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Abstract. Graphics processing units (GPUs) offer great potential for accelerating 
processing for a wide range of scientific and business applications. However, 
complexities associated with using GPU technology have limited its use in 
applications. This paper reviews earlier approaches improving GPU accessibility, 
and explores how integration with middleware messaging technologies can further 
improve the accessibility and usability of GPU-enabled platforms. The results of a 
proof-of-concept integration between an open-source messaging middleware 
platform and a general-purpose GPU platform using the CUDA framework are 
presented. Additional applications of this technique are identified and discussed as 
potential areas for further research. 

Keywords: GPU, GPGPU, middleware, messaging, CUDA, k-means, clustering, 
ZeroMQ, stream processing. 

1   Introduction 

General-purpose graphics processing units (GPGPUs) offer great potential for 
accelerating processing for a wide range of scientific and business applications. The 
rate of advancement of GPU technology has been exceeding that of mainstream 
CPUs, and they can be utilized by a wide range of computationally intensive 
applications. For instance, GPUs have been found to be superior in terms of both 
performance and power utilization for N-body particle simulations [1]. For these 
computations, GPU-based solutions were found to be the simplest to implement and 
required the least tuning, as compared with multi-core CPU and Cell processor 
implementations. For all their benefits though, significant time is required to design 
and tune algorithms that make optimal use of GPUs’ memory architectures. 

GPU processing can be used for a variety of scientific and business applications. 
GPUs have been used to accelerate DNA analysis and sequencing [19], biomedical 
image analysis [8], seismic data interpretation [10], and more recently in the 
derivatives pricing and risk analytics domain of the financial services industry [3]. As 
a case in point, many of the algorithms used for seismic data analysis – Fourier 
transforms, calculation of finite differences, and image convolutions – are especially 
well suited for parallel implementation on GPUs. GPUs have been shown to perform 
20-100 times faster than CPUs for these types of computations.   
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Nevertheless, GPU platforms have seen only limited use in scientific applications. 
While GPUs are commonly found in desktop computer systems, only a small 
proportion of consumer-grade systems readily support GPGPU programming and 
have the memory bandwidth and number of processing cores needed to perform faster 
than typical CPUs. High-end GPU cards or dedicated GPGPU computing processors 
are often used with server-class hardware configurations. Hence, in many cases 
providing a GPGPU-enabled workstation on every desk is impractical.  

Another factor that has limited the use of GPUs is the need for application 
designers to understand the intricacies of GPU architectures and programming 
models. To take advantage of GPU acceleration, developers must determine how the 
computational aspects of an application should be mapped to advantage of the 
parallelism of the GPU platform. They must also understand the GPU’s limitations 
and work around them. In particular, device-specific memory access constraints must 
be considered and catered for.  

While some middleware has emerged that helps simplify GPU programming and 
provide remote access to GPUs, ease of use still creates a significant barrier to their 
widespread adoption. Device-specific programming considerations, such as the 
number of cores, size of memory and performance for floating point precision 
calculations, are still critical factors. Likewise, little attention has been given to using 
GPUs to accelerate real-time applications.  

Outside the field of GPU processing, message-oriented middleware, referred to 
henceforth as messaging for brevity, has proliferated over the past two decades and 
has become a mainstay for distributed computing applications. Request-reply and 
publish-subscribe communications are commonly used for remote invocation of 
services and data stream processing. Furthermore, most messaging platforms promote 
and facilitate the development of common, reusable services. Access is commonly 
provided to such services through abstract interfaces that seek to minimize 
application-specific functionality and hide details of the underlying implementation.   

Given this context, this paper explores how the integration of messaging 
technologies can help improve the accessibility and usability of GPU platforms. 
Messaging can help to hide the complexities of the underlying GPU platform and 
programming environment and also facilitate remote access to GPU-enabled hardware 
platforms. The paper is organized as follows. First, a brief survey of background and 
related research is presented. Second, the design of a messaging-accessible, GPU-
enabled platform is described. Third, practical applications of accessing GPU-enabled 
services over messaging are identified. Fourth, the results of a proof-of-concept 
integration between an open-source messaging platform and a general-purpose GPU 
platform built on the CUDA framework are provided. Finally, further areas of 
potential research are discussed. 

