value of (3) by wr(π), which is the utility a representative

agent can obtain if the deterministic utility vector is π. In this paper, without loss of generality,

we assume V (x) is convex and lower semi-continuous.1 Moreover, if for any π, there is a unique

solution to (3), then we define

qr(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
(4)

1 If V (x) is not convex or lower semi-continuous, then we can replace V (x) by a convex and lower semi-continuous
function V ∗∗(x) = supy{yT x−wr(y)} and the equation (3) still holds (Borwein and Lewis 2010). Therefore, it is
without loss of generality to assume V (x) is convex and lower semi-continuous.
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to be the choice probability vector given by the representative agent model.

A recognized close connection exists between the random utility model and the representative

agent model. In Anderson et al. (1988), the authors show that the choice probabilities from an

MNL model with parameter η can be equally derived from a representative agent model with

V (x) = η
∑n

i=1 xi logxi. Or equivalently, we can write

qmnl(π) = argmax

{
πT x− η

n∑
i=1

xi logxi

∣∣∣ x∈∆n−1

}
.

Hofbauer and Sandholm (2002) further extend the result to general random utility models. They

show that for any random utility model with continuously distributed random utility, there exists

a representative agent model that gives the same choice probability. The precise statement of their

result is as follows:

Proposition 1. Let q(π) :Rn 7→∆n−1 be the choice probability function defined in (2) where

the random vector ε admits a strictly positive density on Rn and the function q(π) is continuously

differentiable. Then for all π there exists V (·) such that:

q(π) = argmax
{
πT x−V (x)

∣∣∣ x∈∆n−1

}
.

They also show that the reverse statement of Proposition 1 is not true:

Proposition 2 (Proposition 2.2 in Hofbauer and Sandholm 2002). When n ≥ 4, there

does not exist a random utility model that is equivalent to the representative agent model with

V (x) =−∑n

i=1 logxi.

Based on the two propositions above, we know that the representative agent model strictly

subsumes the random utility model as a special case.

2.3. Semi-Parametric Choice Model

Recently, a new class of choice models, called the semi-parametric choice model (SCM), is pro-

posed by Natarajan et al. (2009). Unlike the random utility model where a certain distribution

of the random utility ε is specified, in the semi-parametric choice model, one considers a set of

distributions Θ for ε. Given the deterministic utility vector π, one defines the maximum expected

utility function ws(π) as follows:

ws(π) = sup
θ∈Θ

Eε∼θ

[
max
i∈N

πi + εi

]
. (5)

Note that in the random utility model, the maximum expected utility function can be defined

in a similar way, but only with a single distribution θ. Thus the semi-parametric choice model can
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be viewed as an extension of the random utility model. Let θ∗(π) denote the distribution (or a

limit of a sequence of distributions) that attains the optimal value in (5). The choice probability

for alternative i under this model is given by (provided that it is well-defined):

qs
i (π) = Pθ∗(π)

(
i = argmax

k∈N
(πk + εk)

)
. (6)

Several special cases of semi-parametric choice models have been studied recently. One such

model, called the marginal distribution model (MDM), is proposed by Natarajan et al. (2009).

In the MDM, the distribution set Θ contains all the distributions that have certain marginal

distributions. The following proposition proved in Natarajan et al. (2009) shows that the marginal

distribution model can be equivalently represented by a representative agent model:

Proposition 3. Suppose Θ = {θ|εi ∼ Fi(·),∀i} where Fi(·)s are given continuous distributions.

Then we have:

ws(π) = max
x

{
πT x+

n∑
i=1

∫ 1

1−xi

F−1
i (t)dt

∣∣∣∣∣x∈∆n−1

}
. (7)

Furthermore, the choice probabilities qs(π) can be obtained as the optimal solution x∗ in (7).

Another semi-parametric model is the marginal moment model (MMM), in which only the first

and second moments of the marginal distributions are known and Θ comprises all distributions

that are consistent with the marginal moments. Natarajan et al. (2009) show that the MMM can

also be represented as a representative agent model (without loss of generality, we assume that the

marginal mean of εi is 0 for all i):

Proposition 4. Suppose the marginal standard deviation of εi is σi for all i. Then we have

ws(π) = max
x

{
πT x+

n∑
i=1

σi

√
xi(1−xi)

∣∣∣∣∣x∈∆n−1

}
. (8)

Furthermore, the choice probabilities qs(π) can be obtained as the optimal solution x∗ in (8).

