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ABSTRACT
Based on keypoints extracted as salient image patches, an
image can be described as a “bag of visual words” and this
representation has been used in scene classification. The
choice of dimension, selection, and weighting of visual words
in this representation is crucial to the classification per-
formance but has not been thoroughly studied in previous
work. Given the analogy between this representation and
the bag-of-words representation of text documents, we ap-
ply techniques used in text categorization, including term
weighting, stop word removal, feature selection, to generate
image representations that differ in the dimension, selection,
and weighting of visual words. The impact of these repre-
sentation choices to scene classification is studied through
extensive experiments on the TRECVID and PASCAL col-
lection. This study provides an empirical basis for designing
visual-word representations that are likely to produce supe-
rior classification performance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Experimentation, Performance

Keywords
scene classification, keypoint, local interest point, bag-of-
visual-words
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1. INTRODUCTION
Classifying images or video scenes into semantic categories

is a problem of great interest in both research and prac-
tice. For example, an online collection of photos needs to
be grouped into categories like “landscape”, “portrait”, and
“animal” to support efficient browsing. To search over a
large archive of news video, we want to classify video frames
by the presence of certain scenes (e.g., meeting) and ob-
jects (e.g., buildings) and by semantic topics (e.g., politics).
Scene classification is typically based on real-valued feature
vectors describing the color, texture, and other visual prop-
erties of images. This representation is significantly different
from the sparse and discrete term-vector document represen-
tation in text categorization, and therefore, there has been
little connection between the two streams of research.

Recently, there is a trend of using image keypoints or lo-
cal interest points in image retrieval and classification [8,
9, 5, 18, 23, 22]. Keypoints are salient image patches that
contain rich local information of an image, and they can be
automatically detected using various detectors [12, 22] and
represented by many descriptors [13]. Keypoints are then
grouped into a large number of clusters so that those with
similar descriptors are assigned into the same cluster. By
treating each cluster as a “visual word” that represents the
specific local pattern shared by the keypoints in that clus-
ter, we have a visual-word vocabulary describing all kinds of
local image patterns. With its keypoints mapped into vi-
sual words, an image can be represented as a “bag of visual
words”, or specifically, as a vector containing the (weighted)
count of each visual word in that image, which can be used
as a feature vector in classification task.

This visual-word image representation is analogous to the
bag-of-words representation of text documents in terms of
form and semantics. This makes techniques for text catego-
rization readily applicable to the problem of scene classifi-
cation. In this paper, we use text categorization techniques,
including term weighting and normalization, stop word re-
moval, and feature selection, to generate image representa-
tions with different dimension, selection, and weighting of
visual words and study their effectiveness in scene classifi-
cation tasks. The goal is to provide a missing link in the
previous work, where most of the effort has been on various
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keypoint detectors, keypoint descriptors, and clustering and
classification algorithms [8, 9, 5, 18, 23, 22]. In compari-
son, this paper focuses on the representation choices of the
visual-word features, which are critical to the classification
performance but yet to be thoroughly studied. By evaluat-
ing various representation choices, we intend to answer the
question of what visual-word representation choices (w.r.t
dimension, weighting, selection, etc) are likely to produce
the best classification performance in terms of accuracy and
efficiency.

We evaluate the image classification performance based on
various visual-word representations generated by text cate-
gorization techniques on two benchmark corpora, TRECVID
and PASCAL. The experiments lead to the following impor-
tant observations: (1) the size of an effective visual-word
vocabulary varies from thousands to tens of thousands; (2)
binary visual-word features are as effective as tf or tf-idf
weighted features; (3) using selection criteria such as chi-
square and mutual information, half of the visual words in
the vocabulary can be eliminated with minimum loss of clas-
sification performance; (4) frequent visual words are usually
very informative and must not be removed; (5) the spatial
information of keypoints is helpful under small vocabular-
ies. These observations are critical to designing the most
effective visual-word representation for image classification
and other related tasks. We also study the performance ob-
tained by combining visual-word features with conventional
color/texture features, from which we find the two types of
features are complementary.

In Section 2, we briefly review the existing works on image
classification and text categorization. We describe the gen-
eration of bag-of-visual-words image representation in Sec-
tion 3, and discuss the text categorization techniques for
generating various representations in Section 4. We intro-
duce the testing corpora and explore the distribution of vi-
sual words in Section 5. The experiment results and conclu-
sions are presented in Section 6 and Section 7, respectively.