2   Background and Related Work 

Three different aspects of background and previous research are reviewed in this 
section. The types of calculations that are well suited to GPU acceleration are 
considered in relation to which functions might be best implemented in conjunction 
with messaging. Other middleware approaches that have been used to simplify local 
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and remote access to GPUs are also examined. The use of messaging to support GPU 
acceleration is also reviewed. 

A number of different types of calculations have been mapped to GPUs to achieve 
improved performance for both scientific and financial applications.  Monte Carlo 
simulations – which are used in computational physics, engineering, and 
computational biology – are one type of calculation that has been shown to benefit 
from execution on GPUs [16]. Hidden Markov models and other Bayesian algorithms 
– which are used in bioinformatics and real-time image processing – can also benefit 
significantly from GPU acceleration [6][13]. Likewise, k-means clustering – used in 
computational biology, image analysis, and pattern recognition – has been a common 
target for GPU acceleration [12][20].   

The ease by which these different types of calculations can be implemented as 
common, abstracted services that can be executed remotely using messaging varies. 
On one hand, Monte Carlo simulations are not well suited for remote invocation 
because they require application-specific algorithms to be loaded and run on the 
server that hosts the GPU. There is no simple device-independent means of bundling 
up application-specific logic for remote execution on remote servers. On the other 
hand, k-means clustering calculations can be easily separated from application logic, 
parameterized, and presented as remote services that can be accessed through request-
reply messaging functions. Accordingly, the research described in this paper focuses 
on the k-means algorithm for the proof-of-concept implementation.  

There have also been a number of industry and research efforts focused on 
developing middleware that helps simplify GPU programming, including CUDA, 
HiCUDA, and OpenCL. CUDA (Compute Unified Device Architecture) is a 
framework that provides C language programming extensions that can be used to 
access the GPU hardware through a general purpose hardware interface opposed to a 
graphics processing-oriented API [15]. HiCUDA [7] goes further, providing higher-
level programming abstractions that hide the complexity of the underlying GPU 
architecture. Alternatively, OpenCL [14] provides a device-level API similar to 
CUDA that is portable across different types of processors and GPUs, whereas CUDA 
is only supported on GPUs made by NVIDA. While these middleware 
implementations have improved the usability of GPU devices, they only support 
access to GPUs cards installed locally on the server that are controlled by the local 
operating system. 

vCUDA and rCUDA help improve GPU accessibility by enabling applications to 
access GPUs indirectly. vCUDA [17] provides guest operating systems that run inside 
virtual machines with CUDA-based access to the host server’s GPU. CUDA API calls 
are intercepted by a proxy client library installed in the guest OS that routes the calls 
to a vCUDA server component running in the host OS. The vCUDA server 
component then passes the API request to the GPU and returns the response to the 
proxy, which in turn delivers it to the application running in the guest OS. rCUDA [5] 
takes a similar approach to provide remote access to GPUs over the network. A client 
proxy library intercepts applications’ CUDA API calls and forwards them using 
TCP/IP sockets to an rCUDA server component running on the remote host where the 
GPU physically resides.  These two approaches help address the problem of needing 
local access to the GPU, but they still require the application developer to be aware of 
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and design around device-specific considerations of the remote systems’ hardware 
configurations.  

While a wealth of information on messaging middleware has been developed over 
the past two decades, little research to date has focused on how GPUs can be 
combined with messaging. To this effect, King et al [11] demonstrated how 
convertible bond pricing calculations could be accelerated by GPUs and accessed 
remotely via a request-reply style web service interface. They reported performance 
gains of 60x of the GPU-based hardware cluster over CPU-based hardware cluster 
configuration.  Furthermore, the GPU-based cluster was substantially less expensive 
and consumed half the power of the CPU-based cluster.  This example demonstrated 
the benefits of and potential for middleware-based GPU services; however, its use is 
limited. The calculation implemented on the GPU was domain specific and could not 
be easily leveraged for other purposes.   

