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ABSTRACT

Complex video event detection without visual examples is a
very challenging issue in multimedia retrieval. We present a
state-of-the-art framework for event search without any need
of exemplar videos and textual metadata in search corpus.
To perform event search given only query words, the core
of our framework is a large, pre-built bank of concept de-
tectors which can understand the content of a video in the
perspective of object, scene, action and activity concepts.
Leveraging such knowledge can effectively narrow the se-
mantic gap between textual query and the visual content of
videos. Besides the large concept bank, this paper focuses on
two challenges that largely affect the retrieval performance
when the size of the concept bank increases: (1) How to
choose the right concepts in the concept bank to accurately
represent the query; (2) if noisy concepts are inevitably cho-
sen, how to minimize their influence. We share our novel
insights on these particular problems, which paves the way
for a practical system that achieves the best performance in
NIST TRECVID 2015.

General Terms

Algorithms, Experimentation, Performance

Keywords

Multimedia Event Detection; Video Search; 0Ex; Concept
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1. INTRODUCTION

Today, almost all real-world solutions of video retrieval,
such as YouTube, are mainly based on text matching. This
matching requires the availability of textual metadata such
as titles and tags provided by video uploader [6]. In con-
trast to text matching, multimedia research communities
have kept promoting video content understanding for years,
expecting that machines can search by visual cues as well as
high-level semantics, rather than requiring humans to an-
notate the videos beforehand [31]. Among those practices,
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Cleaning an
appliance

Figure 1: Visual diversity of the event “cleaning an appli-
ance”.

in recent years, TRECVID has brought up the problem of
multimedia event detection (MED), which is specialized in
searching complex multimedia events in a very large video
corpus [26]. MED has the following distinctions that cause
great difficulty for video retrieval: (1) The query is a descrip-
tion of an everyday event, which is complex and diverse by
nature in both of its visual and semantic cues. The diversity
is caused by the varieties of appliance types, change of sur-
roundings, illumination, and viewpoints. Figure 1 takes the
event “cleaning an appliance” as an example: the definition
of an appliance includes large household machines such as air
conditioner, dishwasher, refrigerator, kitchen stove, etc. It
can also include small devices like coffee makers. The cam-
era position may vary dramatically between videos, causing
great difficulty for object recognition. The cleaning opera-
tion usually happens in a kitchen or shop, but is not limited
to such indoor scenes. For example, people may clean their
grill in the backyard, which substantially increases visual di-
versity. Moreover, although the appearance of a refrigerator
in a kitchen is helpful for video screening, key evidence such
as spraying cleaning fluid is critical to make a judgement.
(2) The task concerned by this paper, namely zero-example
event detection (0Ex), focuses on the case that no visual ex-
amples are given to train an event classifier. Instead, only
textual definition of the event is provided as a information
need. Therefore, a search system has to leverage external
knowledge to bridge the gap between textual information
in the query and visual content in the video corpus. (3)
The large video corpus for event search contains 200,000 un-
constrained Internet videos with variable length and quality
[29], which sets a high demand on both performance and
efficiency for a search system.
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Figure 2: The overall framework for event detection with zero example. The core of the framework is a large concept bank
containing detectors of objects, scenes, actions, and activities. Semantic query generation which maps the tokens (noun and
verb phrases) to an internal query representation, namely semantic query, is essential to system performance.

The state-of-the-art systems for OEx are mostly based on
the selection of a handful of relevant concepts that can in-
tegrally describe an event query, assuming that there is a
classifier for each of the selected concepts [15]. We develop
our automatic system likewise, which is shown in Figure 2.
In the offline phase, all videos are represented by a concept-
based representation in which each dimension represents the
likelihood of presence of a particular concept. In the online
phase, given an event query, e.g. “cleaning an appliance”
with detailed description, the noun and verb phrases are
first extracted as tokens. Then these tokens are mapped to
an internal query representation called semantic query by
concept matching. In this way, the query is converted to
concept-based representation as well. Finally, event search
is performed having all the concept-based representations of
both queries and videos.

This framework directly raises an important concern: How

to build a large concept bank generalizable for everyday events?