In order to incorporate covariance information, Mishra et al. (2012) further propose a complete

moment model (CMM), in which Θ is the set of distributions with known first and second moments

Σ (covariance matrix). It is shown in Ahipasaoglu et al. (2016) that the CMM model can also

be written as a representative agent model (again without loss of generality, we assume the first

moments are 0):
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Proposition 5. Assume ΣÂ 0. Then we have:

ws(π) = max
x

{
πT x+ trace

(
Σ1/2S(x)Σ1/2

)1/2
∣∣∣∣x∈∆n−1

}
, (9)

where S(x) = Diag(x)−xxT and trace(X) is the trace of the matrix X. Furthermore, the choice

probabilities qs(π) can be obtained as the optimal solution x∗ in (9).

Thus, all semi-parametric models studied so far can be represented as representative agent

models. In the next section, we will show that this is generally the case. Moreover, we show that in

fact, the reverse is also true and thus the set of representative agent models is equivalent to that

of semi-parametric models.

Before we end this section, we comment that there are other types of choice models in the

literature in addition to those mentioned above, such as the Markov chain-based choice model (see

Blanchet et al. 2016), the two-stage choice model (see Jagabathula and Rusmevichientong 2013),

the generalized attraction model (see Gallego et al. 2014) and the non-parametric model (see Farias

et al. 2013). Some of those models are also more general than the RUM model. However, they are

based on different ideas, particularly, they do not take the form of mapping a utility vector to a

choice probability vector. Thus we choose not to include a detailed review of those models in this

paper.

3. Relations Between Choice Models

In this section, we study the relations between the various choice models reviewed in Section 2.

We first notice that although the choice models reviewed in Section 2 are based on different ideas,

they are all essentially functions from a vector of utilities π to a vector of choice probabilities q(π).

Moreover, each of these models allows a welfare function w(π) that captures the expected utility

an individual can get from the choice model, and the choice probability vector can be viewed as

the gradient of w(π) with respect to π. Our proposed approach is based on these observations. We

start by making the following definition:

Definition 1 (Choice Welfare Function). Let w(π) be a mapping from Rn to R̄. We call

w(π) a choice welfare function if w(π) satisfies the following properties:

1. (Monotonicity): For any π1, π2 ∈Rn and π1 ≥π2, w(π1)≥w(π2);

2. (Translation Invariance): For any π ∈Rn, t∈R, w(π + te) = w(π)+ t;

3. (Convexity): For any π1, π2 ∈Rn and 0≤ λ≤ 1, λw(π1)+ (1−λ)w(π2)≥w(λπ1 +(1−λ)π2).

In addition to the three properties, if w(π) is also differentiable, then we call w(π) a differentiable

choice welfare function.
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Here we make a few comments on the three conditions in Definition 1. The monotonicity condition

is straightforward. It requires that the welfare is higher if all alternatives have higher deterministic

utilities. The translation invariance property requires that if the deterministic utilities of all alter-

natives increase by a certain amount t, then the choice welfare function will increase by the same

amount. This is reasonable given that choice is about relative preferences, therefore, increasing the

utilities of all alternatives by the same amount will not change the relative preferences but will

only increase the welfare by the amount of the increment. Later, we will see that this condition is

necessary to guarantee well-defined choice probabilities. The last condition of convexity basically

states that the average welfare at two utility vectors is greater than the welfare at the average

utility vector. If we view the welfare as the maximal utility one can get among the alternatives,

then this property is equivalent of saying that the weighted optimal value of two maximization

problems (of the utilities of the alternatives) is larger than the optimal value of the weighted one,

which is true since the maximal operator is a convex one.

In the following, we show that a choice welfare function has two equivalent representations:

a convex optimization representation and a semi-parametric representation. This result will be

instrumental for us to derive the relations between choice models.

