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Deep Understanding of Cooking Procedure
for Cross-modal Recipe Retrieval

Jing-Jing Chen!,
ICity University of Hong Kong, Hong Kong

ABSTRACT

Finding a right recipe that describes the cooking procedure for a
dish from just one picture is inherently a difficult problem. Food
preparation undergoes a complex process involving raw ingredi-
ents, utensils, cutting and cooking operations. This process gives
clues to the multimedia presentation of a dish (e.g., taste, colour,
shape). However, the description of the process is implicit, imply-
ing only the cause of dish presentation rather than the visual effect
that can be vividly observed on a picture. Therefore, different from
other cross-modal retrieval problems in the literature, recipe search
requires the understanding of textually described procedure to pre-
dict its possible consequence on visual appearance. In this paper,
we approach this problem from the perspective of attention mod-
eling. Specifically, we model the attention of words and sentences
in a recipe and align them with its image feature such that both
text and visual features share high similarity in multi-dimensional
space. Through a large food dataset, RecipelM, we empirically
demonstrate that understanding the cooking procedure can lead to
improvement in a large margin compared to the existing methods
which mostly consider only ingredient information. Furthermore,
with attention modeling, we show that language-specific named-
entity extraction becomes optional. The result gives light to the
feasibility of performing cross-lingual cross-modal recipe retrieval
with off-the-shelf machine translation engines.
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1 INTRODUCTION

Food intake tracking has recently captured numerous research
attentions [1] [17] [28] for long-term impact of food consumption
on health. The main pipeline of tracking is to take a picture of the
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Beef steak

Ingredients
1. beef steak
1 piece lemon or calamansi
112 tsp. garlic powder
1 tsp ground black pepper

Beef steak

Ingredients

+ 212-0z. boneless steaks
+ 1 piece lemon

+ 1/2sp. garlic powder

- Ground black pepper

+ 27Tbs. plus 1 tsp. olive oil

- Kosher salt

+ 1 large onion, cut into slices
+ 1/4 cup soy sauce

+ 1 large onion, sliced into rings
NGE + 114 cup soy sauce
Instructions

0 2 Ths. of th 1. Thinly sliced beof stoak and

ic powder, soy sauce, 2 tsp. salt, and 1
per to make a nto both

of the steaks.

marinate in soy sauce, lemon (or calamansi),
v

2. Heat the ct then sti fry the onion rings until the
ide.

wre fried, fry the marinated
de) until color turns brown. Set aside.
4. Putin the then saute for a few mi
5. Pour the marinade and bring 1o a boil
6

4. Brush the tops of the
lightly with lemon, salt and pepy

Add water as needed.
7. Add the stir-fried onions and some salt to taste.
nder and deeply cf 8. Serve hot. Share and Enjoy!
. and serve topped wi

Figure 1: Unde(:‘)standing recipes is not easy evgl by the human.
Both dishes have the same name and similar ingredients, but are
prepared in different manners and result in different presentations.
The differences (e.g., broil versus simmer) are underlined to high-
light the cause-and-effect in cooking procedure.

dish, recognize its category and then search for relevant sources for
nutrition and calories estimation [2] [27]. The sources are usually
food labels and food composition tables (FCT) compiled by nutrition
experts [23]. Nevertheless, in the free-living environment, dishes
are often prepared in wild with no expert references for health
index estimation. As ingredient recognition remains limited in scale
[7], automatic enumeration of nutrition contents from ingredient
composition inferred from food images is still far beyond the current
technology.

The prevalence of sharing food images and recipes on the Inter-
net [35], nevertheless, provides a new look to this problem. Specifi-
cally, there are social media platforms in both eastern and western
countries, such as “Go Cooking” ! and “All Recipes" 2, for master
and amateur chefs to share their newly created recipes and food
images. There are also followers or fans who follow the cooking
instructions to reproduce the same dishes and upload their pictures
to websites for peer comment. To date, these websites have accumu-
lated over millions of recipes and images. These recipes are mostly
listed with ingredients alongside with their quantities, supplying
a new source of references for food intake tracking. Furthermore,
cooking procedure, i.e., how ingredients are prepared and cooked
(e.g., deep fried versus steam), provides another dimension of clues
which is not listed in food label or FCT for health management.
Hence, in principle, being able to link a food image to its right
recipe available on the Internet will facilitate the evaluation of nu-
trition contents. Conversely, linking a recipe to its potential dish
appearance can also encourage cooking at home.

1.1 Challenges

Image-to-recipe retrieval is essentially a cross-modal learning prob-
lem [10], which maps features of different modalities into the same
1

www.xiachufang.com
https://www.allrecipes.com
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form for similarity assessment. A recipe uses to have three sections:
title, ingredient, cooking procedure (see Figure 1). Title resembles
phrase while ingredients can be regarded as keywords analog to
traditional visual annotation problem [33], which explicitly list out
the content of food image. Cooking instruction, on the other hand,
is composed of a series of sentences detailing the food preparation
and cooking process. Different from problems such as image cap-
tioning [36] and visual question-answering [3], the descriptions are
not directly translatable to image content. Rather, the instruction
at a step dictates the causality of food preparation which may not
be relevant to final food presentation or even be visible in food
image. For example, the instructions “position rack about 4 inches
from the boiler” in Figure 1a and “put in the garlic powder then
saute for a few minutes” in Figure 1b have insignificant outcome
to the visual appearance of dishes. Furthermore, online recipes are
user-generated and there are no rules governing the documentation
of recipes. Sentences such as “Serve hot! Shared and enjoy!” (Figure
1b) are visually irrelevant, “slice the steaks if you like” (Figure 1a)
presents visual uncertainty.

The purpose and format of recipe make the challenges of cross-
modal retrieval different from other problem domains [3] [33] [36]
in multimedia. As shown in Figure 1, both dishes have the same
title and almost similar list of ingredients. However, the dish pre-
sentations exhibit different visual appearances beyond photometric
changes due to differences in cooking processes. Precisely, the steak
in Figure 1a is broiled while the steak in Figure 1b is fried and sim-
mered. In addition, some ingredients are used in different stages
for different purposes. For example, lemon in 1a is seasoned on
onion slice, and lemon in Figure 1b is mixed with other sauces to
marinate beef steak. These procedural descriptions do not directly
link to visual content but have an implicit impact on final food
presentation. Furthermore, the relationship of cooking and cutting
actions to the visual content of food is not always one-to-one, but
intertwines with types of ingredients and seasonings being added.

