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Face to Purchase: Predicting Consumer Choices with
Structured Facial and Behavioral Traits Embedding

ZHE LIU, University of New South Wales
XIANZHI WANG, University of Technology Sydney
LINA YAO, University of New South Wales
JAKE AN, Raiz Invest Limited
LEI BAI, University of New South Wales
EE-PENG LIM, Singapore Management University

Predicting consumers’ purchasing behaviors is critical for targeted advertisement and sales promotion in e-
commerce. Human faces are an invaluable source of information for gaining insights into consumer personality
and behavioral traits. However, consumer’s faces are largely unexplored in previous research, and the existing
face-related studies focus on high-level features such as personality traits while neglecting the business
significance of learning from facial data. We propose to predict consumers’ purchases based on their facial
features and purchasing histories. We design a semi-supervised model based on a hierarchical embedding
network to extract high-level features of consumers and to predict the top-N purchase destinations of a
consumer. Our experimental results on a real-world dataset demonstrate the positive effect of incorporating
facial information in predicting consumers’ purchasing behaviors.

CCS Concepts: • Information systems→Data mining;Web applications; Online advertising; Multimedia
information systems.

Additional Key Words and Phrases: Purchase prediction, hierarchical embedding, graphical neural networks,
correlation analysis
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1 INTRODUCTION
Consumer spending accounts for a significant fraction of economic activities worldwide [1]. The
past years have seen tremendous digital traces of consumer purchases in both offline and online
contexts. A better understanding of consumers’ purchasing behaviors helps companies target the
right consumers as well as make the appropriate promotion strategies. Traditional methods predict
consumer behaviors solely based on consumers’ purchasing histories [2]. They typically learn
consumers’ preferences over products and infer consumers’ motivations to build a candidate product
collection; then, they could associate the product features and predict a consumer’s future purchases
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2 Liu, et al.

from the candidate products [3], based on the learned preferences. In this sense, consumers’
behavioral traits have a significant influence on their purchasing behaviors, and multiple factors
may impact this influence [3].
Besides, facial information is an important yet largely neglected source of information for

consumer behavior prediction. Indeed, facial information opens a new door to predicting consumer
behaviors as it contains a new dimension of information and is often the first source of information
that people capture when meeting each other. For example, the first glimpse of a person’s face can
reveal much information: gender, age, emotional state, and ethnicity; then, people can infer the
person’s personality, financial background, and manners merely from its appearance; eventually,
they could draw higher-level conclusions such as the person is young, energetic, and may like sports.
Such high-level conclusions are especially important in a sales context—you had better suggest a
pair of sports shoes rather than casual shoes to someone who likes sports. Previous research has
demonstrated that face images contain rich information that can be extracted using computer vision
technologies automatically [4–6]. The extracted information (such as the age [7], gender [8], family
structure [9], social stratum [10], and nation [11]) has a great impact on consumers’ shopping
behaviors, making the analysis of consumers’ face images to predict their purchasing decisions
feasible.

However, although the effectiveness of learning people’s personality traits from face images has
been validated in various scenarios, e.g., predicting election outcomes [4], social relationship [12],
and job interview results [13], little research has examined the role of facial images in predicting
consumers’ purchasing behaviors. Inspired by the link between face images to purchasing behaviors,
in this paper, we aim to predict consumers’ destinations of purchases (i.e., companies) based on
their face images and purchasing histories, focusing on examining whether consumers’ face is
indicative of their purchasing behaviors. This problem is at a higher level than predicting specific
items and requires considering repeated purchases of consumers from the same companies. It is
critical in many scenarios, such as predicting to what extent a person would be a customer of a
company instead of its competitors.

The rationale and significance of predicting consumers’ purchasing destinations are also testified
by the business theory [14], which indicates that companies generally pay attention to building an
iconic symbol in consumers’ memory. According to this theory, the first impression that comes to
the mind of a consumer to KFCmight be fast food or cheap meals. Consequently, when the consumer
decides to eat fast food, it will link this intention immediately to KFC. Given the significance of
iconic symbols in consumers’ memory, it is important to analyze different sources of clues to
consumer’s establishment of their iconic symbols towards business from a B2C perspective.
Our proposed approach applies data-driven features and graph-based models. Specifically, we

regard the similarity between faces as edges and transform the cluster information into the similarity
between nodes. Then, we apply the CNN structure in our model as the additional information to
find the critical edges and to propagate the labels, given its ability to extract the hidden information
from images [12]. In a nutshell, we make the following contributions in this paper:

• We design multi-faceted features to characterize consumers’ faces and their purchasing
behaviors by exploiting consumer’s shopping capacity and compositions reflected by their
past purchases (Section 2) and face images (Section 3.2).

• We propose a semi-supervised hierarchical model that incorporates multi-aspect face embed-
ding using Graph Convolutional Network (GCN) and Convolutional Neural Network (CNN)
to predict the consumer purchase features and purchasing choices (Section 3.3-3.5).

• We demonstrate the effectiveness of facial information, graph generation, and the select layer
using experiments, case examples, and correlation analysis results (Section 4).

, Vol. 1, No. 1, Article . Publication date: July 2020.



