
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

11-2011

Enabling GPU acceleration with messaging middleware Enabling GPU acceleration with messaging middleware

Randall E. DURAN
Singapore Management University, rduran@smu.edu.sg

Li ZHANG

Tom HAYHURST

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Software Engineering Commons

Citation Citation
DURAN, Randall E.; ZHANG, Li; and HAYHURST, Tom. Enabling GPU acceleration with messaging
middleware. (2011). Proceedings of the International Conference, ICIEIS 2011, Kuala Lumpur, Malaysia,
November 14-16. 410-423.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/6446

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6446&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6446&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

A. Abd Manaf et al. (Eds.): ICIEIS 2011, Part III, CCIS 253, pp. 410–423, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Enabling GPU Acceleration with Messaging
Middleware

Randall E. Duran1,2, Li Zhang1,2, and Tom Hayhurst2

1 Singapore Management University, 80 Stamford Road, Singapore 178902
2 Catena Technologies Pte Ltd, #11-04, 30 Robinson Road, Singapore 048546

{randallduran,lizhang}@smu.edu.sg, tom@catena-technologies.com

Abstract. Graphics processing units (GPUs) offer great potential for accelerating
processing for a wide range of scientific and business applications. However,
complexities associated with using GPU technology have limited its use in
applications. This paper reviews earlier approaches improving GPU accessibility,
and explores how integration with middleware messaging technologies can further
improve the accessibility and usability of GPU-enabled platforms. The results of a
proof-of-concept integration between an open-source messaging middleware
platform and a general-purpose GPU platform using the CUDA framework are
presented. Additional applications of this technique are identified and discussed as
potential areas for further research.

Keywords: GPU, GPGPU, middleware, messaging, CUDA, k-means, clustering,
ZeroMQ, stream processing.

1 Introduction

General-purpose graphics processing units (GPGPUs) offer great potential for
accelerating processing for a wide range of scientific and business applications. The
rate of advancement of GPU technology has been exceeding that of mainstream
CPUs, and they can be utilized by a wide range of computationally intensive
applications. For instance, GPUs have been found to be superior in terms of both
performance and power utilization for N-body particle simulations [1]. For these
computations, GPU-based solutions were found to be the simplest to implement and
required the least tuning, as compared with multi-core CPU and Cell processor
implementations. For all their benefits though, significant time is required to design
and tune algorithms that make optimal use of GPUs’ memory architectures.

GPU processing can be used for a variety of scientific and business applications.
GPUs have been used to accelerate DNA analysis and sequencing [19], biomedical
image analysis [8], seismic data interpretation [10], and more recently in the
derivatives pricing and risk analytics domain of the financial services industry [3]. As
a case in point, many of the algorithms used for seismic data analysis – Fourier
transforms, calculation of finite differences, and image convolutions – are especially
well suited for parallel implementation on GPUs. GPUs have been shown to perform
20-100 times faster than CPUs for these types of computations.

 Enabling GPU Acceleration with Messaging Middleware 411

Nevertheless, GPU platforms have seen only limited use in scientific applications.
While GPUs are commonly found in desktop computer systems, only a small
proportion of consumer-grade systems readily support GPGPU programming and
have the memory bandwidth and number of processing cores needed to perform faster
than typical CPUs. High-end GPU cards or dedicated GPGPU computing processors
are often used with server-class hardware configurations. Hence, in many cases
providing a GPGPU-enabled workstation on every desk is impractical.

Another factor that has limited the use of GPUs is the need for application
designers to understand the intricacies of GPU architectures and programming
models. To take advantage of GPU acceleration, developers must determine how the
computational aspects of an application should be mapped to advantage of the
parallelism of the GPU platform. They must also understand the GPU’s limitations
and work around them. In particular, device-specific memory access constraints must
be considered and catered for.

While some middleware has emerged that helps simplify GPU programming and
provide remote access to GPUs, ease of use still creates a significant barrier to their
widespread adoption. Device-specific programming considerations, such as the
number of cores, size of memory and performance for floating point precision
calculations, are still critical factors. Likewise, little attention has been given to using
GPUs to accelerate real-time applications.

