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ABSTRACT motions ought to be done prior to clustering.
Clustering of video data is an important issue in video ab-
straction, browsing and retrieval. In this paper, we pro-
pose a two-level hierarchical clustering approach by aggre-
gating shots with similar motion and color features. Motion
features are computed directly from 20 tensor histograms,
while color features are represented by 30 color histograms.
Cluster validity analysis is further applied to automatically
determine the number of clusters at each level. Video re-
trieval can then be done directly based on the result of clus-
tering. The proposed approach is found to be useful partic-
ularly for sports games, where motion and color are impor-
tant visual cues when searching and browsing the desired
video shots. Since most games involve two teams, clsssifica-
tion and retrieval of teams becomes an interesting topic. To
achieve these goals, nevertheless, an initial as well as criti-
cal step is to isolate team players from background regions.
Thus, we also introduce approach to segment foreground
objects (players) prior to classification and retrieval.

Clustering algorithms can be grouped into two categories:
partitional and hierarchical [3].  Hanjalic & Zhang [l]  have
introduced a partitional clustering of video data by utilizing
the color features of selected keyframes. Here, we introduce
a two-level hierarchical clustering algorithm by making use
of both color and motion features. The proposed clustering
algorithm is unsupervised, the number of clusters is deter-
mined automatically by the cluster validity analysis [3].  Su-
pervised version of clustering algorithms by Hidden Markov
Models can be found in [2, 61,  and by decision rules can be
found in [8].

In this paper, we focus on organizing the content of video.
Our approach is based on the pattern analysis and process-
ing of temporal slices. We utilize the tensor histogram intro-
duced by Ngo et. al. [4] for motion feature extraction and
foreground object segmentation. By incorporating motion
and color features, we further propose a two-level hierarchi-
cal clustering algorithm to organize and index the content
of video. The constructed clustering structure inherently
provides an indexing scheme for video retrieval. We hence
study and investigate the fundamental difference and the
effectiveness of retrieving with (cluster-based) and without
(cluster-free) clustering structure.

Keywords
Hierarchical clustering, Motion and color retrieval, Team
classification

1. INTRODUCTION
Clustering is a natural solution to abbreviate and organize
the content of a video. A preview of the video content can
simply be generated by showing a subset of clusters or the
representative frames of each cluster. Similarly, retrieval
can be performed in an efficient way since similar shots are
indexed under the same cluster. Regardless of these advan-
tages, general solutions for clustering video data is a hard
problem. For certain applications, motion features domi-
nate the clustering results; for others, visual cues such as
color and texture are more important. Moreover, for cer-
tain types of applications, decoupling of camera and object
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copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
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Although the experiments are performed in the sport video
domain, no specific domain knowledge is being utilized. We
demonstrate that these videos are well represented as a two-
level hierarchy. The top level is clustered by color fea-
tures while the bottom level is clustered by motion features.
The top level contains various clusters including wide-angle,
medium-angle and close-up shots of players from different
teamsl. Each cluster can refer to a sport event. For in-
stance, the wide-angle shots of a basketball video usually
correspond to full court advances, while the wide-angle shots
of a soccer video normally correspond to bird view scenes.
The shots inside each cluster can be further partitioned ac-
cording to their motion intensity. In this way, for exam-
ple, the sub-cluster of a close-up shot can correspond ei-
ther to “players running across the soccer field”, or “players
standing on the field”. Such organization facilitates not only

‘The  classification of wide-angle, medium-angle and close-
up shots are roughly based on the distance between the cam-
era lens and the targeted scene.
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video browsing and rrt,rirval.  but also some high-level videu
processing t‘asks. For instance, to perform player rrcog-
nition.  only those shots in the cluster that correspond to
CIOFC-I~~ shots of players are picked up for processing. To
prrform  motion-based background reconstruction. the  Sub-
clustrr  corresponds to “players running across the  soccer
firld”  is furlher selected for processing.

\n  xivant,agc  of working in thr sporl  video domain is that
thr ramcm  motion is usually smooth and restricted to pan-
tilt. stationary and zoom This is because sport videos arc
usually captured with several fixed camcms  that ase  located
in the stand. Since the camera motion is smooth. motion-
based video segmentation  can usually be performed in a
robust way. In this paprr  wr employ the foreground and
background segmcntntion  algorithm introduced bv Kgo  et.
al.  [4] to cxtrwt  the players and subsequently perform team
clCaaiiication.  We demonstrate tlrat team classification with
player segmentalion  can ofTer  significant improvement ov-CT
that uf without player segmentation.