1.2 Contribution

The main contribution of this paper is encoding of a recipe into a
vector for capturing cooking procedure that implies causality effect
between ingredients and actions. Online recipes are written in free
form with user-generated text and are difficult to be syntactically
or semantically analyzed. Instead of modeling recipe as an action
graph illustrating the flow of food preparation [20] [41], embedding
recipe as a vector that captures word and sentence significances is
more feasible with the rapid advancement of deep learning. In this
paper, we propose a hierarchical attention mechanism based on
[44] to model the complex word-to-word and sentence-to-sentence
interactions in the recipe as a vector. The resulting vector represen-
tation is embedded in a form similar to the visual vector, allowing
parameter tuning and data-driven search of weights to align the
relevancy of words or sentence to visual content.

In the literature, there are only few approaches studying cross-
modal retrieval in this specialized domain [7] [8] [10]. Most ap-
proaches extract partial information from recipes, mostly ingre-
dients as text modality, to either feed into deep neural networks
for learning cross-modal similarity [8] or match with the results
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of visual categorization [7]. Recently, some approaches also ex-
plore cooking instruction for retrieval, either by manual extraction
of food attributes (cooking and cutting attributes) for classifica-
tion [10] or auto encoding of instructions by two-stage long short-
term memory units (LSTM) for embedding learning [30]. These
approaches treat every word and sentence in a recipe equally when
modeling joint visual-text relationship, overlooking the fact that
some of these descriptions are not visually observable but rather as
an implication of cause-and-effect consequence.

The novelty of our work originates from leveraging of atten-
tion mechanism to address the cause-and-effect consequence in the
procedural description. Despite technically straightforward, this
is the first attempt in the literature that investigates the extent
which attention can deal with the causality effect while being able
to demonstrate impressive performance on cross-modal recipe re-
trieval. In addition, we provide a unified way of dealing with three
sections of information (i.e., title, ingredient, instruction) in the
recipe. The work presented in this paper is more intuitive than
[10] [30] in terms of problem formulation, and more generalized
than [8] [30] in terms of level of information being considered in
cross-modal retrieval.

2 RELATED WORK

Cross-modal learning is an active topic in multimedia. Classic ex-
amples include the employment of canonical correlation analy-
sis (CCA) for semantic visual annotation [29]. Recent approaches
mostly rely on deep learning, for examples, deep CCA [42], DeViSE
[13], correspondence auto-encoder [12] and adversarial cross-modal
retrieval [37]. These models are learnt from training examples that
assume a direct correspondence between visual and text relation-
ship, and cannot be straightforwardly extended for recipe process-
ing and procedure-based cross-modal learning. In this section, we
focus on presenting the existing research efforts in the food domain.

The current works are mostly devoted to food classification,
specifically, to recognize food categories given pictures [24] [43]
[11]. These works rely heavily on off-the-shelf deep models [32]
[18] and have recently triggered construction of large datasets such
as Cookpad [14] and Recipe1M [30]. These datasets differ in terms of
cuisine, geography region and language. The state-of-the-art results
for food recognition on medium size datasets, such as Food101 [6],
FoodCam-256 [19], VireoFood-172 [7], can be higher than 80% of
top-1 accuracy [16]. Several photo-based food logging mobile apps
have also been developed, including DietLens [27], FoodLog [2] and
Im2Calories [25]. The applicability of these efforts, nevertheless,
is difficult to scale up for real scenario in dietary tracking due
to limited number of food categories, mostly few hundreds as in
DietLens [27], that can be recognized.

Contextualized retrieval-based methodology approaches the prob-
lem from a different view by searching for similar images with geo-
graphic constraint to infer food categories [5] [40]. However, food
images are wildly diverse in terms of ingredient composition, visual
appearance and ambiguity. Pure retrieval-based approaches based
on visual features can hardly reach the performance of learning-
based approaches. Recipe represents a rich source that supplements
the visual content of food images. For example, in [7], ingredients
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Classic waffle

Ingredients
2 eggs; 2 cups all-

purpose flour; 4 tsp
baking powder

Attention

Instruction-encoder

Instructions

1.In a large bowl, mix
together flour, salt,
baking powder and
sugar.

/il/vfully
uconnected connected:; 55015
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Cosine

fully

Food image

layer layer i feature

Figure 2: Framework overview: (a) recipe representation learning; (b) image feature learning; (c) joint-embedding space learning,.

are recognized for recipe search and then the result is fused with
image search to resolve visually ambiguity in food categorization.

The most related approach to our proposed work is [30]. Similar
in spirit, [30] also learns recipe representation by encoding ingre-
dients and cooking instructions using recurrent neural networks.
Our work differs from [30] for incorporation of word-level and
sentence-level attentions at three different levels of granularity (i.e.,
title, ingredient, instruction) for representation learning. The recent
work in [10] extracts rich food attributes, including cutting and
cooking attributes, from cooking instructions of recipes. The at-
tributes are utilized for learning a multi-task convolutional network
that is eventually applied for food annotation and recipe search.
However, the attributes are manually extracted from recipes and
then labeled by homemakers, which are both labor intensive and
cost expensive. Apart from [10], to the best of our knowledge, there
are no efforts yet studying the modeling of cooking instructions for
cross-modal retrieval. Analysis of cooking procedure is investigated
in other applications, for example knowledge representation [20]
[31], recipe recommendation [34] and multimedia search [38], but
not in the context of cross-modal learning. Very often the workflows
of cooking are manually or semi-automatically [31] [38] created
from recipes to serve these applications.

Cross-modal analysis in food domain is also studied by [8]. In
[8], a stacked attention network is applied to simultaneously locate
ingredient regions in the image and learn multi-modal embedding
features. However, this approach considers only ingredient list and
the attention mechanism is applied to weight image regions and
not ingredients. Furthermore, the network is not appropriate for
retrieval because the projections from visual and text to embedding
space are coupled. In [7], an ingredient network is constructed from
more than 65,000 recipes and modeled with conditional random field
for cross-modal search. However, due to only 353 ingredients can
be visually recognized, the effect of the network in boosting recipe
search is limited. While most approaches including [7] [8] employ
discriminative learning, the work in [26] studies generative learning
using deep belief network for cuisine classification, food image
retrieval and attribute inference. Different from our work, these
approaches mainly model ingredients and auxiliary information
(e.g., cuisine) in learning and ignore cooking procedure [7] [8] [26].
Inherently, they are incapable of disambiguating dishes that are
different but using the same or similar ingredients (e.g., Figure 1).
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3 METHODOLOGY

Figure 2 depicts the basic framework of our proposed attention
mechanism. First, different modalities are input to both ends of
the deep model for representation learning. Recipes, in particular,
are split into three sections (title, ingredient, instruction) based on
different levels of information granularities. These sections are en-
coded separately by attention mechanism into three representations,
which are eventually concatenated as a recipe representation (2a).
Together with image representation which is learnt through the
convolutional network (2b), the proposed model learns to maximize
the cosine similarity between textual recipes and their associated
food images. The similarity learning is carried out through two
representation transformations that aim to make recipe and image
features as alike as possible (2c).

