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On Clustering and Retrieval of Video Shots

Chong-Wah Ngo
Department of Computer
Science
The Hong Kong University of
Science & Technology
Clear Water Bay, Kowloon,
Hong Kong

cwngo@cs.ust.hk

ABSTRACT

Clustering of video data is an important issue in video ab-
straction, browsing and retrieval. In this paper, we pro-
pose a two-level hierarchical clustering approach by aggre-
gating shots with similar motion and color features. Motion
features are computed directly from 2]) tensor histograms,
while color features are represented by 3]) color histograms.
Cluster validity analysis is further applied to automatically
determine the number of clusters at each level. Video re-
trieval can then be done directly based on the result of clus-
tering. The proposed approach is found to be useful partic-
ularly for sports games, where motion and color are impor-
tant visual cues when searching and browsing the desired
video shots. Since most games involve two teams, classifica-
tion and retrieval of teams becomes an interesting topic. To
achieve these goals, nevertheless, an initial as well as criti-
cal step is to isolate team players from background regions.
Thus, we also introduce approach to segment foreground
objects (players) prior to classification and retrieval.

Keywords
Hierarchical
classification

clustering, Motion and color retrieval, Team

1. INTRODUCTION

Clustering is a natural solution to abbreviate and organize
the content of a video. A preview of the video content can
simply be generated by showing a subset of clusters or the
representative frames of each cluster. Similarly, retrieval
can be performed in an efficient way since similar shots are
indexed under the same cluster. Regardless of these advan-
tages, general solutions for clustering video data is a hard
problem. For certain applications, motion features domi-
nate the clustering results; for others, visual cues such as
color and texture are more important. Moreover, for cer-
tain types of applications, decoupling of camera and object
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motions ought to be done prior to clustering.

Clustering algorithms can be grouped into two categories:
partitional and hierarchical [3]. Hanjalic & Zhang [1] have
introduced a partitional clustering of video data by utilizing
the color features of selected keyframes. Here, we introduce
a two-level hierarchical clustering algorithm by making use
of both color and motion features. The proposed clustering
algorithm is unsupervised, the number of clusters is deter-
mined automatically by the cluster validity analysis [3] Su-
pervised version of clustering algorithms by Hidden Markov
Models can be found in [2, 6], and by decision rules can be
found in [8].

In this paper, we focus on organizing the content of video.
Our approach is based on the pattern analysis and process-
ing of temporal slices. We utilize the tensor histogram intro-
duced by Ngo et. al. [4} for motion feature extraction and
foreground object segmentation. By incorporating motion
and color features, we further propose a two-level hierarchi-
cal clustering algorithm to organize and index the content
of video. The constructed clustering structure inherently
provides an indexing scheme for video retrieval. We hence
study and investigate the fundamental difference and the
effectiveness of retrieving with (cluster-based) and without
(cluster-free) clustering structure.

Although the experiments are performed in the sport video
domain, no specific domain knowledge is being utilized. We
demonstrate that these videos are well represented as a two-
level hierarchy. The top level is clustered by color fea-
tures while the bottom level is clustered by motion features.
The top level contains various clusters including wide-angle,
medium-angle and close-up shots of players from different
teams!. Each cluster can refer to a sport event. For in-
stance, the wide-angle shots of a basketball video usually
correspond to full court advances, while the wide-angle shots
of a soccer video normally correspond to bird view scenes.
The shots inside each cluster can be further partitioned ac-
cording to their motion intensity. In this way, for exam-
ple, the sub-cluster of a close-up shot can correspond ei-
ther to “players running across the soccer field”, or “players
standing on the field”. Such organization facilitates not only

IThe classification of wide-angle, medium-angle and close-
up shots are roughly based on the distance between the cam-
era lens and the targeted scene.



video browsing and retrieval. but also some high-level video
processing tasks. For instance, to perform player recog-
nition. only those shots in the cluster that correspond to

close-up shots of players are picked up for processing. To
perform motion-based background reconstruction. the sub-
cluster corresponds to “players running across the soccer
field” is further selected for processing.

