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Abstract—Entity matching across two data sources is a preva-
lent need in many domains, including e-commerce. Of interest is
the scenario where entities have varying granularity, e.g., a coarse
product category may match multiple finer categories. Previous
work in one-to-many matching generally presumes the ‘one’
necessarily comes from a designated source and the ‘many’ from
the other source. In contrast, we propose a novel formulation
that allows concurrent one-to-many bidirectional matching in
any direction. Beyond flexibility, we also seek matching that
is more robust to noisy similarity values arising from diverse
entity descriptions, by introducing receptivity and reclusivity
notions. In addition to an optimal formulation, we also propose an
efficient and performant heuristic. Experiments on multiple real-
life datasets from e-commerce sources showcase the effectiveness
and outperformance of our proposed algorithms over baselines.

Index Terms—entity resolution, matching, one-to-many, poly,
bipoly

I. INTRODUCTION

Entity matching identifies records associated with the same
real-world entity. This work is concerned with matching across
two data sources that are respectively duplicate-free. Most
of the prior work presumes entities are of the same type
and granularity, e.g., person to person or product to product,
employing bipartite matching with one-to-one constraint. That
assumption may not hold when entity mentions across sources
are diverse. Consider a product with color variants. One e-
commerce site may have a single listing, while another may
list variants individually. For another example, a chapter in a
textbook may span multiple chapters in another.

In contrast, poly-matching (Poly) allows an entity of coarser
granularity (denoted host) from one source to match multiple
entities of finer granularity (denoted clients) from the other
source. However, prior works [1] often require hosts to come
designatively and exclusively from one source, and clients
from the other. We posit that such a requirement is overly
restrictive when entities from the two sources have variable
granularity. A more general formulation is bidirectional poly-
matching (BiPoly), where host or client alike could come from
any source. Figure 1 illustrates the matching of entities (prod-
uct categories) from two e-commerce taxonomies. Mapping
categories across the two sites would entail BiPoly.

Given as input are similarity weights between any pair
of entities across sources. One possible objective is to
maximize the sum of similarity weights across client-to-host
assignments, which is rational insofar as the input weights
are reflective of true similarity. In practice, similarity weights
are often derived from entity descriptions (e.g., product
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Fig. 1: A bidirectional poly-matching between the lens acces-
sories categories in Amazon and Lazada.

titles), with noises abound. We propose a more robust
objective that additionally incorporates two types of rewards.
Reclusivity encourages entities to refrain from participating
in any matching, so incidental similarities would not result
in false positives. Receptivity encourages entities to form a
matching, inducing more connected components of smaller
sizes while discouraging large clusters with many entities.
https://www.overleaf.com/project/612ef8d891a5168973db170e
Contributions and Organization. In summary, the main
contributions of this paper are as follow:
• (subsection II-A): We formalize the problem of BiPoly

for multi-granular entities. The bidirectionality is novel,
inducing a more general formulation than previously
known bipartite and poly-matchings.

• (subsection II-B): We propose a robust optimization ob-
jective by incorporating receptivity and reclusivity no-
tions to mitigate the effects of noisy similarity.

• (section III): We express an optimal formulation for
BiPoly using Integer Linear Programming (ILP), which
subsumes bipartite and poly-matchings as special cases.

• (section IV): We develop a computationally efficient
greedy algorithm with a known approximation bound.

• (section V): We conduct experiments to demonstrate the
effectiveness of our algorithms against baselines.

We cover the related literature in section VI and discuss the
key findings as well as future work in section VII.

II. PROBLEM FORMULATION

We are given two sets of entities, the left set L =
{l1, l2, . . . , lm} and the right set R = {r1, r2, . . . , rn}, that
contain m and n records respectively. Informally, our objec-
tive is to find all pairs of matching multi-granular entities,
ρ ⊆ L×R, such that for every pair 〈l, r〉 ∈ ρ we can say that
either l is a part of r, l consists of r, or l is equivalent to r.
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Fig. 2: Results based on max-weighted Bipartite, Poly (one-
to-many) and the BiPoly constrained matching.