Theorem 1. The following statements are equivalent:

1. w(π) is a choice welfare function;

2. There exists a convex function V (x) : ∆n−1 7→ R̄ such that

w(π) = max
{

πT x−V (x)
∣∣x∈∆n−1

}
; (10)

3. There exists a distribution set Θ such that

w(π) = sup
θ∈Θ

Eε∼θ

[
max
i∈N

πi + εi

]
. (11)

The proof of Theorem 1 uses several results in convex analysis and optimization. In the following,

we establish its implication to discrete choice models. In this paper, we refer to discrete choice

models as the entire set of functions q(π) : Rn 7→ ∆n−1, mapping a utility vector to a choice

probability vector. We first propose the following choice model based on the choice welfare function:

Definition 2 (Welfare-based Choice Model). Suppose w(π) is a differentiable choice

welfare function. Then the welfare-based choice model derived from w(π) is defined by

q(π) =∇w(π). (12)
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Note that when w(·) is differentiable, we have ∇w(π) ∈ ∆n−1 by the monotonicity and the

translation invariance property of w(π). Therefore q(π) defined by (12) is indeed a valid choice

model. Next we show the equivalence of various choice models. We first introduce the following

definitions (see Rockafellar 1974):

Definition 3 (Proper Function). A function f : X 7→ R̄ is proper if f(x) <∞ for at least

one x∈X and f(x) >−∞ for all x∈X.

Definition 4 (Essentially Strictly Convex Function). A proper convex function f on

Rn is essentially strictly convex if f is strictly convex on every convex subset of

dom(∂f) =
{
x
∣∣∂f(x) 6= φ

}
,

where ∂f(x) is the set of subgradients of f at x, and φ is the empty set.

Note that any strictly convex function is essentially strictly convex. Next we have the following

theorem:

Theorem 2. For a choice model q :Rn 7→∆n−1, the following statements are equivalent:

1. There exists a differentiable choice welfare function w(π) such that q(π) =∇w(π);

2. There exists an essentially strictly convex function V (x) such that

q(π) = argmax
{
πT x−V (x)

∣∣∣x∈∆n−1

}
;

3. There exists a distribution set Θ such that

q(π) =∇π

{
sup
θ∈Θ

Eθ

[
max
i∈N

πi + εi

]}
.

In Theorems 1 and 2, with the help of the welfare-based choice model, we establish the connection

between two existing choice models, the representative agent model and the semi-parametric model.

In particular, we show that those two classes of choice models are equivalent. This result explains the

prior results that for most known semi-parametric models, there exists an equivalent representative

agent model. In addition, it asserts that the reverse is also true, which is surprising in some sense.

Therefore, in terms of scope, those three classes of choice models (the welfare-based choice model,

the representative agent model and the semi-parametric model) are the same. We believe this result

is useful for the theoretical study of discrete choice models.

In light of the equivalence of the three classes of choice models, we could have more versatile

ways to construct a choice model. In particular, we can pick any of the three representations to

start with. For the welfare-based choice model, one needs to choose a choice welfare function w(π)
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which satisfies the three conditions. For the representative agent model, one needs to choose a

(strictly) convex regularization function. And for the semi-parametric model, one needs to choose

a set of distributions. In different situations, it might be easier to use one representation than the

others in order to capture certain properties of the choice model.

The next theorem studies one desirable property of choice models and investigates how it can

be reflected to the construction of the three choice models. We start with the following definition:

Definition 5 (superlinear choice welfare function). A differentiable choice welfare

function w(π) is called superlinear if there exist bi, i = 1, ..., n, such that for any π ∈Rn:

w(π)≥ πi + bi, ∀ i = 1, ..., n.

This property is desirable in most applications. It requires that the utility one can get from a set

of alternatives is not much less than the utility of each alternative. After all, for each alternative

i, one can always choose it and obtain the corresponding utility. We have the following theorem:

Theorem 3. For a choice model q :Rn 7→∆n−1, the following statements are equivalent:

1. There exists a superlinear differentiable choice welfare function w(π) such that q(π) =∇w(π);

2. There exists an essentially strictly convex function V (x) that is upper bounded on ∆n−1 such

that

q(π) = argmax
{
πT x−V (x)

∣∣∣x∈∆n−1

}
;

3. There exists a distribution set Θ containing only distributions with finite expectation (i.e.,

Eθ|εi|<∞ for all i and θ ∈Θ) such that

q(π) =∇π

{
sup
θ∈Θ

Eθ

[
max
i∈N

πi + εi

]}
.