An advantage of working in the sport video domain is that
thr camera motion is usually smooth and restricted to pan-
tilt. stationary and zoom This is because sport videos are
usually captured with several fixed cameras that are located
in the stand. Since the camera motion is smooth. motion-
based video segmentation can usually be performed in a
robust way. In this paper we employ the foreground and
background segmentation algorithm introduced by Ngo et.
al. [4] to extract the players and subsequently perform team
classification. We demonstrate that team classification with
player segmentation can offer significant improvement over
that of without pla.yer segmentation.

I'he paper is organized as follows. Section 2 gives a brief
introduction on the motion pattern analysis and segmen-
tation of video shots in temporal slices. These methods
are further utilized in Section 3 for motion. color and ob-
ject features extraction. Subsequently, Section 4 proposes
a two-level hierachical clustering algorithm by motion and
color features. Section 5 investigates the Fundamental dif-
ference of cluster-based and cluster-free retrieval. Section
6 presents our experimental results on clustering, retrieval
and team classification of sport videos. Section 7 concludes
our proposed works.

2. PROCESSING OF MOTION PATTERNS
IN TEMPORAL SLICES

If we view a video as an image volume with (z, y) image
dimension and { temporal dimension, the spa.tio—temporal
slices are a set of 2[) images in a volume with one dimen-
sion in {, and the other in z or y, for instance. One example
is given in Figure 1: the horizontal axis is t. while the verti-
cal axis is x. For our application, we process all slices. both
horizontal and vertical. in a volume to a.nalyze thr spatio—
temporal patterns due to various motions. In addition. to
reduce the computational and storage overhead. all process-
ing are done directly in MPEG domain.

4 spatio-temporal slice, by first impression. is composed of
color and texture components. On one hand, the discontinu-
ity of color and texture infers the occurrence of a new event:

on the other hand, the orientation of texture depicts camera
and object motions. By processing the patterns in slices,
motion analysis and segmentation can be done in a more ef-
fective and efficient wav. Figure 1 shows a spatio-temporal
slice extracted from a video composed of three shots. As
seen from the figure, camera motion can be inferred directly
from the texture pattern. For instance. thr slanted lines in
shot B depict camera panning. and the lines which expand
in a V-shape in shot, D depict zooming. In addition, multiple
motions can also be pel‘ceived when two dissimilar texture
patterns appeared in a shot. as shown in shot C. In this
shot. the middle region describes a non-rigid object motion,
while the background region indicates camera panning.
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Figure 1: Patterns in a temporal slice.
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Figure 2: Motion trajectories in the tensor histograms.

2.1 Motion Analyss

we utilize the 2D tensor histogram approach [4] (see Ap-
pendix A) to extract the texture patterns from temporal
slices for clustering and retrieval. A tensor histogram M(¢, t)
with one dimension as an 1) orientation histogram and the
other dimension as time, can be employed to model the dis-
tribution of texture orientations in slices. This distribution
inherent]y reflects the motion trajectories in an image se-
quence. two examples are given in Figure 2. The trajectories
in the figure are the histogram peaks tracked over time. In
Figure 2(a) one trajectory indicates a non-stationary back-
ground, and the other indicates objects moving to the right:
in Figure 2(b) two tra.jectories progress in a similar manner,
they correspond to parallax motion (or camera panning).

2.2 Motion Segmentation

Motion segmentation can be achieved b y  back-projecting
the motion trajectories in @ tensor histogram {0 temporal
slices to form spatially separated motion layers. Each mo-
tion layer is directly associated with a layer of support. Fig-
ure 3 illustrates the major flow of this idea. Given a set of
spatio-temporal slices. a 2D tensor histogram is computed.
The 2D histogram is further non-uniformly gquantized into
a 1D normalized motion histogram to qualitatively repre-
sent the rigid camera and object motions. The peak of the
histogram is then hack-projected onto the original image se-
quence. and is assumed as a background layer. As shown
in the figure, the background panoramic image can be fur-
ther reconstructed by aligning and pasting the projecting
pixels. Thr foreground object, on the other hand. has a
support layer which is the inverse of background support
ia,yer. The exact boundary of a foreground object can be
located in a more precise way by the background subtrac-
tion technique and the color back-projection of the suspected
foreground region (See Appendix B). For robustness, a seg-
mented foreground object is represented by a probability
map Pr(X = Foreground. t) which indicates the probability
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of a pixel I(X, t) belongs to a foreground object.