Outside the field of GPU processing, message-oriented middleware, referred to
henceforth as messaging for brevity, has proliferated over the past two decades and
has become a mainstay for distributed computing applications. Request-reply and
publish-subscribe communications are commonly used for remote invocation of
services and data stream processing. Furthermore, most messaging platforms promote
and facilitate the development of common, reusable services. Access is commonly
provided to such services through abstract interfaces that seek to minimize
application-specific functionality and hide details of the underlying implementation.

Given this context, this paper explores how the integration of messaging
technologies can help improve the accessibility and usability of GPU platforms.
Messaging can help to hide the complexities of the underlying GPU platform and
programming environment and also facilitate remote access to GPU-enabled hardware
platforms. The paper is organized as follows. First, a brief survey of background and
related research is presented. Second, the design of a messaging-accessible, GPU-
enabled platform is described. Third, practical applications of accessing GPU-enabled
services over messaging are identified. Fourth, the results of a proof-of-concept
integration between an open-source messaging platform and a general-purpose GPU
platform built on the CUDA framework are provided. Finally, further areas of
potential research are discussed.

2 Background and Related Work

Three different aspects of background and previous research are reviewed in this
section. The types of calculations that are well suited to GPU acceleration are
considered in relation to which functions might be best implemented in conjunction
with messaging. Other middleware approaches that have been used to simplify local

412 R.E. Duran, L. Zhang, and T. Hayhurst

and remote access to GPUs are also examined. The use of messaging to support GPU
acceleration is also reviewed.

A number of different types of calculations have been mapped to GPUs to achieve
improved performance for both scientific and financial applications. Monte Carlo
simulations – which are used in computational physics, engineering, and
computational biology – are one type of calculation that has been shown to benefit
from execution on GPUs [16]. Hidden Markov models and other Bayesian algorithms
– which are used in bioinformatics and real-time image processing – can also benefit
significantly from GPU acceleration [6][13]. Likewise, k-means clustering – used in
computational biology, image analysis, and pattern recognition – has been a common
target for GPU acceleration [12][20].

The ease by which these different types of calculations can be implemented as
common, abstracted services that can be executed remotely using messaging varies.
On one hand, Monte Carlo simulations are not well suited for remote invocation
because they require application-specific algorithms to be loaded and run on the
server that hosts the GPU. There is no simple device-independent means of bundling
up application-specific logic for remote execution on remote servers. On the other
hand, k-means clustering calculations can be easily separated from application logic,
parameterized, and presented as remote services that can be accessed through request-
reply messaging functions. Accordingly, the research described in this paper focuses
on the k-means algorithm for the proof-of-concept implementation.

There have also been a number of industry and research efforts focused on
developing middleware that helps simplify GPU programming, including CUDA,
HiCUDA, and OpenCL. CUDA (Compute Unified Device Architecture) is a
framework that provides C language programming extensions that can be used to
access the GPU hardware through a general purpose hardware interface opposed to a
graphics processing-oriented API [15]. HiCUDA [7] goes further, providing higher-
level programming abstractions that hide the complexity of the underlying GPU
architecture. Alternatively, OpenCL [14] provides a device-level API similar to
CUDA that is portable across different types of processors and GPUs, whereas CUDA
is only supported on GPUs made by NVIDA. While these middleware
implementations have improved the usability of GPU devices, they only support
access to GPUs cards installed locally on the server that are controlled by the local
operating system.

vCUDA and rCUDA help improve GPU accessibility by enabling applications to
access GPUs indirectly. vCUDA [17] provides guest operating systems that run inside
virtual machines with CUDA-based access to the host server’s GPU. CUDA API calls
are intercepted by a proxy client library installed in the guest OS that routes the calls
to a vCUDA server component running in the host OS. The vCUDA server
component then passes the API request to the GPU and returns the response to the
proxy, which in turn delivers it to the application running in the guest OS. rCUDA [5]
takes a similar approach to provide remote access to GPUs over the network. A client
proxy library intercepts applications’ CUDA API calls and forwards them using
TCP/IP sockets to an rCUDA server component running on the remote host where the
GPU physically resides. These two approaches help address the problem of needing
local access to the GPU, but they still require the application developer to be aware of

 Enabling GPU Acceleration with Messaging Middleware 413

and design around device-specific considerations of the remote systems’ hardware
configurations.