In order to provide good coverage in the first place, we ba-
sically mix thousands of concepts in different granularity,
i.e. from common objects to activities. Then comes the
fundamental problem this paper aims to focus: How to pick
up the right concepts in the concept bank to represent an
event query? Intuitively, one may expect of using more and
more relevant concepts for describing an event from different
aspects, given that these concepts may help reinforce with
each other. This idea, however, turns out to be impractical:
Through experiments, we surprisingly find that only select-
ing a few relevant concepts could already provide a good
performance for most events, as long as the selected con-
cepts are accurate. Adding more concepts that are less rele-
vant to the query almost always risks a performance plunge.
Hence, a conservative strategy is to simply cap the number of
concepts in semantic query by keeping the best matches. Al-
though this strategy generally shows good performance, the
optimal number of concepts is hard to determine because it

128

varies among events. In addition, due to imperfection of con-
cept matching, false positives are inevitable even for the top
ten relevant concepts. As a result, capping the number of
concepts turns to be risky when concept matching becomes
unreliable, because a single noisy concept would count in a
representation with a small number of concepts. We hereby
propose to improve the video representation by pooling the
key evidence, rather than pooling all the keyframes. In this
new representation, noisy concepts are less likely to have an
impact.
The novelty of this paper can be summarized as follows:

e We focus on the problem of choosing the right concepts
from a large concept bank for event detection without
training examples. We show that, with a large concept
bank, concept selection is crucial to the performance.
To the best of our knowledge, concept selection in the
scope of OEx has not been systematically investigated.

e We propose to represent the videos only by their evi-
dential shots to create a system robust to wrong con-
cepts in the semantic query. The detection of the ev-
idential shots is unsupervised, which well fits to the
OEx pipeline. The representation can lead to more
than 50% of improvement without capping the num-
ber of concepts in semantic query generation.

The efficiency of the proposed methods was backed by ex-
perimental results on a large corpus: According to TRECVID
2015’s evaluation on 200,000 videos, addressing the afore-
mentioned problems paved our way to a practical system
that achieved the best performance in the 0Ex task of MED.

2. RELATED WORK

Multimedia event detection typically makes use of training
examples. Event classifiers are trained by low-level features
[9, 25, 33] or semantic features [11, 12, 27] that are directly



extracted from exemplar videos. Zero-example multimedia
event detection (0Ex) is an emerging topic yet to be ex-
plored. In contrast to zero-shot learning which focuses on
the recognition of images with unseen labels, 0Ex empha-
sizes the use of general and external knowledge for textual-
to-visual relation. A few pilot studies were proposed very
recently [5, 34, 2]. These works built a small concept li-
brary, typically hundreds of concepts, for textual-to-visual
relation. Mazloom et al. [20] proposed to use tag propa-
gation which propagates tags from a labeled video source
to unlabelled videos. For OEx retrieval, they found that us-
ing tags propagated by concept vector similarity overwhelms
bag of visual words similarity, which renders the importance
of concepts. More recent work starts to resort to a larger
concept library. Ye et al. [35] collected a dataset with 500
events in which more than 4,000 concepts were hierarchically
organized. Singh et al. [28] automatically discovered salient
visual concepts by web search according to the text query.
In event search phase, Habibian et al. [10] indexed con-
cepts by AND/OR composition. Chang et al. [3] proposed
a rank aggregation framework that addressed the incompa-
rable scales of scores when merging concepts from different
feature spaces. Jiang et al. studied pseudo relevance feed-
back [14] and self-paced reranking [13] that further improved
the performance by reranking. Jiang et al. [15] also system-
atically investigated OEx problem. This work explored the
contribution of multiple features including thousands of con-
cepts, as well as the performance of several search models.
Our work relies on a large number of concepts as well. But
different from previous studies which analyze many compo-
nents like feature types and search models, we especially
focus on the crucial problems raised when the size of the
concept library is increased.