3. FEATURE COMPUTATION

We present methods to extract motion and color features
directly from shots. Roth motion and color features are rep-
resented as histograms, since this representation is effective
and inexpensive for clustering and retrieval.

3.1 Motion Feature

Given a 2D tensor histogram (¢, t) of a shot composed of
n frames, the motion feature vector A{ which is composed
of N feature points. is computed by

:—{ZZM(:) 0} Vy{Qe) =k (1)

5 =1
o el ; - 207,

where Q(a )= “~ is a quantization function. s = =5~ is the

step of quantization, and k = {1, 2,., N I} represents

a quantized level. Thr computed motion features describe
the motion intensity of a shot. Since |g§ > 0, the motion
feature is directionless. whether to encode the directional
information to motion vector is tailored to applications. In
our experiment. N is set to 10, and the tensor histograms
of both horizontal and vertical slices are used for feature
computation.

3.2 Color Feature of au Image Volume

The color feature of a shot, represented as a 3D color his-
togram. is computed directly in the YUV color space of its
DC image sequence. A color histogram describes the global
color distribution in a shot. It is easy to compute and is
insensitive to small changes in viewing positions and partial

foreground segmentation

occlusion. As a feature vector for clustering and retrieval, it
is susceptible to false alarms. In our experiments, each color
channel of YUV is uniformly quantized to four bins. results
in a 64 dimensional color feature vector. Each color his-
togram will be further normalized by the number of frames
in a shot.

3.3 Color Feature of a Segmented Object

Thr Segmented object of an image frame | is associated with
a support layer, Mask, and ga probability map, Pr. The
color histogram is computed as

T
- % {Z Z Pr(X, t)} (2)
=1 a

where A € {Q(I(X,1)) = k A Mask(X,t)= 1). and Q is
a color quantization function. Meanwhile, k is an index lo
a quantized value. X is an index to a pixel location, and ¢
is an index to time. The histogram is computed directly in
the YUV color space. and each color channel is uniformly
quantized into four bins.

3.4 Distance Measure

The [; and Ly norms are two of the most frequently used
distance metrics for comparing two feature vectors. In prac-
tice. however, L1 norm performs better than [ norm since
it is more robust to outliers [5]. Furthermore. L norm is
more computationally efficient and robust. The distance
between two non-zero length feature vectors 3 and 3’ is
computed as,

D(F,F)=



where

ff)—Zfz)Jer(z)

=1 =1

(4)

is a normalizing function. In Eqn (3)7 k =1 for L; norm
and k = 2 for L, norm.

4. HIERARCHICAL CLUSTERING

We employ a two-level hierarchical clustering approach to
group shots with similar color and motion. The algorithm
is implemented in a top-down fashion, where color features
are utilized at the top level, while motion features are used
at the bottom level. At the top level, the color feature space
is partitioned to k. clusters. At the bottom level, each k.
cluster is further partitioned into k,, clusters.

41 K-Mean Algorithm

The k-mean algorithm is the most frequently used clustering
algorithm due to its simplicity and efficiency. The algorithm
is employed to cluster shots at each level of hierarchy inde-
pendently. The k-mean algorithm is implemented as

e Step 1: Choose iy, (2, - - -
troids.

., Mk as initial cluster cen-

e Step 2 Classify each feature J to the cluster P with
the smallest distance

(5)

o Step 3: Based on the classification, update cluster cen-
troids as

B = arg, <<, min D(F, 15)

nj

1 G)
w2

=1

B = (8)

where % is the number of shots in cluster j, and ]-"i(j)
is the " feature vector in cluster j-

e Step 4: If any cluster centroid changes value, goto Step
2; otherwise stop.

