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A Robust Dissolve Detector by Support Vector Machine

Chong-Wah Ngo
Department of Computer Science

City University of Hong Kong
cwngo@cs.cityu.edu.hk

ABSTRACT
In this paper, we propose a novel approach for the robust
detection and classification of dissolve sequences in videos.
Our approach is based on the multi-resolution representa-
tion of temporal slices extracted from 3D image volume. At
the low-resolution (LR) scale, the problem of dissolve de-
tection is reduced as cut transition detection. At the high-
resolution (HR) space, Gabor wavelet features are computed
for regions that surround the cuts located at LR scale. The
computed features are then input to support vector ma-
chines for pattern classification. Encouraging results have
been obtained through experiments.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Video Analysis

General Terms
Algorithms, Design, Reliability, Experimentation

Keywords
Dissolve Detector, Temporal Slices, Support Vector Machine

1. INTRODUCTION
Due to the advance of video production technology, vari-

ous type of video edits (e.g., cut, wipe and dissolve) can be
easily created to indicate the change of space and time. By
detecting these edits (shot boundaries), we can facilitate the
content analysis, indexing, browsing and retrieval of video
data. To date, numerous approaches have been proposed
for the detection and classification of shot boundary transi-
tions. While cuts can be successfully located by color [14,
16], edge [15], motion [2] and statistical [5, 13] analysis, the
correct detection of gradual transitions (dissolves and wipes)
is still remained as a difficult problem. This is not surprised
since cuts can be easily identified by comparing two adjacent
frames, gradual transitions, however, require the investiga-
tion of frames along a large temporal scale. Surveys and
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studies in [4, 11, 17] have indicated that cut detectors, in
general, are reliable in most circumstances. Gradual tran-
sition detectors, on the other hand, can only handle simple
examples. Most dissolve detectors can achieve either high
recall or high precision, but not both [17]. In this paper, we
focus our attention on the robust detection and classification
of dissolve and non-dissolve patterns.

2. RELATED WORKS
Most existing works [1, 6, 7, 9, 14] on the detection of

dissolve transitions are based on the following model:

f(x, y, t) = (1− α(x, y, t))g(x, y, t) + α(x, y, t)h(x, y, t) (1)

where f is a dissolved frame superimposed by two frames
g and h at time t. Typically, g and h are frames from two
different shots. The transition function α characterizes, ei-
ther linearly or non-linearly, how f is dissolved over time as
a result of mixing g and h. Usually 0 < α(x, y, t) < 1 with
the condition α(x, y, t) ≤ α(x, y, t+1). Since Eqn(1) is irre-
versible, apparently, detecting and classifying dissolves is a
difficult task. To simplify the problem of detection, various
assumptions have made on Eqn(1). These assumptions have
led to plateau effect [14] and parabolic curve of variance [1].
Take α(x, y, t) = α(t), g(x, y, t) = g(x, y) and h(x, y, t) =

h(x, y), we have

f(x, y, t) = (1− α(t))g(x, y) + α(t)h(x, y) (2)

In other words, f is a dissolved sequence of two static shots
g and h in t = [t1, t2]. Let F(t) = f(x, y, t), by taking the
frame difference, we have

F(t)− F(t+ k)

F(t− k)− F(t) = β(t, k) (3)

where β(t, k) = α(t+k)−α(t)
α(t)−α(t−k)

> 1 and t = [t1 + k, t2 − k]. If

k > t2−t1+1, plateau effect will be exhibited and this effect
can be exploited effectively for dissolve detection [6, 14].
Eqn(2) can be further simplified by assuming α(t) as a

linear function, α(t) = t−t1
t2−t1

for instance. This leads to a
formula in term of variance:

σf (t) = (σg + σh)α
2(t)− 2σgα(t) + σg (4)

where σf (t), σg and σh are the variances of f(x, y, t), g(x, y)
and h(x, y). Since σf (t) is a concave upward parabolic curve,
dissolves can be detected simply by locating parabolic curves
[1, 9]. The limitations of Eqn(3) and Eqn(4) are mainly due
to the linearity assumption of α(t) and the static sequence
assumption of shots g and h. As a result, most detectors are
generally very sensitive to noise, camera and object motions.
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Other interesting approaches include edge change ratio
[15] and twin comparison [16]. Recently, modern machine
learning (ML) approach is also adopted for dissolve detec-
tion [12]. The problem of detection is considered as a 2-class
pattern classification problem. Low-level color and contrast
features are extracted from image sequence for neural net-
work learning. In this paper, we propose a ML approach
based on support vector machines (SVM) for dissolve clas-
sification and detection. The novelties of our approach lie
on three different aspects: i) reduce the problem of dissolve
detection as cut detection in multi-resolution (MR) repre-
sentation, ii) utilize Gabor wavelet features extracted from
2D temporal slices for pattern description, iii) effective fil-
tering and selection of potential dissolve regions for feature
extraction and pattern classification. Compared with [12],
our approach is robust since i) actual dissolves will not be
easily missed during the pre-filtering stage in our MR repre-
sentation, ii) Gabor wavelet features which encode motion
texture across different scales and rotations are more reliable
to filter false matches due to camera and object motion.