Face to Purchase: Predicting Consumer Choices with Structured Facial and Behavioral Traits Embedding 3

Table 1. Dataset Statistics

Attributes Details

#Records 243,118
#Consumer 1,485
#Company 2,672
# Category 43
Time Span 1/10−30/10/2017
Type Debit/Credit
Amount 0.01−564,245
AVG Amount 244
#Trans 101−1,281
AVG #Trans 164
Total Expense 2,680−3,905,577
AVG Expense 40,020

2 PURCHASE BEHAVIOR CHARACTERIZATION
We investigate a set of consumers’ transaction records and face images from a local financial
services company to showcase its characteristics for feature designation. Specifically, we study
a dataset that consists of 243,118 transaction records of 1,485 consumers with 2,672 companies
during 1/10/2017–30/10/2017, as well as the consumers’ face images. The transactions fall into 43
different categories and belong to two payment methods: debit and credit. Each record consists of
consumer id, transaction date, expense, transaction type, transaction category, description, and payee.
Table 1 shows some statistics of the dataset.

2.1 Analysis of Data Characteristics
We analyze the dataset from three perspectives to learn about consumers’ behavior features.

2.1.1 Gaps in Consumers’ Expenses. We sort the consumers in ascending order of their total
expenses to study their group features and divide consumers evenly into ten groups (from group
1 to group 10) to reduce the adverse effect of the large gap between individuals. As a result, the
first group (group 1) includes the lowest-expense consumers, and the last group (group 10) has
highest-expense users, and the consumers in each group spend no more than the consumers in any
subsequent group. Fig. 1 shows the total expense grows fast, and the increasing rate first drops and
then soars from group 1 to group 9. We have excluded showing group 10 to see the phenomenon
more evidently. In particular, each of the first nine groups has 149 consumers while the last group
has 144 consumers. However, the last group’s expense takes up around 46% of the total expense
of all groups. The gap of two consumers’ total expenses can be as large as over $3,900,000 (see
Table 1).

2.1.2 Overlaps of Pairwise purchasing choices. Intuitively, consumers with similar consuming
capacities should have close shopping behaviors and routines. Therefore, we investigate the rela-
tionship between consumers’ shopping capacity and shopping behaviors by calculating the overlap
rates of the shopping scopes of two groups:

Overlap(a,b) = #Intersection(a,b)
#Union(a,b) (1)

, Vol. 1, No. 1, Article . Publication date: July 2020.
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Fig. 1. (a): Expense of user groups. (b): Increase rate of expense.

where a and b represent two arbitrary groups; #intersection and #union denote the number of the
intersection and the union of the shopping company sets, respectively. Fig. 2 shows the overlap rates
of four representative groups with all the other groups, respectively, four sub-figures. Generally,
for a group with a small group number (e.g., group 1 or group 3), its overlap rate decreases as the
group number of the other group increases; conversely, for a group with a large group number (e.g.,
group 7 or group 10), its overlap rate increases as the group number of the other group increases.
Based on the above, we conjecture three types of consumers with following characteristics:

• Weak capacity consumers: The first few groups only share more similar purchasing choices
with the consumers who have low expenses in the month.

• Common capacity consumers: The middle few groups share a relatively higher ratio of choices
with all groups than weak and strong groups; they have more common with near groups.

• Strong capacity consumers: The last few groups share more common shopping behavior with
those who spend much money.

2.1.3 Ratio of Triple-wise Overlaps. We further investigate consumers’ purchasing choices after
analyzing the overlaps of groups. Specifically, we define impact score to detect the shared purchase
choices of two groups (e.g., group a and group b) by calculating their triple-wise overlap rates:

impact (b |a) =
∑

j<>a,b

| #Intersect ion(a, b, j)
#Union(b, j) − #Intersect ion(b, j)

#Union(b, j) | (2)

By summing up the difference of the overlap rate of group b with other groups (except a and b)
under the condition of the group a and the normal one, we can know the size of the stable overlap
part of a and b. A smaller impact score indicates a larger stable overlap; conversely, a larger overlap
part means more common choices in the shopping choices of groups.

Fig. 3(a) plots the impact scores of three representative groups (group 1, group 6, group 10), while
Fig. 3(b) shows the item scopes of all the groups. The results show the user groups with wider
shopping ranges and stronger shopping capacities have lower impact scores—while the first group
has the smallest impact score and the last groups have the largest impact scores, the groups in
the middle have the most stable overlap curves. The above results align with our intuition that
the consumers who spend more than others have a larger portfolio of purchases and share more
purchasing choices with others. More specifically, wealthy consumers will be more likely to buy
expensive things, while ordinary consumers can only afford the standard products. Meanwhile,
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Fig. 2. Pairwise overlap rates of four representative groups (group 1, 3, 7, and 10) with other groups.

Fig. 3. (a) Impact scores of groups 1, 6, and 10. The ’Mean’ in the x-axis is the average impact of one group to
other groups. (b) The shopping scope sizes of group 1 to group 9.

the wealthy consumers purchase the standard products the same as ordinary consumers, so their
diverse shopping structure leads to the observation in the triple-wise overlap rates. Since expense
types remain unknown, we will discuss the shopping structures in the following sections.
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2.2 Behavioral Feature Designation
We exploit consumers’ purchasing choices in different categories of expense by analyzing purchase
behaviors in Section 2.1. Generally, consumers’ purchasing behaviors have three features: 1) They
are not affected by the large gaps between individuals; 2) They imply the different types of consumers
and the expense; 3) They imply the shopping structures of consumers. Accordingly, we propose
two categories of consumer purchase features [15], namely stratum features and life features, to
portray the consumer shopping capacity and tendency, respectively.