The algorithm is suboptimal. The initial guess of cluster
centroids in Step 1, and the order in which feature vectors
are classified can affect the clustering result. To diminish
the sensitivity of Step 1, the initial centroids are selected in
the following way:

o Step 1: Given p m-dimensional feature vectors, divide

the m dimensions to p = Z subspaces. These sub-

k

spaces are indexed by [1, 2,. . .,p},[p+1,p+2,. .. ,Qp},
Ik = 1)p, (k = 1)p + 1. ., kpl
« Step 2: In each subspace jof [(j=1)p,. .., jpl, asso-
ciate a value f] for each feature vector F; by
P
> Film )

=(j-1)p

o Step 3: Choose the initial cluster centroids 1, 2, ,
Pk by

(8)

)
b= ek, 2 ]
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4.2 Cluster Validity

The number of clusters K needs to be explicitly specified for
the k-mean algorithm. However, in most cases, K is not ex-
actly known in advance. In order to find an optimal number
of clusters, we have employed the cluster validity analysis
[3]. The intuition is to find clusters that minimize intra-
cluster distance while maximize inter-cluster distance. The
cluster separation measure p(K) is defined as

k
%Zgl n’i"ﬂ 9)

where :
no= %;D(E‘”,ua‘) (10)
&;j = D(pi,ps) (11)

7 is the intra-cluster distance of cluster j, while §&;; is the
inter-cluster distance of clusters }'and j In the experiments,
the optimal number of clusters K is selected as

(12)

In other words, the k-mean algorithm is tested for Kk =
{1,2,...,10}, and the one which gives the lowest value of
p(K) is chosen.

4.3 Similarity Matrix

We can readily incorporate a similarity matrix Sim at each
level of hierarchy to describe the similarity, i.e., the inverse of
inter-class distance, between clusters i and ] For n clusters,
we have

1 1—&12
1—£€n 1

1'_é-ln
1_'£2n

Sim = (13)

1—~€n1 1—&12 ... 1
which is a symmetrical matrix. The matrix Sim can facil-
itate the retrieval process. To browse shots with a similar
motion to cluster i, one can just sort the entries in the zth

row of Sim in descending order, and then traverse the links
accordingly.

5. RETRIEVAL

Given a query represented by low-level features, motion and
color in our case, a retrieval system returns a set of items
sorting in ascending order according to their respective dis-
tances to the query. This is normally referred to as a K
nearest neighbor (KNN) search problem, which is actively
studied by both computational geometry and multimedia
retrieval communities. By coupling clustering issues with
retrieval problems, the clustering structure, on one hand, in-
herently provides an indexing scheme for retrieval, while on
the other hand, intuitively speed up the retrieval time. We
refer to this issue as a cluster-based retrieval problem. The
fundamental difference between cluster-based and cluster-
free retrieval are illustrated in Figure 4. Suppose a query
is located at the boundary of two classes, cluster-free re-
trieval will include items from both classes, i.e., items inside
the dotted circle in Figure 4, at the top of a ranked list.
In contrast, clustered-based retrieval compares the distance
between the query and each cluster centroid, and ranks the
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Figure 4: When a query locates at the boundary of
two classes, the retrieval results of the cluster-based and
cluster-free approach will be quite different.

items whose cluster centroid is nearer to the query at the
top of alist,.

5.1 Cluster-based Retrieval

In a hierarchical clustering structure. a centroid a the top
level represents the color characteristics of a cluster, while
a centroid at the hottom level represents the motion char-
acteristics of a cluster. During retrieval. cluster centroids
at the top level of hierarchy are first compared with the
color feature of a query. A cluster with the nearest centroid
is first located. Then. its sub-clusters in the bottom level
are further compared with the query. Thr itrms in one of
these sub-clusters whose centroid is the nearest to the mo-
tion feature of the query. are sorted in ascending order of
their distance to the query, and put accordingly at the top
of a ranked list. The retrieval is processed in a depth-first-
search-like manner, meaning that after all sub-clusters o f
the most similar cluster are sorted, the next similar cluster
is handled in the same way. ‘This process is repeated until
the few most similar or al clusters are visited.

5.2 Cluster-Free Retrieval

If a clustering structure is not available, wc ran merge thr
ranked lists given by both motion and color features. A
straightforward way is to linearly weight the distance mea-
sures given by both features. Denote < M, > and <
M > as two pairs of motion and color feature vectors,
we have

D M,C > < M.C">) = apDM, M) +acD(C,C)

where ap and ac are weights. and am + ae = 1.0. ‘Ib
equally weight both features. we set aym = ac = 0.5.