While a wealth of information on messaging middleware has been developed over
the past two decades, little research to date has focused on how GPUs can be
combined with messaging. To this effect, King et al [11] demonstrated how
convertible bond pricing calculations could be accelerated by GPUs and accessed
remotely via a request-reply style web service interface. They reported performance
gains of 60x of the GPU-based hardware cluster over CPU-based hardware cluster
configuration. Furthermore, the GPU-based cluster was substantially less expensive
and consumed half the power of the CPU-based cluster. This example demonstrated
the benefits of and potential for middleware-based GPU services; however, its use is
limited. The calculation implemented on the GPU was domain specific and could not
be easily leveraged for other purposes.

The design and prototype presented in this paper continues in the direction that
King et al began, but seeks to provide a more generic and widely applicable model.
As a proof of concept, a broadly applicable algorithm, k-means clustering, was
implemented on the GPU and remotely accessed using an off-the-shelf messaging
platform, ZeroMQ [9]. Access to the GPU was implemented in request-reply mode, as
with King et al, and also in publish-subscribe mode, to help assess the practicality of
using the GPU to accelerate network-based, real-time data stream processing
applications. ZeroMQ was used as the messaging middleware because it is a readily
available open source platform that provides a lightweight messaging implementation
with low end-to-end latency. No unique features of ZeroMQ were used, though, and
similar results would be expected were other messaging platforms to be used instead.

The aim of this effort was to answer several questions and help set the stage for
further research. Specifically, the goal was to determine whether:

• From an architectural standpoint, it is possible to package certain types of
computations so that they can be executed remotely on GPUs to achieve faster
processing

• The CPU interacting simultaneously with the network interface and GPU would
cause any conflicts or performance degradation

• It is practical to use GPUs to act as pipeline components processing real-time data
streams using publish-subscribe messaging facilities

The main of the focus of this paper is on the request-reply oriented GPU-enabled
services. Preliminary results are also briefly described regarding the feasibility and
potential gains that might be achieved for publish-subscribe-oriented GPU
applications.

3 Architecture

Traditional local-access GPGPU computing architectures are structured as shown in
Fig. 1. Each client application runs on a separate GPU server that hosts the GPU
processor. Each application has its own computation-intensive algorithms that have
been designed to run on the GPU, and each application is implemented independently.
Hence, two applications may use the same basic algorithm, but have different source

414 R.E. Duran, L. Zhang, and T. Hayhurst

code and have been tuned for different GPU processor configurations. Moreover, the
GPU processor on each server may remain idle when the application is not run, and
the GPU capabilities of on one server cannot be shared by an application running on
another server.

Fig. 1. A traditional local-access GPGPU architecture

Alternatively, by integrating middleware-messaging technologies with GPU
platforms, it is possible to improve the accessibility, usability, and hardware
utilization rates of GPU processors for general purpose computing. Fig. 2 shows a
service-oriented architecture view of the middleware-accessible GPU-enabled
platform. As compared to the traditional local-access model, client applications can
run on remote workstations. Computation-intensive algorithms are invoked by
passing data using request-reply messaging. These algorithms can run on servers that
host high-performance GPU processors that serve multiple remote client applications.
The algorithm implementation can be tuned specifically for each host platform’s
hardware configuration, without requiring each client application to address this
concern. Likewise, the GPU-based algorithm implementation can be updated when
the GPU hardware is upgraded without requiring changes to the client applications,
assuming that the API remains constant.

In summary, the benefits of this architecture are to:

• Enable remote access to GPU processors
• Hide the complexity of underlying GPU platform and programming

environment
• Provide abstract interfaces to common services
• Allow the GPU resources to be shared more efficiently across multiple

applications
• Simplify maintenance of GPU-accelerated applications

The algorithm’s input data may be passed directly across the messaging layer, or it
may be more practical to include a reference to a remote data location – such as a

 Enabling GPU Acceleration with Messaging Middleware 415

Fig. 2. The architecture of a middleware-accessible GPU-enabled platform

database stored procedure or URL – as part of the service request message. The
service can then directly retrieve the data for processing.