2.2.1 Stratum Features. We design Stratum Features by dividing consumers’ consumption be-
haviors based on Maslow’s hierarchy of needs, where a higher-layer needs only occur when the
lower-layer needs are satisfied, and a higher-stratum consumer normally has a higher ratio in the
higher layers. We analyze the three categories of users with differed purchasing capacities, namely
weak (groups 1-2), ordinary (groups 3-7), and strong (group 8-10) by using two reference lines (the
brown and black dashed lines) and considering the adjacency of groups in analyzing the scores of
user groups in the dataset (shown in Fig. 4(a)). Groups 1-2 have a weak capacity because they have
higher Basic scores above the brown bar and lower Social scores below the black bar; in comparison,
groups 8-10 demonstrate the opposite patterns and therefore have a strong capacity; lastly, we
consider all the other groups (groups 3-7) to have an ordinary capacity. The three user categories
have larger expense allocations on the higher-level needs from weak to strong purchasing capacity.

The original Maslow’s hierarchy of needs describes five layers top the bottom: self-actualization,
esteem needs, belonging and love needs, safety needs, and physiological needs. Since some of
the levels do not have clear differences, we combine the levels to three main stratum features.
Specifically, we get three categories with reference to the Maslow’s hierarchy of needs [16]:

• Basic: The necessary consumption to address the fundamental physiological and safety needs
such as food and water;

• Social: The consumption combining esteem, belonging, and love needs for enjoyment and
improved life quality;

• Self : The consumption for self-actualization or mental enrichment such as education.
Our stratum features design has two advantages: 1) The Maslow’s hierarchy concentrates on the
ratios of each layer of consumption and can, therefore, prevent the bad effects of the large gaps
between individuals; 2) Hierarchy structure: It helps classify consumers because high layers need
a stronger consumption capacity. Using this structure can exactly portray the financial expense
structure, which can indicate the consumption capacity.

2.2.2 Life Features. We define life features of consumers by analyzing their shopping structure
based on the AIO (Activities, Interests, and Opinions) theory [17], which cover all the life aspects of
purchases. Specifically, we look into consumers’ shopping frequency and choices of targets beyond
the three general types. One example is that, generally, a small portion of consumers contribute
to the majority of sales in a market (the “20:80" rule [18]). Another example is that a company
selling clothes will be more interested in consumers who frequently buy fashion products but not
in consumers who only spend money at home.

We summarize consumers’ shopping frequency and choices of targets in 17 categories: Restaurant,
Entertainment, Service, Travel, Shop, Health, Work, Credit, Home, Daily, Investment, Bill, Gambling,
Education, Charity, Fashion, Tax, and three stratum feature categories: Basic, Social, Self (we will
introduce the labeling methods in Section 3.5). To make the AIOs scores more understandable, we
compress the frequency of each aspect to 0-5 relative to the maximum frequency of each aspect in
the whole dataset. For each aspect, a high score indicates a more frequent buyer. As an example,
Fig. 6 describes the life features of two arbitrary users: user 604 and user 478. It shows that user 478
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Fig. 4. (a) Ratio scores of stratum features of groups. The brown and black dashed lines are references to help
identify different types of groups. (b)-(e): Negative AIO Standard Deviation of four representative groups
(group 1, 3, 7, and 10) with other groups.

Fig. 5. (a) Mean impact scores. (b) AIOs scores.

Fig. 6. Life features of user 604 and user 478.

, Vol. 1, No. 1, Article . Publication date: July 2020.



8 Liu, et al.

has a higher fashion score while user 603 has a higher home score. Therefore, a company should
recommend clothes to user 478 and home items to user 603.

To show the pattern clearly, we negative the AIO Standard Deviations (SD) of the four groups in
Fig. 4(b)-(e). The AIOs negative SD curves show identical patterns as the overlap rates: consumers
of adjacent groups have smaller differences in their AIO differences; the AIO similarity tends to
decrease and then increase from group 1 to group 10. Further, we draw the following conclusions
from the above observations: 1) Life features indicate the structures of consumers’ purchase types;
2) Life features reflect the purchasing choice characteristics, overlapping choices among different
groups, and shopping scopes of consumers.

3 METHODOLOGY
3.1 Framework Overview

...

Output

Fig. 7. The structure of our proposed model. Xi , Fi , Li , MAE, and SCE denote a sample, consumer purchase
features of the sample, purchasing choice labels of the sample, mean absolute error, and softmax cross entropy.
’⊕’ denotes the sum of the MAE loss and the SCE loss.

Our proposed framework predicts consumer behaviors with multi-model structured personal
traits embedding. Our model (Fig. 7) consists of four steps, given a face dataset of n face samples
{X1,X2,X3,...,Xn }: (1) Feature Engineering—We design consumers’ purchase features by considering
their shopping capacity and compositions to label the data, and extract face descriptors of consumers
by training a separate model for each sample X . The features contain five aspects: face attributes
(FA), point distribution model (PDM) parameters, facial distances (FD), facial landmarks (FL), and
aligned faces (AF). (2) Selective GCN—We organize the one-dimensional face descriptors of each
sample into a weighted graph structure д to generate multi-view face embedding y with selected
graph information. (3) CNN with Aligned Faces—We extract the semanticity sem from Aligned
Faces (AF) by subsampling the AF and enhance the convolution ability of networks through Light
Inceptions. (4) Hierarchical Labels and Prediction—We combine the embedding information from
both GCN and CNN to predictm consumer purchase features {F1,F2,F3,...,Fm } and thereby forecasting
k purchasing choices {L1,L2,L3,...,Lk } for each consumer.