6. EXPERIMENTS

To test thr effectiveness of the proposed clustering and re-
trieval approach. wc conduct experiments on both the has-
ketball and soccer video. The retrieval performance is eval-
nated in terms of recall and precision where

number of relevant shots retrieved
recall

total number of relevant shots in database
number of relevant shots retrieved

precision -
total number of shots retrieved

Recall measures the ability to present all relevant items,

while precision measures the ability to present only relevant

items. Recall and precision are in the interval of [0,1]. The

recall-precision curve indicates a system’s ability in ranking

(@) Eloep ® @ﬁ

Figure 5. Sample shots in the tested baskethall

(¢) Penalty

video.

the relevant items. Ideally, precision values should bc equal
to one across al recall values.

6.1 Basketball Video

The tested basketball video composed of 122 shots, approxi-
mately 24,000 frames. Most of the shots can be categorized
under close up shots, full court advances (FCA) and penalty
shots, as shown in Figure 3. Close up shots are normally of
short duration, with the camera tracks @ player from frame
to frame. FCA are usualy captured by a mid-court camera
The camera is panned towards the direction when the ball is
being advanced from one end of the court to the other. Thr
camera of penaty shots is usualy tilted up at the moment
when the hall is shot.

6.1. | Clustering

The tested video is first partitioned into shots and then a 2D
tensor histogram is computed for each shot. For clustering,
the motion and color features are extracted. respectively,
from thr 2 tensor histograms and image volumes of shots.
Figure 6 depicts thr clustering results by using L; norm
as the distance measure. Shots that arc nearest to cluster
centroids are shown in the figure to represent clusters. The
top level has four clusters, while the bottom level consists
of nine clusters.

By manual investigation of the clustering results. we sum-
marize thr characteristics of each cluster as follows:

e Cluster c.! mostly consists of penalty shots, audience
scene and few close up shots.

o Cluster c.2 basically consists of players from both teams
Thr players can not he classified according to their
trams due to thr unsegmented cluttered background.

o Cluster ¢.9 has mainly the FCA shots. These shots
are grouped accordingly in the sub-cluster m.3.1 by
motion features.

e Cluster c¢.4 consists of the logo sequence which is ap-
peared prior to the replay of slow motion sequence.

6.1.2 Retrieval

‘The performance of both the cluster-based and the cluster-
free retrieval approach is investigated. For the cluster-free
retrieval. we examine also the retrieval by motion feature. re-
trirval hy color feature, and retrieval by both color and mo-
tion features. In addition. for al the tested approaches, we
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Figure 6. Clustering result of basketball video by using [; norm as distance measure. X(Y): X is cluster label and y

is the number of shots in a cluster.

Table 1: Mean precision of different retrieval ap-
nroaches.
Mean Precision
Approach I,, norm | Lz norm

Cluster-based Retrieva 0.53 0.50
Retrieval by motion and color 0.53 0.48
Retrieval by motion 0.53 0.53
Retrieval by color 0.43 0.42

investigate the retrieval performance of employing L1 norm
and Lo norm as distance measure. For cluster-based re-
trieval, both clustering structures by L; norm and Ls norm
are constructed for retrieval.

Thr tested query set consists of 25 queries which are manu-
aly picked and checked to have good answers. They consist
of close up of players from different teams, I'CA, penalty
and shooting shots. Players from different teams are placed
in different classes. Similarly, players captured by different
camera motions (e.g., track and zoom) are put in diferent
classes

Figure 7 shows the recall-precision of the tested approaches
hy using [, norm as distance measure, while Figure 8 shows
the recall-precision hy using L, norm as distance measure.
Table | summarizes the 11-point average precison values
of various approaches. As indicated from thr experimen-
tal results. the retrieval performance based on [L; norm
distance measure is more robust and consistent than L»
norm. Throughout the experiments. motion features alone
give better retrieval performance compared with color fea-
tures. For [ norm. by incorporating both color and motion
features for retrieval. the retrieval precision does not show
improvement compared to employing motion features alone.
In addition. the performance of cluster-based and cluster-
free retrievd hased on L norm does not show significantly
different results. This may indicate that the feature space
of basketball video is well separated among the categories
of close up shots, FCA and penalty shots. This is not sur-
prised since visually these categories have different color and
motion content.
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Figure 9: Sample shots in the tested soccer video:
(a)audience; (b) bird view; (c) medium shot; (d) close-
up.