3. PATTERN CLASSIFICATION
In this section, we describe our approach in encoding the

dissolve patterns observed in temporal slices for classifica-
tion. All the computation is done directly on the DC image
volume of MPEG videos. This offers two advantages: com-
putational efficiency since the 3D image volume is reduced
by 64 times, and the volume is inherently smoothly.

3.1 Dissolve Patterns in Temporal Slices
Temporal slices are a set of 2D images in an image volume

with one dimension in time t, and the other in space x or y,
for instance. Typically, video shots appear as spatially uni-
form color-texture regions in temporal slices [9]. Each region
is considered to exhibit a unique rhythm, and the change of
rhythm can indicate the presence of shot boundaries. As
a result, the analysis of temporal slices is an effective way
of detecting shot transitions. While cuts and wipes can be
detected by measuring the change of color-texture proper-
ties through image segmentation [9], dissolves, nevertheless,
can not be easily located. This is because the rhythm of
two adjacent shots are interwined during a dissolve where
the change in coherency cannot be easily distinguished by
color-texture properties.
Despite the difficulties in detecting dissolves by image seg-

mentation, human eyes can still visually locate dissolves by
observing the gradual change of coherency in temporal slices.
Figure 1 shows several examples of dissolve patterns in tem-
poral slices. The length of these dissolves, d1 to d6, varies
from 30 to 80 frames. Basically human eyes are not only able
to distinguish dissolve from non-dissolve patterns, but can
also quickly identify the rough boundary of these dissolve re-
gions. In Figure 1(a), a non-dissolve pattern is shown. The
visual rhythm in this slice is basically generated by camera
panning and object motion. The marked region, non-diss,
is a false alarm that exhibits the similar statistical behavior
as describe in Eqn(3) and Eqn(4). It can be easily detected
as a dissolve by the algorithms based on these equations.
A careful observation on the dissolves in temporal slices

can reveal the fact that dissolves usually have a specific tem-
poral texture pattern that can help human perform pattern
classification. The problem of dissolve vs non-dissolve pat-
tern discrimination is similar to the text vs non-text or the

d6d3 d5d4

d1 d2non−diss

(a) Temporal slice with no dissolve (b) Temporal slice with two dissolves

(c) Temporal slice with four dissolves

Figure 1: Dissolve and non-dissolve patterns.

face vs non-face classification. In this paper, we choose Ga-
bor wavelet features to describe dissolve patterns for its bi-
ological relevance and technical properties. First, the Ga-
bor wavelets are of similar shape as the receptive fields of
simples cells in the primary visual cortex. Second, they
are localized in both the space and frequency domains and
have the shape of plane waves restricted by the Gaussian en-
velop functions. In fact, we have compared the performance
of Gabor wavelet features with tensor histograms [10] and
co-occurrence matrices by Support Vector Machines (SVM)
and Neural Network (NN). Gabor wavelet features give the
best performance for testing data and is the only features
that can achieve 100% classification accuracy for training
data in SVM and NN.

3.2 Volume Processing
The length of dissolves can vary typically from 15 to 150

frames. Intuitively, a brute force approach is required in or-
der to detect dissolves of different length. In other words,
for a given image sequence, we can repeatedly compute vi-
sual features in a support window W of different temporal
length, where |W | = 15, 16, . . . , 150 (let |W | represents the
temporal length). Then, a correct dissolve should be the
one with its length n = |W |. Nevertheless, this approach is
computationally intensive. Our major observation is that,
for a dissolve of length n, the dissolve is likely to be classified
as a non-dissolve pattern if |W | > n. However, if |W | ≤ n,
the dissolve is always classified correctly. The result is not
surprised since the dissolve and non-dissolve patterns are
mixed when |W | > n.
In our approach, we set |W | = 15. For an 3D image vol-

ume of size M ×N ×T , a support window of M ×N × 15 is
slided temporally along the volume with a step size ∆ = 3.
In each window support volume, the Gabor wavelet features
are computed for the temporal slices that are extracted hor-
izontally and vertically from the volume. The computed
features of each slice are then combined as described in Sec-
tion 3.3 to form a feature vector. For a dissolve with length

n > |w|, there are �n−|W |
∆

� + 1 feature vectors, each one
represents a segment in the dissolve.