2. RELATED WORK
Representing images by effective features is crucial to the

performance of image retrieval and classification. The most
popular image representation has been the low-level visual
features, which describes an image by the global distribu-
tion of color, texture, or other properties. Features like color
histograms and Gabor filters belong to this category. To in-
clude spatial information, an image is partitioned into either
rectangular regions or segments of objects and backgrounds,
and features computed from these regions/segments are con-
catenated into a single image feature vector. These conven-
tional image representations are in the form of real-valued
feature vectors, which is different from the sparse term vec-
tors representing text documents.

Recently, the computer vision community has found key-
points to be an effective image representation for tasks vary-
ing from object recognition to image classification. Key-
points are salient image patches that contain rich local in-
formation of an image. They can be automatically detected
using various keypoint detectors, which are surveyed in [12]
and [22]. Keypoints are depicted by descriptors like SIFT
(scale-invariant feature transform) [11] and its variant PCA-
SIFT [7]. The keypoint descriptors are surveyed in [13].
Keypoint features can be used in their raw format for di-
rect image matching [23], or vector-quantized into a repre-

Keypoint detection

Visual-word vectors

Visual-word

Vocabulary

...

............

............

“bags of visual words”

Keypoints

clustering

Keypoint
feature
space

... ... ...

Figure 1: Generating visual-word image representa-
tion based on vector-quantized keypoint features

sentation analogous to the bag-of-words representation of
text documents. There have been works using this vector-
quantized keypoint feature, or bag-of-visual-word represen-
tation, for image classification [8, 9, 5, 18, 23, 22]. Our work
examines the effectiveness of various representation choices,
which is yet to be thoroughly studied in previous work.

Text categorization (TC) is a well studied area in IR. In
TC, documents are represented as “bags of words” after
stop-word removal and stemming. Each document is de-
scribed either by a binary vector indicating the presence or
absence of terms (e.g., [4]), or by a vector consisting of the
tf or tf-idf weights of the terms (e.g., [6], [20]). Yang et
al. [21] has studied the feature selection methods in TC,
and found that up to 98% of the unique terms in the vo-
cabulary can be eliminated without sacrificing classification
accuracy. Different learning algorithms have been applied
to TC, including SVM, k-Nearest Neighbor, Naive Bayes,
Linear Least Square Fit, which are surveyed in [20] and [4].

3. BAG-OF-VISUAL-WORDS
Similar to terms in a text document, an image has local

interest points or keypoints defined as salient image patches
(small regions) that contain rich local information of the
image. Denoted by small crosses in the three images in Fig-
ure 1, keypoints are usually around the corners and edges of
image objects, such as the edges of the map and around peo-
ple’s faces. We use the Difference of Gaussian (DoG) detec-
tor [11] to automatically detect keypoints from images. The
detected keypoints are depicted using PCA-SIFT descriptor,
which is a 36-dimensional real-valued feature vector [7].

An image can be represented by a set of keypoint descrip-
tors, but this set varies in cardinality and lacks meaningful
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ordering. This creates difficulties for many learning meth-
ods (e.g., supervised classifiers) that require feature vectors
of fixed dimension as input. In fact, there are novel learn-
ing algorithms designed to handle features as sets of un-
ordered vectors with different cardinality, such as the work
by Carneiro et al. on multiple instance learning (MIL) [3],
and the method proposed by Li and Wang [10]. These al-
gorithms, however, may impose constraints which are not
appropriate. For example, a constraint in MIL would be
that an image is positive if at least one keypoint is posi-
tive, and negative negative if all the keypoints are negative,
while in practice it makes no sense to judge whether a key-
point is positive/negative by itself. Moreover, most of the
widely used classification algorithms, such as support vec-
tor machines (SVMs) [2], still require feature vectors of same
length. It is still desirable to transform raw keypoint fea-
tures into an image feature with a fixed dimension.

To address this problem, we use the vector quantization
(VQ) technique which clusters the keypoint descriptors in
their feature space into a large number of clusters using the
K-means clustering algorithm and encodes each keypoint by
the index of the cluster to which it belongs. We conceive
each cluster as a visual word that represents a specific lo-
cal pattern shared by the keypoints in that cluster. Thus,
the clustering process generates a visual-word vocabulary de-
scribing different local patterns in images. The number of
clusters determines the size of the vocabulary, which can
vary from hundreds to over tens of thousands. By mapping
the keypoints to visual words, we can represent each image
as a “bag of visual words”. This representation is analo-
gous to the bag-of-words document representation in terms
of form and semantics. Both representations are sparse and
high-dimensional, and just as words convey meanings of a
document, visual words reveal local patterns characteristic
of the whole image.

The bag-of-visual-words representation can be converted
into a visual-word vector similar to the term vector of a
document. The visual-word vector may contain the presence
or absence information of each visual word in the image, the
count of each visual word (i.e., the number of keypoints in
the corresponding cluster), or the count weighted by other
factors (see Section 4.3). Visual-word vectors are used in
our image classification approach. The process of generating
visual-word representation is illustrated in Figure 1.