Regarding the retrieval performance of an 0Ex system, se-
mantic query generation, which translates event query to an
internal query representation, is the crux. With a large con-
cept bank, while trying to avoid relating queries to wrong
concepts on the one hand, an alternative to improve perfor-
mance is to somehow tolerate the wrong concepts in event
search. We draw inspiration from semantic pooling [36].
Rather than simply averaging the frame-level concept re-
sponses for the whole video [19, 21], recent studies sug-
gest to only pool the evidential parts that are semantically
important to an event query [22, 36]. The idea is based
on the underlying assumption that important evidence is
sparsely scattered in a video’s timeline, thus aggregating all
keyframes like average pooling would collect a bunch of junk
information. Yu et al. [36] learned the concept importance
of a small concept set and pooled the low-level features ac-
cording to the importance of their related concepts. Mettes
et al. [22] clustered the keyframes into fragment propos-
als and learned the importance of each proposal. Lately,
more complex work tends to optimize the event detection
by jointly discovering the evidence, given that a good re-
counting should assist detection in the first place [4, 30],
rather than only interpret detection [8]. All the above works
need training examples to discover discriminative segments
for pooling. Furthermore, Bhattacharya et al. [1] conducted
intensive user study and found that a human can recognize
most events by merely looking into very few sample seg-
ments of a video. Inspired by this finding, we take query
words to locate key evidence in a video for pooling. Unlike
previous works, the key evidence is proposed without any
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need of training videos. We show that event search is ro-
bust to noisy concepts even by exploiting as few as three
pieces of key evidence for video representation.

3. SEMANTIC QUERY GENERATION

Semantic query generation, as shown in Figure 2, maps
the user generated event query to an internal, concept-based
representation, a.k.a. semantic query. This query transla-
tion has two goals in general: First, the semantic query can
be directly used for event search by the system. Second, the
semantic query is able to reflect the essentials of event query
for event detection purpose. In addition, the readability, i.e.
how concise the semantic query is, is an optional goal if
humans are considered to interactively refine the semantic
query. We investigate two major steps that have significant
impact on retrieval performance in semantic query genera-
tion.

3.1 Concept matching

Matching concepts in concept bank requires to measure
how close each concept is to the query. We design a flexible
phrase matching method that can easily combine with word
similarities of WordNet [23], and weighting policies, such as
TF-IDF and word specificity.

The concept matching process can be formalized as a map-
ping from query tokens g to the concepts ¢, denoted as
map(q,c). Then, we denote the name of one of the con-
cepts as ¢, a noun or verb phrase from the query tokens as
g;, and the set of common words® between them as U. Ob-
viously, U = T'(¢;) N T'(g;), where T'(c;) stands for the set
of words in the concept name ¢;, and T'(gq;) likewise. The
concept matching is solved by first calculating the similar-
ities for each (e;,q;) pair, then selecting the concept with
the maximum similarity for each phrase g;, thus forming a
set of event-related concepts.

Specifically, a similarity matrix S is first obtained by cal-
culating the similarity for each (e;, ;) pair via word-to-word
matching, given

% (1)

where ty is the TF-IDF weights, in which TF (term fre-
quency) represents the frequency of appearance in event
query for the words in U, and IDF (inverse document fre-
quency) is estimated based on a collection of Wikipedia
pages downloaded from the Web. sy is the word speci-
ficity vector defined by the minimum depths of word for
the words in U based on WordNet hierarchy. ® stands for
element-wise product. max(-) operation only picks up the
maximum value. |U| means the number of common words,
U]

Tesl
concept name compared to a partial match. Note that for
the concepts which do not have any overlapped words with
token phrases, the corresponding similarities are set to 0.

Then, we define the max-filtered similarity matrix S¥ as

sim(ci,q;) = -max(ty © log sy )

and |c;| likewise. gives credits to an exact match of the

sim(ci, q;)

0-{ ;
2)

"We find it helpful to consider synonyms as common words as a
supplement to the overlapped words. For example, “baby” and
“infant” can be regarded as common words.

if sim(ci, qj) = mgxsim(ck, q;);

otherwise




[ Type | Concepts

Algorithm 1 Evidential pooling for one video

Rock climbing, bouldering, sport
climbing, artificial rock wall
Non-discriminative | Rope climbing, climbing, rock

False positive Rock fishing, rock band performance
Different context Stone wall, grabbing rock

Relevant

Table 1: Concept examples for manual concept selection
regarding the event rock climbing.

in which we only retain the concept with the maximum sim-
ilarity given a phrase g;. Finally, we map the text queries g
to concepts ¢ by

w = map(q,e) = 8F -1 3)

which results in a sparse weight vector w, with each dimen-
sion representing the importance of a concept.