3.1 Recipe representation

Title encoder. Each recipe has a title as the name of the dish.
As expected, the title uses to elicit dish peculiarity by capturing
food uniqueness directly into the name. The characterization of
food uniqueness is multi-perspective in nature, ranging from the
taste, style (e.g., “old fashion", “home-made"), cuisine and geog-
raphy region, ingredient and cooking method, to even cooking
utensil. Examples include “peek potato and bacon casserole recipe”,
“caramelized beef skewers” and “home-made healthy granola bars”.
For title representation, the aim of the attention model is to assign
higher weights to words that directly link to food content relative
to contextually relevant terms about style and location.

Given a title with words wy, t € [0, T], we first embed individual
word to a vector through a matrix We, x; = W,w;. The title is
treated as a sequence and a bidirectional gated recurrent unit (GRU)
[4] is employed to encode the word sequence. The bidirectional

GRU is composed of a forward GRU which reads title from w; to

wr and a backward GRU which reads from wr to wy, defined as

Xt :Wew;,te [l,T], (1)
hi = GRU(x;),t € [1,T], @)
h, = GRU(x;),t € [1,T]. (3)
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The representation of a word w; can by obtained by concatenat-

ing the forward hidden state IT; and backward hidden state }(l_t as
following

hy = [y, hy). @)

The attention mechanism further transforms word representation
from h; to u; with a one-layer multi-layer perceptron (MLP). The
contribution of a word is then rated by a weight a; evaluated using
softmax. Mathematically, we have

u; = tanh(Wy,hy + byy), (5

(6)

exp(u] )
adr = < T
e (exp(u; uy)

where W,, is the transformation matrix of MLP and b,, is its bias
term. The weight a; characterizes the similarity of word repre-
sentation u; and context vector u,, under softmax function. The
context vector can be regarded as a reference object of u; for cross-
modal learning. For example, in attention-based visual question
answering (VQA) [39], the context vector can be directly set as text
features to calculate the attention weights on image regions. In
our case, nevertheless, we do not wish to couple text and image
features at this stage because otherwise the learnt features will
have to be on-the-fly generated and cannot be indexed offline for
retrieval. Instead, the context vector u,, is randomly initialized and
updated subsequently during the learning process. Finally, the title
representation fijy. is generated by aggregation of weighted word
representations as following

fiitle = Z athy. (7)
t

Ingredient encoder. A recipe usually has a section listing out
ingredients, their quantities and optionally the corresponding cook-
ing and cutting methods for food preparation. The ingredients
include both visible items on the dish (e.g., onion, steak) and non-
visible items (e.g., oil, salt). The aim of attention is to align the
observations on recipe and food image such that ingredients, which
are not visible or do no alter the outlook of a dish, will be assigned
lower weights. The learning of ingredient representation, fineredients
is similar to that of title representation. We first obtain the hidden
representation of each ingredient (equations 1 to 4), and followed
by quantifying the significance of an ingredient with a numerical
weight (equations 5 to 6). The final representation is generated by
weighted aggregation as in Equation 7.

Instruction encoder. Cooking instructions are composed of
varying-length sentences written in free form. The descriptions are
much denser than title and ingredient list for elaborating cooking
steps in details. While rich in information, there might not be a
direct correspondence between a sentence in cooking instruction
and dish appearance. For example, the instruction “heat a 10-inch
skillet over medium-high heat” has less effect than “lay two slices
of bacon over the top” in the final food appearance. The impor-
tance should also not be directly impacted by sentence length. For
example, the short sentence “bake for 1 hour” could change the
dish outlook and should be assigned a higher weight. To this end,
the attention mechanism aims to evaluate the relevancy between
a sentence and food presentation, and meanwhile, the relevancy
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is also characterized by the importance of words in the sentence.
This basically establishes a two-level hierarchy similar to [44] that
propagates the contributions of words to sentence level and then
sentences to dish appearance for forming recipe representation.
The same procedure as title and ingredient is adopted for word-
level representation learning (equations 1 to 7) to generate sentence
vectors, denoted as s;, i € [1, L], where L is the number of sentences
in the instruction. The sentence-level representations are further
aggregated into a vector using a similar procedure. Precisely, the bi-
directional forward and backward GRUs followed by one-layer MLP
are used to generate hidden representation u; of s; as following

—

5

hi = GRU(s;),1 € [1,L], 8)

h; = GRU(s;),i € [1,1), )
—

hi = [hi, hi], (10)

u; = tanh(Wsh; + bs). (11)

Denote u; as the sentence-level context vector, the relevancy of a
sentence is calculated as

_ exp(u?us)
 Tilexp(u]ug)’

where W is transformation matrix of MLP. u is the context vector.
Similar to Equation 6, us is randomly initialized and progressively
refined during training. The final representation is obtained through

Sinstruction = Z aih;. (13)
i

(12)

Recipe representation. We adopt early fusion strategy to ap-
pend the three levels of representations as following

frecipe = [fritles fingredient’ finstruction] (14)

The dimensions of both fijye and fingredient are empirically set as
600. As instruction is dense in description, finstruction 1S Set as a
1,000 dimensional vector. No normalization is applied when con-
catenating the three vectors into recipe presentation.

3.2 Representation of images

The state-of-the-art deep convolutional network, ResNet-50 [18],
is used for image feature extraction. As the network is not pre-
trained on food images, we fine-tune ResNet-50 with UMPC Food-
101 dataset [6], which contains 75,750 training images of 101 food
categories. Different from [30], we do not integrate ResNet-50 with
recipe representation for end-to-end feature learning. Instead, pool-
5 features are extracted. The dimension of fiage is 2,048.