6.2 Soccer Video

The tested video is composed of 4(4 shots, approximately
100.000 frames. Most of the shots can he categorized under
audience. bird view. medium, and close up shots. as shown
in Figure 9. For simplicity, we refer to thr two soccer teams
as team A and team B, The color of thr audiences’ clothing
is same as thr players whom they support.

6.2. | Clustering

The tested video is first partitioned into shots and then a 2/)
tensor histogram is computed for each shot. For clustering,
the motion and color features are extracted, respectively,
from the 200 tensor histograms and image volumes of shots.
Figure 10 depicts the clustering results hy using [,; norm as
thr distance measure. Shots that are the nearest to cluster
centroids are shown in the figure to represent clusters. The
top level has six clusters, while the bottom level consists of
thirteen clusters.

By manual investigation of the clustering results, we sum-
marize the characteristics of each cluster as follows:

Cluster ¢.] mostly consists of players and audiences of
team A, coaches of hoth teams, referees. and shots of
players being hurt accidentally. The audiences of team
A are all clustered in the sub-cluster m./.2. Mean-
while, the player tracking shots are inch&d in thr
sub-cluster m.1.1.

e Cluster ¢ 2 basically consists of players from both teams.

with more player from team B. The audience of team
B are all clustered in m2.1. The sub-cluster m.2.2
consists of snapshots of players, while the sub-cluster
m.2 3 comprises players being tracked in the soccer
field.

e Cluster c.3 has only two shots which are shown prior
to the start of the soccer game.

e Cluster C.4 has mainly the bird view of the soccer
game. In m 4.1, the camera motion is stationary; in
m.4.2, the camera pans to thr left and f{o the right
when one tram attacks the other: m.4.3 includes the
bird view of shooting shots are included.

o Cluster ¢. 5 has mostly the medium shots of players
passing the ball around. The camera motion in m.5.1
is stationary. while the camera motion in m.5.2 tracks
the players when ditching the ball and faring oppo-
nents.
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Figure 11: Recall and precision curves for soccer video
(with L; norm as distance measure).

o Cluster ¢,fi has one shot screening the sky. This shot
is different from others in terms of color and content.

6.2.2 Refried

The performance of both the cluster-based and the cluster-
free retrieval approach is investigated. For the cluster-free
retrieval, we examine also the retrieval by motion feature. re-
trieval by color feature, and retrieval by both color and mo-
tion features. In addition, for all the tested approaches, we
investigate thr retrieval performance of employing L1 norm
and Lo norm as distance measure. For cluster-based re-
trieval. both clustering structures hy [; norm and Lo norm
are constructed for retrieval.

The tested query set consists of 53 queries. These queries
have been manually picked and checked to have good an-
swers. They consist, of close up of players from different
teams. bird view and medium shots. audience from different
teams. and shooting shots. Players and audience from dif-
ferent teams are placed in different classes. Similarly. shots
with different camera motions are put in different classes.
Thus, the effectiveness of discriminating shots hy color and
motion can be experimented.

Figure 11 shows the recall-precision of the tested approaches
by using L1 norm as distance measure, while Figure 12 shows
thr recall-precision by using L2 norm as distance measure.
Table 2 summarizes the ll-point average precision values of
various approaches. Similar to the experiment on the bas-
ketball video, L1 norm iS superior to Lz norm in term of
mean precision. The main results based on L, norm are:
retrieval by both color and motion features is constantly su-
perior to retrieval by either one feature: the recall of cluster-
based retrieval is better than that of cluster-free retrieval.

6.2.3 Clustering and Retrieval of Team Players
Clustering and retrieval of players by color features is an
interesting topic: however, a perfect clustering requires a
good segmentation tool to discriminate the players from the
background.

In this experiment, we manually select 32 close up shots of
players from both teams. each forms a class and has 16 shots.
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Figure 10: Clustering result of soccer video by using
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Figure 12: Recall and precision curves for soccer video

(with Lz norm as distance measure).