Specifically, we extract the face attributes, point distribution model (PDM) Parameters, facial
landmarks, and aligned faces based on the work of [6, 19–23], and we propose to use GCN Units (a
GCN layer with a Radial Basis Function (RBF) kernel [24]) to calculate the distances of consumer
face features and subsequently the similarity connections. The similarities can be seen as edge
weights and used for generating the graph structure of facial features. We also use a light CNN to
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Face to Purchase: Predicting Consumer Choices with Structured Facial and Behavioral Traits Embedding 9

analyze the hidden semantic information in the aligned faces. With the face information data and
structures, we design a combined semi-supervised Selective Convolutional Network (SCN) model,
which uses the images and the extracted information to predict consumer purchase features and
shopping decisions, based on the work of [25, 26].

3.2 Feature Engineering
3.2.1 Purchase Feature Designation. We define two categories of purchase features to reflect
consumers’ shopping capacity and compositions, in light of our discussion in Section 2.2.

Stratum Features. We define three types of stratum features of consumers, referring to Maslow’s
hierarchy of needs [16]: Basic, Social, and Self. Similar to Maslow’s theory, each type represents a
higher-level need compared to its precedent. We thereby identify three categories of users with
weak, ordinary, and strong purchasing capacities. The three user categories have larger expense
allocations on the higher-level needs from the first to the last.

Life Features. We define consumers’ life features by analyzing their purchasing choices and fre-
quencies in 17 categories, borrowed from AIO (Activities, Interests, and Opinions) dimensions [17]
used for segmenting a target market: Restaurant, Entertainment, Service, Travel, Shop, Health, Work,
Credit, Home, Daily, Investment, Bill, Gambling, Education, Charity, Fashion, Tax. We will detail the
labeling methods in Section 3.5.

3.2.2 Face Descriptor Extraction. The prediction labels and the input data are extracted from the
data set. The face information extraction is based on related research. Previous studies [4, 12, 20,
27, 28] show that valuable information such as nameable attributes, facial features, and landmark
locations can be extracted from the face images and it can deliver better results when combining
such information with raw images for training. The work in [20] introduces a point distribution
model (PDM) which can describe the face shape well. Therefore, besides extracting the PDM data as
inputs, we obtain prominent face attributes, PDM parameters, and aligned faces using pre-trained
models and then analyze landmark locations and facial feature distances based on the aligned faces.
Fig. 8(a) shows the face information extraction flow.
We apply a position-squeeze and excitation network (PSE) [23] to the LWFA dataset1 and the

CelebA dataset2 to extract 16 facial attributes such as eyeglasses and attractiveness, and PSE
achieves an average accuracy over 90% on CelebA and over 85% on LWFA. The aligned faces and
landmark locations are from an open-source facial behavior analysis toolkit named OpenFace [19]
with datasets: CMUMulti-PIE3; HELEN and LFPW training subsets in 300W4. The parameters of the
point distribution model [20] are also extracted through OpenFace. With the landmark locations,
we calculate 170 landmark distances as features such as forehead width.

Face Attributes. Prominent face features include eyeglasses and attractiveness. We pre-train a
position-squeeze and excitation network (PSE) [23] to extract 16 facial attributes and achieve the
average accuracy of over 90% and over 85% on the CelebA [29] and LWFA datasets [30], respectively.

PDM Features. Point distribution model (PDM) [20] is a linear model that describes the rigid
(location, scale, and rotation) and non-rigid face shapes. We use pre-trained models to generate
PDM features and to obtain the shape similarity between faces.

1http://vis-www.cs.umass.edu/lfw/
2http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
3http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
4https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
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10 Liu, et al.

Fig. 8. (a) Procedure for extracting face information; (b) Procedure for extracting consumer purchasing
features and purchasing choice labels.

Aligned Faces. We obtain aligned faces from an open-source facial behavior analysis toolkit
named OpenFace [19] with several datasets: CMU Multi-PIE [31]; HELEN and LFPW training
subsets in 300W [32]. We then calculate the normalized contour locations and distances based on
aligned faces, which provide clear, centered face pictures with pure face semanticity information.

Facial Landmarks. We obtain key similarity information about face contour and shape from
landmark locations detected via shape models or CNN. We record n landmarks {l1,l2,l3...,ln } by
keeping their axes in the form of {(x1,y1),(x2,y2),(x3,y3),...,(xn ,yn )}.

Facial Distances. It reflects features of key components of faces such as mouth width and nose
length. We design 170 facial distances to discover the similarity between faces in multiple aspects
such as the general shape, key shape and contour, and face features. We analyze the face from
prominent attributes, general shape similarity, semanticity information. We thereby embed faces
from a more comprehensive sight than only using face images or a single type of descriptors.

3.3 Selective Graph Convolutional Network
Our proposed SCN consists of two parts: Graph Convolutional Network (GCN) and Convolutional
Neural Network (CNN). We design GCN by adapting the model in [25] to process the face in-
formation with the graph structure that we have already generated. Similarly, we adapt CNN
from Inception [26] to process the aligned face images for extracting the semantic meanings. We
combine five different aspects of face data to make our model more comprehensive. The selective
GCN generates elite graph embedding from original graph structures via graph generation, graph
selection, and graph convolution.