Given the concept detector responses of all the videos R,
the event search now can simply be performed by calculating
the product of the videos and query:

h = Rw (4)

3.2 Concept selection

Given an event query, concept matching can basically
match to dozens of concepts with a concept bank sized about
3,000. Using all of the matches for event search would even-
tually result in poor performance. On the one hand, this is
because concepts with lower importance are less discrimina-
tive to the event. For instance, although the concept water
frequently appears in the event distinguishing a fire, water is
too common to be seen in many other events such as compet-
itive swimming, bungee jumping, and cleaning an appliance.
On the other hand, a concept with low importance is more
likely to be a false positive example. Therefore, it makes
sense to deploy a concept selection module aiming to filter
out irrelevant concepts.

Automatic concept selection simply rank the concepts
by importance given the weight vector w, then select the top
k concepts for semantic query generation.

Manual concept selection employs human subjects to
perform concept screening. Along this process, all noisy
concepts are expected to be removed, leaving only relevant
and discriminative concepts. We basically follow the criteria
below for manual concept screening;:

e Relevancy: Remove false positives by looking at the
names of concepts;

o (Context relatedness: Remove concepts for which train-
ing videos appear in different context based on hu-
man’s common sense;

e Discrimination: Only include concepts that are dis-
criminative to this event if a higher-level activity /event
detector that matches the event is found.

These criteria are exploited based on the results of auto-
matic concept selection. Take the event rock climbing as an
example, semantic query generation can pick up roughly 50
concepts by automatic concept matching. A human judge
then needs to quickly screen these concepts and remove irrel-
evant ones. Table 1 shows different types of irrelevant con-
cepts, which considers relevancy, discrimination, and con-

input: weight vector w, keyframe-level concept detector responses J,
number of concepts restricted for evidence proposal k., number
of evidential shots m
output: video-level concept detector responses r
1: For concepts not ranking in the top k. of w, set their weights in
w to 0, getting we;

2: Calculate Jwe, the importance scores for all the keyframes;
3: Rank all the keyframes by their importance scores;
4: n+ 0, G+ 9;
5: while n < m and not all the keyframes are processed do
6: get the next important keyframe y in the rank list;
7 if G = @ or y is not adjacent to any of the keyframes in G
then
8: add y to a new set P;
9: add set P to G
10: n<+<n+1;
11: else
12: add y to the existing set P in G where P has a keyframe
adjacent to y;
13: end if
14: if n > 1 then
15: for each (P;, P;) € G do
16: if P; has a keyframe adjacent to P; then
17: merge P; and P; into one set;
18: n<+<—n—1;
19: end if
20: end for
21: end if

22: end while
23: r + Average pooling J for the selected keyframes in G only;
24: return 7;

text relatedness. For example, Rope climbing is not dis-
criminative because it can also appear in the event climbing
a tree; grabbing rock is removed as it may present in differ-
ent context, e.g. alongside a river. It’s worth to mention
that artificial rock wall can be regarded as a relevant con-
cept because, based on common sense, artificial rock wall is
only used for practicing rock climbing. As a rule of thumb,
it’s practically effective to only represent an event by rel-
evant concepts. The non-discriminative concepts and con-
cepts that come out in different context are still helpful if
no relevant concepts can be found.

4. EVIDENTIAL POOLING

Automatic concept selection simply caps the number of
concepts used in semantic query in order to avoid the in-
volvement of irrelevant concepts. Although this method
is generally simple and efficient, it has two major draw-
backs. First, it is difficult to determine a threshold k& be-
cause the number of concepts that achieves the best perfor-
mance varies between events; second, using fewer number of
concepts for event representation is more sensitive to noisy
concepts, given that each concept would count much. We
would like to have a best of both worlds approach that, it
can both benefit from a representation with larger number
of concepts and resist the negative impact from less relevant
or even irrelevant concepts.

Our idea is majorly enlightened by Bhattacharya et al.[1]
that, for event recognition, humans can make a quick de-
cision in most cases by just looking into several shots of a
video. This fact indicates that merely a few shots can pro-
vide sufficient information to reach a decision. We further
hypothesis that using few sample shots of a video is more
discriminative than using all of its content. Specifically, con-
sider the case of a video only represented by the most ev-
idential shot: a large portion of the video is thus stripped
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SIN 346 are mixed with concepts of different gra