Moreover, if either of the above cases holds, then q(π) can span the whole simplex, i.e., for all x

in the interior of ∆n−1, there exists π such that q(π) = x.

Theorem 3 further develops the equivalence of choice models obtained in Theorem 2 by narrowing

down the discussion to welfare-based choice models with the superlinear property. In particular, we

find that a superlinear differentiable choice welfare function has a semi-parametric representation,

of which the distribution set only contains distributions with finite expectation, a property that

is desirable in practice. The last statement that q(π) spans the whole simplex is related to the

results in Hofbauer and Sandholm (2002), Norets and Takahashi (2013) and Mishra et al. (2014).

These papers provide conditions under which q(π) defined from the RUM or the MDM can span

the whole simplex. Theorem 3 extends these results to more general conditions.
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In the following, we study the relation between the welfare-based choice model (thus also the

representative agent model and the semi-parametric choice model) and the random utility model.

In particular, we study under what conditions a welfare-based choice model can be equivalently

represented by a random utility model. This study will help us understand clearly the relations

between various choice models and the random utility model, and thus design new choice models

that do not necessarily have a random utility representation.

First, we show that when there are only two alternatives, the class of random utility models is

equivalent to the class of welfare-based choice models (thus also equivalent to the representative

agent model and the semi-parametric choice model).

Theorem 4. For any differentiable choice welfare function w(π1, π2), there exists a distribution

θ of {ε1, ε2} such that:

w(π1, π2) =Eθ[max{π1 + ε1, π2 + ε2}]. (13)

In addition, if w(π1, π2) is superlinear, then there exists a distribution θ with finite expectation

(i.e., Eθ|ε1|<∞ and Eθ|ε2|<∞) that satisfies (13).

Here we note that the first part of Theorem 4 can be partly derived from McFadden (1980).

However, in McFadden (1980), the author requires w to be second-order differentiable while we only

require w to be differentiable. In addition, we also derive the relation between w being superlinear

and θ having finite expectation. In the appendix, we give a direct and complete proof for this

theorem.

By Proposition 2 proved in Hofbauer and Sandholm (2002), when n≥ 4, the representative agent

model strictly subsumes the random utility model (thus by Theorem 1 also the semi-parametric

choice model and the welfare-based choice model). We next show that it is also true when n = 3.

We start with the following “substitutable” property for the RUM.

Proposition 6. For any random utility model q(π), we must have qj(π)≤ qj(π + hei) for all

π ∈Rn, h≥ 0 and i 6= j.

Proposition 6 says that in a random utility model, if we increase the deterministic utility of one

alternative while holding all other utilities unchanged, then the choice probabilities for all other

alternatives must not increase. In the following two examples, we provide two choice models with

n = 3 that violate the “substitutable” property in Proposition 6, derived from either the welfare-

based choice model or the representative agent model. These examples show that the welfare-based

choice model (thus also the representative agent model and the semi-parametric choice model)

strictly subsumes the RUM for n = 3.
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Example 1. Consider q(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
, where V (x) = xT Ax with

A =




3 2 0
2 3 2
0 2 3


Â 0.

When we fix π2 = π3 = 0 and plot the choice probabilities against π1 in the range of values [−2,2]

as shown in Figure 1, it is observed that q3 increases in π1 in the range of [−1.5,−1], i.e., it does

not satisfy the property stated in Proposition 6. Thus there is no RUM that is equivalent to this

choice model. ¤

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

π
1

q

 

 
q

1

q
2

q
3

Figure 1 Choice Probabilities in Example 1 with π2 = π3 = 0

Example 2. Consider a function of three variables:

w(π) = log
(
eπ1 + eπ2 + eπ3 + e0.5(π1+π2)

)
.

It is easy to see that w(π) is monotone, translation invariant and convex, therefore it is a choice

welfare function. Also, it is differentiable with the corresponding choice probability:

q(π) =
1

eπ1 + eπ2 + eπ3 + e0.5(π1+π2)

(
eπ1 +

1
2
e0.5(π1+π2), eπ2 +

1
2
e0.5(π1+π2), eπ3

)
.