Table 2: Mean precision of different retrieval ap-

proaches.
Mean Precision
Approach L1 norm [L2 norm
Cluster-based Retrieval 0.56 0.44
Retrieval by motion and color 0.53 0.51
Retrieval by motion 0.43 0.40
Retrieval by color 0.47 0.45

Ly norm as distance measure. X(Y): X is cluster label and Y is

original image frame
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Figure 13: Result of player segmentation.

The foreground and background segmentation approach in-
troduced in Section 2.2 is adopted to compute foreground
images 3. before the k-mean agorithm (k = 2 in this case)
is employed to cluster the players. One example of fore-
ground (player) segmentation result is given in Figure 13.
Notice that instead of employing L: or Lz norm as feature
distance measure, we use histogram intersection [7] For simi-
larity measure since this measure can reduce the distraction
of background noise after segmentation.

The classification rate®. in term of confusion matrix, is shown
in Table 3; meanwhile the classification performance of with

2No training is involved. The two clusters formed by the
k-mean algorithm are checked to decide which team they
belong to. For instance, if the number of team-A players in
a cluster is more than that of team-B. the cluster belongs
to class team-A. The classification rate is then computed
accordingly.



with player seamentation

Team-A | Team-B
Team-A 0.875% 0.125%
Team-B || 0.125% | 0.875%

without .player sgamentation

Team-A | Team-B
Team-A || 0.5625% | 0.4375%
Team-B 0.25% 0.75%
Table 3: Confusion matrices of team classification.
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Figure 14: Recall
trieval).

and precision curves for player re-

and without player segmentation is compared and contrast.
In addition, the tested shots are also used as queries to in-
vestigate retrieval performance. The recall-precision of with
and without player segmentation is given in Figure 14. The
mean precision of the former approach is 0.77, while the lat-
ter is 0.61. As indicated by the experiment, foreground and
background segmentation has offered significant
ment on the clustering and retrieval of players.

improve-

6.3 Speed Efficiency

Table 4 compares the motion and color features in term of
the feature extraction time per image frame, and the fea-
ture vector length. The DC image size is 30 x 44. For the
basketball video (122 shots), the clustering algorithm takes
about 74 second to form a two-level hierarchical structure,
while for the soccer video (404 shots), the algorithm takes
approximately 861 se¢ (14.35 min). Table 5 further shows
the average retrieval speed of 400 queries by the four tested
approaches in the soccer video database. Cluster-based re-
trieval approach is about one time faster than of cluster-free
approach (retrieval by motion and color features).

Table 4: Performance of motion and color features (on
a Pentium 111 platform).

" Motion feature Color feature

Feature extraction (sec), 0.072 0.0054

Feature vector length 18 64
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Table 5: Retrieval speed on a database of 404 shots (on
a Sun Spare Ultra-l machine).

Approach speed (sec per shot)
Cluster-based Retrieval 0.29
Retrieval by motion and color 0.57
Retrieval by motion 0.30
Retrieval by color 0.31

7. CONCLUSIONS

We have described the issues of clustering and retrieval for
video abstraction and browsing through the extraction of
motion features from tensor histograms and color features
from image volumes. We have experimented the proposed
two-level hierarchical clustering algorithm with cluster va-
lidity analysis, and the cluster-based as well as cluster-free
retrieval methods. In general, the proposed approaches are
found to be suitable particularly for sport games where mo-
tion plays a critical roles in conveying the sport events.
In the experiments, our clustering algorithm can success-
fully classify the content of basketball and soccer videos.
Nevertheless, it is expected that player segmentation and
hand-crafted domain specific knowledge will further improve
the classification results. For retrieval, cluster-based ap-
proach in general gives slightly better results than that of
cluster-free approach. Experimental results also indicate
that player segmentation can offer significant improvement
for team classification and retrieval.
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APPENDIX
A. TENSOR HISTOGRAM

Tensor histogram encodes the distribution of local orienta-
tion in temporal slices. It is computed based on the structure
tensor to estimate the orientations of slices. The structural
tensor [ of slice H can be expressed as

Ew Hth

T = Jaw: th _ Zw Hi
B - > H

Jwt Jtt Zw Hsz,
where H, and H; are partial derivatives along the spatial
and temporal dimensions respectively. The window of sup-
port w is set to 3 x 3 throughout the experiments. The
rotation angle @ of I' indicates the direction of a gray level
change in w. Rotating the principle axes of [' by #, we have