off, making the representation sparse and “clean’
a neat outcome of this clean representation — it is relatively
robust against the noisy concepts in the semantic query. For
instance, a typical video clip of bike trick might happen on
a street. A prolonged clip would capture many objects on
the street, such as cars, buses and traffic lights. If a given
event query parking a car also expects the presence of such
street objects, the clip of bike trick is likely to be detected
as a false positive, simply because it happily responds to the
semantic query that expects these non-discriminative street
objects. But the clean representation which takes only the
most evidential shot is less likely to suffer from this problem,
as the representation is more concentrated. Rare concepts
such as buses and traffic lights are naturally filtered out.
Algorithm 1 details the evidential pooling. The pivot is
finding m evidential shots. The algorithm takes the se-
mantic query as information need to rank keyframes in a
video (steps 1-3). Evidential keyframes are sequentially se-
lected based on the rank (steps 5-22) while aggregating them
into evidential shots (steps 15-20). Video representation is
formed by pooling through m evidential shots only, rather
than all the keyframes of the video clip (step 23). It is im-
portant to note that the ranking of keyframes is based on
we, where the number of concepts is restricted to k. (step
1). Basically, k. is set to a small number concerning that
the evidential shots should be proposed by the most rele-
vant concepts selected by k.. We actually find that k. can
be chosen from a wide range that does not affect the per-
formance. It is also worth noting that k. is different from
k which is used for automatic concept selection. With evi-
dential pooling, the event search should be tolerant to noise,
i.e., less sensitive to the value of k in the automatic concept
selection phase.

5. EXPERIMENTS

5.1 Setups

The experiments are conducted on the TRECVID Multi-
media Event Detection (MED) datasets. We use the event
kits that contain 20 event queries from E021 to E040. The
test set, named MED14Test, includes around 25,000 test-
ing videos with no textual metadata. The performance is
evaluated by the standard metric Mean Average Precision
(MAP). The ground truth of MED14Test set is officially
provided for self-evaluation [26]. As for 0Ex, no training
videos are used throughout the experiments. Besides, we
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Figure 4: For the exemplar event query beekeeping, the per-
formance drops significantly when adding more concepts to
the semantic query. Concepts having a large impact are
marked in the figure.

also show the official results on MED15Eval released by
NIST. MED15Eval set has two divisions: MED15EvalFull
contains 200,000 videos without textual metadata; MED15-
EvalSub is a random subset of MED15EvalFull, which con-
tains around 32,000 videos. No ground truth is provided for
MED15Eval.

5.2 Concept bank

We build a large concept bank containing a total of 2,774
semantic concepts with varied granularity. They are sourced
from off-the-shelf datasets with concept types covering ob-
jects, scenes, actions and activities. The six datasets and
their settings are listed below:

e ImageNet 1000: We use the same DCNN architec-
ture proposed in [18]. Specifically, the DCNN archi-
tecture can be denoted as Image — C48 — P — N —
C128— P—- N —(C192 - C192 — C128 — P — F'4096 —
F4096 — F'1000, in which C' are the convolutional lay-
ers followed by the number of filters, F' are the fully-
connected layers, P are the max-pooling layers and N
are the local contrast normalization layers. The pa-
rameters of DCNN are learnt on ILSVRC 2012 [7].
The neural responses of the eight layer (F1000) are
extracted for each keyframe of a test video.

e SIN 846: A set of 346 concept detectors fine-tuned
with AlexNet DCNN structure on the TRECVID SIN
2014 dataset [37]. The concept responses are extracted
for each keyframe of a test video.

e Research Collection 497: Similar to [24], we select
497 frequent concepts from the MED’14 Research Col-
lection dataset [29]. At most 200 positive keyframes
are manually annotated for each concept. We fine-tune
497 concept detectors using the AlexNet DCNN archi-
tecture. As with previous methods, we extract the
responses of the concept detectors for each keyframe
of a test video.

e Places 205: Multimedia events usually take place in
notable scenes, e.g., bike trick is played in a park or
on a street, whereas cleaning an appliance happens
in a kitchen or shop. To capture the scene informa-
tion, we fine-tune 205 scene categories on the MIT
Places dataset [38] using the AlexNet DCNN archi-
tecture. The concept responses are extracted for each
keyframe of a test video.
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[ Dataset | #Concepts | Optimum k | MAP ]
Sports 487 10 0.103
FCVID 239 1 0.071
Research Collection 497 2 0.053
ImageNet 1,000 3 0.049
Places 205 2 0.020
SIN 346 5 0.014
Concept Bank 2,774 9 0.129
AutoSQGSys [15] 4,043 - 0.115