We identify an entity matching by similarity function h :
L × R → [0, 1]. For any r ∈ R and l ∈ L, h(r, l) is defined
as h(l, r). h(l, r) ranges from 0 (l and r are not related) to
1 (highly related). Ideally, 〈l, r〉 ∈ ρ if and only if h(l, r) ≈
1. In practice, however, we deal with similarity functions –
assumed specified as input – that often produce high similarity
scores for entities that ought not to be included in ρ (i.e., false
positives) or low similarity scores for entities that ought to be
included in ρ (i.e., false negatives). Therefore, in the following
sections, we introduce constraints that a valid matching must
comply with, as well as a robust objective function.

A. Matching Constraints

Let G(L,R) be a bipartite graph over the left L and right
R entity sets, L ∩ R = ∅. All pairs of entities between two
parts are connected by an edge: 〈l, r〉 ∈ E(G). Each edge is
weighted by the similarity score h(l, r). Any ρ ⊆ E(G) is
a matching. We call a graph Gρ(L,R) with edges from ρ a
matching-induced subgraph or simply matching subgraph. For
any l ∈ L, let ρl = {〈u, r〉 ∈ ρ|u = l}. Analogously, for any
r ∈ R, let ρr = {〈l, u〉 ∈ ρ|u = r}. ρu is essentially the set
of all the edges connected with u. Since L ∩ R = ∅, ρu is
unambiguously defined over any u ∈ L ∪R.

To capture the relations of is equivalent to between L and
R entities, it is apt to employ one-to-one constraint [2], [3].

Definition II.1 (Bipartite Matching). ρ ⊆ E(G) is a
bipartite (one-to-one) matching in G(L,R) if and only if
∀u ∈ L ∪R, |ρu| ≤ 1.

This is the most restrictive constraint. Figure 2 illustrates a
toy example involving L = {A,B,C,D} and R = {1, 2, 3, 4}.
The adjacency matrix specifies the similarity between any
pair of entities. Based on these scores, the maximum weight
bipartite matching is ρ = {〈A, 2〉, 〈B, 3〉, 〈C, 1〉, 〈D, 4〉}.

Bipartite matching is inappropriate for consists of or is part
of relations involving variable granularity. We describe poly-
matching as a relaxation to the one-to-one constraint [3]–[5].

Definition II.2 (Poly-Matching). ρ ⊆ E(G) is a poly-
matching in G(L,R) if and only if ∀l ∈ L, |ρl| ≤ 1. When
the constraint is imposed on the L, we say that the left L is
matched into the right R.

Entities on the right can be matched to multiple entities on
the left, but entities on the left can be matched to at most one

entity on the right. This aligns with the nature of a taxonomy
that allows a record on the right to encompass multiple more
records on the left. Continuing with the example in Figure 2,
poly-matching allows A and D on the left to match the same
entity on the right 1. Ditto, we have ρ3 = {〈B, 3〉, 〈C, 3〉}.

In addition to is equivalent to, Poly captures either consists
of or is part of, but not both. Our proposed bidirectional poly-
matching allows the matching to work in both directions.

Definition II.3 (Bidirectional Poly-Matching). ρ ⊆ E(G) is
BiPoly in G(L,R) if and only if ∀〈l, r〉 ∈ ρ, |ρl| = 1∨|ρr| = 1.

Figure 1 depicts exactly this kind of matching. BiPoly is
also the least restrictive matching as its solution space entails
that of Bipartite and Poly as shown in Figure 2.

B. Objective Function

Having identified possible matching space P, we seek to
find ρ ∈ P, which maximizes a particular objective function.

Max-Weight. The classical objective is to maximize the to-
tal similarity score, known as the maximum weight objective.

ρ = arg max
ρ′∈P

∑
〈l,r〉∈ρ′

h(l, r) (1)

In practice, the similarity measure h(l, r) (e.g., cosine
similarity) is unlikely perfect. The entity representations used
to measure that similarity (e.g., product title) are highly noisy.
For instance, entities of a domain may contain a generic word
(e.g., camera) which results in non-zero similarity.

Robust. We develop a robust version of the constraint ob-
jective, which introduces independently adjustable incentives
to reduce the number of false positives and negatives. The
rewards are cast upon the connected components in ρ ∈ P.
Any matching-induced subgraph Gρ consists of one or more
connected components. We distinguish between two types of
connected components. A component is reclusive if it contains
exactly one entity u, i.e., |ρu| = 0. Otherwise, it is receptive,
i.e., for each entity u in that component, we have |ρu| ≥ 1.