3.3 Joint embedding learning

The aim is to transform both recipe and image representations
into vectors with an equal number of dimensions for similarity
comparison. Two projections are learnt through transformation
matrices Wg and Wy, as following

$r = tanh(WR frecipe + br),
¢o = tanh(Wy fimage + bo),

(15)
(16)
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where ¢g and ¢, are respectively the embedding features of recipe
and image, and bg and b, are their bias terms. The feature dimen-
sion is empirically set as 1,024, which is the same with [30]. With
this, cosine similarity is employed to evaluate the closeness be-
tween two transformed features. The learning goal is to ensure
that a query can always score its true positive as higher as possible
than negatives and thus the rank loss function with max margin is
employed for the update of parameters. Since we target for both
image-to-recipe and recipe-to-image retrieval, the input of loss func-
tion is composed of two triplets: (¢, Pr, Pr-) and (PR, v, Po-)-
The first element of the triplet is either an image (¢, ) or recipe
(¢Rr) query, followed by a true positive and a negative example of a
different modality as the second and third elements. Let the margin
as d € (0, 1), the loss function is defined as

L =max (0,8 — cos(¢po, Pr) + cos(pv, Pr-))

+ max(0,5 — cos(PRr, Pov) + cos(Pr, Po,-)). (17)
Note that, in addition to the attention mechanism, the technical
difference between this work and [30] are in four aspects. First, we
do not adopt end-to-end image feature learning as in [30] for saving
GPU memory and training time. Second, rank loss is employed. In
our empirical study, rank loss is about three times faster in model
convergence than the pairwise cosine similarity loss adopted by
[30]. The number of epochs required by rank loss is 70, versus 220
epochs as required by cosine similarity loss for training. Third, [30]
does not encode title information but instead utilizes titles as the
constraint for regularization (see Section 4.5 for details). Finally,
skip-thoughts [22] and LSTM are used in [30] to encode cooking
instruction without attention modeling. In this work, we use GRU
instead of LSTM as encoder because GRU is computationally more
efficient than LSTM.

4 EXPERIMENT
4.1 Dataset

The experiments are conducted on RecipelM>, which is one of the
largest datasets that contain recipes and images. The dataset is
compiled from dozens of popular cooking websites such as “all-
recipes” 4 and “fine cooking” °. We use the preprocessed version of
the dataset provided by [30], in which 0.4% duplicate recipes and
2% duplicate images have been removed, for empirical studies. The
dataset contains 1,029,720 recipes and 887,536 images, with around
70% of data being labeled as training and the remaining being split
equally between validation and testing. The average number of
ingredients and instructions per recipe are 9.3 and 10.5 respectively.
All recipes are written in English and 33% of them are associated
with at least one image. We treat a recipe and its associated image
as a pair, and generate at most five pairs for recipes having more
than one images. We do not use those recipes without images in
our experiments.

3http://im2recipe.csail mit.edu/dataset/
“https://www.allrecipes.com
Shttp://www.finecooking.com
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Table 1: Contributions of different encoders and their combina-
tions on 5K dataset.

im2recipe recipe2im

MedR | R@1 | R@5 | R@10 | MedR | R@1 | R@5 | R@10
title 58.2 0.044 | 0.141 | 0.217 | 57.6 0.040 | 0.137 | 0.215
ingre. 71.0 0.045 | 0.135 | 0.202 | 70.1 0.042 | 0.133 | 0.202
inst. 33.9 0.070 | 0.202 | 0.294 | 33.2 0.066 | 0.201 | 0.295
title + ingre. | 31.9 0.073 | 0.215 | 0.310 | 31.9 0.074 | 0.211 | 0.307
title + inst. 26.6 0.082 | 0.231 | 0.331 | 26.8 0.081 | 0.234 | 0.334
ingre. + inst. | 30.0 0.079 | 0.223 | 0.316 | 29.0 0.075 | 0.220 | 0.316
all 20.0 0.104 | 0.274 | 0.382 | 19.1 0.101 | 0.272 | 0.382

4.2 Experiment setting

Implementation details. Adam optimizer [21] is employed for
model training with learning rate set as 1074, The margin in Equa-
tion 17 is selected as 0.3 by validation and the mini batch size is
set as 128. Per-batch online triplet sampling is employed during
training. In each mini-batch, a recipe (image) is restricted to have
exactly one ground-truth image (recipe). Furthermore, for each
recipe (image), apart from its ground-truth image (recipe), the re-
maining images (recipes) are used as negatives for model training.
The deep model is implemented on tensorflow platform. As end-to-
end learning is only performed between recipe feature and joint
embedding learning, the model can be trained on a single NVIDIA
Tesla K40 GPU.

Evaluation metrics. We use median retrieval rank (MedR) and
recall at top K (R@K) as in [30] for performance evaluation. MedR
measures the median rank position among where true positives are
returned. Therefore, a lower MedR score indicates higher perfor-
mance. R@K, on the other hand, calculates the fraction of times
that a correct recipe is found within the top-K retrieved candidates.
Different from MedR, the performance is directly proportional to
the score of R@K.

Testing. Same as [30], we report results for subsets of randomly
selected recipe-image pairs from the test set. In a subset, every
pair is issued alternately as image or recipe query to retrieve its
counterpart, namely the image-to-recipe (im2recipe) or recipe-to-
image (recipe2im) retrieval. To evaluate the scalability of retrieval,
the subset sizes are respectively set to be 1K, 5K and 10K pairs. The
experiments are repeated 10 times for each size of the subset and
the mean results are reported.

4.3 Ablation studies

Table 1 lists the contributions of title, ingredient, instruction and
their combinations towards performance improvement. On both
im2recipe and recipe2im, instruction attains higher performance
than title and ingredient alone in a large margin. The result clearly
verifies the significance of cooking instructions, which embed pro-
cessing of ingredients with rich procedural actions, in cross-modal
retrieval. The title, which is often highlighted with the key ingredi-
ent and major cooking method, surprisingly outperforms ingredient.
Title and ingredient, nevertheless, appear to be highly complemen-
tary, and the combination of them leads to improvement close to
the performance of instruction alone. Meanwhile, combining in-
struction with either title or ingredient also results in improvement,
and the best performance is achieved by concatenating all the three
representations.
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Top-5 retrieved images

Easy onion meatloaf

Title

ground beef; onion soup
mix; egg; evaporated milk;
jar beef gravy;

1. Bake until meat is done,
about 45 minutes.

2. Top meatloaf with the jar of
gravy; put pan back in oven
to heat gravy through....

Instruction  Ingredient

Query

New ranch dip

Title

sour cream; Kraft Rancker’s
choice dressing; Miracle Whip
original spread; grated cheese;
crumbled bacon; sliced green
onion.
. Mix all ingredients.
Refrigerate 1 hour or util ..
Serve with assorted cut-up
regetables, breadsticks or
Christie Crackers.