4 Application

Messaging middleware could provide scientific applications with access to a range of
computationally intensive algorithms that run on high performance GPU processors.
To demonstrate the feasibility of this idea, two proof-of-concept applications were
implemented and tested. The first application implemented a k-means clustering
algorithm on the GPU and exposed it as a shared service that was made accessible to
applications running on different servers through ZeroMQ’s request-reply messaging
interface. In a real-world scenario, remote computer vision, data mining, and
computational biology applications could similarly make use of a GPU-accelerated
clustering algorithm to partition and find common sets in collections of data.

The second application implemented filtering algorithms on the GPU and was
made accessible via ZeroMQ’s publish-subscribe interface. In this real-time scenario,
raw streams of seismic data could be published using ZeroMQ, and then processed by
GPU-accelerated filter algorithms, with the filtered results then being published back
on the messaging middleware so that they can be accessed by downstream
applications running on different servers.

416 R.E. Duran, L. Zhang, and T. Hayhurst

4.1 GPU-Based K-Means Clustering Accessed Using Request-Reply Messaging

Cluster analysis has been used in the fields of computer vision, data mining, and
machine learning, amongst others, to divide data objects into groups based on their
features and patterns. K-means is a widely used partitional clustering algorithm. It
randomly chooses a number of points to form the centers of each cluster, and then
assigns each datum to the cluster whose centre is nearest it, in a process called
labeling. The center of each cluster is then recalculated from the points assigned to it,
and these new cluster centers are used to label the points again. This process is
repeated until the recalculated cluster centers stop moving between successive
iterations. Fig. 3 shows an example of clustering output using the k-means algorithm
with 3 clusters.

Fig. 3. Example of k-means clustering results with three clusters

The traditional k-means clustering algorithm has a known problem whereby non-
optimal solutions may be found, depending on the initial random selection of cluster
centers. To address this, the algorithm is normally repeated multiple times, to increase
the chance of finding a near-optimal solution. Hence, k-means is a computationally
intensive algorithm, especially for large data sets.

When executing the k-means algorithm, the time-consuming process of labeling
can be transferred to the GPU for parallel execution to increase performance [2]. In
the proof-of-concept implementation, the k-means algorithm was implemented using
CUDA. Distance calculations were performed in parallel on the GPU while the CPU
sequentially updated cluster centroids according to the results of the distance
calculations [12]. Fig. 4 illustrates the processing flow of the GPU-based k-means
algorithm. A CPU thread begins by reading the data points from the source location

 Enabling GPU Acceleration with Messaging Middleware 417

and randomly initializing K cluster centers. To save data transfer cost between CPU
and GPU, the data points are copied to the GPU’s global memory only once. The
GPU processor then labels the data points and transfers the new labels back to the
CPU. Again, transferring only the new labels helps to save on data transfer between
the GPU and CPU. The CPU thread calculates new centroids based on the updated
labels and determines whether to invoke the GPU again to label the data points. Once
the algorithm terminates, the final data labels can be downloaded to the CPU
and stored.

Fig. 4. Process flow of the GPU-based k-means clustering algorithm

The GPU-based k-means algorithm was then exposed as a shared service, accessed
by remote client applications using a request-reply message interface as described in
section 3. A client sends a request message specifying the location of the input data
points (in a database table or file) and the number of clusters to be generated. After
receiving the request, the service retrieves the input data and invokes the clustering
algorithm. Once the algorithm has completed, the server will notify the client, which
can then retrieve the clustered data set from the same location as the input data.

4.2 GPU-Based Filtering Using Publish-Subscribe Messaging

Sensor networks are commonly used to collect data for seismic data analysis
generating large volumes of real-time data. Query-based filtering mechanisms, which

418 R.E. Duran, L. Zhang, and T. Hayhurst

compare sensor readings against a large number of predicates, help identify patterns
that correspond to or may predict specific types of events [4]. The process of
comparing the current reading with a set of predicates is a time-consuming process
that can be parallelized. Therefore, performance benefits may be achieved, especially
for large data streams, by migrating the comparison function to a GPU [18].
Messaging middleware can provide a convenient and efficient mechanism for
collecting and distributing data from remote sensors for analysis. Sensors typically
publish their measurements asynchronously, filters consume these data and republish
information when patterns match, and interested downstream applications will
subscribe to the relevant information from the filters.