I‘he  paper is organized as follows. Srction 2 gives a brief
mtroduct,ion on t,he motion pattern analysis and segmen-
tation of vidro shot5  in temporal slices. These methods
arc hrthw  utilized in Section 3 for motion. color and ob-
ject features extraction. Subseqwntly,  Section  4 proposrs
a two-level hierachicnl chrstcring algorithm by motion and
dolor  fr;t~uras.  Srrtion  5 invrstigates  the  Fundamental dif-
frrrnrc  of rhlst,rr-basrd  and cluster-free rel,rieval. Section
ii prcscds  our cxprrimcntal  results on  clust,ering.  retrieval
and team classification of sport videos. Section 7 con&dcs
our  proposed works.

2. PROCESSING OF MOTION PATTERNS
IN TEMPORAL SLICES

If we \-iw a video <a an image volume with (z,  y) irnage
dimension and 1 temporal dimension, the spatio-temporal
slices are R set of 20 images in a volume with onr  dimcn-
sion  in i. and thr r&her  in .c  or 1,. for  instance. One example
is giwn  in Figure 1:  the horizontal axis is t. while the verti-
cal axis is c. For OUT application, we process all slices. both
horizontal and vertical. in a volumr  to an&r  thr spat,io-
temporal patterns due to various motions. In addition. to
reduce thr rompnt,at,ionnl  and  storage  owrhead.  all process-
ing arc done directly in lilPEE domain.

4 spado-temporal  slice, by first impression. is composrd  of
color md texture components. On one  hand, the dixontinn-
ity  of color and trxt,uw  infers thr occurrence of a new event:
on  the  other  hand, the orientation of textnra  depicts camera
and  object motions. By promssing  thr patterns in hiices,
motion analysis and scgmmtation  can bc done in a more ef-
f&+ivr  and cflicicnt  wav. Figure  1 shows a spat&temporal
sliw  crtrartrd  from a video composed of three shots. As
wen from the  figure, camera motion can be inferred dire&v
from the texture pattern. For  inst,nnce.  thr slanted lines in
shot B depict ~xnrr;t  panning. and the  lines which expand
in R V-sh;tpc  in shot, D drpict  zooming. In addition, multiple
motions CR”  also bc pwcrivrd  when two dissimilar texture
pattrrns  appcarrd  in a shot. a shown in shot  C. In this
shot. thr middle region describes a non-rigid object motion,
while the backgrnund region indicates camera panning.

Figure 1: Patterns in a temporal slice.

(b) parallax panning

Figure 2: Motion trajectories in the tensor histograms.

2.1 Motion Analysis
We utiliz  the 2lI tensor hist,ogram  approach [4] (see Ap-
pendix A) (0 exlracl  the texture pstwrns  from temporal
slices for clustering and retrieval. A tensor histogram M($.  t)
with one dimension as an ln orientation histogram and the
other dimension as time, can  be rmployed  to model the dis-
tribution of texture orientations in slicrs. This distribution
inherently reflects the motion trajectories in an image se-
quence. two examples are given in Figure 2. The tra,jectories
in the figure are the histogram peaks tracked over time. In
Figure  2(a) one trajectory indiates  a non-stationary ha&
ground, and the other indicates objects moving to the right:
in Figure 2(b) two trajet:t,ories  progrrss  in a similar manner,
they correspond to parallax motion (or camera  panning).

2.2 Motion Segmentation
Slotion srgmentat,ion can  br achicvrd  b y  back-projecting
the motion trajectories in a tensor histogram to temporal
slices to form spatially separated motion layers. Each mo-
Con layer  is directly a~sociatcd with a layer  of support. Fig-
ure 3 illustrates the major flow of this idra. Given a srt of
spatirrtemporal  slices. a 2lI Lensor  histogram is compulrd.
The 2II histogram is further nowuniformly  quantized into
a IL1  normalized motion histogram to rlualitativrly  rrprr-
sent l,he  rigid camera and object motions. The peak of the
hisLogram is then hack-projected onto the original irrrage  se-
quence. and is assumed as a background layer. As shown
in the figure, the background panoramic image  can br hrr-
ther  reronstnrcted  by aligning and  past,ing  t,hr  projecting
pixels. Thr forcground  ohjcct.  on the othrr  hand. has n
support layer  which is the inverse of background support
layer. The exact boundary of a foreground object can be
located in a more  precisr  way by the background subtrar-
tion technique and the  color ha&projection  of thr suspcct,rd
foreground rrgion  (scr  Appendix B). For robostncss,  a scg-
mcnted foreground object is rrpresatnd  by a probabilily
map Pr(X = Foreground. t) which indicates the probability
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Figure 3: The scheme for foreground segmentation

of a pixel 1(X,  t) belongs to a foregrourld  object.