4. REPRESENTATION CHOICES
Once images are represented as bags of visual words, we

can classify them in the same way we classify text docu-
ments. The general approach is to build supervised classi-
fiers based on visual-word features from labeled images and
apply them to predict the labels of other images. There
are techniques that can affect the visual-word feature repre-
sentations and consequently the classification performance.
Some of these techniques are borrowed from the area of text
categorization, such as term weighting, stop word removal,
and feature selection, while others are unique to images,
such as changing the vocabulary size and encoding the spa-
tial information. We discuss these techniques below.

4.1 Vocabulary size
Unlike the vocabulary of a text corpus whose size is rela-

tively fixed, the size of a visual-word vocabulary is controlled
by the number of keypoint clusters in the clustering process.

Choosing the right vocabulary size involves the trade-off be-
tween discriminativity and generalizability. With a small
vocabulary, the visual-word feature is not very discrimina-
tive because dissimilar keypoints can map to the same visual
word. As the vocabulary size increases, the feature becomes
more discriminative, but meanwhile less generalizable and
forgiving to noises, since similar keypoints can map to differ-
ent visual words. Using a large vocabulary also increases the
cost associated with clustering keypoints, computing visual-
word features, and running supervised classifiers.

There is no consensus as to the appropriate size of a visual-
word vocabulary. The vocabulary size used in previous work
varies from several hundreds [8, 22], to thousands and tens
of thousands [18, 23]. Their results are not directly com-
parable due to the difference on corpus and classification
methods. To find out the proper range of vocabulary size,
we experiment with vocabularies with sizes varying from 200
to 320,000. We are also interested in comparing the size of a
visual-word vocabulary to that of a text vocabulary, which
is usually around thousands to tens of thousands.

4.2 Stop word removal
Stop word removal is a standard technique in text catego-

rization. Are there also “visual stop words” that represent
local image patterns totally useless for retrieval and classi-
fication? Sivic and Zisserman [18] claimed that the most
frequent visual words in images are “stop words” and need
to be removed from the feature representation. There is
however no empirical evidence showing that removing them
improves image classification performance. Since it is very
difficult to judge whether each visual word is a stop word, we
focus on the relationship between the most frequent visual
words and the classification performance.

4.3 Weighting schemes
Since term weighting is a key technique in IR [17, 1], we

explore its use in visual-word feature representation. Two
major factors in term weighting are tf (term frequency) and
idf (inverse document frequency). A third factor is normal-
ization, which converts the feature into unit-length vector to
eliminate the difference between short and long documents.
Many text categorization methods use weighting schemes
based on these factors, such as “tfc” in [6], “lfc” in [21],
while some simply use binary term vectors [4].

We apply popular term weighting schemes in IR to the
visual-word feature vectors. These schemes are summarized
in Table 1, where they are named after the convention in
IR [17]. These schemes are chosen to allow us to study the
impact of tf, idf, and the normalization factor on classifica-
tion performance. Note that tfi is the number of times a
visual word ti appears in an image, N is the total number of
images in the corpus, and ni is the number of images having
visual word ti.

We have seen in previous work the use of vectors con-
taining the counts of visual words (which are essentially tf
features) for image classification [8, 22], and the use of tf-idf
weighted features for image search [18, 23], but no compar-
isons have been made with other weighting schemes. As we
will see, the best weighting scheme in IR does not guaran-
tee good performance in image classification. In particular,
the normalization factor, which eliminates the difference on
the numbers of keypoints in images, may have a negative
effect. Even among images of the same size, the number of
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Table 1: Weighting schemes for visual-word feature
Name Factors Value for ti

bxx binary 1 if ti is present, 0 if not

txx tf tfi

txc tf, normalization tfi∑
i tfi

tfx tf, idf tfi · log(N/ni)

tfc tf, idf, normalization tfi·log(N/ni)∑
i tfi·log(N/ni)

keypoints (visual words) varies according to the complex-
ity of the image content. For example, an image showing a
complex street scene may have over 1000 keypoints, while
an image showing a smooth sky background may have less
than 100 keypoints. An image with many keypoints usually
has very different content from one with fewer keypoints,
even though the relative distribution of their keypoints af-
ter being mapped to visual words is similar. Normalization
eliminates such difference and makes the two images less
distinguishable.