The design and prototype presented in this paper continues in the direction that 
King et al began, but seeks to provide a more generic and widely applicable model. 
As a proof of concept, a broadly applicable algorithm, k-means clustering, was 
implemented on the GPU and remotely accessed using an off-the-shelf messaging 
platform, ZeroMQ [9]. Access to the GPU was implemented in request-reply mode, as 
with King et al, and also in publish-subscribe mode, to help assess the practicality of 
using the GPU to accelerate network-based, real-time data stream processing 
applications. ZeroMQ was used as the messaging middleware because it is a readily 
available open source platform that provides a lightweight messaging implementation 
with low end-to-end latency. No unique features of ZeroMQ were used, though, and 
similar results would be expected were other messaging platforms to be used instead. 

The aim of this effort was to answer several questions and help set the stage for 
further research. Specifically, the goal was to determine whether: 

• From an architectural standpoint, it is possible to package certain types of 
computations so that they can be executed remotely on GPUs to achieve faster 
processing 

• The CPU interacting simultaneously with the network interface and GPU would 
cause any conflicts or performance degradation  

• It is practical to use GPUs to act as pipeline components processing real-time data 
streams using publish-subscribe messaging facilities  

The main of the focus of this paper is on the request-reply oriented GPU-enabled 
services. Preliminary results are also briefly described regarding the feasibility and 
potential gains that might be achieved for publish-subscribe-oriented GPU 
applications. 

3   Architecture 

Traditional local-access GPGPU computing architectures are structured as shown in 
Fig. 1. Each client application runs on a separate GPU server that hosts the GPU 
processor. Each application has its own computation-intensive algorithms that have 
been designed to run on the GPU, and each application is implemented independently. 
Hence, two applications may use the same basic algorithm, but have different source 
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code and have been tuned for different GPU processor configurations. Moreover, the 
GPU processor on each server may remain idle when the application is not run, and 
the GPU capabilities of on one server cannot be shared by an application running on 
another server.  

 

Fig. 1. A traditional local-access GPGPU architecture 

Alternatively, by integrating middleware-messaging technologies with GPU 
platforms, it is possible to improve the accessibility, usability, and hardware 
utilization rates of GPU processors for general purpose computing. Fig. 2 shows a 
service-oriented architecture view of the middleware-accessible GPU-enabled 
platform. As compared to the traditional local-access model, client applications can 
run on remote workstations. Computation-intensive algorithms are invoked by 
passing data using request-reply messaging. These algorithms can run on servers that 
host high-performance GPU processors that serve multiple remote client applications. 
The algorithm implementation can be tuned specifically for each host platform’s 
hardware configuration, without requiring each client application to address this 
concern. Likewise, the GPU-based algorithm implementation can be updated when 
the GPU hardware is upgraded without requiring changes to the client applications, 
assuming that the API remains constant.  

In summary, the benefits of this architecture are to: 

• Enable remote access to GPU processors 
• Hide the complexity of underlying GPU platform and programming 

environment 
• Provide abstract interfaces to common services 
• Allow the GPU resources to be shared more efficiently across multiple 

applications 
• Simplify maintenance of GPU-accelerated applications 

The algorithm’s input data may be passed directly across the messaging layer, or it 
may be more practical to include a reference to a remote data location – such as a  
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Fig. 2. The architecture of a middleware-accessible GPU-enabled platform 

database stored procedure or URL – as part of the service request message. The 
service can then directly retrieve the data for processing. 

4   Application 

Messaging middleware could provide scientific applications with access to a range of 
computationally intensive algorithms that run on high performance GPU processors. 
To demonstrate the feasibility of this idea, two proof-of-concept applications were 
implemented and tested. The first application implemented a k-means clustering 
algorithm on the GPU and exposed it as a shared service that was made accessible to 
applications running on different servers through ZeroMQ’s request-reply messaging 
interface. In a real-world scenario, remote computer vision, data mining, and 
computational biology applications could similarly make use of a GPU-accelerated 
clustering algorithm to partition and find common sets in collections of data.  