A proof-of-concept GPU-based filtering service was implemented and made
available via a publish-subscribe messaging interface. The filtering service uses a
binary “greater than” operator to compare current data readings with a historical data
set read from a data source stored either as a file on disk or in a database table. For
example, this filtering service could be used to monitor an ongoing stream of real-
time sensor readings. If the filter detected that a current reading was greater than 90%
of previous movement readings, another event would be published on the messaging
middleware. While quite simple in its current form, this filtering mechanism could be
easily extended to compare data with more complex predicates. Likewise, a large
number of different predicates could be compared simultaneously by the GPU, taking
advantage of its massively parallel architecture.

To test the prototype, an application that simulates a remote sensor publishes a
stream of measurement readings. The filtering component running on the GPU server
subscribes to this data stream compares each data reading to the filtering criteria.
When a match occurs, filtering service publishes a message on a new topic, creating a
derivative event stream.

5 Experimental Results

To compare the performance of a CPU-based k-means algorithm and the GPU-based
version that were invoked through messaging, a set of tests were performed on a
quad-core Intel i5-760 2.80 GHz machine with 8 GB of RAM, and a NVIDIA
GeForce 450GTS graphics card [15]. For comparison purpose, the GPU-based
algorithm was run on both a GeForce 450GTS graphics card with 192 cores and a
Tesla C1060 graphics card with 240 cores, respectively. Each test used a different
number of 3-dimensional data points and ran the k-means algorithm repeatedly 10000
times with 10 iterations per run to cluster the data points into different number of
clusters. For the GPU-based algorithm, the number of threads per block was fixed at
32 for the GeForce 450GTS card, and 1024 for the Tesla C1060 card, and the number
of blocks was computed based on the number of data points and the number of
threads. Table 1 shows the average total time taken to generate five clusters using the
CPU-based algorithm and the GPU-based version, respectively. The GPU total time is
the total service processing time as shown by the Service component in Fig. 4, which
includes the data upload and download time. The results obtained from the Tesla
C1060 card surpass those from the GeForce 450GTS card significantly. This also
shows that fine-tuning the number of threads per block as appropriate to the data size
has a large effect on the GPU performance.

 Enabling GPU Acceleration with Messaging Middleware 419

Table 1. CPU-based and GPU-based k-means service processing times

Processing Time
No. of Data Points

100 1K 10K 100K 1M

Avg single CPU total time (ms) 0.06 0.85 8.99 81.8 817

Avg GPU total time (ms)
GeForce 450GTS

0.38 0.84 2.83 24.3 232

Avg GPU total time (ms)
Tesla C1060

0.20 0.37 0.47 1.2 6

Fig. 5 shows the average total time taken for running the k-means clustering
service when invoked remotely over messaging both on a single CPU, an estimated
quad-core CPU, a GeForce 450GTS GPU, and a Tesla C1060 GPU, respectively. For
simplicity, the time for the quad-core CPU is estimated based on a 3.4 speedup factor
from the single CPU results. The results show that the processing time of the single
CPU-based algorithm is very low for a small number of points, but it increases
exponentially when the number of points increases. In contrast, the processing time of
the GPU-based algorithm for a small number of points is relatively high, but it
increases less as the number of points increases. The GPU shows superior
performance at around 1000 points.

Fig. 5. Average total processing time for different number of data points using CPU-based and
GPU-based k-means algorithm

Fig. 6 shows the average total time taken for invoking CPU and GPU versions of
k-means algorithm using request-reply messaging to process one million points with
different number of clusters. It demonstrates that the time taken for the single CPU-
based algorithm as well as the quad-core estimate increases more rapidly than the
GPU-based version. The GPU’s performance benefits increase as the number of
points and their dimension increase.

420 R.E. Duran, L. Zhang, and T. Hayhurst

Fig. 6. Average total processing time for different number of clusters using CPU-based and
GPU-based k-means algorithm

Preliminary experiments were also conducted on a publish-subscribe-based GPU
service, as described in Section 4, to determine the latency involved when using
messaging and GPUs to process real-time data streams. Fig. 7 shows the latencies that
were measured. The input message latency measures the time taken for the input data
message to reach the remote GPU service. The GPU processing time corresponds to
the time taken by the GPU to process the input data received from the messaging
layer. The output latency measures the time taken for a remote subscriber to receive
event notifications once the GPU identified a criteria match.