We define the following robust objective with the reclusivity
incentive function FΩ and receptivity incentive function FH :

ρ = arg max
ρ′∈P

∑
〈l,r〉∈ρ′

h(l, r) + FH (C(Gρ)) + FΩ

(
C̄(Gρ)

)
, (2)

where C( · ) and C̄( · ) are the sets of receptive and reclusive
components in a given graph respectively.

The function FΩ provides an incentive to each reclusive
component. This reward can be positive, which encourages
entities to stay reclusive unless they can form a match that cap-
tures a similarity score higher than the incentive. Alternatively,
this reward can be negative, which discourages reclusivity.

Among receptive components, there is a trade-off between a
smaller number of connected components of larger cardinali-
ties, or a larger number of components of smaller cardinalities.
This is managed by FH . If it offers positive rewards to recep-
tive components, the outcome tends towards more receptive
components, which may each tend to contain fewer entities.
If it offers negative rewards, the converse applies.



TABLE I: Summary of Notations

Notation Description

h(l, r) ∈ [0, 1] similarity score between l and r (input)
vu ∈ {1, 0} variable whether u is a host/client
zu ∈ {1, 0} variable whether u is a receptive/reclusive
vu = 1, zu = 1 indicating u is a receptive host
vu = 1, zu = 0 indicating u is a reclusive host
vu = 0, zu = 0 indicating u is a client

xl→r ∈ {0, 1} whether host r accepts request from client l
xr→l ∈ {0, 1} whether host l accepts request from client r
ωu ∈ [−1, 1] reclusivity reward offered to u (parameter)
ηu ∈ [−1, 1] receptivity reward offered to u (parameter)

III. LINEAR PROGRAMMING MODELS

To articulate a concrete definition of robust BiPoly (other
formulations represent special cases), we propose a binary
linear program that lends itself to an optimal solution.

A. Formulation

For each connected component in a matching-induced sub-
graph, we designate exactly one node to be the host, and the
rest are clients, indicated by vu. A reclusive component has
one host and no client. To differentiate reclusive from receptive
host, we use binary variable zu. To indicate connectivity within
receptive components, for every 〈l, r〉 ∈ E(G), we introduce
two mutually exclusive variables xl→r and xr→l that indicate
whether l and r are connected. These variables and other
relevant notations are summarized in Table I.

To arrive at a robust BiPoly matching, we seek a configu-
ration that fulfils the following linear program.

max
∑
l∈L

∑
r∈R

h(l, r) (xl→r + xr→l)

+
∑

u∈L∪R

ωu (vu − zu) +
∑

u∈L∪R

ηuzu s.t.
(3)

∑
l∈L

xr→l + vr = 1 ∀r ∈ R (4)∑
r∈R

xl→r + vl = 1 ∀l ∈ L (5)

xr→l ≤ vl ∀l ∈ L, ∀r ∈ R (6)
xl→r ≤ vr ∀l ∈ L, ∀r ∈ R (7)∑

l∈L
xl→r ≥ zr ∀r ∈ R (8)∑

r∈R
xr→l ≥ zl ∀l ∈ L (9)

xl→r ≤ zr ∀l ∈ L, ∀r ∈ R (10)
xr→l ≤ zl ∀l ∈ L, ∀r ∈ R (11)

The first line of Equation 3 subject to the constraints
reproduces the max-weight objective in Equation 1.

The first part of the second line is a formulation of FΩ

from Equation 2. Each entity u is offered a reclusivity reward
ωu ∈ [−1, 1] (a parameter to be specified), which is earned
only if u is a reclusive host, i.e., (vu = 1, zu = 0). If ωu >
0, this incentivizes u to stay reclusive unless it can form a
match that captures a similarity score higher than the incentive.

When ωu < 0, it is encouraged to form a match, with ωu
compensating for low similarity scores. ωu = 0 is neutral.