Furthermore, the second-order derivative of w(π) with respect to π1 and π2 is

∂2w(π)
∂π1∂π2

=
∂q1(π)

∂π2

=
∂q2(π)

∂π1

=
e0.5(π1+π2)(−eπ1 − eπ2 + eπ3 − 4e0.5(π1+π2))

4(eπ1 + eπ2 + eπ3 + e0.5(π1+π2))2
.

It is non-positive if and only if eπ3 ≤ 4e0.5π1+0.5π2 +eπ1 +eπ2 . Therefore, when π3 is large while both

π1 and π2 are small, this choice model will violate the property stated in Proposition 6. Thus, there

is no RUM that is equivalent to this choice model. ¤
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4. Conclusion

In this paper, we proposed a welfare-based approach for studying discrete choice models. We

showed that the welfare-based choice model is equivalent to the representative agent model and

the semi-parametric model, thus establishing the equivalence between the latter two. We also

showed the relation between these choice models and the random utility model. In particular, we

showed that the welfare-based choice model (thus also the representative agent model and the

semi-parametric choice model) strictly subsumes the random utility models when there are three

or more alternatives, while they are equivalent when there are only two alternatives.
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Appendix

Proof of Theorem 1: First we show that the w(π) defined in (10) and (11) are choice welfare

functions. To see this, we note that the monotonicity and translation invariance properties are

immediate from (10) and (11). For the convexity, we note that w(π) defined in (10) is the supremum

of linear functions of π thus is convex in π. In (11), for each ε, maxi∈N {πi + εi} is a convex function

in π, and so is the expectation. Therefore, if w(π) is defined by (10) or (11), then it must be a

choice welfare function.

Next we show the other direction. That is, if w(π) is a choice welfare function, then it can be

represented in the form of (10) and (11). First we note that if a choice welfare function w(π) = +∞
for some π, then for any π′, we have w(π′)≥w(π +mini(π′i−πi)e) = w(π)+mini(π′i−πi) = +∞,

where the first inequality uses the monotonicity property and the first equality uses the translation

invariance property. Thus w(π) = +∞ for all π. In that case, we can choose V (x) = −∞ and

Θ = {θ∞} where θ∞ is a singleton distribution taking value on (∞, ...,∞). Therefore, w(π) can be

represented by (10) and (11) in that case. Similarly, if w(π) = −∞ for some π, then it must be

that w(π) =−∞ for all π, and we can take V (x) =∞ and Θ = {θ−∞}, where θ−∞ is a singleton

distribution on (−∞, ...,−∞). Therefore, w(π) can be represented in (10) and (11) in this case

too.

In the remainder of the proof, we focus on the case where w(π) is finite for all π. In this case, by

Proposition 1.4.6 of Bertsekas (2003), w(π) must be continuous. The remaining proof is divided

into two parts:

1. We show that any choice welfare function w(π) can be represented by (10). Since w(π) is

monotone and translation invariant, the following holds:

w(π) = min
y

{
w(y)+max

i
{πi− yi}

}
= min

y

{
w(y)+ max

x∈∆n−1

(π−y)T x

}
.

Here the first equality holds since for any y, w(π) = w(π − maxi {πi− yi}e) + maxi {πi− yi}
by the translation invariance property. Furthermore, by the monotonicity property, w(π −
maxi {πi− yi}e)≤w(y) and the equality holds when y = π.

Next we define L(x,y) = w(y) + (π − y)T x. We have for fixed x, L(x, ·) is convex in y

(by the convexity of w(·)); and for fixed y, L(·,y) is convex and closed in x. Furthermore,

infy maxx∈∆n−1
L(x,y) = w(π) <∞ and the function p(u) = infy maxx∈∆n−1

{L(x,y)−uT x}=

w(π−u) is continuous. Therefore, by Proposition 2.6.2 of Bertsekas (2003), the minimax equality

holds, i.e.,

inf
y

max
x∈∆n−1

L(x,y) = max
x∈∆n−1

inf
y

L(x,y).
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Therefore, we have:

w(π) = max
x∈∆n−1

{
πT x+ inf

y

{
w(y)−yT x

}}
= max

x∈∆n−1

{πT x−V (x)}

where V (x) = supy{yT x−w(y)} is a convex function.