4.4 Feature selection
Feature selection is an important technique in text cate-

gorization for reducing the vocabulary size and consequently
the feature dimension. It uses a specific criterion for mea-
suring the “informativeness” of each word and eliminates
the non-informative words. Yang et al. [21] found out that,
when a good criterion is used, up to 98% of the unique words
in the vocabulary can be removed without loss of text cate-
gorization accuracy. In image classification, feature selection
is also important as the size of the visual-word vocabulary is
usually very high, but it has not been studied in any previ-
ous work. We experiment with five feature selection criteria
which are widely used in text categorization [21]:

• document frequency (DF): DF is the number of im-
ages (documents) in which a visual word (word) ap-
pears. In text categorization, words with small DF are
removed since rare words are usually non-informative
for category prediction. Not knowing whether frequent
visual words or rare ones are more informative for
scene classification, we adopt two opposite selection
criteria based on DF : DF max chooses visual words
with DF above a predefined threshold, while DF min
chooses visual words with DF below a threshold.

• x2 statistics (CHI): The x2 statistics measures the
level of (in)dependence between two random variables
[21]. Here we compute x2(t, ci) between a specific vi-
sual word t and the binary label for an image class
ci. A large value of x2(t, ci) indicates a strong corre-
lation between t and ci, and vice versa. Since x2(t, ci)
depends on a specific class, we compute the average
statistics across a total of M image classes in the cor-
pus as x2

avg(t) = 1
M

∑M
i=1 x2(t, ci). We then eliminate

visual words with x2
avg(t) below a threshold.

• Mutual information (MI): MI is another measure
of the dependence between two random variables. The
MI between a visual word t and a class label c is:

MI(t, c) =
∑

t∈{0,1}

∑

c∈{0,1}
P (t, c) log

P (t, c)

P (t)P (c)
(1)

We compute MIavg(t) = 1
M

∑M
i=1 MI(t, ci), and re-

move visual words with MIavg(t) below a threshold.

• Pointwise Mutual information (PMI): PMI is di-
rectly related to MI. It uses one term in the sum of
Eq.(1) to measure the association between a visual
word t and a class label c:

PMI(t, c) = log
P (t = 1, c = 1)

P (t = 1)P (c = 1)
(2)

Visual words with small PMIavg(t) are eliminated from
the vocabulary.

4.5 Spatial information
Where within a text document a certain word appears

is usually not very relevant to the category this document
belongs to. The spatial locations of keypoints in an im-
age, however, carry important information for classifying
the image. For example, an image showing a beach scene
typically consists of sky-like keypoints on the top and sands-
like keypoints at the bottom. The plain bag-of-visual-words
representation described in Section 3 ignores such spatial
information and may result in inferior classification perfor-
mance. To integrate the spatial information, we partition
an image into equal-sized rectangular regions, compute the
visual-word feature from each region, and concatenate the
features of these regions into a single feature vector. There
can be many ways of partitioning, e.g., 3 × 3 means cutting
an image into 9 regions in 3 rows and 3 columns.

This region-based representation has its downside in terms
of cost and generalizability. Dividing an image into m × n
regions increases the feature dimension by m×n times, mak-
ing the feature computationally expensive. Besides, encod-
ing spatial information can also make the representation less
generalizable. Suppose an image class is defined by the pres-
ence of a certain object, say, airplane, which may appear
anywhere in an image. Using region-based representation
can cause a feature mismatch if the airplanes in the train-
ing images are in different regions from those in the testing
images. Another risk is that many objects may cross re-
gion boundaries. Based on these considerations, we prefer
relatively coarse partitions of image regions to fine-grained
partitions.

5. DATA COLLECTIONS
We use two corpora to study the bag-of-visual-word repre-

sentation and its use in image classification: the TRECVID
2005 corpus and the PASCAL 2005 corpus.

The TRECVID corpus contains 34-hour footage of broad-
cast news video from 6 channels, which was used for TREC
Video Retrieval Evaluation 2005 [19]. The video has been
segmented into a total of 29,252 shots, and a video frame
is extracted from each shot as its keyframe. The data have
been annotated with labels of 39 semantic concepts in the
LSCOM-Lite project [14]. We rank the 39 concepts by
frequency (i.e., the number of shots where the concept is
present) and select the 20 most frequent concepts since the
rare concepts have insufficient training data. These 20 con-
cepts cover many different types, including outdoor scenes
(e.g., waterscape, mountain), indoor scenes (e.g., meeting,
studio), objects (e.g., car, computer), people activities (e.g.,
marching). The goal is to classify the 29,252 video frames
according to the presence of any of the 20 semantic concepts.
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Figure 2: The frequency of visual words from vocab-
ulary of different sizes plot against their frequency
ranks in log-log scale.

Note that this is a multi-label corpus in that there can be
zero or more than one concept present in a video frame. This
is a huge corpus with highly diversified content, as it con-
tains any possible scenes from broadcast news, which makes
the classification task very challenging.