Instruction  Ingredient

Figure 3: Retrieval results by title, ingredient or instruction. True
positives are bounded in green box. The highly weighted sentences
are listed in the instruction section.

Figure 3 shows two examples explaining the role of instruction in
boosting performance. In Figure 3a, the title alone already ranks the
true positive at the top-3 position. Instruction gives high weights
to two sentences “bake until meat is done" and “top meatloaf with
jar of gravy!" As these sentences somewhat describe the interaction
between the ingredients and the associated actions (e.g., bake, top),
the true positive is ranked at the top-1 position. The ingredient,
which misses the keyword “meatloaf”, only manages to retrieve
dishes with beef. The title “new ranch dip” in Figure 3b does not
visually describe the content of dish and hence fails to retrieve any
sensible images. Instruction encoder, by giving high weights to
“refrigerate 1 hour” and “serve with assorted cut-up vegetables", is
able to rank true positive at the top-1 position. Interestingly, most
of the ingredients appear in the ingredient list are not mentioned in
the cooking procedure. Instead, they are described by the sentence
“mix all ingredients” which is ranked as the third highest sentence.
Browsing the images retrieved by instruction in Figure 3b, most
top-ranked images are with the effect of mixing ingredients and
being refrigerated.

4.4 Effect of attention

We experiment the impact of attention modeling on cross-modal
retrieval. Table 2 contrasts the performances on 5K datasets. Note
that the results without attention are obtained by average sum of
words and sentences. As seen in Table 2, attention modeling exhibits
consistent improvement across different evaluation metrics and
levels of comparison. MedR, for example, is averagely upgraded by
two ranks for both image-to-recipe and recipe-to-image retrieval.
Similar performance is also noted on the 1K dataset with MedR
being boosted by one position.

Figure 4 shows two examples of image-to-recipe retrieval. In the
first example, although the word “kalops” in the title is assigned
lower weight, the true positive is still ranked at the top-1 position
by attention modeling. This is mainly because sentences 4-7 in the
cooking instruction, which characterize the unique way of cooking
kalops, are assigned higher weights. Especially, the effects of the
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operations such as “simmer", “boil water" and “add bay leaves" are
partially visible on the dish. Without attention modeling, “pres-
sured cooked beef" will be ranked at the top instead. However,
when the attention weights are not assigned properly, the result
could be worse than without attention modeling as shown in the
second example. The keyword “frozen", which characterizes the
uniqueness of “mousse square”, is not attended in both the title and
cooking instruction. Instead, the sentence “remove dessert from
freezer” is assigned the highest weight. In this case, although the
top-5 retrieved images are all chocolate cakes, the true positive is
not ranked at the top compared to the method without attention
modeling.

4.5 Performance comparison

We compare our approach with canonical correlation analysis
(CCA) [15], stacked attention network (SAN) [8], joint neural em-
bedding (JNE) [30], and JNE with semantic regularization (JNE+SR)
[30]. We do not compare to classification-based approaches such
as [7] [10] because only a limited number of ingredients, cutting
and cooking attributes can be recognized. CCA learns two linear
projections for mapping text and image features to a common
space that maximizes their feature correlation. The text feature is
concatenated from word2vec ingredient vector and skip-thoughts
instructor vector provided by [30]. SAN considers ingredient list
only and learns the embedding space between ingredient and im-
age features through a two-layer deep attention mechanism. JNE
utilizes both ingredients and cooking instructions in joint space
learning, but different from our approach, the attention mechanism
and title encoder are not considered. JNE+SR is a variant of JNE by
imposing a regularization term such that the learnt embedded fea-
tures will be penalized if failing in performing food categorization.
The number of food categories being exploited for SR is 1,047. The

categories are semi-automatically compiled from Food-101 dataset
[6] and the text mining result on recipe titles of RecipelM dataset.
As the categories are mostly mined from frequent bigrams of ti-
tles, we consider that JNE+SR also exploits titles, ingredients and
instructions as our approach, except that titles are leveraged in a
different stage of learning. We name our approach as attention and
also implement attention+SR as a variant based on the 1,047 food
categories shared by [30]. Besides, as JNE uses LSTM as encoders,
we also implement our attention model with LSTM for comparison.
Finally, note that different image features are used in these ap-
proaches: VGG pool-5 features [32] in SAN, ResNet-50 features [18]

fine-tuned by Food-101 dataset, and RestNet-50 features fine-tuned

by ImageNet ILSVRC 1000 dataset in JNE.

Table 3 lists the detailed performances. Note that we only com-
pare CCA and SAN on 1K dataset. SAN is computationally slow
and is not scalable to large dataset. In addition, SAN is designed for
image-to-recipe retrieval only. As seen in the results, attention and
JNE consistently outperform CCA and SAN across all evaluation
metrics on 1K dataset for both im2recipe and recipe2im retrieval.
SAN, although adopts attention mechanism, performs considerably
worse. This is because SAN considers only ingredients and the
image feature learning is based on VGG versus ResNet in other
approaches. Our attention approach also outperforms JNE in MedR
by raising the median rank for 2 positions, and in R@5 by more
than 5.4% of absolute recall improvement. The performance is even



Session: FF-4

MM’18, October 22-26, 2018, Seoul, Republic of Korea

Table 2: Performance of attention modeling on 5K dataset. The signs “+” and “-” indicate the results with and without attention modeling
respectively.
im2recipe recipe2im
MedR R@1 R@5 R@10 MedR R@1 R@5 R@10
+ - + - + - + - + - + - + - + -

title 58.2 | 61.5 | 0.044 | 0.042 | 0.141 | 0.139 | 0.217 | 0.211 | 57.6 | 58.7 | 0.040 | 0.039 | 0.137 | 0.134 | 0.215 | 0.209

ingredient | 71.0 | 73.0 | 0.045 | 0.039 | 0.135 | 0.123 | 0.202 | 0.192 | 70.1 | 72.0 | 0.042 | 0.039 | 0.133 | 0.126 | 0.202 | 0.196

instruction | 33.9 | 36.2 | 0.070 | 0.068 | 0.202 | 0.198 | 0.298 | 0.286 | 33.2 | 35.1 | 0.066 | 0.065 | 0.201 | 0.198 | 0.295 | 0.290

all 20.0 | 22.4 | 0.104 | 0.099 | 0.275 | 0.265 | 0.382 | 0.371 | 19.1 | 21.7 | 0.101 | 0.098 | 0.272 | 0.266 | 0.382 | 0.372

Recipe

KALOPS (SWEDISH BEEF STEW)

Ingredients

beef_chunk; salt; white_pepper; flour; butter;
yellow_onions; bay_leaves; allspice; water

Instructions

Combine flour, salt and pepper in a bowl.