3. FEATURE COMPUTATION
\Vc prrsmt  mrthods  to rxtraa  motion and color trat.ureh
dirertly  from shots. Roth motion and color features  are rep-
resented ss hislograrrrs. sine  this representation is effective
and  inexpensive for clustering and rctricval.

3.1 Motion Feature
Given a %I) tensor histogram !f($.  1)  of a shot wmposed  of
u frames, the  motion feature vector ,\/I  which is composed
d lY kature  points. is computed by

where Q(p’)  = 111 is d quantizatiou  funt:tion.  s = $ is the
s t e p  o f  quanti&ion.  a n d  k -=  {I. 2,. ,  A’ I }  rcprrhents
B cpmtizcd  Icvrl.  Thr romputpd  motion feakures  describe
the  motion intensity of a shot. Since 10  1 > 0, the motion
frat,rlre is direclionless.  whether to encode the directional
inCormatiotr  to mot,ion  vxtor  is tailored to applications. In
our  experiment. IV is set to 10, and  the tensor histograms
ot  both horizontal and wrrical  sliwh are used  for feature
computation.

3.2 Color Feature of au Image Volume
‘I‘he color fwture  of R shot, reprrsented as a 30  color his-
togram. is computed directly  in thy  YCV  color spxe of its
DC: imagr  scqwnc~.  A color histogram describes the global
color  distribution in a shot. It is easy to compute and  is
insensitive to small changes in viewing  positions and  partial

occlusion. As a feature vector for clustering and  retrieval, it
is suswptihlr  to f&c  alarms. In our experiments.  each color
channel  of YUV is uniformly qoantizcd  to four bins. rcsnlts
in s 64 dimmsional  color feature urctor.  Each  color his-
togram will be further normalized by the number of frames
in a shot.

3.3 Color Feature of a Segmented Object
Thr srgmentrd  object of an  image frame I is associated with
a support layer, Mask, and B prohahility  map. Pr. ‘The
color histogram is computed as

C(k) = + g- c Pr(X,  i)}
Lkl a

(2)

where  A t {Q(I(X.t))  = k A Afask(X.1)  = 1). and  Q is
a color quantization  function. Meanwhile, k is an index lo
a quantized value. X is an index to a pixel location, and  t
is an  index to time.  The histogram is computrd  dirrctly  in
the YUV color space. and each color channel is uniformly
quantized into four bins.

3.4 Distance Measure
The LI and Lz norms  LIP  two of t,hr  most frequently used
distance metrics for comparing two fcaturc  vectors.  In prac-
tice.  bowever,  LI norm performs better than I42 norm birxe
it is ~OIP robust to outlicrs [,i].  Furthermore. L,  norm is
morr  computationally  cfficicnt  and robust. The distance
between two non-zero length feature vectors 3 and  3’ is
romputed  as.

I ”
n(r.r)=  Z(3,3’)  ill{C 13(z) 3’(i)lk}$ (3)



where

is a normalizing function. In Eqn (3),  k = 1 for Li norm
and k = 2 for Lz  norm.

4. HIERARCHICAL CLUSTERING
We employ a two-level hierarchical clustering approach to
group shots with similar color and motion. The algorithm
is implemented in a top-down fashion, where color features
are utilized at the top level, while motion features are used
at the bottom level. At the top level, the color feature space
is partitioned to k, clusters. At the bottom level, each k,
cluster is further partitioned into k,  clusters.

4.1 K-Mean Algorithm
The k-mean algorithm is the most frequently used clustering
algorithm due to its simplicity and efficiency. The algorithm
is employed to cluster shots at each level of hierarchy inde-
pendently. The k-mean algorithm is implemented as

0 Step 1: Choose ~1, ~2, . . . , ph as initial cluster cen-
troids.

l Step !Z  Classify each feature F to the cluster 6 with
the smallest distance

?j  = arg15j5k  min D(F,  puj) (5)

l Step 3: Based on the classification, update cluster cen-
troids as

(6)

where n.  is the number of shots in cluster j,  and .7?:”
is the itiZ feature vector in cluster j.

l Step 4: If any cluster centroid changes value, goto Step
2; otherwise stop.