The PASCAL corpus was used for the PASCAL Visual
Object Classes Challenge 2005. It has 1578 labeled im-
ages from multiple sources, which belong to 4 categories
as motorbikes, bicycles, people, and cars. Compared with
TRECVID, PASCAL is smaller and less diversified, and its
images are less noisy and cluttered than the video frames in
TRECVID. We choose it since it has been frequently used as
a benchmark for evaluating keypoint-based features. Using
a second and very different corpus also makes the conclu-
sions in this paper more convincing.

The keypoints in both corpora are detected by the DoG
detector [11] and described by the PCA-SIFT descriptor
[7]. This results in an average of 490 keypoints per image
in TRECVID, and 1,416 keypoints per image in PASCAL.
For each corpus, we use the k-means clustering algorithm to
cluster a pool of 1,000,000 randomly sampled keypoints into
a visual-word vocabulary of any chosen size. The cluster
memberships of the remaining keypoints are found using a
KD-tree based fast nearest-neighbor search algorithm.

It is interesting to see how the visual words are distributed
in an image corpus. Particularly, we want to know whether
their distribution satisfies Zipf’s law, which is followed by
natural languages. Zipf’s law says that the frequency of any
(visual) word is roughly inversely proportional to its rank
in terms of frequency. We choose the TRECVID corpus for
this study due to its huge size and diversified content. Un-
der vocabularies of various sizes, we plot the frequency of
visual words in TRECVID against their frequency rank in
a log-log scale in Figure 2. A Zipf’s distribution must be
a straight line in such scale. Despite the vocabulary size,
we see that every distribution curve starts as a straight line
up to a certain point, after which the curve plunges. This
shows that, except for those with extremely low frequency,
the distribution of visual words basically satisfies Zipf’s law.
We suspect that the extremely rare words are either noises

in images or artifacts of the clustering algorithm, which pro-
duces very small clusters.

In Figure 2, the slope of a curve indicates how steep the
distribution is. For comparison, we draw an imaginary line
to mimic the distribution of a English vocabulary. Obvi-
ously, the curves of visual words are not as steep as that
of English words, showing that they are distributed more
evenly than English words. What is less obvious but equally
interesting is that the curve gets steeper as the vocabulary
size increases, based on our calculation of the slope. This
suggests that the distribution of visual words in a larger
vocabulary is more unbalanced.

6. EXPERIMENT RESULTS
We study the performance of image classification with dif-

ferent visual-word representations generated using the tech-
niques discussed in Section 4. The TRECVID corpus is
partitioned into a training set of 15-hour footage (15,745
keyframes) and a test set of 18-hour footage (13,507 keyframes).
We guarantee that each set has a balanced mixture of data
from different channels, and temporally adjacent frames are
never assigned to both sets since they are too similar. The
PASCAL corpus has been pre-divided into a training, vali-
dation, and test set, and we use the first two sets for training
and the third for testing.

The classification is conducted in an “one-against-all” man-
ner. Based on Support Vector Machines (SVM) [2], we
build 20 binary classifiers for the 20 semantic concepts in
TRECVID, and 4 binary classifiers for the 4 object cate-
gories in PASCAL, where each classifier is for determining
the presence of a specific concept or object. We use average
precision (AP) to evaluate the result of a single classifier,
and mean average precision (MAP) to aggregate the per-
formance of multiple classifiers. In the following, we exam-
ine the impact of various representation choices of visual-
word features on the classification performance, and com-
pare their performance to that of conventional color/texture
features.

6.1 Vocabulary size
Figure 3 shows the relationship between the classification

performance and the size of a visual-word vocabulary. We
use binary features (“bxx” in Table 1) without spatial infor-
mation or feature selection. Both the linear and RBF kernel
are used in SVM. For the RBF kernel, different choices of the
gamma parameter are tried and the best result is reported.

We see that on both corpora, as the vocabulary size in-
creases from 200 to over 80,000, the performance first rises
dramatically, peaks at certain points, and after that either
levels off or drops mildly. Although it is not surprising to
see such pattern, the important thing revealed by this ex-
periment is the range of optimal vocabulary sizes, which are
larger than the vocabulary sizes seen in most previous work.
The optimal vocabulary size is around 20,000 to 80,000 for
TRECVID, and around 5,000 for PASCAL, both compara-
ble to the size of a typical text vocabulary which is around
thousands or tens of thousands. The difference between the
two corpora can be explained by the fact that the keypoints
in the smaller PASCAL corpus are not as widely-spread as
those in TRECVID, and therefore demands fewer clusters
(visual words). Although the optimal vocabulary size is
clearly corpus dependent, this experiment suggests the use
of relatively large vocabularies.
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Figure 3: The classification performance at different
vocabulary sizes on TRECVID and PASCAL. (Note
that the x-axis is in log scale.)