Toss beef cubes in the flour mixture to coat.

In a large dutch oven, cook the butter until just
starting to brown.

Add the meat and onions, and cook, stirring
occasionally, until the meat is browned on all sides.
Add the bay leaves and allspice.

Boil the water in a separate pan, then pour over the
meat.

Simmer, covered, for 1 1/2 hours, ....................

Eal ol

oo

N

Frozen chocolate mousse squares

Ingredients

oreo_cookies; butter; cream_cheese_spread;

sweetened_condensed_milk; cool_whip_topping

Instructions

. Melt 4 oz. chocolate as directed on package.

. Beat cream cheese spread in large bowl with mixer
until creamy.

. Gradually beat in milk, then melted chocolate.

. Freeze 6 hours.

. Meanwhile, make chocolate curls from remaining
chocolate.

. Remove dessert from freezer 15 min.

. Use foil handles to lift dessert from pan; cut into
squares.

. Garnish with chocolate curls.

N =

oA w

~No

without attention  with attention without attention  with attention

[

Top-5 retrieved images
. .

Figure 4: Results of image-to-recipe retrieval when attention weights are assigned properly (top) and incorrectly (bottom). The weights of
words are highlighted by yellow pen, and the weights of sentences are indicated by blue bar. The intensity of colour indicates the degree of

weight. True positives are bounded in green box.

slightly better than JNE+SR. Besides, using LSTM as encoder has
similar performances with using GRU. When further enhancing our
approach with attention+SR, however, only slight improvement is
attainable. We speculate that the advantage of SR is limited on our
approach because title information has been encoded as attended
features for similarity learning. Further imposing food categoriza-
tion performance, which is equivalent to learning to name food
or recipe, in model training can only result in little gain in perfor-
mance. On the other hand, as no end-to-end learning is conducted
between SR and ResNet-50 image features, which could potentially
increase training complexity, the improvement is also expected to
be limited. Despite similar performance level as JNE+SR, our deep
model is more intuitive than [30] because no ad-hoc compilation
of food categorization by semi-automatic text mining is required.

As we move from 1K to 5K and 10K datasets, the performance
gap between attention and JNE also gets larger, as indicated in
Table 3. Our approach with attention manages to boost MedR by 10
and 20 ranks on 5K and 10K datasets, respectively, compared with
JNE. When semantic regularization is employed, both approaches
improve and attention+SR again outperforms JNE+SR with larger
margin as data size increases.
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4.6 Recipe preprocessing & cross-lingual
retrieval

The recipes in Recipe1M dataset are contributed by Internet users
and written in free-form. Thus, even extracting ingredient names
out of recipes is considered not easy. In the previous experiments,
we use the ingredients extracted by bi-directional LSTM as devel-
oped in [30] as input to our attention model. With this named-entity
extraction technique, for example, olive_oil (instead of olive or oil)
will be extracted from the sentence “1 tbsp of olive oil”. Neverthe-
less, the extraction technique sometimes fails to extract ingredients
from sentences such as “1 pack udon noodles" or “One 15 0z(240g)
can chickpeas, drained and rinsed”. Since attention model is capable
of assigning weights to words and sentences, we speculate that the
effect of noisy texts will be alleviated or even masked out during
training. Therefore, instead of explicit preprocessing of recipes, we
use raw recipes as input for model learning. In this experiment,
we only remove numeric numbers from raw recipes to avoid the
explosion of vocabulary size which will adversely affect learning
effectiveness.

Table 4 shows the result that directly processing raw recipes can
lead to further improvement than using the preprocessed recipes
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Table 3: Performance comparison of our approach (attention) with various existing methods. The results of JNE and JNE+SR are quoted from

[30]. The symbol ‘-’ indicates that the result is not available in [30].

im2recipe recipe2im
MedR | R@1 | R@5 | R@10 | MedR | R@1 | R@5 | R@10
random 500 0.001 | 0.005 | 0.01 500 0.001 | 0.005 | 0.01
CCA [30] 15.7 0.14 0.32 0.43 24.8 0.09 0.24 0.35
SAN [8] 16.1 0.125 | 0.311 | 0.423 | - - - -

1K JNE [30] 7.2 0.20 0.45 0.58 6.9 0.20 0.46 0.58
JNE + SR [30] 5.2 0.24 0.51 0.65 5.1 0.25 0.52 0.65
attention (LSTM) | 4.8 0.253 | 0.530 | 0.665 | 4.8 0.255 | 0.536 | 0.665
attention 4.8 0.254 | 0.532 | 0.663 | 4.7 0.256 | 0.534 | 0.667
attention + SR. 4.6 0.256 | 0.537 | 0.669 | 4.6 0.257 | 0.539 | 0.671
JNE [30] 31.5 - - - 29.8 - - -

s |INE + SR [30] 212 | - - - 202 | - - -
attention 20.0 0.104 | 0.274 | 0.382 | 19.1 0.101 | 0.272 | 0.382
attention + SR 19.7 | 0.105 | 0.275 | 0.385 | 19.0 | 0.104 | 0.274 | 0.384
JNE [30] 628 | - - - 588 | - - -

Lok | INE + SR [30] 419 |- - - 392 |- - -
attention 40.7 0.070 | 0.191 | 0.274 | 38.9 0.069 | 0.192 | 0.276
attention + SR 39.8 | 0.072 | 0.192 | 0.276 | 38.1 | 0.070 | 0.194 | 0.278

Table 4: Results of parsing recipes without (i.e., raw recipe) and with (i.e., preprocessed recipe) named-entity extraction.
im2recipe recipe2im
MedR | R@1 | R@5 | R@10 | MedR | R@1 | R@5 | R@10

K Raw recipe 4.4 0.259 | 0.546 | 0.671 | 4.2 0.262 | 0.551 | 0.677
Preprocessed recipe | 4.8 0.254 | 0.532 | 0.663 | 4.7 0.256 | 0.534 | 0.667

K Raw recipe 18.1 0.111 | 0.290 | 0.402 | 17.7 0.105 | 0.293 | 0.405
Preprocessed recipe | 20.0 0.104 | 0.274 | 0.382 | 19.1 0.101 | 0.272 | 0.382

10K Raw recipe 37.2 0.072 | 0.202 | 0.290 | 35.3 0.069 | 0.203 | 0.294
Preprocessed recipe | 40.7 0.070 | 0.191 | 0.274 | 38.9 0.069 | 0.192 | 0.276

Table 5: Cross-lingual retrieval performance.