The algorithm is suboptimal. The initial guess of cluster
centroids in Step 1, and the order in which feature vectors
are classified can affect the clustering result. To diminish
the sensitivity of Step 1, the initial centroids are selected in
the following way:

l Step 1: Given n m-dimensional feature vectors, divide
the rn dimensions to p = F subspaces. These sub-
spaces are indexed by [l, 2,. . . ,p],  [p+l,p+2,. . . ,2p],
. , [(k - l)p, (k - 1)p + 1,. . , kp].

l Step 2: In each subspace  j of [(J’  - l)p, . . . , jp], asso-
ciate a value f,” for each feature vector .7=%  by

f,”  = 5 3,(m) (7)
m=(j-I),

l Step 3: Choose the initial cluster centroids ~1, /~a,  ,
Pk by

h = argFL 1’$,“<“,  f,j (8)

4.2 Cluster Validity
The number of clusters k needs to be explicitly specified for
the k-mean algorithm. However, in most cases, k is not ex-
actly known in advance. In order to find an optimal number
of clusters, we have employed the cluster validity analysis
[3].  The intuition is to find clusters that minimize intra-
cluster distance while maximize inter-cluster distance. The
cluster separation measure p(k) is defined as

where

(9)

(10)

rlj  is the intra-cluster distance of cluster j,  while &j is the
inter-cluster distance of clusters i and j.  In the experiments,
the optimal number of clusters k is selected as

(12)

In other words, the k-mean algorithm is tested for k =
(112,. . . 1 w, and the one which gives the lowest value of
p(k) is chosen.

4.3 Similarity Matrix
We can readily incorporate a similarity matrix Sim at each
level of hierarchy to describe the similarity, i.e., the inverse of
inter-class distance, between clusters i and j.  For n clusters,
we have

1 (13)

which is a symmetrical matrix. The matrix Sim can facil-
itate the retrieval process. To browse shots with a similar
motion to cluster i, one can just sort the entries in the ith
row of Sim in descending order, and then traverse the links
accordingly.

5. RETRIEVAL
Given a query represented by low-level features, motion and
color in our case, a retrieval system returns a set of items
sorting in ascending order according to their respective dis-
tances to the query. This is normally referred to as a k
nearest neighbor (KNN) search problem, which is actively
studied by both computational geometry and multimedia
retrieval communities. By coupling clustering issues with
retrieval problems, the clustering structure, on one hand, in-
herently provides an indexing scheme for retrieval, while on
the other hand, intuitively speed up the retrieval time. We
refer to this issue as a cluster-based retrieval problem. The
fundamental difference between cluster-based and cluster-
free retrieval are illustrated in Figure 4. Suppose a query
is located at the boundary of two classes, cluster-free re-
trieval will include items from both classes, i.e., items inside
the dotted circle in Figure 4, at the top of a ranked list.
In contrast, clustered-based retrieval compares the distance
between the query and each cluster centroid, and ranks the
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Figure 4: When a query locates at the boundary of
two classes, the retrieval results of the cluster-based and
cluster-free approach will be quite &f&rent.

items whose clustrr  wntroid  is nearer  to the query at t,hr
top of a list,.

5.1 Cluster-based Retrieval
In ,I hierarchical clustering stnrctnre.  a ccntroid  at th? top
lcvcl rrpresmts  t,hr  color charat-t,crist,irs  of a chstcr,  while
a cerrtroid at the botwm  level represents the motion char-
dcteristics  of a cluster. Uuring  retrieval. cluster centroids
at the top level of hierarchy ark first compared with the
color feature-  of a query. A chmter  with the nearest centroid
is first located.  Then.  its sub-chMcrs  in t,hr  bottom level
ax  furthrr  compnrrd  wit,h  t,hc  qucrp.  Thr itrms in one of
these sub-clusters whose cenlroid  is the nearest to the mo-
tion feature of the query. are sorted in ascending order of
their distance to the query, and put accordingly at the top
of n rankad  list. Thr  rrt,rirv;tl is processed in a depth-first-
srarch-likr  manner,  mraning  that  after  all sub-clust,crs o f
the most similar cluster  are xrled,  the nrxi similar cluster
is handled in the same  wa.y. ‘This process is repeated until
thr  few most similar or all clusters are visited.

5.2 Cluster-Free Retrieval
If a clust,ering strwturr is not availahlc,  WC ran mcrgc  thr
ranked lists given by both  motion and color featurrs.  A
straighlforward  way is LO linearl,y weight the distance mra-
surrs  givrn  hy hot,h  fcaturcs.  &-note  <  M,C  >  a n d  <
M’.C’ > as two pairs of motion and color feature vectors.
WC  have

D(< M,C  >.< M’.C’  >) = n,wD(M,M’)  +ncD(C,C’)

where ot,,  and  nc are weights. and a,+,  + ar  = 1.0. ‘lb
equally weight bath  features. we  set a,+,  = UC  = 0.5.