The second part presents a formulation of FH in Equation 2.
A receptivity reward ηu ∈ [−1, 1] (a parameter) is earned
only if u is a receptive host. When ηu > 0, more receptive
components are encouraged, which may reduce the cardinality
of other receptive components. If ηu < 0, it consumes a part
of the similarity within each component, discouraging any
connection from being formed. ηu = 0 is neutral.

While unique rewards for every node u are possible, in
practice we experiment with a simpler framework where
rewards are tied for each part of G(L,R): ωl = ωL and
ηl = ηL, ∀l ∈ L, analogously ωr = ωR and ηr = ηR, ∀r ∈ R.

Equation 4 and 5 ensure that entities can only be a host or a
client, and a client’s request can only be accepted by a single
host. Equation 6 and 7 state that only hosts can accept requests.
These four constraints jointly enforce the bidirectional one-to-
many restriction. Equation 8 through 11 ensure that zu = 1 if
and only if u is a host that has accepted one or more clients.

BiPoly-matching presents the loosest constraint setting. To
recover poly-matching, we add linear constraint xl→r = 0 for
all 〈l, r〉 ∈ E(G) blocking all the client requests from the
left part of the graph L. To recover bipartite matching from
poly-matching, we restrict the number of incoming requests
for each host to at most one:

∑
r∈R xr→l ≤ 1 for all l ∈ L.

IV. GREEDY APPROXIMATION

As the linear program may be intractable for large data, we
present a greedy algorithm with approximation guarantee.

Algorithm. Let us consider the following minimization
problem s.t. the constraints of the robust BiPoly-matching:

min
∑
l∈L

∑
r∈R

(1− h(l, r)) (xl→r + xr→l) (12)

+
∑

u∈L∪R

(1− ωu) (vu − zu) +
∑

u∈L∪R

(1− ηu) zu

Expanding the summations and using Equations 4 and 5, one
can show that this minimization problem is equivalent to the
robust BiPoly. Since the variable weights are non-negative, the
problem can be converted to an instance of weighted set cover:
all the nodes in L ∪ R are to be covered with sets that yield
minimal total cost. The collection of covering sets and their
weights are defined as follows:

S = SL ∪ SR, where SL =
{
{l} ∪ e

∣∣ l ∈ L, e ∈ 2R
}

SR =
{
{r} ∪ e

∣∣ r ∈ R, e ∈ 2L
} (13)

ws =


1− ωu if {u} = s

2−max(ηl, ηr)− h(l, r) if {l} = s ∩ L and {r} = s ∩R
|s| − ηl −

∑
r∈s\{l} h(l, r) if s ∈ SL \ SR and {l} = s ∩ L

|s| − ηr −
∑
l∈s\{r} h(l, r) if s ∈ SR \ SL and {r} = s ∩R

The weighted set cover framework is tightly related to the
connected component interpretation of the robust BiPoly as
outlined in subsection III-A. S defines a set of all possible
connected components in G(L,R) w.r.t. BiPoly as in Defi-
nition II.3. SL identifies all possible connected components



between the hosts from L and the clients from R including
closed hosts, SR does the same for the hosts from R. Weights
W = {ws}s∈S are mapped to the contributions of these
components as in the robust BiPoly objective. The first case
for ws identifies the contribution of reclusive hosts, the second
counts the minimal contribution of the interchangeable host-
client pairs, and the last two cases identify the contribution of
the components that have multiple clients. Though the solution
space is larger for the weighted set cover problem than for
robust BiPoly, one can show that at least one of the minimizing
solutions of the set cover problem consists of disjoint sets,
thus, is convertible to a minimizing robust BiPoly solution.

BiPoly Set Cover adapts the greedy solver as in [6]. At
each iteration, the procedure finds set s ∈ S minimizing its
per node weight ws/|s| to cover nodes yet not assigned. To
avoid enumerating all possible sets as defined in Equation 13,
for each node u ∈ L∪R we maintain a list of potential clients
in descending order of similarity h(u, · ). At each round of the
procedure, we retrieve a minimizing set in polynomial time.

Complexity Analysis. The complexity can be split into two:
sorting clients for each host, accounting for O(nm log nm) in
worst-case, and selecting a minimizing set from S.