, Vol. 1, No. 1, Article . Publication date: July 2020.



Face to Purchase: Predicting Consumer Choices with Structured Facial and Behavioral Traits Embedding 11

Fig. 9. (a) Structure of a GCN unit. Xi , Hi , and Yi denote the raw node, hidden node, and the output node.
Fi , Di , and Ni denote the feature dimension, feature data of nodes, and the normalized node feature data.
(b) Procedure for the Select Layer.Wi , Si , Ei , SiEj denote the initial weight, the select weight, the raw edge
weight, and the selected graph edge weight. The blue line in the Activation Function is the output curve, and
the alpha in the axis is the threshold to drop edges. ◦ is the Hadamard product. (c) Structure of the semantic
CNN network. (d) Structure of the light inception unit. For both (c) and (d), the first line of the description
under each layer is the size of the outputs, and the second line is the operation before the layer, following
by the kernel size and the kernel number. The operation of ’Max’, ’Conv’, ’Avg’, and ’L Inception’ denotes
max-pooling, convolution, average-pooling, and Light Inception.

3.3.1 Graph Structure Generation. The original face information does not possess a graph structure.
Inspired by the existing face clustering research [12], we extract cluster information from faces as
the additional input. To this end, we use the RBF kernel to generate graph edges, based on face
similarities, to represent the propagation abilities and to enhance our model. This way, we get a
fully-connected graph д of facial features based on cluster similarity. The RBF kernel has been
widely used for clustering and classification [24, 33]. It measures similarity as exponential to the
square Euclidean distance between two vectors:

K(a,b) = RBF (a,b) = exp(− ∥a − b∥22
γ

), a,b ∈ X (3)

where a and b denote two samples, γ is the number of features.

3.3.2 Graph Structure Selection. We use a Select Layer to process the generated graph structure to
reduce noises and useless edges before passing face information into GCN layers. Specifically, there
exist many low weight edges indicating useless and false information in the graph structure we
have generated, and it could be time-consuming if we pass the entire graph structure into the GCN.
Therefore, we design the select layer to let the network drop the useless edges through training.
Fig. 9(b) shows the data flow and the mathematical operations of the select layer. Specifically, we
initial a weight matrix for the edges in the raw fully-connected graph and then feed the matrix to
the activation function.

wi, j = д ◦ SelectLayer (Weiдhti, j ), (4)
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SelectLayer (r ) =
{ 0, r ≤ α

r , r > α
r ∈ R (5)

where д is the raw graph structure of face features generated in the previous step; α is the drop
threshold;Weiдhti, j is a cell of the weight matrix of д, indicated by the index of samples i and the
index of features j. The activation function will drop the edge if the edge weight is lower than
the threshold. Finally, we consider the output matrix of the activation layer as the select matrix to
optimize the propagation of raw graph—we calculate the Hadamard product of the select matrix
and the raw graph as the selected graphw .

3.3.3 GCN Layer. . The facial feature information usually provides the hidden similarity informa-
tion to help the models realize and distinguish different types of faces. Therefore, we apply the
GCN Unit shown in Fig.9(a) to analyze the extracted facial feature information.
Given the normalized feature data and the purified graph structure, we further analyze the

relationship between different faces by analyzing graph structures and face features using GCN.
Basically, GCN is an efficient spatial-based graph neural network that uses the neighbour nodes to
represent the raw nodes and does not need to calculate the eigenvectors and eigenvalues. Here, we
predict node labels through propagation rules using a multi-layer GCN [25]:

H (l+1) = D̃− 1
2 ÃD̃− 1

2H (l )W (l ) (6)

where H (l ) is the lth GCN hidden layer;W (l ) denotes the weight matrix of the l layer; Ã = A+ IN is
the processed adjacency matrix from the select layer after adding a identity matrix IN ; D̃ is a degree
matrix of Ã. We use two GCN layers in each unit and take the output of the activated hidden layer
as face feature hidden information.

h = GCN (w) ∗ normalize(X ) (7)

y = Relu
(
LeakyRelu(h)

)
(8)

where h denotes the hidden layer of GCN; Leaky Relu and Relu are used to help the model gain
better graph representations; y is the embedding of face information for FA, PDM, FD, or FL.

3.4 Convolutional Neural Network with Aligned Faces
We adopt CNN to extract the hidden semanticity in faces as the embedding information, in light of
the outstanding performance of CNNs in analyzing pictures [26]. Our CNN structure processes the
aligned faces following a three-step procedure: subsample, Light Inception, and semanticity.

3.4.1 Subsample. We design the CNN structure to find the balance point between effectiveness
and efficiency. Therefore, we apply the subsampling method to construct our network. First, we
only apply the 7 × 7 convolution layer at the beginning of the network because a larger-size layer
can catch a wider range of information and provide a better environment for the following layers.
However, the large scale layer will be very time-consuming, so we only apply the kernel layer at
the bottom of the network. Second, we adopt the 3 × 3 max-pooling kernel in step two to help
reduce the scale of images. The pooling layer with kernel size three could smoothly decrease the
data scale with a moderate computation burden. Therefore, the subsample structure should be:

subsample = Max3×3
(
Conv7×7(layerl )