6. EXPERIMENTS
To trst,  thr rffcctivmcss  of t,hc  proposrd  chxtcring  and rr-
trirval  approach. WC conduct cxprrimrnts  on both the has-
krlball  and  bwrrr  video. The rrtricval  performance is RYRI-
ueled  in terms of WCRII  and precision where

I(a) Close-up (b) FCA (c)  thaky
I

Figure 5: Sample shots in the tested basketball video.

thr  rclcvant,  items. Ideally, precision  values should bc cqoal
to one acrclss  all recall  “;tl”CS.

6.1 Basketball Video
The tested basketball video composed of 122 shots, approxi-
rrmtely 24,000 frames. Most  of the shots can be categorized
under close up shots, full court advances (FCA) and  penalty
shot,s,  as shown in Figurr  3. Closr up shot,s  ;XP  normally of
short duration, with the camera tracks  a pl,zyrr  from framr
to frame. EA are usually captured by a mid-court camera.
The camera  is panned towards the direction when the ball is
being advanced  from one end of the court to the other. Thr
camera of penalty shots is usually tilted up at the moment
whrn  the hall is shot.

6 . 1 .  I  Clustwing
The testrd  video is first parrit,ioncd  int,o  shots and then a 211
tensor histogram is computed for each shot. For cluslering,
t,hc  motion and  color features arr  extracted. respectively,
from thr 20 tensor hist,ograms  and imagr volumes of shots.
Figure  6 depicib thr  chMcring  rcsnlts  by using LI  norm
as the distance measure.  Shots that arc nearest  to cluster
cenlroid~  are shown in the figurr  to  rcprcscnt  clusters. The
top level has four clusters, while the bottom lrvrl  consists
of nine clusters.

By manual  investigation of the clustering results. ne ~UIII-
marizr  thr rharactcristics  of rach  cluster as follows:

l Ch&er  c.2 basically consists of players from i~otn  ~eamb
Thr players can not he classified according to  their
trams due to thr unsegmcntcd  ch,tt,errd  background.

l Cluster c.3 ha  mainly the FCA shots. These shots
we grooprd  accordingly in the sub-cluster m.3.1 by
motion frat,nrcs.

6.1.2 Retrieval
‘The performance of both the cluster-based and the clwtw
fwe  retrieval approach is investigated. For the cluster-free
rrtricval.  wc  rxaminr  also the ret&v-al  by motion  feature. re-
trirval hy color fcaturc,  and  rctrirval  by both  color and mo-
tion features. In addition. for all the t&cd appronchcs,  WC



~ m.1.I  (3) m.1.2(11) m.2.1  (7) m.2.2(16) m.2.3(18)  1x1.2.4(27)  m.3.1(31) m.3.2(4) m.4.1(5,

Figure 6: Clustering result of basketball video by using L1 norm  as distance measure. X(V):  X is cluster label and Y
is the number of shots in a cluster.

Table 1: Mean precision of &f&rent  retrieval ap-
“rolrhes~

Mrnn Prrcision
Appronrh I,, norm r>z  norm

Clustrr-hased  Retrieval 0.53 0.50
R~trirval  hy motion and color 0.53 0.48

Iktrievd  by motion 0.53 0.53
Krtrieval  bv color 0.43 0.42

Thr arstcd  qwry  set consists  ol 2.5  queries which are manu-
ally pickrd  and checked to havr  good answers. They consist
of close up of players from different teams, t’CA,  prnalty
and shooting shots. Players  Srom  different teams BE placed
in diffcrrnt  classes. Similarly, players captured by difleerent
camera  motions fr.g.,  track and zoom>  are put in different
cl‘&~~es

Figure 7 shows the recall-precision  of the t,rsted approaches
hy using 1,~  norm as distance measure, while Figure  8 shows
the recall-precision hy using Ls  norm  as distance measnrc.
Table I summarizes the II-point  average precision vah~s
of various approaches. As indicat,cd  from thr rxperimen-
t,al  r e s u l t s .  thr  rct,ricval prrformance  based o n  I,1  norm
d&lance  measure  is more robust and  consistent  than La
norm. Throughout the experiments. motion feat,urcs alonc
givr  helter  retrieval performance compared  with color fea;
tures.  For LI  norm. by incorporating hot,h  color and motion
fcaturrs  for rct,rirval.  thr  retrirval  precision does not show
improvement compared to employing motion features alone.
In addition. the performance of Aster-haqed  and cluster-
free retrieval bard  on LI norm does not show significantly
diffcrmt  rcsult,s.  This may indicate that  the feature space
of h,askcthall  vidro  is well  separated among the categories
of close up shots, FCA and  penalty shots. This is not sur-
prised since visually these categorirs  hzwr  diffrrcnt,  color and
niotion  content.