The worst case is when every viable combination of hosts
and clients is evaluated, but only a singleton host is selected in
the round, and we always select a host from the bigger part.
Let a = min(n,m), b = max(n,m), and k = b − a, then
the computations for the first k iterations can be bounded by
O
(
a
∑k
i=1(2b− i+ 1)

)
or O(ab2). For the next 2a iterations

the procedure alternates between selecting hosts from L and
R, thus, the number of operations for every two consecutive
rounds can be bounded (up to a constant) by 2a(n + m),
2(a− 1)(n+m), 2(a− 2)(n+m) and so on, which in total
is bounded by O((m+ n)

∑a
i=1 i) or O

(
a2(m+ n)

)
. There-

fore, the worst case complexity of BiPoly is O
(
(n+m)3

)
.

Approximation Bound. BiPoly has an approximation guar-
antee [7]: log(n+m) to an optimal solution of Equation 12.
Let gmin

greedy be the objective value with the greedy solution,
gmin

opt be the optimal objective value, then:

gmin
greedy ≤ gmin

opt log (n+m).

Since, the original objective is shifted by n+m, we can derive
a lower bound for a greedy solution ggreedy of Program 3:

ggreedy ≥ gopt log (n+m) + (n+m) (1− log (n+m)) ,

where gopt is the optimal objective value for the robust BiPoly.

V. EXPERIMENT

We investigate the effectiveness of the proposed algorithm
at how well it aligns multi-granular entities.

A. Datasets

As matching multi-granular entities is novel, we gather two
real-world datasets with known ground truths as in Table II.

Cross-Platform. The first dataset involves matching product
categories across two e-commerce platforms. Such a scenario
could occur when merging product taxonomies. This dataset

TABLE II: Summary of Datasets

Dataset m n |eL| |eR| Matches

Cross-Platform 94 173 6,913 166,307 992
Multi-Lingual 119 169 710,475 20,000 2,315

has m = 94 categories from Amazon US (the left set L) and
n = 173 categories from Lazada (the right set R).

Determining whether two categories match must go beyond
superficial names and necessarily be informed by whether
they contain the same products. We employ Mechanical Turk
(MTurk) to manually identify matching products, and assess
the matching of categories indirectly by how the latter fa-
cilitates the former. MTurk workers were instructed to select
whether a candidate product matches the target product, where
two products are considered a match only if they have the same
brand, model, type, size, color, etc. Each task was assigned
to three workers and the majority vote was accepted. Let eL

(resp. eR) be the union of products under the category entities
in L (resp. R). In total, 992 product matches are identified out
of 15,516 pairs labeled, sampled from eL and eR.

Multi-Lingual. The second dataset again concerns category
entities, but the respective sources correspond to two regional
platforms of Amazon, namely the US (the left set L) and China
(the right set R). Product categorization differs vastly between
both regions. Amazon uses a unique identifier (UID), which
we assume is relatively consistent across regions. In the case
of Amazon China, we use machine translation with Microsoft
Azure Translator to produce the English representations for
similarity measurement with Amazon US vocabulary. In total,
there are 2, 315 matching product pairs identified by UID.

The representation of a product entity is its title, while that
of a category entity is a bag of words of product titles within
the category. To derive the similarity for matching h(l, r), we
apply three normalized similarity functions, namely Jaccard
Coefficient, Szymkiewicz–Simpson coefficient [8], and term
frequency-inverse document frequency (TFIDF) cosine simi-
larity, and select the best coverage for each method.

B. Evaluation Measures

Intuitively two categories from different sources are well-
matched if they collectively contain ground-truth product pairs.

Coverage. We define a matching ρ’s goodness in terms of
coverage. A better ρ recovers more ground-truth product pairs.

product-pairs(ρ) =
{
〈a, b〉

∣∣ a ∈ el, b ∈ er, 〈l, r〉 ∈ ρ}
coverage(ρ) =

∑
〈a,b〉∈product-pairs(ρ) g(a, b)∑
〈a,b〉∈product-pairs(L×R) g(a, b)

(14)

Technically the maximum coverage is 1. However, under the
bidirectional one-to-many constraint, even if we use oracle-like
h̃(l, r), the theoretical maximum achievable coverage would
be below 1. The coverage for a matching ρ with a noisy
similarity h(l, r) would be bounded by the coverage for the
optimal max-weight matching ρ̃ with the prefect similarity h̃.
In view of this, we present the fraction of actual coverage(ρ)
(using h) over its theoretical maximum coverage(ρ̃) (using h̃).