Another interesting observation comes from the compar-
ison between the two kernels of SVM. For small vocabular-
ies, the RBF kernel has a clear advantage over the linear
one, but this advantage is reversed after the peak perfor-
mance is reached. This suggests that the visual words in
a small vocabulary are highly correlated, but become more
independent and gain the property of linear separability as
the vocabulary gets larger. When the visual words are in-
dependent, kernels that consider inter-feature correlations
(e.g., RBF) have no advantage over linear kernels and may
perform poorly due to overfitting.

6.2 Stop word removal
Do the most frequent visual words function like “stop

words”? We approach this problem by examining the clas-
sification performance using vocabularies without the most
frequent visual words, where the word frequency is com-
puted from each corpus. As shown in Table 2, removing the
most frequent words causes a small but steady decrease of
performance on both corpora. This shows that these fre-
quent visual words are unlikely stop words, since removing
stop words should improve the classification performance.
While it is premature to say there are no visual stop words,
we show that eliminating the most frequent visual words is
not desirable, which is against the claim in [18].

Corpus
Whole
Vocab

Percent of removed words
0.5% 1% 3% 5% 10%

TRECVID 0.280 0.279 0.278 0.275 0.273 0.267
PASCAL 0.778 0.778 0.777 0.775 0.773 0.771

Table 2: The classification performance after remov-
ing the most frequent visual words

6.3 Weighting schemes
Now we move on to the problem of weighting schemes. Ta-

ble 3 summaries the classification performance using visual-
word features weighted by the 5 weighting schemes in Table
1. We use no spatial partitioning or feature selection in
this experiment, but vary the vocabulary size to study their
relationship with weighting schemes.

First, we focus on the comparison between binary (“bxx”)
and tf feature (“txx”) to see whether the counts of visual
words are more informative than their presence or absence.
It is only when the vocabulary size drops to 200 that tf fea-
tures consistently outperform binary features. For larger vo-
cabularies, tf features are (slightly) worse than binary ones
in most settings. This observation can be explained from
two aspects. For one thing, as the vocabulary gets larger,
the count of most visual words is either 0 or 1 and therefore
tf features are not much different from binary ones. On the
other hand, the count information can be noisy. Suppose
a certain visual word is typical among “building” images.
An image containing 100 of this visual word is not necessar-
ily more likely to be a “building” than an image containing
only 20 of this visual word, but a classifier trained from
the first image can be misled by the high count and clas-
sify the second image as “non-building”. This explains why
the count of visual words may not be as effective as their
presence/absence information.

Next, we examine the impact of the idf factor by com-
paring the performance of “txx” and “tfx”. There is no
consistent benefit of using idf, as “tfx” (which includes idf )
is better than ”txx’ in about half of the settings but worse
in the other half. We attribute this to the fact that a dis-
criminative classifier like SVMs can implicitly weight fea-
tures to achieve maximum data separation, and its weight-
ing strategy is presumably a better one than the heuristic
idf method. So weighting scheme is discouraged when a
powerful classifier such as SVMs is used.

We have contradicting observations regarding the nor-
malization factor between the two corpora. In PASCAL,
“txc” (normalized) consistently outperforms “txx” (unnor-
malized), and “tfc” (normalized) outperforms “tfx” (unnor-
malized) in all but one setting. However, in TRECVID the
un-normalized features are always better than their normal-
ized counterparts. A plausible explanation is that, PASCAL
has images of different sizes, and its classification perfor-
mance benefits from the normalization factor which elimi-
nates the difference on image sizes. This is not the case with
TRECVID, which contains video frames of identical size.
Normalization hurts the performance by suppressing the dif-
ference on the number of keypoints in each video frame.

Overall, using binary visual-word features is a good choice
which always produce top or close-to-top performance in
most of our experiment settings. This is especially true when
a large vocabulary is used, which is likely to be the case if
classification accuracy is the major consideration.
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Corpus
Vocabulary
size

Linear SVM RBF SVM
bxx txx txc tfx tfc bxx txx txc tfx tfc

TRECVID

200 0.095 0.152 0.109 0.147 0.110 0.137 0.167 0.112 0.130 0.108
1,000 0.139 0.162 0.137 0.183 0.142 0.235 0.202 0.141 0.161 0.128
5,000 0.183 0.178 0.150 0.205 0.153 0.245 0.224 0.141 0.194 0.145
20,000 0.237 0.228 0.185 0.225 0.188 0.271 0.278 0.163 0.216 0.184