As part of the tests, a client application published a stream of floating point data
readings. After receiving each data reading, the server ran the GPU-based filtering
algorithm to check whether the current data reading is greater than a set of historical
readings read from the same data source. If the criteria matched, the corresponding
cell of the bit map will be updated to 1, otherwise 0. The CPU thread on the server
then determined, based on the bit map, whether current reading should be republished
with an alert flag attached.

Fig. 7. Latency definitions for the publisher-subscriber model

The streaming data tests were carried out on the same hardware as for the k-means
test described above. Table 2 shows the CPU and GPU processing time of the filtering
algorithm and the two pub-sub latencies described above for 1,000 data readings each

 Enabling GPU Acceleration with Messaging Middleware 421

comparing with 10K, 100K, and 1 million historical readings. The results show that
for this simple filtering algorithm, running on GPU did not provide performance
benefits as compared to running it on a single CPU due to the higher memory
allocation and data transfer cost. However, if more complex filtering algorithms, such
as complex predicate comparisons or Fourier transforms, were applied, it is more
likely that the GPU-based implementation would outperform the CPU-based version.
The input message latency is measured with a message publishing rate of 5000
messages per second. It is observed that as the publishing rate decreases, the input
message latency is reduced as well but to a certain extent. When the publishing rate
becomes too low, the input message latency increases. The same pattern is observed
for the output message latency. The output message latency shown in Table 2 is
comparable with the input message latency because the publishing rate is about the
same as well. These preliminary results demonstrate the feasibility of the proposed
architecture. Further work is necessary to fine-tune the performance of GPU-based
filtering algorithm for real-time data stream processing.

Table 2. CPU-based and GPU-based filtering service processing times and input/output message
latency

Median Processing Time
No. of Comparisons

10K 100K 1M

CPU processing time (μs) 28 260 1,820

GPU processing time (μs)
GeForce 450GTS

156 717 5,065

GPU processing time (μs)
Tesla C1060

205 721 4,189

Input message latency (μs) 46 54 55

Output message latency (μs) 36 51 56

6 Conclusion and Future Work

The aim of this paper was to answer several questions and help set the stage for
further research. First, it was determined that from architectural standpoint, it is
possible to encapsulate k-means computations so that they can be executed remotely
on GPUs to achieve faster processing than locally on CPUs. Second, no significant
conflicts arose when integrating messaging with the GPU processing. It is beneficial,
however, to multithread services so that receipt of inbound messages and invoking
local processing on the GPU are managed independently. Third, while using GPU-
based services to process real-time data streams, borne by messaging middleware,
was shown to be feasible, further work is required to demonstrate this approach can
outperform similar CPU-based configurations.

Moreover, an important and easily measured benefit of messaging-enabled GPU
architectures is cost and environment savings from reduced power consumption.
Making GPUs more easily accessible can offload traditional CPU server
implementations and reduce the number of GPU cards that are required to support

422 R.E. Duran, L. Zhang, and T. Hayhurst

some types of computationally intensive algorithms and processing of high
throughput real-time data flows. In this regard, Duato et al [5] estimated that halving
the number of GPUs used in a high performance server cluster – which could be
easily achieved through more efficient sharing of GPU resources – could reduce the
cluster’s overall power consumption by 12%.

Several areas of further research would be beneficial. One area is exploring how
more advanced features of messaging middleware, such as one-of-N delivery
semantics, could be used to support load balancing across different servers in GPU-
enabled server clusters. Another area of interest is whether other computation types,
such as hidden Markov models and Bayesian algorithms, are suitable for abstraction,
parameterization, and remote invocation as a similar manner as was demonstrated for
k-means clustering. Finally, further investigation of the potential for GPUs to support
the analysis and filtering of high-throughput, real-time data flows would be beneficial.