The second application implemented filtering algorithms on the GPU and was 
made accessible via ZeroMQ’s publish-subscribe interface. In this real-time scenario, 
raw streams of seismic data could be published using ZeroMQ, and then processed by 
GPU-accelerated filter algorithms, with the filtered results then being published back 
on the messaging middleware so that they can be accessed by downstream 
applications running on different servers. 
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4.1   GPU-Based K-Means Clustering Accessed Using Request-Reply Messaging 

Cluster analysis has been used in the fields of computer vision, data mining, and 
machine learning, amongst others, to divide data objects into groups based on their 
features and patterns. K-means is a widely used partitional clustering algorithm. It 
randomly chooses a number of points to form the centers of each cluster, and then 
assigns each datum to the cluster whose centre is nearest it, in a process called 
labeling. The center of each cluster is then recalculated from the points assigned to it, 
and these new cluster centers are used to label the points again. This process is 
repeated until the recalculated cluster centers stop moving between successive 
iterations. Fig. 3 shows an example of clustering output using the k-means algorithm 
with 3 clusters. 

 

Fig. 3. Example of k-means clustering results with three clusters 

The traditional k-means clustering algorithm has a known problem whereby non-
optimal solutions may be found, depending on the initial random selection of cluster 
centers. To address this, the algorithm is normally repeated multiple times, to increase 
the chance of finding a near-optimal solution. Hence, k-means is a computationally 
intensive algorithm, especially for large data sets.  

When executing the k-means algorithm, the time-consuming process of labeling 
can be transferred to the GPU for parallel execution to increase performance [2]. In 
the proof-of-concept implementation, the k-means algorithm was implemented using 
CUDA. Distance calculations were performed in parallel on the GPU while the CPU 
sequentially updated cluster centroids according to the results of the distance 
calculations [12]. Fig. 4 illustrates the processing flow of the GPU-based k-means 
algorithm. A CPU thread begins by reading the data points from the source location 
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and randomly initializing K cluster centers. To save data transfer cost between CPU 
and GPU, the data points are copied to the GPU’s global memory only once. The 
GPU processor then labels the data points and transfers the new labels back to the 
CPU. Again, transferring only the new labels helps to save on data transfer between 
the GPU and CPU. The CPU thread calculates new centroids based on the updated 
labels and determines whether to invoke the GPU again to label the data points. Once 
the algorithm terminates, the final data labels can be downloaded to the CPU  
and stored. 

 

Fig. 4. Process flow of the GPU-based k-means clustering algorithm 

The GPU-based k-means algorithm was then exposed as a shared service, accessed 
by remote client applications using a request-reply message interface as described in 
section 3. A client sends a request message specifying the location of the input data 
points (in a database table or file) and the number of clusters to be generated. After 
receiving the request, the service retrieves the input data and invokes the clustering 
algorithm. Once the algorithm has completed, the server will notify the client, which 
can then retrieve the clustered data set from the same location as the input data.  

4.2   GPU-Based Filtering Using Publish-Subscribe Messaging 

Sensor networks are commonly used to collect data for seismic data analysis 
generating large volumes of real-time data. Query-based filtering mechanisms, which 
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compare sensor readings against a large number of predicates, help identify patterns 
that correspond to or may predict specific types of events [4]. The process of 
comparing the current reading with a set of predicates is a time-consuming process 
that can be parallelized. Therefore, performance benefits may be achieved, especially 
for large data streams, by migrating the comparison function to a GPU [18]. 
Messaging middleware can provide a convenient and efficient mechanism for 
collecting and distributing data from remote sensors for analysis. Sensors typically 
publish their measurements asynchronously, filters consume these data and republish 
information when patterns match, and interested downstream applications will 
subscribe to the relevant information from the filters. 