2. Next we show that any choice welfare function can be represented by (11). Since w(π)

is convex, there exists a subgradient for any π. We denote the subgradient vector by d(π) =

(d1(π), . . . , dn(π))T . Here it is possible that the choice of d(π) is not unique, in that case, we can

choose an arbitrary one. Furthermore, by taking the derivative with respect to t in the translation

invariance equation, and by applying the chain rule (see Proposition 4.2.5 of Bertsekas 2003), we

have for any subgradient d(π), it must hold that eT d(π) = 1. Similarly, by the monotonicity prop-

erty of w(π), we must have d(π)≥ 0. By the definition of subgradient and the convexity of w(π),

we must have:

w(π)≥ (π−z)T d(z)+w(z), ∀z ∈Rn,

where the equality holds when z = π. Define l(z) = w(z)−zT d(z). By reorganizing terms, we have

w(π) = sup
z
{πT d(z)+ l(z)}. (14)

Now we define the distribution set as follows: Let Θ = {θz
∣∣z ∈ Rn}, where θz is an n-point

distribution with

Pθz
(
ε = εi

z
)
= di(z), for i = 1, ..., n

where

εi
z(j) =

{
l(z) if j = i,
−∞ if j 6= i.

That is, εi
z is a vector of all −∞’s except l(z) at the ith entry. Therefore, for any z, we have

Eθz [max
i

πi + εi] =
n∑

i=1

di(z)(πi + l(z)) = πT d(z)+ l(z).

Then by (14), we have

w(π) = sup
z

{πT d(z)+ l(z)}= sup
z
Eθz [max

i
πi + εi] = sup

θ∈Θ

Eθ[max
i

πi + εi].

Therefore, the theorem is proved. ¤
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Proof of Theorem 2: The equivalence between 1 and 3 directly follows from Theorem 1. Next

we show that 1⇒ 2. If w(π) is a differentiable choice welfare function, by Theorem 1, we know

that

w(π) = max
{
πT x−V (x)

∣∣x∈∆n−1

}
,

where V (x) = supy {yT x−w(y)}. Therefore, V (x) is the convex conjugate of w(π). By Theorem

6.3 in Rockafellar (1974), we know that w(π) is essentially differentiable if and only if V (x) is

essentially strictly convex. Also, from the envelope theorem (see Mas-Colell et al. 1995),

∇w(π) =∇π

(
πT x−V (x)

) ∣∣
x=x∗ = x∗,

where x∗ = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
. Therefore,

q(π) =∇w(π) = argmax
{
πT x−V (x)

∣∣x∈∆n−1

}
.

Last, we show that 2⇒ 1. Given an essentially strictly convex V (x), by Theorem 1, we know

that

w(π) = max
{
πT x−V (x)

∣∣x∈∆n−1

}

is a choice welfare function. Again, by Theorem 6.3 in Rockafellar (1974), we know that w(π) is

essentially differentiable. Moreover, in our case, w(π) is a convex and finite-valued function in Rn,

thus essentially differentiability is equivalent to differentiability. Again, by applying the envelope

theorem, q(π) =∇w(π). Therefore the theorem is proved. ¤

Proof of Theorem 3: First we show the equivalence between 1 and 2. Based on Theorem 2, it

suffices to prove that w(π) is superlinear if and only if V (x) defined by maxy{yT x− w(y)} is

upper bounded. If w(π) is superlinear, we have, for any x∈∆n−1,

w(π)≥
∑
i∈N

xi(πi + bi) = xT π +xT b≥xT π +min
i

bi.

By reorganizing terms, we have

xT π−w(π)≤−min
i
{bi}= max

i
{−bi}.

Therefore, V (x) = maxy{yT x−w(y)} ≤maxi{−bi}, i.e., V (x) is upper bounded.

To show the other direction, if V (x) is upper bounded by a constant u, then we have

w(π)≥max
{
πT x−u

∣∣x∈∆n−1

}≥ πi−u, ∀i,
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i.e., w(π) is superlinear. Therefore, the equivalence between 1 and 2 is proved.

Next we show the equivalence between 1 and 3. We first show that for any superlinear differen-

tiable choice welfare function w(π), we can find a distribution set Θ consisting of only distributions

with finite expectation such that w(π) can be represented as w(π) = supθ∈Θ Eθ [maxi∈N πi + εi] .