Figure 8: Recall and precision curves for basketball
video (with Lz norm as the distance measure).
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(h) (cl (4 I

Figure  9:  Sample shots in the tested soccer video:
(n)nudience;  (b)  b ird view;  (c) medium shot;  (d) close-
UP.

6.2 Soccer Video
The tested video is composed  of 404  shots, approximately
100.000 frames. Most of thr  shots can  he categorized under
audicncr.  bird view. mrdiom,  and close up shots. ti shown
in Figure 9. For  simplicity, we-  refer  to thr two socrer  teams
az team  A and team B. The color of thr audiences’ clothing
is same az thr players whom they  support.

6.2. I Clustering
The  rcstcd  vidw  ib first partitiowd  inlo  shots and then a 211
tensor  hist,ogram  is computed for each shot. For clustering,
t,he  motion and color features are extrexted.  respectively,
from the 2lI  tensor histograms and image volumes of shots.
Figure  10 depicts the clustering results hy using LI norm  a.5
thr distanw  measor~.  Shots t,hat  we the nearest  to cluster
cmtroids  aw  shown in thr  figure-  to represent clusters. The
top lcvel  ha  six cluster+  while the hottom level consists of
thirtrrn  clusters.

l Cluster c.1 mostly  consists of plity~rs and  audiences of
t,cam A, coaches of hoth teams,  r&rees.  and shots of
playrrs  bping  hurt accidentallv.  The audiences of team
A are  all  clustered in the sub-cluster ml.2  Mean-
while ,  the  play-er tracking shots arc  inch&d in thr
subcluster  m.1.1.

l Cluster c 2 basically consists of players  from both  tesms.
with more  player  from learn  R. The audience of team
R are  al l  c lustered in m2.1 . ‘The s”t>-clustPr  m.z.2
consists of snapshots of piayrrs.  whilr  t,hr sub-chMn
m2  3 comprises players bring  tr,?rkcd  in the soccer
field.

l (hdrr  c.4 has mainly the bird  YWW  of the soccer
game. In m 4.1.  the  camera motion is st,ationwy;  in
m4.2.  the camera  pans to thr left  and t,o  the  r ight
when  on?  tram attacks  the  other: m.4.3 includes the
bird view of shooting shots are included.

l (‘luitrr  c. 5 1ia.s  mostly the rrdiurn  shots of plqvrs
passing  the  bail  around. ‘The camera motion in m.5.1
ib  stationary. while the camera motion in 77.5.2  tracks
the players when ditching the  hall  and faring oppo-
nents.

1

l Cluster c.6  has onr  shot screening  t,hr sky. This shot
is diffrrcnt  from othrrs  in terms of color and content.

6.2.2 Refried
The pcrformsnce  of both the cluster-based and the ciuster-
free retrieval approach is investigated. For  the cluster-free
retrieval, we exminr  also t,hr rctriwal  by motion feature.  re-
trieval  by color fenturc.  and rctrirvsl  hy both color and mo-
tion fraturcs.  In addit,ion,  for ,211  the tested  approaches, WC
invcstigat,c  thr rct,rievsl  performance of employing I,1  norm
and LZ  norm cas distance measure.  Poor cluster-based re-
trirval.  both clustering structures hy LI  norm  and LS  norm
are constructed for retrieval.

The  t,rsitrd query  srt  consists of 53 queries.  Thrse  q~rirs
have  hcrn  manually picked and cherkrd  IO havr  good an-
swcrs.  They  consist, of claw  up of players  from different
teams.  bird view and medium bhots.  audirncr  from differrnt
teams. and shooting shots. Players and audience from dif-
ferent teams  are placed in different glasses.  Similarly. shots
with different camcrn  mot,ions  arr  put in diffrrcnt,  classrs.
Thus, thr  effrctivcncaa  of discriminating shot,s hy color and
m&on  can hr  exprrimmted.

Figure I1 shows the recallLprPcision  of thr  +,rst~d  appronch~
by using LI norm as distance me~~urc.  whilr  Figure  12 shows
thr recall-precision by using I,Z  norm as distance measure.
Table 2 summarizes the ll-point average precision values of
various  approxhes. Similar to the experiment on the hu-
k&hall  video,  LI norm  is superior  to I.2  norm in term ol
moan  precisiorr.  The main results  based  on L,  norm  are :
retrieval by both color and motion features is constantly SLIP
perior  to retrieval hy either onr  feature: the recall  of cluster-
based retrirval  is hettrr  than that,  of ciust,cr-frcr  rrt,ricval.