PASCAL

200 0.465 0.680 0.605 0.639 0.693 0.513 0.670 0.742 0.619 0.686
1,000 0.681 0.677 0.677 0.690 0.683 0.754 0.639 0.751 0.618 0.722
5,000 0.764 0.738 0.745 0.740 0.745 0.777 0.708 0.737 0.757 0.734
20,000 0.721 0.682 0.708 0.682 0.711 0.683 0.642 0.690 0.528 0.682

* Weighting: bxx = binary, txx = tf, txc = tf + normalization, tfx = tf + idf, tfc = tf + idf + normalization

Table 3: The classification performance (MAP) on TRECVID and PASCAL corpus under different weighting
schemes and vocabulary sizes. The bold font indicates the top performers in each setting.
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Figure 4: Classification performance under vocabu-
laries pruned using various feature selection criteria.

6.4 Feature selection
We examine feature selection techniques on the best vo-

cabulary for each corpus, i.e., a 80,000-d vocabulary for
TRECVID and a 5,000-d vocabulary for PASCAL. The 5
feature selection criteria discussed in Section 4.4 are com-
pared, which are DF-max, DF-min, CHI, MI, and PMI. We
reduce the vocabulary size to several percentages of its orig-
inal size (90%, 70%, ..., 10%) by removing the most unin-
formative words determined by each criterion, and evaluate
the classification performance in each setting. The results
are shown in Figure 4.

We see that when effective criteria like MI and CHI are
used, there is only minimum loss of MAP when the vocabu-

lary is reduced by half. When the vocabulary is reduced by
70%, the MAP has dropped merely by 5%, but after that
it drops much faster. This shows that feature selection is
an effective technique in image classification. In compari-
son, in text categorization a vocabulary can be reduced by
up to 98% without loss of classification accuracy [21], which
implies that the percentage of uninformative terms in text
documents is much larger than in images.

Among different feature selection methods, CHI and MI
are top performers on both corpora, followed by DF max,
while the performance of DF min and PMI are lower than
the others. This order is basically consistent with that in
the text categorization [21]1. The fact that DF max is sig-
nificantly better than DF min implies that frequent visual
words widely spread among images are more informative
than rare visual words in terms of discriminative power.
This is consistent with the finding in text categorization
that frequent words (not including stop words) are more in-
formative than rare words [21]. It also partially explains
why the feature selection can be done more aggressively on
text documents than on images. As shown in Figure 2, the
distribution of text words is much more uneven than that
of visual words, which means there is a larger percentage
of un-informative rare words to be eliminated from a text
vocabulary.

6.5 Spatial information
The importance of spatial information can be seen by com-

paring the classification performance between plain visual-
word features computed from whole images and features
computed from image regions. We examine 4 ways of parti-
tioning image regions, including 1×1 (the whole image), 2×2
(4 regions), 3×3 (9 regions), and 4×4 (16 regions). Figure 5
shows the classification performance on both corpora using
different spatial partitions and vocabulary sizes. For each
setting, we experiment with both the linear and RBF kernel
of SVM, and the performance of the better one is reported.

We see that the spatial information substantially improves
the classification performance when the vocabulary is small.
With a 200-d vocabulary, as the partition changes from 1×1
to 4× 4, MAP doubles on TRECVID and increases by 60%
on PASCAL. This agrees with the results in [8] that spa-
tial information achieved significant improvement on texture
and object categorization with small vocabularies of size 16,

1By definition, MI in this paper is equivalent to IG in [21],
while PMI here is equal to MI in that paper.
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Figure 5: Classification performance of region-based
features computed from different spatial partitions

200 and 400. An observation not covered in [8] but obvious
in our experiment, is that the improvement from the spatial
information diminishes as the vocabulary sizes increases. In
Figure 5, the spatial partitioning is of little help after the
vocabulary sizes reaches 20,000 in TRECVID, and it even
hurts the performance of PASCAL after the vocabulary size
reaches 5,000. This shows the contributions from a large
vocabulary and from spatial information are not orthogonal
and not even very complementary, which is slightly counter-
intuitive. We find in Figure 5 that the peak performance
can be reached either by increasing the vocabulary size or
by using more fine-grained spatial partition, but combin-
ing large vocabulary with spatial partitioning fails to push
the performance further. This agrees with the claim of Nis-
ter and Stewenius [15] that an extremely large vocabulary
achieves good performance without using geometric infor-
mation. A plausible explanation is that, when the vocab-
ulary size is small, dissimilar keypoints in different regions
can be mapped into the same visual word, but using spatial
information helps discriminate them and therefore improves
the classification performance. When the vocabulary size is
large enough, keypoints are well discriminated and adding
spatial information hardly further discriminate them

As to the choice of appropriate partitions, both 3× 3 and
4×4 appear to be reasonable choices because either of them
is the best performer at various vocabulary sizes. There
seems to be no need to go beyond 4 × 4, since after that
the performance levels off or slightly drops. This is also
consistent with the results in [8] where 4 × 4 is better than
either coarser or more fine-grained partitions on different
data sets. Overall, using a small vocabulary (e.g., 200-d or
1,000-d) with 3×3 or 4×4 partition is a good configuration
which achieves top or close-to-top performance and is less
expensive than using a larger vocabulary.