First, since w(π) is convex with q(π) =∇w(π), we have

w(π) = sup
z
{πT q(z)+ l(z)}, (15)

where l(z) = w(z)−zT q(z). Now we define a distribution set Θ that is slightly different from that of

Theorem 1. Specifically, let Θ = {θz

∣∣z ∈Rn}, where θz is an n-point distribution with Pθz (ε = εi
z) =

qi(z), ∀i ∈ N (Note that by the monotonicity and the translation invariance properties, q(z) =

∇w(z) must satisfy q(z)≥ 0 and eT q(z) = 1). Here,

εi
z(j) =

{
l(z) if j = i,
l(z)−M(z) if j 6= i.

where

M(z) = max
{

1+max
i,j

{zi− zj}, l(z)−mini {bi}
t∗(z)

}
, (16)

with

t∗(z) = min{qi(z)|qi(z) > 0}. (17)

Since M(z) > zi− zj, for all i, j, we have i = argmaxj (zj + εi
z(j)). Therefore,

Eθz [max
j

zj + εj] =
n∑

i=1

qi(z)(zi + l(z)) = zT q(z)+ l(z) = w(z).

Next we show that:

Eθz [max
i

πi + εi]≤w(π), ∀π.

For any given π, define k(i) , argmaxj (πj +εi
z(j)) (we break ties arbitrarily). There are two cases:

1. For all i such that qi(z) > 0, k(i) = i. In this case, we have

Eθz [max
j

πj + εj] =
∑
i∈N

qi(z)(πi + l(z)) = πT q(z)+ l(z)≤w(π),

in which the last inequality is because of the convexity of w(·).
2. There exists some i such that qi(z) > 0, but k(i) 6= i. In this case, from the construction of θz,

we have

Eθz [max
j

πj + εj] =
∑

i∈N ,qi(z)>0

qi(z)(πk(i) + l(z)−M(z)I{k(i) 6=i})
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≤ max
i
{πi}+ l(z)− t∗(z)M(z)

≤ max
i
{πi}+min

j
{bj}

≤ max
i
{πi + bi}

≤ w(π),

where the first inequality follows from the fact that M(z) > 0 and
∑

i∈N qi(z)I{qi(z)>0,k(i) 6=i} ≥
t∗(z), the second inequality is because of the definition of M(z) and the last inequality follows

from the definition of superlinear function.

Based on the analysis of these two cases, we have

Eε∼θz [max
i

πi + εi]≤w(π), ∀π.

Then by equation (15) we have

w(π) = sup
z

{πT q(z)+ l(z)}= sup
z
Eθz [max

i
πi + εi] = sup

θ∈Θ

Eθ[max
i

πi + εi].

Therefore, we have proved that statement 1 implies statement 3.

Finally, we prove that statement 3 implies statement 1. Suppose there exists a distribution θ̂ ∈Θ

such that Eθ̂|εi|< +∞ for ∀i∈N , then for π ∈Rn we have

sup
θ∈Θ

Eθ

[
max
i∈N

πi + εi

]
≥ Eθ̂

[
max
i∈N

πi + εi

]
≥Eθ̂ [πj + εj] = πj +Eθ̂[εj], ∀j.

Therefore we can conclude that w(π) = supθ∈Θ Eθ [maxi∈N πi + εi] is superlinear.

It remains to prove the last statement. We show that for any

x∈∆◦
n−1 , {x

∣∣eT x = 1, xi > 0,∀i∈N },

there exists πx such that q(πx) =∇w(πx) = x. Fix x∈∆◦
n−1, we consider

V (x) = max
π

{πT x−w(π)}. (18)

Clearly, V (x) ≥ −w(0), since π = 0 is a feasible solution. Moreover, since w(π) is translation

invariant, we can restrict the feasible region of (18) to L, {π|eT π = 0}. For all π ∈ L, we have

πj ≤ 0 for some j ∈N . Thus

πT x≤
∑
i 6=j

πixi ≤
∑
i 6=j

xi max
k
{πk} ≤ (1−min

i
{xi})max

k
{πk}.

However, by superlinearity of w(π), we have:

w(π)≥max
k
{πk + bk} ≥max

k
{πk}+min

k
{bk}.
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Thus, for all π ∈L, we have:

πT x−w(π)≤−min
i
{xi}max

k
{πk}−min

k
{bk}.