6.2.3 Clustering and Retrieval qf Team Players
Clustering and rctrirval  of playws  hy color fraiurcs  is an
intrrcsting  t o p i c :  how3rr,  n prefect  ciustering  rrquirri  a
good srgmentation  tool to discriminate the pla,yers from  the
hackground.

In this experiment, we manually select 32 close up shots of
players from both teams.  carh  forms a class and has 16 shot,s.
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Figure 10: Clustering result of sorter  video by using L, norm as distance  measure,  X(Y): X is cluster label and Y  is

pm%ches.
Lleaii  Precision

.4pyroxh L,  n”rm Lz n”nn

Cluster-based Retrieval 0 . 5 6 0.44
Rrtricval  by motion and color 0.53 0.51

Retrieval by motion 0 . 4 3 0.40

Iletried  by  color 0.47 0 . 4 5

Figure 13: Result of player segmentation.

The foreground and bxkground segmentation approach ill-
traduced  in Section 2.2 is adopted to rompotc  foreground
images 3. bcforr  the k-mran  algorithm (k = 2 in this coax)
is employed to cluster the players. 0~ example of fore-
ground (player) segmcnt,at,ion rrsolt,  is given  in Figurr  13.
Notice that instead of employing 1‘1  or 1,~  norm a frame
distance measure,  we use histogram intersection [7]  For simi-
larity measure since this measure can reduce the distraction
of background noise after segmentation.

The clayssification  rate’.  in term ofconfusion  mat,rix,  is shown
in Tabk  3; meanwhile the classificalior~ performance of with

‘No training is involved. The two  clusters formed by the
k-mean algorithm are checked to decide which team  they
belong  to. For instance, if the number of team-A players in
a cluster ih  more than that  of team-B. the cluslw  belongs
to class team-A. The cla..silication  m&e  is then computed
accordingly.



with alauer  seamentation

without alaver  seamentation

Table 3: Confusion matrices of team classification.

0.6

0 0.2 0.4 0.6 0.8 1
RNXlll

Figure 14: Recall and precision curves for player re-
trieval).

and without player segmentation is compared and contrast.
In addition, the tested shots are also used as queries to in-
vestigate retrieval performance. The recall-precision of with
and without player segmentation is given in Figure 14. The
mean precision of the former approach is 0.77, while the lat-
ter is 0.61. As indicated by the experiment, foreground and
background segmentation has offered significant improve-
ment on the clustering and retrieval of players.

6.3 Speed Efficiency
Table 4 compares the motion and color features in term of
the feature extraction time per image frame, and the fea-
ture vector length. The DC image size is 30 x 44. For the
basketball video (122 shots), the clustering algorithm takes
about 74 second to form a two-level hierarchical structure,
while for the soccer video (404 shots), the algorithm takes
approximately 861 set  (14.35 min). Table 5 further shows
the average retrieval speed of 400 queries by the four tested
approaches in the soccer video database. Cluster-based re-
trieval approach is about one time faster than of cluster-free
approach (retrieval by motion and color features).

Table 4: Performance of motion and color features (on
a Pentium III platform).

11 Motion feature 1 Color feature

1 Feature extraction (set) 11 0.072 0.0054 n
Feature vector length ’ 11 18 64 n

Table 5: Retrieval speed on a database of 404  shots (on
a Sun Spare Ultra-l machine).

Approach speed (set per shot)
Cluster-based Retrieval 0.29

Retrieval by motion and color 0.57
Retrieval by motion 0.30
Retrieval bv color 0.31

7. CONCLUSIONS
We have described the issues of clustering and retrieval for
video abstraction and browsing through the extraction of
motion features from tensor histograms and color features
from image volumes. We have experimented the proposed
two-level hierarchical clustering algorithm with cluster va-
lidity analysis, and the cluster-based as well as cluster-free
retrieval methods. In general, the proposed approaches are
found to be suitable particularly for sport games where mo-
tion plays a critical roles in conveying the sport events.
In the experiments, our clustering algorithm can success-
fully classify the content of basketball and soccer videos.
Nevertheless, it is expected that player segmentation and
hand-crafted domain specific knowledge will further improve
the classification results. For retrieval, cluster-based ap-
proach in general gives slightly better results than that of
cluster-free approach. Experimental results also indicate
that player segmentation can offer significant improvement
for team classification and retrieval.
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APPENDIX
A. TENSOR HISTOGRAM
Tensor histogram encodes the distribution of local orienta-
tion in temporal slices. It is computed based on the structure
tensor to estimate the orientations of slices. The structural
tensor r of slice H can be expressed as

where H,  and Ht  are partial derivatives along the spatial
and temporal dimensions respectively. The window of sup-
port w is set to 3 x 3 throughout the experiments. The
rotation angle 0 of I’ indicates the direction of a gray level
change in w. Rotating the principle axes of I by 0, we have