)
(9)

where layerl is the current layer;Max3×3 is a max-pooling layer with a 3 × 3 kernel; Conv7×7 is a 7
× 7 convolution layer.
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3.4.2 Light Inception. Some information may lose during the downsampling of faces. Therefore,
we apply the convolution layer to extend the data range and information. Specifically, we design
the Light Inception showing the overall structure based on the method of Inception [26] to extract
deeper hidden information efficiently. The Inception layer is a 3-depth unified structure aimed
to extract deep information effectively. The idea is to use a large-size convolution layer after the
small-size kernel layer and to use a convolution layer after the max-pooling layer. Different from
the conventional Inception, we keep the same 1 × 1 kernels before high-level convolution layers.
We define the large-size convolution and max-pooling convolution extension as follows:

Ip = Conv1×1
(
Max1×1(layerl )

)
(10)

ICon3×3 = Conv3×3
(
Conv1×1(layerl )

)
(11)

ICon5×5 = Conv5×5
(
Conv1×1(layerl )

)
(12)

where layerl is the current layer; Ip , ICon3×3, and ICon5×5(layerl ) are the Inception max-pooling
layer, the Inception convolution layer with a 3 × 3 kernel and a 5 × 5 kernel; Conv is the normal
convolution layer; both the max-pooling and convolution layers use step one. To get the most of
CNN, we use 1 × 1 convolution layers before the 3 × 3 and 5 × 5 convolution layers and add the
extension information to the original 1 × 1 convolution:

LiдhtInception = Fc
(
Ip (con), ICon3×3 (con), ICon5×5 (con), con

)
(13)

con = Con1×1(layerl ) (14)
where layerl is the previous layer of the Light Inception Layer and con is the public Con1×1 layer
for further convolution. We merge the different convolution output as the Light Inception output.

3.4.3 Semanticity. We combine subsample and Light Inception structures to analyze faces effec-
tively and efficiently—We apply the subsample-LightInception (SLI) twice to construct the extraction
part of our network and adopt an average-pooling layer to accelerate convergence. Considering
Light Inception as a convolution layer, we do not use additional convolution layers in the second
SLI but adopt an average-pooling layer to accelerate convergence.

sem = Avд14×14
(
SLI

(
SLI (input)

) )
(15)

where input is the aligned consumer faces; Avд14×14 denote the average-pooling layer with the
kernel 14 × 14; and sem means the semanticity embedding information in faces. Specifically, we
use 1 × 1 convolution layers before 3 × 3 and 5 × 5 convolution layers. Then, we concatenate four
different types of convolution information and apply a batch normalization layer [34] to process
the concatenated information.

3.5 Hierarchical Labels and Prediction
We extract the hierarchical labels (indicating whether a consumer purchased at a company) based
on statistics of consumers’ purchasing information, as shown in Fig. 8(b). We label each transaction
record according to amount, category and description following the life feature and stratum feature
structure. Then, we calculate the ratio scores of different needs and the frequencies of shopping in
each life aspect, respectively. We extract consumers’ purchasing features and purchasing choices
as follows:

Fi (li f ey ) =
5 ∗ f requencyi (li f ey )
max
x ∈[1,n]

f requencyx (li f ey )
, i ∈ [1,n] (16)

Fi (stratumy ) =
5 ∗ expensei (stratumy )∑
x ∈[1,3] expensei (stratumx )

, i ∈ [1,n] (17)
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Lj =

{ 0, Lj ∈ history

1, Lj < history
j ∈ [0,k] (18)

where frequency and expense denote the times and total spending of a consumer’ purchases spend
on a specific feature; Fi (f eaturey ) is the score of the ith consumer on the yth feature. Since life
features focus on the frequency ranks of consumers, we compress the life shopping frequency to the
range of 0 to 5 according to the peer maximum. Similarly, we calculate and compress the shopping
ratio of each type according to the expense sum, given that stratum features concentrate on the
ratio of each category of consumers. purchasing choice labels are determined by the consumer
shopping history.
Our proposed model combines the hidden information from different views, four types of

low features, and the aligned faces. With the extracted face information, we predict consumers’
purchasing features and purchasing choice labels with a full-connection layer. In particular, we
concatenate the five-aspect information to obtain the relationship between face and behavioral
traits and then use behavioral traits F with so f tmax to predict purchasing choices L:

F =WF ∗ concatenate(yFA,yPDM ,yFD ,yFL, sem) + bF (19)

L = so f tmax(WL ∗ F + bL) (20)
where yFA, yPDM , yFD , yFL , and sem are the embedding on five aspects: FA, PDM, FD, FL, and AF;
WF ,WL , bF and bL are the weight matrix and the bias vector of purchasing features and purchasing
choices.

We apply mean absolute error (MAE) and softmax cross-entropy (SCE) to measure the prediction
of consumer purchase features and purchasing choices, respectively. This leads to similar ranges of
the loss functions for both prediction, thereby balancing the performance of both predictions. We
define the overall loss function as follows:

Loss(F , F ′,L,L′) = 1
n

(
α ·MAE(F , F ′) + β · SCE(L,L′)

)
(21)

MAE(F , F ′) =
∑
i

∑
j

1
m

·
��Fi, j − F ′

i, j

�� (22)

SCE(L,L′) =
∑
i

∑
o

1
k
· −L′i,o ∗ loд(Li,o) (23)

where F ′ and L′ denote the ground truth; F and L are the prediction results; α and β are the
hyper-parameters to control the weights of MAE and SCE, respectively; n, m, and k represent
the number of samples, features, and labels, respectively; i , j, and o denotes the index of samples,
features, and labels, respectively.