Table 2: The optimum of concepts k per dataset using
automatic concept selection. The MAP is reported on
MED14Test.

e FCVID 239: To capture the high level activities of
multimedia events, 239 concept detectors are trained
with SVMs on FCVID [16] dataset. Specifically, as
concepts in this dataset are mainly annotated at video
level, we first extract the AlexNet Layer-7 [18] re-
sponses for each keyframe in a training video. Then,
the training features for a video are generated by av-
erage pooling the responses of all the keyframes. The
concept detectors are trained by these video-level train-
ing features. A similar pipeline can be applied to test
videos to extract video-level testing features. Finally,
the responses of 205 concept detectors can be directly
extracted for test videos.

Sports 487: The 487 concepts of general sports are
trained with the 3D-CNN architecture [32] on the Sport-
1M dataset [17] that contains one million videos. The
concept responses are extracted for each of 15-frame
segments of a test video.

Figure 3 summarizes the granularity of concepts for the
six datasets.

5.3 Concept selection

Automatic concept selection To demonstrate the
importance of concept selection, we illustrate an event bee-
keeping in Figure 4. By concept matching, 34 concepts are
chosen as candidates for this event. We then employ auto-
matic concept selection to only retain the top k£ concepts. As
the number £ increases, the performance increases at first,
but decreases dramatically when k > 12, dropping almost a
half at the end. From the figure, we see three concepts that
largely contribute to the performance increase: honeycomb,
bee and apiary (bee house). These concepts are relevant
and discriminative. In contrast, as k further increases, more
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Figure 6: The contribution of concepts from Sports 487 and
FCVID 239 on MED14Test. Both the Average Precision
(AP) per event and MAP are shown. Concepts from these
two datasets have a large contribution on 8 of the 20 events,
leading to a boost of MAP.

ke 2
MAP ]| 0.0725

4
0.0771

8
0.0775

16
0.0770

Table 3: Evidential pooling is not sensitive to the number
of concepts k. used for evidence proposal. For this test, all
the matched concepts are used for event search. The MAP
is based on MED14Test.

concepts that are less relevant are involved. For example, a
bottle as beekeeping container is different from a pill bottle.
Although there is a partial match in their names, the context
of these two concepts is different. Yard is another example
which turns down the performance. One might intuitively
think that yard can be helpful in recognizing beekeeping,
given that beekeeping usually takes place in a yard. How-
ever, due to the presence of more accurate and discriminative
concepts like honeycomb and apiary, high performance has
already been achieved. Adding a less discriminative concept
yard would decrease the performance in this case, since yard
is commonly seen in many other activities, which tends to
introduce noise.

As the performance is sensitive to the number of concepts,
a good practice for automatic concept selection is to stop
at a small k. For the beekeeping example shown above,
the optimal number k is 8. We find that the optimum k&
is bound to both event query and concept bank. Table 2
lists the optimum & for each individual dataset as well as
the merged concept bank tested on MED14Test. As you
can see, many datasets have their best performance by less
than 4 concepts. Note that the performance of our concept
bank with automatic concept selection has already exceeded
the state-of-the-art full system AutoSQGSys as described by
Jiang et al. [15] even without combining the ASR and OCR
features.

Manual concept selection By concept screening ac-
cording to the rules in Section 3.2, we refine the automat-
ically matched concepts for all the 20 events. Note that
manual concept screening is allowed in TRECVID and used
by many teams [15, 26]. The manually refined semantic
queries, combined with ASR and OCR features, provide us
clear advantage against other teams (Figure 5), based on the
0Ex evaluation in TRECVID 2015.

We further investigate the contribution of concepts ac-
cording to their source datasets. Figure 6 shows a large
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Figure 7: Evidential pooling vs. max pooling regarding the
event query beekeeping.

gap of MAP between systems with and without the higher-
level concepts from Sports-1M and FCVID. Semantic queries
for both systems are manually refined. As seen in the fig-
ure, the MAP drops more than 40% by removing these two
datasets. We therefore conclude that both lower and higher
level concepts devote to a good overall performance. Higher-
level concept detectors, such as the activity detectors from
FCVID, are accurate and discriminative. However, they re-
quire exact matches to the information need, otherwise they
are not applicable. For instance, the activity “professional
American football” would only satisfy queries of American
football game. In contrast, lower-level concepts such as ob-
jects are componential and complementary. Although they
are less discriminative, they offer help in case no exact match
can be found among the higher-level concepts. Figure 6 also
gives such insights when looking into the comparison of each
individual event: Almost half of the events are the events
with exact matches in Sports-1M or FCVID, hence their
performance boosts. On the opposite side, for the events
in which exact matches are not found, the contributions of
Sports-1M and FCVID are relatively low.