A proof-of-concept GPU-based filtering service was implemented and made 
available via a publish-subscribe messaging interface. The filtering service uses a 
binary “greater than” operator to compare current data readings with a historical data 
set read from a data source stored either as a file on disk or in a database table. For 
example, this filtering service could be used to monitor an ongoing stream of real-
time sensor readings. If the filter detected that a current reading was greater than 90% 
of previous movement readings, another event would be published on the messaging 
middleware. While quite simple in its current form, this filtering mechanism could be 
easily extended to compare data with more complex predicates. Likewise, a large 
number of different predicates could be compared simultaneously by the GPU, taking 
advantage of its massively parallel architecture. 

To test the prototype, an application that simulates a remote sensor publishes a 
stream of measurement readings. The filtering component running on the GPU server 
subscribes to this data stream compares each data reading to the filtering criteria. 
When a match occurs, filtering service publishes a message on a new topic, creating a 
derivative event stream.  

5   Experimental Results 

To compare the performance of a CPU-based k-means algorithm and the GPU-based 
version that were invoked through messaging, a set of tests were performed on a 
quad-core Intel i5-760 2.80 GHz machine with 8 GB of RAM, and a NVIDIA 
GeForce 450GTS graphics card [15]. For comparison purpose, the GPU-based 
algorithm was run on both a GeForce 450GTS graphics card with 192 cores and a 
Tesla C1060 graphics card with 240 cores, respectively. Each test used a different 
number of 3-dimensional data points and ran the k-means algorithm repeatedly 10000 
times with 10 iterations per run to cluster the data points into different number of 
clusters. For the GPU-based algorithm, the number of threads per block was fixed at 
32 for the GeForce 450GTS card, and 1024 for the Tesla C1060 card, and the number 
of blocks was computed based on the number of data points and the number of 
threads. Table 1 shows the average total time taken to generate five clusters using the 
CPU-based algorithm and the GPU-based version, respectively. The GPU total time is 
the total service processing time as shown by the Service component in Fig. 4, which 
includes the data upload and download time. The results obtained from the Tesla 
C1060 card surpass those from the GeForce 450GTS card significantly. This also 
shows that fine-tuning the number of threads per block as appropriate to the data size 
has a large effect on the GPU performance. 
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Table 1. CPU-based and GPU-based k-means service processing times 

Processing Time 
No. of Data Points 

100 1K 10K 100K 1M 

Avg single CPU total time (ms) 0.06 0.85 8.99 81.8 817 

Avg GPU total time (ms) 
GeForce 450GTS 

0.38 0.84 2.83 24.3 232 

Avg GPU total time (ms) 
Tesla C1060 

0.20 0.37 0.47 1.2 6 
 

Fig. 5 shows the average total time taken for running the k-means clustering 
service when invoked remotely over messaging both on a single CPU, an estimated 
quad-core CPU, a GeForce 450GTS GPU, and a Tesla C1060 GPU, respectively. For 
simplicity, the time for the quad-core CPU is estimated based on a 3.4 speedup factor 
from the single CPU results. The results show that the processing time of the single 
CPU-based algorithm is very low for a small number of points, but it increases 
exponentially when the number of points increases. In contrast, the processing time of 
the GPU-based algorithm for a small number of points is relatively high, but it 
increases less as the number of points increases. The GPU shows superior 
performance at around 1000 points.  

 

Fig. 5. Average total processing time for different number of data points using CPU-based and 
GPU-based k-means algorithm 

Fig. 6 shows the average total time taken for invoking CPU and GPU versions of 
k-means algorithm using request-reply messaging to process one million points with 
different number of clusters. It demonstrates that the time taken for the single CPU-
based algorithm as well as the quad-core estimate increases more rapidly than the 
GPU-based version. The GPU’s performance benefits increase as the number of 
points and their dimension increase. 
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Fig. 6. Average total processing time for different number of clusters using CPU-based and 
GPU-based k-means algorithm 

Preliminary experiments were also conducted on a publish-subscribe-based GPU 
service, as described in Section 4, to determine the latency involved when using 
messaging and GPUs to process real-time data streams. Fig. 7 shows the latencies that 
were measured. The input message latency measures the time taken for the input data 
message to reach the remote GPU service. The GPU processing time corresponds to 
the time taken by the GPU to process the input data received from the messaging 
layer. The output latency measures the time taken for a remote subscriber to receive 
event notifications once the GPU identified a criteria match. 