3.3 Gabor Wavelet Feature Extraction
Gabor wavelet feature is frequently used for browsing and

retrieval of texture images, and have been shown to give
good results [8]. A Gabor filter g(x, t) can be written as

G(x, t) = (
1

2πσxσt
) exp{−1

2
(
x2

σ2
x

+
t2

σ2
t

)} exp{2πjWx} (5)

where σx and σt are smoothing parameters, j =
√−1, W =√

u2 + v2 and (u, v) is the center of the desired frequency. A
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self-similar filter GθS(x, t) can be obtained by the appropri-
ate rotation θ and scaling S of G(x, t). The Gabor filtered
image of a slice H is

ĤθS = H ∗GθS (6)

where ∗ is a convolution operator. A feature vector is con-
structed by using the mean µθS and the standard devia-

tion σθS of all ĤθS as components. In the experiment,
θ = 6 and S = 2. The resulting feature vector has length
6× 2× 2× 2 = 48 in the following form

[µ00, σ00, µ01, σ01, . . . µ51, σ51
︸ ︷︷ ︸

, µ00, σ00, µ01, σ01, . . . µ51, σ51
︸ ︷︷ ︸

]

for horizontal slices for vertical slices

Let Vi represents the i
th component of a Gabor wavelet

feature vector, where i = {1, 2, . . . , n}. Each vector is com-
posed of n = 48 components. Because the range of different
feature components can vary considerably, the feature com-
ponent is normalized as follows

Vi =
Vi − µi

αi
(7)

where µi and αi are, respectively, the mean and standard de-
viation of the ith feature component over the training data.

3.4 Support Vector Machine
Support Vector Machines (SVM) algorithm is based on

the idea of structural risk minimization. Its generation er-
ror is bounded by the sum of training error and the VC-
dimension of a classifier. By minimizing the upper bound,
SVM can achieve a higher generalization performance. In
our application, we employ C-Support Vector Classification
(C-SVC) [3] for dissolve recognition. We use RBF (radial
basis function) as the kernel function to map training vec-
tors into high dimensional feature space for classification.

4. MULTI-RESOLUTION APPROACH
Sliding a local window and computing the Gabor wavelet

features in each window support volume is a computation-
ally intensive task. To speed up the processing time, indeed
we only need to compute features for regions that consist
of potential dissolve patterns. In this section, we propose a
novel multi-resolution approach to detect the potential dis-
solve regions in temporal slices.
Figure 2 illustrates the evolving of eight dissolves to cam-

era cuts in a pyramid representation. This is carried out
by reducing the temporal resolution of a slice. In this fig-
ure, the temporal slices are down-sampled respectively by 3,
7, and 15 time units while Gaussian smoothing is imposed
to preserve the temporal rhythm. As observed in the fig-
ure, when the eight different dissolves arrives at different
multi-resolution levels, they gradually become camera cuts
depending on their temporal length. In this example, all
dissolves become cuts at the top of the pyramid.
Our strategy is to detect camera cuts at the low resolu-

tion space. After detecting the transitions, the cut bound-
aries are projected back to the original scale. Intuitively,
the projected regions contains the potential dissolve bound-
aries. We temporally expand the projected regions and then
compute Gabor wavelet features of the regions through a
support window as described in sections 3.2 and 3.3. We
adopt the algorithm in [9] to detect camera cuts. The algo-
rithm is based on a spatio-temporal slice model that utilizes

shot shot shot shot shot shotshotshotshot

Figure 2: Evolving of dissolves to cuts in bottom-up

manner along multiple scales in pyramid representation.

the texture and color information for image segmentation.
The algorithm is efficient since only three slices: horizontal,
vertical and left-diagonal slices extracted from the center of
an image volume, are analyzed.
In our experiment, we only use two levels of pyramid. The

temporal scale is down-sampled by 15 time units. At this
scale, almost all dissolves are emerged as cuts in temporal
slices. However, regions with fast camera and object mo-
tion are also appeared as camera cuts. By employing the
algorithm in [9], we can correctly detect approximately 98%
of dissolves, but only with about 20% to 30% of precision.
Our goal is to filter false matches while retaining the correct
dissolves through SVM classifier.