MedR | R@1 | R@5 | R@10
Raw Original 4.0 0.273 | 0.618 | 0.727
Recipe Translated | 8.0 0.218 | 0.455 | 0.564
Preprocessed | Original 4.0 0.291 | 0.545 | 0.673
Recipe Translated | 14.0 0.109 | 0.382 | 0.455

from [30]. The margin of improvement also gets larger with in-
crease of data size. By attention modeling, our approach manages
to recover some cases where ingredients are missed by named-
entity extraction. In the example of “1 pack udon noodles”, “udon”
is assigned a relatively higher weight than other words, although
our approach is incapable of extracting “udon noodles” as a phrase.

To further test the robustness of attention modeling on noisy
text description, we conduct a simulation for cross-lingual recipe
retrieval. The simulation is carried out by Google translating the
English version recipes into recipes of different languages. We then
reverse the process by translating the recipes in different languages
back into English version for retrieval. During this process, the
text description becomes noisy, for example, “in a large stockpot”
becomes “in a big soup pot” and “stir-fried bee hoon” becomes “fry
fried bees”. Table 5 shows the result, where 55 English recipes are
subsequently translated from English — Chinese — Japanese —
English and then issued as queries for retrieval on the 1K dataset.
As expected, the performance of using translated recipes is not
as good as the original recipes. When directly processing the raw
recipes, the top positives averagely drop by 4 ranks to 8th position
in the retrieval list. The result is acceptable because a user can still
locate the right recipe within the top-10 retrieved result. Applying
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named-entity extraction on the translated recipes, on the other
hand, suffers larger rank degradation, where the MedR drops from
4th to 14th position. The result basically indicates the resilience of
attention modeling in dealing with noisy text description.

5 CONCLUSIONS

We have presented a deep hierarchical attention model for the
understanding of recipes. The model clearly shows the merit of
leveraging cooking procedure for retrieval. More importantly, the
advantage of attention modeling is evidenced in experiment —
higher retrieval performance can be attained when weights are
properly assigned to the sentences where their cooking effects are
visible on images. Compared with [30], we also show that prepro-
cessing of recipes with named-entity extraction is unnecessary,
and indeed, directly processing raw recipes with attention leads to
better performance. Currently, our work considers each section of
recipes independently, which leads to inconsistency in weight as-
signment for the same words repeatedly appear in title, ingredient
and instruction sections. In addition, co-attention modeling, i.e.,
assigning weights to both text and image regions, is not explored.
Both issues will be the future directions of this work.

6 ACKNOWLEGEMENT

The work described in this paper was supported in part by a grant
from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China (CityU 11203517) and NExT++ project
supported by National Research Foundation, Prime Minister’s Of-
fice, Singapore under its IRC@SG Funding Initiative.



Session: FF-4

REFERENCES

[1] Kiyoharu Aizawa, Yuto Maruyama, He Li, and Chamin Morikawa. 2013. Food

[2

[3

[8

[11

[12

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

[23

[24

= =

]

]

]

]

]

]

]
]

]

balance estimation by using personal dietary tendencies in a multimedia food
log. IEEE Transactions on multimedia 15, 8 (2013), 2176-2185.

Kiyoharu Aizawa and Makoto Ogawa. 2015. Foodlog: Multimedia tool for health-
care applications. IEEE MultiMedia 22, 2 (2015), 4-8.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. 2015. VQA: Visual question answering. In
Proceedings of the IEEE International Conference on Computer Vision. 2425-2433.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

Oscar Beijbom, Neel Joshi, Dan Morris, Scott Saponas, and Siddharth Khullar.
2015. Menu-match: Restaurant-specific food logging from images. In Applications
of Computer Vision (WACV), 2015 IEEE Winter Conference on. IEEE, 844-851.
Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101-mining
discriminative components with random forests. In European Conference on
Computer Vision. Springer, 446—461.

Jingjing Chen and Chong-Wah Ngo. 2016. Deep-based ingredient recognition for
cooking recipe retrieval. In Proceedings of the 2016 ACM on Multimedia Conference.
ACM, 32-41.

Jingjing Chen, Lei Pang, and Chong-Wah Ngo. 2017. Cross-Modal Recipe Re-
trieval: How to Cook this Dish?. In International Conference on Multimedia Mod-
eling. Springer, 588-600.

Jingyuan Chen, Hanwang Zhang, Xiangnan He, Ligiang Nie, Wei Liu, and Tat-
Seng Chua. 2017. Attentive collaborative filtering: Multimedia recommendation
with item-and component-level attention. In Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Retrieval. ACM,
335-344.

Jing-jing Chen, Chong-Wah Ngo, and Tat-Seng Chua. 2017. Cross-modal recipe
retrieval with rich food attributes. In Proceedings of the 2017 ACM on Multimedia
Conference. ACM, 1771-1779.

Wei-Ta Chu and Jia-Hsing Lin. 2017. Food image description based on deep-based
joint food category, ingredient, and cooking method recognition. In Multimedia &
Expo Workshops (ICMEW), 2017 IEEE International Conference on. IEEE, 109-114.
Fangxiang Feng, Xiaojie Wang, and Ruifan Li. 2014. Cross-modal retrieval with
correspondence autoencoder. In Proceedings of the 22nd ACM international con-
ference on Multimedia. ACM, 7-16.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas
Mikolov, and others. 2013. Devise: A deep visual-semantic embedding model. In
Advances in neural information processing systems. 2121-2129.

Jun Harashima, Yuichiro Someya, and Yohei Kikuta. 2017. Cookpad Image Dataset:
An Image Collection as Infrastructure for Food Research. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 1229-1232.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. 2004. Canonical
correlation analysis: An overview with application to learning methods. Neural
computation 16, 12 (2004), 2639-2664.