Let K = w(0)−mink{bk}
mini{xi} . In order for π to be optimal to (18), by the above arguments, we would

have πi ≤K for all i. Thus we can further restrict the feasible set of (18) to {π|eT π = 0, πi ≤K ∀i∈
N}, which is a compact set. Since w(π) is continuous, there exists πx ∈ {π|eT π = 0, πi ≤K ∀i∈N}
that attains maximum in problem (18). By the first-order necessary condition, ∇w(πx) = x. This

concludes the proof. ¤

Proof of Theorem 4: Define v(x) , w(x,0). Since w(·) is differentiable, by the chain rule, we

have

v′(x) =
∂w

∂π1

(x,0).

Since w(π1, π2) is convex and satisfies the translation invariance property, we have v′(x)∈ [0,1] and

is increasing. We define a distribution θ of {ε1, ε2} as follows:

{ε1, ε2}=
{
v0−max{ξ,0}, v0−max{−ξ,0}},

where v0 = v(0) = w(0,0) and ξ is a random variable with c.d.f. Fξ(x) = P(ξ ≤ x) = v′(x). Note F (·)
is a well-defined c.d.f. since w(·) is convex and differentiable, thus v′(x) must be continuous and

increasing (Rockafellar 1974).

Now we compute Eθ[max{π1 + ε1, π2 + ε2}]. We have

Eθ[max{π1 + ε1, π2 + ε2}] = π1 + v0 +Eθ[max{−max{ξ,0}, π2−π1−max{−ξ,0}}]
= π1 + v0 +Eθ[max{0, π2−π1 + ξ}−max{ξ,0}],

where the last step can be verified by considering ξ ≥ 0 and ξ ≤ 0, respectively.

Now we compute the last term. For x≥ 0, we have (let I(·) be the indicator function):

Eθ[max{0, x+ ξ}−max{0, ξ}] = xP(ξ > 0)+Eθ[(x+ ξ) · I(−x < ξ ≤ 0)]

= xP(ξ > 0)+
∫ 0

−x

(x+ ξ)dv′(ξ)

= x(1− v′(0))+ (x+ ξ)v′(ξ) |0−x −
∫ 0

−x

v′(ξ)dξ

= x− v0 + v(−x).

Similarly, for x≤ 0, we have

Eθ[max{0, x+ ξ}−max{0, ξ}] = xP(ξ >−x)+Eθ[−ξ · I(0 < ξ ≤−x)]
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= xP(ξ >−x)−
∫ −x

0

ξdv′(ξ)

= x(1− v′(−x))− ξv′(ξ) |−x
0 +

∫ −x

0

v′(ξ)dξ

= x− v0 + v(−x).

Therefore, Eθ[max{π1 + ε1, π2 + ε2}] = π1 + v0 +(π2−π1)− v0 + v(π1−π2) = w(π1, π2).

To prove the last statement, it suffices to show that both Eθ[max{0, ξ}] and Eθ[max{0,−ξ}] are

finite if w(π) is superlinear. If w(·) is superlinear, then we have v(t)− t = w(0,−t) is decreasing

in t and lower bounded, thus L1 = limt→+∞(v(t)− t) exists and is finite. Similarly, v(t) = w(t,0) is

increasing in t and lower bounded, thus L2 = limt→−∞ v(t) exists and is finite. Therefore, we have:

Eθ[max{0, ξ}] =
∫ +∞

0

Pθ (ξ ≥ t)dt =
∫ +∞

0

(1− v′(t))dt = (t− v(t))
∣∣+∞
0

= v(0)−L1,

and

Eθ[max{0,−ξ}] =
∫ +∞

0

Pθ (−ξ ≥ t)dt =
∫ +∞

0

v′(−t)dt =
∫ 0

−∞
v′(t)dt = v(0)−L2.

Thus, the theorem is proved. ¤

Proof of Proposition 6: In a random utility model, the probability of choosing alternative j is

qj(µ) = Pθ (j = argmaxk∈N (µk + εk)). Since the choice probability is based on the comparison, it

is clear that qj(π)≤ qj(π +hei) for all π ∈Rn, h≥ 0 and i 6= j. ¤
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