5. EXPERIMENT
The experiment is set up as follows. First we employ

the cut detector in [9] to temporally partition a video into
segments according to cut transitions. The slices of each
segment is then temporally down-scaled by 15 time units
and the same cut detector is applied to detect the cuts in
the low-resolution space. The detected cuts at time t of low-
resolution space are then projected to the original scale at
[15t− (7+ k), 15t+ (7+ k)]. The value k is a constant used
to expand the projected regions. Since the exact boundary
of a dissolve is always vague, adding 2 × k to a projected
region can increase the robustness of detection. In practice,
k can always improve the recall of dissolve detection. In the
experiment, we set k = 7. Gabor wavelet features are then
computed for these projected regions and SVM classifier is
employed for pattern classification.
In the experiment, eight videos are used for training while

five videos are used for testing. Approximately 500 dissolves
and 500 non-dissolves are used for SVM training. All dis-
solves are manually labeled by human subjects. The non-
dissolves are basically the false alarms generated when we
apply the cut detector in [9] to the eight training videos in
the low resolution space. At the training stage, two-fold
cross-validation and automatic parameters selection strate-
gies are employed. About 320 patterns are selected as sup-
port vectors after the training.
We use the recall-precision measure for performance eval-

uation. Recall measures the capability in detecting correct
dissolves, while precision measures the ability in preventing
false alarms. The values of recall and precision are in the
range [0, 1]. The values of recall and precision are combined
as follows to measure the overall performance

RP =
2× Recall× Precision

Recall + Precision
(8)
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Table 1: Experimental Results
Video Frames Dissolves Correct Detection False Alarm Missed Detection Precision Recall RP
1 52,561 117 101 30 16 0.77 0.86 0.81
2 24,720 135 106 18 29 0.85 0.79 0.82
3 12,588 24 19 8 5 0.70 0.79 0.74
4 25,694 77 60 18 17 0.77 0.78 0.77
5 11,571 33 28 10 5 0.74 0.85 0.79

The value of RP is high only when both recall and preci-
sion are high. Table 1 shows the experimental results of the
five testing videos. In the experiment, a detection is consid-
ered correct as long as it is overlapped with a ground-truth
dissolve [17]. The weighted average performance of our pro-
posed approach on the five testing videos are: recall= 0.83,
precision=0.79 and RP=0.81.
We compare our approach with an algorithm based on

the variance curve [1] as stated in Eqn(4). The algorithm
is implemented as follow: First, all potential dissolves are de-
tected as described in Section 4 based on the multi-resolution
approach. Then, the algorithm checks whether the potential
dissolves have upward parabolic variance curves as described
in Eqn(4). A dissolve is detected if there is an associated up-
ward parabolic curve. Table 2 compares the performance of
our proposed approach with the “variance curve” approach.
As shown in the table, our approach is constantly better
than “variance curve” in term of RP value. The main rea-
son that “variance curve” has low recall in video-1 is that
the assumptions made in Eqn(4) are violated when there are
camera and object motions involved during the dissolve pe-
riod. The precision is low in general since upward parabolic
curves are not unique only to dissolves, they can be gener-
ated by sequences with certain camera and object motions.
One simple example is a sequence with static motion, zoom,
and then static again. Our proposed approach, in contrast to
“variance curve”, achieves satisfactory performance for both
recall and precision. A close inspection of the videos reveals
that false detections are mostly due to the gradual change of
illumination and the gradual 3D rotation of objects. Missed
detections are mostly due to complex scenes (e.g., the dis-
solve region marked by miss2 in Fig 3 involves a shot with
flaming scene), complicated transfer functions α(x, y, t) in
Eqn(1) (e.g., the region marked miss1 in Fig 3), and low
contrast of two connecting shots (e.g., miss3 in Fig 3).

Table 2: Performance Comparison

Proposed approach Variance curve
Video Precision Recall RP Precision Recall RP

1 0.77 0.86 0.81 0.45 0.66 0.53
2 0.85 0.79 0.82 0.82 0.78 0.80
3 0.70 0.79 0.74 0.40 0.83 0.54
4 0.77 0.78 0.77 0.48 0.81 0.60
5 0.74 0.85 0.79 0.37 0.70 0.48

6. CONCLUSION
We have presented a new approach for dissolve detection.

The novelties of our approach include: dissolve pattern de-
scription by Gabor wavelet features extracted from tempo-
ral slices, potential dissolves selection by cut detection in
low-resolution space, SVM based dissolve classifier. Exper-
imental results indicate that our approach can compromise

recall and precision. We believe better performance can be
achieved if more training samples are included for pattern
learning.

2miss1miss miss3

Figure 3: Missed dissolve patterns.
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