As part of the tests, a client application published a stream of floating point data 
readings. After receiving each data reading, the server ran the GPU-based filtering 
algorithm to check whether the current data reading is greater than a set of historical 
readings read from the same data source. If the criteria matched, the corresponding 
cell of the bit map will be updated to 1, otherwise 0. The CPU thread on the server 
then determined, based on the bit map, whether current reading should be republished 
with an alert flag attached. 

 

Fig. 7. Latency definitions for the publisher-subscriber model 

The streaming data tests were carried out on the same hardware as for the k-means 
test described above. Table 2 shows the CPU and GPU processing time of the filtering 
algorithm and the two pub-sub latencies described above for 1,000 data readings each 
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comparing with 10K, 100K, and 1 million historical readings. The results show that 
for this simple filtering algorithm, running on GPU did not provide performance 
benefits as compared to running it on a single CPU due to the higher memory 
allocation and data transfer cost. However, if more complex filtering algorithms, such 
as complex predicate comparisons or Fourier transforms, were applied, it is more 
likely that the GPU-based implementation would outperform the CPU-based version. 
The input message latency is measured with a message publishing rate of 5000 
messages per second. It is observed that as the publishing rate decreases, the input 
message latency is reduced as well but to a certain extent. When the publishing rate 
becomes too low, the input message latency increases. The same pattern is observed 
for the output message latency. The output message latency shown in Table 2 is 
comparable with the input message latency because the publishing rate is about the 
same as well. These preliminary results demonstrate the feasibility of the proposed 
architecture. Further work is necessary to fine-tune the performance of GPU-based 
filtering algorithm for real-time data stream processing. 

Table 2. CPU-based and GPU-based filtering service processing times and input/output message 
latency  

Median Processing Time 
No. of Comparisons 

10K 100K 1M 

CPU processing time (μs) 28 260 1,820 

GPU processing time (μs) 
GeForce 450GTS 

156 717 5,065 

GPU processing time (μs) 
Tesla C1060 

205 721 4,189 

Input message latency (μs)  46 54 55 

Output message latency (μs) 36 51 56 

6   Conclusion and Future Work 

The aim of this paper was to answer several questions and help set the stage for 
further research. First, it was determined that from architectural standpoint, it is 
possible to encapsulate k-means computations so that they can be executed remotely 
on GPUs to achieve faster processing than locally on CPUs. Second, no significant 
conflicts arose when integrating messaging with the GPU processing. It is beneficial, 
however, to multithread services so that receipt of inbound messages and invoking 
local processing on the GPU are managed independently. Third, while using GPU-
based services to process real-time data streams, borne by messaging middleware, 
was shown to be feasible, further work is required to demonstrate this approach can 
outperform similar CPU-based configurations. 

Moreover, an important and easily measured benefit of messaging-enabled GPU 
architectures is cost and environment savings from reduced power consumption. 
Making GPUs more easily accessible can offload traditional CPU server 
implementations and reduce the number of GPU cards that are required to support 
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some types of computationally intensive algorithms and processing of high 
throughput real-time data flows.  In this regard, Duato et al [5] estimated that halving 
the number of GPUs used in a high performance server cluster – which could be 
easily achieved through more efficient sharing of GPU resources – could reduce the 
cluster’s overall power consumption by 12%. 

Several areas of further research would be beneficial. One area is exploring how 
more advanced features of messaging middleware, such as one-of-N delivery 
semantics, could be used to support load balancing across different servers in GPU-
enabled server clusters. Another area of interest is whether other computation types, 
such as hidden Markov models and Bayesian algorithms, are suitable for abstraction, 
parameterization, and remote invocation as a similar manner as was demonstrated for 
k-means clustering. Finally, further investigation of the potential for GPUs to support 
the analysis and filtering of high-throughput, real-time data flows would be beneficial.  
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