4 EXPERIMENTS
4.1 Experimental Setting
We studied a dataset from a local financial services company, which is described in Section 2.2. We
chose four companies with the most consumers to test our proposed model, i.e., SCN, through two
sets of experiments. We first compare the GCN unit with some traditional multi-label methods to
test the effectiveness of the generated graphs; then, we compare different models and study the
performance of this semi-supervised model under different conditions, especially the impact of
adding consumer purchase features to the models. Specifically, we first compare SCN with the
traditional methods under various conditions to show the effectiveness of the structured behavioral
traits embedding, the GCN unit, and the select layer. Then, we analyze the feature correlation to
show the reliability of our model. We use precision, recall, and F1 scores as the evaluation metrics
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Table 2. Comparison between models.Fraction denotes the fraction of labeled data. ‘(N)’ indicate the input
contain no images. MAE is the loss of middle features. Standard deviations are in parentheses. Traditional
algorithms and GCN do not predict consumer purchase features.

Fraction Macro-precision Macro-recall Macro-F1 Model Macro-F1 MAE

LINEAR SVC all 0.268(9.14e-2) 0.5(0) 0.342(7.23e-2) 0.349 /
SVC all 0.307(6.70e-2) 0.498(3.30e-3) 0.377(4.98e-2) 0.380 /

XGBOOST all 0.447(4.79e-2) 0.482(2.36e-2) 0.463(3.12e-2) 0.464 /
LINEAR LOGISTIC all 0.515(4.34e-3) 0.520(3.12e-2) 0.517(3.72e-2) 0.517 /

GCN all 0.593(1.62e-1) 0.528(2.87e-2) 0.551(7.41e-2) 0.559 /

Semi-SCN(N) 13% 0.550(8.22e-2) 0.514(1.37e-2) 0.530(3.78e-1) 0.532 0.437
Semi-SCN(N) 35% 0.563(7.63e-2) 0.526(2.23e-2) 0.542(4.11e-1) 0.544 0.438

SCN(N) all 0.626(2.14e-1) 0.534(5.71e-2) 0.567(1.03e-1) 0.577 0.498
Semi-SCN 13% 0.549(8.33e-2) 0.530(6.94e-2) 0.539(7.47e-2) 0.539 0.378
Semi-SCN 35% 0.566(4.02e-2) 0.550(4.41e-2) 0.558(4.20e-2) 0.558 0.426

SCN all 0.604(7.75e-2) 0.558(2.70e-2) 0.578(3.68e-2) 0.580 0.501

to mitigate the impact of imbalanced distributions of positive and negative samples. To test the
effectiveness of Light Inception, we examine the models with and without image inputs. SCN uses
all five types of data, and SCN (N) only uses the facial feature information data.

We directly use the multi-label package in [35] to realize the baselines: extreme Gradient Boosting
(XGBOOST) [36], Linear Logistic, C-Support Vector Classification (SVC) and Linear Support Vector
Classification (Linear SVC).

4.2 Effectiveness of Structured Behavioral Traits Embedding
After proving the effectiveness of GCN structure, we test SCN under several conditions: the models
with and without image inputs and different fractions of training data. Table 2 shows that both SCN
and SCN(N) have better performance than the single GCN unit, showing that consumer purchase
features can provide useful information to the models. The consumer purchase features have an
acceptable range in MAE, i.e., 0.4 to 0.5 in the range of 0 to 5. SCN has higher F1 and recall than
models without images under all the conditions. This observation shows Light Inception can make
the model more robust in handling disproportionate data. The SCN can still have good performance
when using 8% of the data for training. We compare SCN and SCN(N) with a single GCN unit
to demonstrate the impact of behavioral traits embedding. Table 2 shows both SCN and SCN(N)
have better performance than the other methods, indicating consumer purchasing features provide
useful information to the models. The results have an acceptable MAE between 0.4 to 0.5 in the
range of (0, 5). SCN has higher F1 and recall than SCN(N) almost in all circumstances, showing
the Light Inception improves the model’s robustness. SCN still achieved comparable performance
when using less than 10% data for training, revealing the effectiveness of semi-supervised learning.

4.3 Graph Effectiveness in the GCN Unit
We compare the GCN unit with traditional methods to demonstrate the advantages of generating
the graph structure of non-network data in image analysis. To ensure the fair comparison, we used
only the extracted facial feature information as the input. Table 2 shows the GCN unit achieved
a significant improvement in precision and F1 score over traditional algorithms: XGBOOST and
Linear Logistic achieved the average performance while SVM-related algorithms performed worst.
The results demonstrate the effectiveness of the graph structure.
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Fig. 10. (a): MAE, (b): Macro-F1 scores, under the different drop thresholds of the select layer. The weights of
edges below the threshold are not shown. (c): Purchasing features of consumers of three companies.

Fig. 11. (a): P-values of top 20 significant face features with consumer purchase features. (b): P-values of
consumer purchase features with purchasing choices. Features with p as the first letter are PDM features;
numbers means the landmark location; abs means absolute distance; dis denotes Euclidean distance.