R[ k ;::]RT=[ ;̂  x”J (15)

where

R = cos 8 sin 0
- sin0 COSQ 1

From (15),  since we have three equations with three un-
knowns, 8 can be solved and expressed as

Q = i tan-’ 2Jzt
J,, - Jtt (16)

The local orientation 4 of a w in slices is computed as

d,= o-5  o>o
0 + $ otherwise 4 = f-?, $1 (17)

It is useful to add in a certainty measure to describe how well
C$  approximates the local orientation of w. The certainty c
is estimated as

c = (J,x  - Jtd2 + 45%  = (A, - yz
~(Jzz  + Jtt)” xz + At (18)

and c = [0, I]. For an ideal local orientation, c = 1 when
either X, = 0 or Xt  = 0. For an isotropic structure i.e.,
A, = At,  c = 0.

The distribution of local orientations across time inherently
reflects the motion trajectories in an image volume. A 20
tensor histogram M($,t)  with the dimensions as an 1D
orientation histogram and time respectively, can be con-
structed to model the distribution. Mathematically, the his-
togram can be expressed as

M(d,t)  = c $4 (1%
n(+,t)

where n(d,t)  = {H(~,t)]I’(5,t)  = 4)  which means that
each pixel in slices votes for the bin (4,  t) with the certainty
value c.

B. FOREGROUND OBJECT DETECTION
We introduce two different methods, namely background
subtraction and color back-projection, to approximately seg-
ment the foreground objects. These two methods are finally
combined to arrive at a better solution in locating the ob-
jects.

B.l Background Subtraction
The simplest approach to detect foreground objects is by
subtracting image frames from a reconstructed background.
Denote Bg as a reconstructed background and I as an image
frame indexed by X = (z,  y) and time t, we write

R(X,  t) = IJWX  + d(t))  - 1(X,  t)I (20)

where d(t) = Cfzt  d(i) and R is a residue image. If Bg(X+
d(t)) is a hole, R(X,  t)  will be filled by the value 255.

B.2 Color Back-Projection
Suppose the approximate region of a foreground object is
known, we can actually replace the color values of that re-
gion by its color distribution probabilities. In this case, the
dominant color of a foreground object will have a high proba-
bility, while the sub-regions not belonging to the foreground
object should ideally have values close to zero. Thus, we
can automatically prune the approximate region, whilst ef-
fectively locating the foreground object.

In our scheme, the support layer of a foreground object
Maskf  can be simply obtained by inverting the support layer
of a background object Maskb, i.e.,

Maskf(X,  t)  = 1  i f  Ma.skb(X,  t)  =  0
0  i f  Maskb(X,  t)  =  1 (21)

Our approach computes the 32)  color histogram of the re-
gions R supported by Maskf  throughout a sequence, and
then projects the probability values [0, l]  back to R. Let ‘l-l
be a normalized histogram, and ~VI, be the Ic quantized color
value, mathematically we have

project: ‘Ft(Nk)  = C,  C,  2 Vx,t{Q(R(X,  t))  = Nk}

back-project: 2(X,  t) = Z(Q(R(X,  t)))

where A is the area of R, while function Q is the color
quantization.

B.3 Foreground Image Computation
Background reconstruction is always imperfect due to the
ghosting effect, as a result, noise removal after background
subtraction can be a dirty task. Likewise, the drawback
of color back-projection is amplified when the foreground
and background are somehow similar in color; the color his-
togram need to be finely quantized in order to distinguish
the color of foreground and background objects. As a com-
promise, the two approaches can be @early  combined to
trade-off their disadvantage. Denote R as the normalized
residue image of an image frame I, a foreground image 3 is
computed by

F(X,  t)  = Pr(X = Foreground, t)  x 1(X,  t) (22)

where

Pr(X  = Foreground, t)  = i{R(X, t)  + fi(X,  t)} (23)

is the probability of a pixel 1(X,  t)  belong to a foreground
object. In (22),  ideally, the background pixels of I should
be set to zero, while the foreground pixels should be set to
a value closed to the color value of I.

6 0


	On clustering and retrieval of video shots
	Citation

	tmp.1641792859.pdf.yRS6D