References

1. Arora, N., Shringarpure, A., Vuduc, R.W.: Direct N-body Kernels for Multicore Platforms.
In: 2009 International Conference on Parallel Processing, pp. 379–387 (2009)

2. Bai, H.T., He, L.L., Ouyang, D.T., Li, Z.T., Li, H.: K-Means on Commodity GPUs with
CUDA. In: World Congress Computer Science and Information Engineering, pp. 651–655
(2009)

3. Clive, D.: Speed is the key - Balancing the benefits and costs of GPUs (2010),
http://www.risk.net/risk-magazine/feature/1741590/balancing-
benefits-costs-gpus

4. Daniel, J.A., Samuel, M., Wolfgang, L.: REED: Robust, Efficient Filtering and Event
Detection in Sensor Networks. In: 31st VLDB Conference, pp. 769–780 (2005)

5. Duato, J., Peña, A.J., Silla, F., Mayo, R., Quintana-Orti, E.S.: rCUDA: Reducing the
number of GPU-based accelerators in high performance clusters. In: 2010 International
Conference on High Performance Computing and Simulation (HPCS), pp. 224–231 (2010)

6. Ferreira, J.F., Lobo, J., Dias, J.: Bayesian Real-Time Perception Algorithms on GPU -
Real-Time Implementation of Bayesian Models for Multimodal Perception Using CUDA.
Journal of Real-Time Image Processing (published online February 26, 2010)

7. Han, T.D., Abdelrahman, T.S.: hiCUDA: High-Level GPGPU Programming. IEEE
Transactions on Parallel and Distributed Systems 22(1) (2011)

8. Hartley, T.D.R., Catalyurek, U., Ruiz, A., Igual, F., Mayo, R., Ujaldon, M.: Biomedical
image analysis on a cooperative cluster of GPUs and multicores. In: 22nd Annual
International Conference on Supercomputing ICS 2008, pp. 15–25 (2008)

9. Hintjens, P.: ØMQ - The Guide, http://zguide.zeromq.org/ (accessed April
2011)

10. Kadlec, B.J., Dorn, G.A.: Leveraging graphics processing units (GPUs) for real-time
seismic interpretation. The Leading Edge (2010)

11. King, G.H., Cai, Z.Y., Lu, Y.Y., Wu, J.J., Shih, H.P., Chang, C.R.: A High-Performance
Multi-user Service System for Financial Analytics Based on Web Service and GPU
Computation. In: International Symposium on Parallel and Distributed Processing with
Applications (ISPA 2010), pp. 327–333 (2010)

12. Li, Y., Zhao, K., Chu, X., Liu, J.: Speeding up K-Means Algorithm by GPUs. In: 2010
IEEE 10th International Conference on Computer and Information Technology (CIT),
pp. 115–122 (2010)

 Enabling GPU Acceleration with Messaging Middleware 423

13. Ling, C., Benkrid, K., Hamada, T.: A parameterisable and scalable Smith-Waterman
algorithm implementation on CUDA-compatible GPUs. In: 2009 IEEE 7th Symposium on
Application Specific Processors, pp. 94–100 (2009)

14. Munshi, A.: OpenCL Specification Version 1.0. In: The Khronos Group (2008),
http://www.khronos.org/registry/cl

15. NVIDIA Corporation. NVIDIA® CUDATM Architecture. Version 1.1 (April 2009)
16. Preisa, T., Virnaua, P., Paula, W., Schneidera, J.J.: GPU accelerated Monte Carlo

simulation of the 2D and 3D Ising modelstar, open. Journal of Computational
Physics 228(12), 4468–4477 (2009)

17. Shi, L., Chen, H., Sun, J.: vCUDA: GPU Accelerated High Performance Computing in
Virtual Machines. In: 2009 IEEE International Symposium on Parallel & Distributed
Processing (2009)

18. Tsakalozos, K., Tsangaris, M., Delis, A.: Using the Graphics Processor Unit to realize data
streaming operations. In: 6th Middleware Doctoral Symposium, pp. 274–291 (2009)

19. Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters. In: 2010
IEEE 8th Symposium on Application Specific Processors (SASP), pp. 71–76 (2010)

20. Zechner, M., Granitzer, M.: Accelerating K-Means on the Graphics Processor via CUDA.
In: The First International Conference on Intensive Applications and Services,
INTENSIVE 2009, pp. 7–15 (2009)

	Enabling GPU acceleration with messaging middleware
	Citation

	tmp.1641795408.pdf.Cc6Lu