} (14)

wa -]a:t T A 0
=| A 15
R|: Jat Jtt}R { 0)\t:| (%)
where
R = cosf sin f
- sinf cosf

From (15), since we have three equations with three un-
knowns, # can be solved and expressed as

Lo —1_ 2

§==-tan ———— 16
2 Jzz - Jtt ( )
The local orientation qﬁ of a w in slices is computed ag
-2 6>0
2 =[-Z
¢= { 0 + I otherwise ¢ =1 2’ 2] (17)

It is useful to add in a certainty measure to describe how well
(]5 approximates the local orientation of w. The certainty c
is estimated as

(wa - J“)2 + 4J. ,\J s 2

_ . 18
¢ E S MEREELS vy (18)
and c = [0, 1]. For an ideal local orientation, ¢ = 1 when

either Az = 0 or A¢ =
)\w = A{, c =0.

0. For an isotropic structure i.e.,

The distribution of local orientations across time inherently
reflects the motion trajectories in an image volume. A 2D
tensor histogram M(¢,{) with the dimensions as an 1D
orientation histogram and time respectively, can be con-
structed to model the distribution. Mathematically, the his-
togram can be expressed as

Y. )

M(¢p,t) =
Q(é,t)

where Q(¢,t) = {H(z,t)|T'(z,t) = ¢} which means that
each pixel in slices votes for the bin (¢, t) with the certainty
value c.

(19)

B. FOREGROUND OBJECT DETECTION

We introduce two different methods, namely background
subtraction and color back-projection, to approximately seg-
ment the foreground objects. These two methods are finally
combined to arrive at a better solution in locating the ob-
jects.
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B.I Background Subtraction

The simplest approach to detect foreground objects is by
subtracting image frames from a reconstructed background.
Denote Bg as a reconstructed background and | as an image
frame indexed by X = (z, y) and time ¢, we write

R(X, t) = [Bg(X + d(#)) = I(X, #)| (20)

where d(t) =
d(t)) is a hole,

Y :—01 dA(z) and R is a residue image. If Bg(X+
R(X, t) will be filled by the value 255.

B.2 Color Back-Projection

Suppose the approximate region of a foreground object is
known, we can actually replace the color values of that re-
gion by its color distribution probabilities. In this case, the
dominant color of a foreground object will have a high proba-
bility, while the sub-regions not belonging to the foreground
object should ideally have values close to zero. Thus, we
can automatically prune the approximate region, whilst ef-
fectively locating the foreground object.

In our scheme, the support layer of a foreground object
Mask; can be simply obtained by inverting the support layer
of a background object Masks,, i.e.,

1 if Masky(X, ¢) =

0 if Masky(X, t) = (21)

Maskf(X, t) = {
Our approach computes the 3[) color histogram of the re-
gions R supported by Mask; throughout a sequence, and
then projects the probability values [0, 1] back to R. Let ‘I-I
be a normalized histogram, and Ny be the k quantized color
value, mathematically we have

project: H(Ne) = ¥, Xy 7 Vx{QR(X, 1)) =
back-project: 'R(X t) = H(Q(R(X, 1))

where A is the area of R, while function Q is the color
quantization.

Ni}

B.3 Foreground Image Computation
Background reconstruction is always imperfect due to the
ghosting effect, as a result, noise removal after background
subtraction can be a dirty task. Likewise, the drawback
of color back-projection is amplified when the foreground
and background are somehow similar in color; the color his-
togram need to be finely quantized in order to distinguish
the color of foreground and background objects. As a com-
promise, the two approaches can be linearly combined to
trade-off their disadvantage. Denote R 3§ the normalized
residue image of an image frame I, a foreground image 3 is
computed by

F(X, t) = Pr(X = Foreground, t) x I(X, t) (22)

where

1 .~ .
Pr(X = Foreground, t) = —2-{R(X7 t) + R(X, t)} (23)
is the probability of a pixel I(X, t) belong to a foreground
object. In (22), ideally, the background pixels of I should
be set to zero, while the foreground pixels should be set to

a value closed to the color value of I.
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