Hamid Hassannejad, Guido Matrella, Paolo Ciampolini, Ilaria De Munari, Monica
Mordonini, and Stefano Cagnoni. 2016. Food image recognition using very deep
convolutional networks. In Proceedings of the 2nd International Workshop on
Multimedia Assisted Dietary Management. ACM, 41-49.

Hamid Hassannejad, Guido Matrella, Paolo Ciampolini, Ilaria De Munari, Monica
Mordonini, and Stefano Cagnoni. 2017. Automatic diet monitoring: a review of
computer vision and wearable sensor-based methods. International Journal of
Food Sciences and Nutrition 68, 6 (2017), 656—670.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770-778.

Yoshiyuki Kawano and Keiji Yanai. 2014. Foodcam-256: A large-scale real-time
mobile food recognitionsystem employing high-dimensional features and com-
pression of classifier weights. In ACM MM. 761-762.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer, and Yejin Choi.
2015. Mise en place: Unsupervised interpretation of instructional recipes. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing. 982-992.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in
neural information processing systems. 3294-3302.

Corby K Martin, Theresa Nicklas, Bahadir Gunturk, John B Correa, H Raymond
Allen, and Catherine Champagne. 2014. Measuring food intake with digital
photography. Journal of Human Nutrition and Dietetics 27, s1 (2014), 72-81.
Niki Martinel, Gian Luca Foresti, and Christian Micheloni. 2016. Wide-Slice
Residual Networks for Food Recognition. arXiv preprint arXiv:1612.06543 (2016).

1028

[25

[26

[27

[28

[29

[30

[32

(33]

(34]

[35

&
2

[37

[38

[39

[40

[41

[42

[43

[44

MM’18, October 22-26, 2018, Seoul, Republic of Korea

Austin Meyers, Nick Johnston, Vivek Rathod, Anoop Korattikara, Alex Gorban,
Nathan Silberman, Sergio Guadarrama, George Papandreou, Jonathan Huang,
and Kevin P Murphy. 2015. Im2calories: towards an automated mobile vision
food diary. In Proceedings of the IEEE International Conference on Computer Vision.
1233-1241.

Weiging Min, Shuqiang Jiang, Jitao Sang, Huayang Wang, Xinda Liu, and Luis
Herranz. 2016. Being a Super Cook: Joint Food Attributes and Multi-Modal
Content Modeling for Recipe Retrieval and Exploration. IEEE Transactions on
Multimedia (2016).

Zhao-Yan Ming, Jingjing Chen, Yu Cao, Ciaran Forde, Chong-Wah Ngo, and
Tat-Seng Chua. 2018. Food Photo Recognition for Dietary Tracking: System
and Experiment. In International Conference on Multimedia Modeling. Springer,
129-141.

Nitish Nag, Vaibhav Pandey, and Ramesh Jain. 2017. Health Multimedia: Lifestyle
Recommendations Based on Diverse Observations. In Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval. ACM, 99-106.

Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert RG
Lanckriet, Roger Levy, and Nuno Vasconcelos. 2010. A new approach to cross-
modal multimedia retrieval. In Proceedings of the 18th ACM international confer-
ence on Multimedia. ACM, 251-260.

Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marin, Ferda Ofli, Ingmar
Weber, and Antonio Torralba. 2017. Learning Cross-modal Embeddings for
Cooking Recipes and Food Images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

Pol Schumacher, Mirjam Minor, Kirstin Walter, and Ralph Bergmann. 2012. Ex-
traction of procedural knowledge from the web: A comparison of two workflow
extraction approaches. In Proceedings of the 21st International Conference on World
Wide Web. ACM, 739-747.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Alan F Smeaton, Paul Over, and Wessel Kraaij. 2006. Evaluation campaigns and
TRECVid. In Proceedings of the 8th ACM international workshop on Multimedia
information retrieval. ACM, 321-330.

Chun-Yuen Teng, Yu-Ru Lin, and Lada A Adamic. 2012. Recipe recommendation
using ingredient networks. In Proceedings of the 4th Annual ACM Web Science
Conference. ACM, 298-307.

Christoph Trattner and David Elsweiler. 2017. Investigating the healthiness
of internet-sourced recipes: implications for meal planning and recommender
systems. In Proceedings of the 26th international conference on world wide web.
International World Wide Web Conferences Steering Committee, 489-498.
Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In Computer Vision and Pattern Recog-
nition (CVPR), 2015 IEEE Conference on. IEEE, 3156-3164.

Bokun Wang, Yang Yang, Xing Xu, Alan Hanjalic, and Heng Tao Shen. 2017.
Adversarial Cross-Modal Retrieval. In Proceedings of the 2017 ACM on Multimedia
Conference. ACM, 154-162.

Haoran Xie, Lijuan Yu, and Qing Li. 2010. A hybrid semantic item model for
recipe search by example. In Multimedia (ISM), 2010 IEEE International Symposium
on. IEEE, 254-259.

Huijuan Xu and Kate Saenko. 2016. Ask, attend and answer: Exploring question-
guided spatial attention for visual question answering. In European Conference
on Computer Vision. Springer, 451-466.

Ruihan Xu, Luis Herranz, Shugiang Jiang, Shuang Wang, Xinhang Song, and
Ramesh Jain. 2015. Geolocalized modeling for dish recognition. IEEE transactions
on multimedia 17, 8 (2015), 1187-1199.

Yoko Yamakata, Shinji Imahori, Hirokuni Maeta, and Shinsuke Mori. 2016. A
method for extracting major workflow composed of ingredients, tools, and actions
from cooking procedural text. In International Conference on Multimedia & Expo
Workshops (ICMEW). IEEE, 1-6.

Fei Yan and Krystian Mikolajczyk. 2015. Deep correlation for matching images
and text. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference
on. IEEE, 3441-3450.

Keiji Yanai and Yoshiyuki Kawano. 2015. Food image recognition using deep
convolutional network with pre-training and fine-tuning. In Multimedia & Expo
Workshops (ICMEW), 2015 IEEE International Conference on. IEEE, 1-6.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 1480-1489.



	Deep understanding of cooking procedure for cross-modal recipe retrieval
	Citation

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contribution

	2 Related work
	3 Methodology
	3.1 Recipe representation
	3.2 Representation of images
	3.3 Joint embedding learning

	4 Experiment
	4.1 Dataset
	4.2 Experiment setting
	4.3 Ablation studies
	4.4 Effect of attention
	4.5 Performance comparison
	4.6 Recipe preprocessing & cross-lingual retrieval

	5 Conclusions
	6 Acknowlegement
	References