6.6 Combining with color/texture features
Besides the use of local, keypoint-based features, image

and video classification is more often done based on global
image features such as color histograms and color moments,
texture features based on wavelet or Gabor filters, etc. While
keypoint features describe the local structures in an image
and do not contain color information, global features are
statistics about the overall distribution of color, texture,
or edge information in the image. Hence, we expect these
two types of features are complementary for scene classifi-
cation, which requires either global color information (e.g.,
for “Sky”, “Snow”), or local structure information (e.g., for
“Building”, ”Car”), or both (e.g., for “Studio”). It is in-
teresting not only to compare the performance of the two
features, but also to see whether their combination further
improves the performance.

We experiment with three types of global features: 225-
d color moment feature computed from a 5×5 image grids,
48-d Gabor texture feature, and a 273-d feature concate-
nated from them. We compare their performance with that
of local features of various dimensions computed from the
whole images or from 3×3 grids in TRECVID. (We did not
perform this comparison on PASCAL, where keypoint fea-
tures are clearly more effective since they are used by most
top-performing methods.) The combination of a local fea-
ture and a global feature is done in a “late fusion” fashion,
where separate classifiers are built on two features and the
final score for an image is a weighted sum of the outputs of
two classifiers. The combination weights are learned on a
held-out set using logistic regression.

Two observations can be made from the results shown
in Table 4 and 5. First, carefully engineered local features
produce comparable performance to good global features.
For example, 1×1 local feature on 80,000-d vocabulary, or
3×3 local feature on 1,000-d vocabulary outperforms color
moment or Gabor texture feature, and is comparable to
their combination. Second, combining a local feature with
a global one furthers the performance by 10-20% over the
higher one of the two. The highest performance (MAP =
0.349) is achieved by combining the color moment feature,
Gabor texture feature, and 3×3 local feature on a 20,000 vo-
cabulary. This shows that these two types of features carry
complementary information for classification, and should be
used together for good performance.

7. CONCLUSION
Bag-of-visual-word is an effective image representation in

the classification task, but various representation choices
w.r.t its dimension, weighting, and selection of visual words
has not been thoroughly examined. In this paper, we have
applied techniques used in text categorization, including
term weighting, stop word removal, feature selection, to gen-
erate various visual-word representations, and studied their
impact to classification performance on the TRECVID and
PASCAL collections. This study provides an empirical ba-
sis for designing visual-word representation that is likely to
produce good classification performance.

The analogy between visual words in images and words in
documents opens up opportunities for migrating techniques
of information retrieval (IR) to solve problems in image and
video data. Given the success on the classification task, we
plan to apply IR techniques to image and video search based
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Visual words feature (1×1 partition)
200-d 1,000-d 5,000-d 20,000-d 80,000-d
0.137 0.235 0.245 0.271 0.280

Global
Fea-
ture

Color 0.250 0.252 0.305 0.310 0.316 0.328
Gabor 0.182 0.212 0.265 0.278 0.286 0.303
Color+Gabor 0.292 0.300 0.323 0.327 0.329 0.343

Table 4: The MAP of global features, local features based on 1×1 grids, and their combinations in TRECVID.

Visual words feature (3×3 partition)
200-d 1,000-d 5,000-d 20,000-d 80,000-d
0.267 0.291 0.285 0.289 0.290

Global
Fea-
ture

Color 0.250 0.295 0.301 0.321 0.334 0.334
Gabor 0.182 0.273 0.293 0.286 0.291 0.315
Color+Gabor 0.292 0.318 0.329 0.339 0.349 0.349

Table 5: The MAP of global features, local features based on 3×3 grids, and their combinations in TRECVID.

on the bag-of-visual-words representation. While there has
been some pilot works on this direction [18, 23], a thorough
study of this approach is missing. More interesting future
work is to build “visual language models” that describe the
distribution of visual words in images. Such visual language
models provide a generative view of images, and can be used
for image retrieval and classification using existing language
modeling techniques for IR [16]. We can even build bigram
or trigram type of models of visual words to capture the
spatial relationships of adjacent keypoints, which could be
more powerful in terms of describing complex image content.
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