4.4 Effectiveness of the Select Layer
We tested the impact of the select layer by varying the threshold from 0.5 to 0.95 at the increment
of 0.05, where the weight matrix of the select layer is set randomly within the range of (0.5, 1).
Besides, we set the batch size to 64 and the early stop epoch to 50. Figs. 10a-b show the MAE
and Macro-F1 Scores under different thresholds. We observed that the MAE kept stable while the
Macro-F1 score peaked at 0.75 and dropped drastically at 0.9. The results indicate good performance
despite the noises hidden in edges. Generally, the select layer can learn the graph structure along
with dropping useless edges to reduce the computation time. Meanwhile, it can keep most of the
information.
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Fig. 12. Consumer faces indicative of strong and weak purchasing tendencies in two categories: Fashion and
Social. For both dimension: (middle) left and right are the average faces with overall high responses and low
responses to the features; (from left to right) other faces represent an averaged example of a face set in the
rating order from highest to lowest; the averaged examples contain (top-left) annotation and (bottom-left)
prediction, marked with black rectangles.

4.5 Feature Correlation Analysis
Fig. 10c shows purchase features of consumers of three companies: McDonald’s, KFC and David
Jones. We normalized the scores and enlarge the mean scores to show clear differences. We observed
consumers of KFC and McDonald’s both have high scores in Basic yet low scores in Social and
Self. This is reasonable because they have the same brand symbol: fast food. Interestingly, their
consumers gamble more frequently than the consumers of David Jones, a fashion company. In
comparison, consumers of David Jones generally have stronger shopping capacity; they purchase
more frequently in more categories such as Self, Fashion, and Investment yet less frequently in
Basic. Figs. 11a-b show the Pearson correlation coefficient p-values [37] of facial information to
consumers’ purchasing features and consumers’ purchasing features to their purchasing choices,
respectively. We found only 14 features (except self, travel, health, daily, investment, and charity)
have significant correlations with the facial information. All the companies in Fig. 11b have strong
correlations with multiple features.

4.6 Case Examples
We use Fashion and Social, which belong to stratum features and life features, respectively, to
demonstrate the face features indicative and non-indicative of consumer features in Fig. 12. We
only show the generated average male faces to protect consumer privacy.
We further analyzed the consumer features of different companies. First, we calculated the

inverse shopping frequency Is as an additional weight to enlarge the patterns of low-frequency
shopping companies. Then, we took the sum of the weighted purchase features to represent the
consumer characters of companies:

IFeaturec,i =
Is (c) ∗

∑
Featurec,i

SD(Featurec,i )
, Is (c) = log

N

|c | (24)

where IFeaturei is the weighted score of company c on Featurei ; SD is the standard deviation.
Fig. 13 shows some examples of results, where we normalize stratum and life features separately to
the range of [0, 1]. The results show both Sportsbet and Netflix had high scores in Gambling and
Entertainment. Interestingly, for a customer of JB Hi-Fi, Dan Murphy orWoolworths, if he frequently
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Fig. 13. Weighted purchasing features of consumer of different companies.

purchases alcoholic and electronic products, then he tends to spend more on Entertainment but
less on Basic (daily consumption) products.

5 RELATEDWORK
Face information extraction has been a research topic for a long time. Traditionally, researchers
focus on extracting low-level information such as face attribute information [23, 38], gaze informa-
tion, face landmark information, emotion state [19] from face images, or extracting embedding
information of faces for voice matching [39] and face verification [40, 41]. Recently, researchers
begin to transform the facial information to infer the higher-level information such as person-
ality traits theory: the BIG 5 [42], the BIG 2 [43] and the 16 PF [44]. The high-level information
extracted from human faces is widely used in the election prediction [4] and social relationship
prediction [12]. Furthermore, researchers also use the personality traits theory to simulate job
interview results based on images [13, 45]. Meanwhile, predictions of purchase behaviours have
emerge as an application and extension of traditional recommendation research to harness various
sources of heuristic information in e-commerce [46]. A primary limitation of the personality traits
theory is that it does not fit the purchasing behavior well [47–49], considering that personality traits
do not contain social and financial information [50–52]. Therefore, we propose and believe that
it is necessary to use consumer purchase features to characterize consumers through behavioral
traits from a business perspective other than from a personality perspective.

We develop our work based on the previous efforts in [4, 12, 25, 26], yet we transfer the election
prediction to the more complicated purchase behavior prediction and use data-driven features and
model structures to extract hidden information from the faces. On the contrary, the method in [4]
does not consider the data characteristics and uses a straightforward approach. The work of [12]
demonstrates the effectiveness of cluster information of human facial features in improving the
performance of DCN. However, such a model pre-assumes the cluster number. Instead, we consider
the similarity between faces as edges and propose to transform the cluster information into the
similarity between nodes: the more similarity, the more effects. Therefore, we use the GCN model,
a widely used model for the prediction of graph data [25], to process the graph structure. Besides,
we apply the CNN structure in our model as the additional information to find the critical edges
and to propagate the labels, given its ability to extract the hidden information from images [12].
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6 CONCLUSION
In this paper, we propose a hierarchical model that combines face embedding with structured
behavioral traits embedding and demonstrate its better performance in predicting consumer pur-
chases. Face embedding contains face information from multiple aspects such as shape, contour,
and semanticity, while structured behavioral traits capture consumer behaviors such as financial
stratum and shopping tendencies. We design a selective graph convolution unit to process the data
without a graph structure and to provide additional structural similarity information to enhance
the model. We also adopt an Inception structure to make a light version of the model. A significant
advantage of our model is to exploit human faces for hidden clues about consumers’ personal traits
and shopping behaviors. It can serve as a promising solution to cold-start scenarios, which lack
consumers’ behavior information.
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