5.4 [Evidential pooling

Algorithm 1 tries to localize key evidence in a video ac-
cording to a given semantic query. To generate a semantic
query suitable for evidence proposal, we first cap the number
of concepts k. to a small value. This makes sense because,
for localizing key evidence, we only need to focus on preci-
sion regardless of recall. We hence expect the semantic query
to be as precise as possible. Table 3 indeed proves that it is
acceptable to choose from a wide range of k.. Even a very
risky setting, e.g. ke = 2, can have a satisfactory retrieval
performance. We simply choose k. = 8 and keep it fixed
for all the automatic runs. Then, for each video clip, we
locate the evidential shots regarding the semantic query. It
is worth mentioning that the evidential shots can be gen-
erated for arbitrary videos, but in this case the content of
these shots is likely to be arbitrary too.

We compare the evidential pooling to the conventional
max/average pooling®. First, we review the beekeeping event
in Figure 7. The evidential pooling shows clear advantage
over max pooling: As the number of concepts k increases,
max pooling tends to suffer much from less relevant and

2These experiments use a smaller concept bank that does not
include FCVID and Sports-1M datasets as lacking of keyframe-
based concept responses.
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Figure 8: Evidential pooling with various settings for the 20
events in MED14Test. The MAP with regard to the top k
concepts is shown for each pooling method.

Pooling Method MAP
3 shots proposed by manually refined SQ 0.0936
10 shots proposed by manually refined SQ | 0.0879
3 shots proposed by automatic SQ 0.0797
10 shots proposed by automatic SQ 0.0775
Max pooling 0.0485
Average pooling 0.0522

Table 4: The performance summarization of Figure 8 when
all the matched concepts are used for event search. The
settings are exactly the same as in Figure 8. SQ stands for
Semantic Query. The k. in automatic SQ is set to 8.

noisy concepts. In contrast, evidential pooling is consid-
erably robust. By using all of the 34 matched concepts,
max pooling drops to an AP of 0.336, while evidential pool-
ing stays above 0.64, which is almost twice the AP of max
pooling. To investigate whether this observation is general-
izable, we further conduct experiments on all the 20 events
in MED14Test. Figure 8 shows the performance of eviden-
tial pooling with various settings. The corresponding MAP
scores are summarized in Table 4. The benefit of eviden-
tial pooling is clearly seen over the 20 events. First, both
max and average pooling are sensitive to k, whereas eviden-
tial pooling is robust to a wide range of k. Second, using
all the matched concepts without concept selection, eviden-
tial pooling clearly overwhelms max and average pooling by
more than 50% of MAP. Third, merely exploiting three ev-
idential shots for pooling can achieve a great performance.
Fourth, although proposing evidence by manually refined se-
mantic query performs better, automatic semantic query is
not far behind. Most importantly, the event detection us-
ing evidential pooling with automatic semantic query is not
sensitive to the parameter k.. Finally, we see that evidential
pooling is not only robust, the MAP it reaches by using all
the concepts is but also higher than the peak MAP of max
pooling by picking the top 8 concepts.

6. CONCLUSION

We presented a framework that practically achieved good
performance in 0Ex. Because query representation relying
on a large concept bank is sensitive to noisy concepts, re-
stricting the number of concepts and manually removing
the weakly relevant concepts are crucial to the performance.
Evidential pooling, nevertheless, can involve more concepts



including that of weakly relevant without sacrificing per-
formance. From the experimental results we arrive at the
following conclusions:

e An effective practice for generating the semantic query
is to keep the concepts precise and discriminative. Us-
ing fewer but precise concepts performs better than
more but less precise concepts.

e For manual concept screening, we recommend to re-
move concepts based on their relevancy, context relat-
edness and discrimination.

e Pooling from the evidential shots rather than all the
keyframes can be robust to the noise in the seman-
tic query as potentially non-evidential information is
excluded from the search process.
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