Tradeoff. Coverage alone is a one-sided measure. To ap-
preciate this, we allude to the notion of blocking [9] in the
product-to-product matching problem. Without blocking, we
would compare all |eL|×|eR| pairs of products. With category
matching as a blocking strategy, we compare only products
across matched categories (much fewer). We can thus define
reduction due to a category matching outcome ρ as follows.

reduction(ρ) = 1−
∑
〈l,r〉∈ρ |el| · |er|
|eL| · |eR| (15)

The higher the reduction, the fewer product pairs to be com-
pared, the more efficient is the product-to-product matching.
Most methods we tested achieve a reduction of over 70%.

Since higher reduction often corresponds to lower coverage,
a more balanced metric is the tradeoff, expressed as the
harmonic mean of coverage and reduction, which has been
established in product-to-product matching literature [10].

tradeoff(ρ) =
2× coverage(ρ)× reduction(ρ)

coverage(ρ) + reduction(ρ)
(16)

We define tradeoff as the tradeoff(ρ) normalized by the
theoretical maximum tradeoff(ρ̃) (under oracular h̃).

C. Optimal Solutions via Linear Program

Max-Weight Objective. We first conduct a comparison
under the maximum weight objective (see subsection II-B).
The baselines are Bipartite and Poly, which share the same
objective and differ only in constraints. Table III (rightmost
columns) summarizes the results. Evidently, constraints do
matter. Due to the inherent multi-granularity of entities, Bi-
partite with the most restrictive one-to-one constraint has
the lowest coverage. Poly-matching allows one-to-many and
realizes more coverage, but is still limited by the restriction
that the ’one’ must come from one source (the source with
fewer entities1). Because BiPoly factors in the possibility for
hosts to flexibly come from either source, it attains the highest
coverage. A similar trend manifests in the Tradeoff as well.

Robust Objective. For comparison under the robust ob-
jective (see subsection II-B), the baselines are now robust
Bipartite and Poly-matching. For completeness, we include
an additional method, namely UFLP [1], which constitutes a
special case of robust Poly when ωL = ωR = 0, η ≤ 0,
and flipped similarity coefficients (every edge is weighted by
1−h(l, r) as opposed to h(l, r)). We report the results for the
best selection of the robust parameters (i.e., ωL, ωR, ηL, and
ηR). The parameters are optimized simultaneously via grid
search with a range from −1 to 1 in incremental steps of
0.1. Since Bipartite and Poly could produce only one-sided
matchings, ηR does not influence the maximizing solution
and can be set arbitrarily for these problems (we indicate this
fact by a dash). As in Table III (middle columns), the most
restrictive method, Bipartite, is the weakest. From UFLP to
Poly to BiPoly, the constraints are increasingly flexible, and
recall and tradeoff improve correspondingly.

1We have also investigated the reverse scenario where the ‘one’ must come
from the source with more entities, which performs worse in all cases.

TABLE III: Comparison on Linear Program

Robust Max-Weight
Constraint ωL ωR ηL ηR Coverage Tradeoff Coverage Tradeoff

C
ro

ss
-

Pl
at

fo
rm

Bipartite 0.3 0.3 0.0 — 57.70 70.49 55.61 68.66
UFLP 0.0 0.0 -0.9 — 68.46 79.08 68.31 78.98Poly 0.5 0.5 0.7 — 70.70 80.87
BiPoly 0.1 0.1 0.2 0.2 84.30 90.32 84.16 90.21

M
ul

ti-
L

in
gu

al

Bipartite 0.1 0.1 0.0 — 36.96 53.75 36.42 53.09
UFLP 0.0 0.0 -0.8 — 71.83 89.19 63.27 81.55Poly -0.8 -0.8 -1.0 — 71.83 89.19
BiPoly 0.0 0.0 0.7 0.7 84.67 91.56 73.93 87.21

TABLE IV: Greedy Approximations with Robust Objective

Constraint ωL ωR ηL ηR Coverage Tradeoff

C
ro

ss
-

Pl
at

fo
rm

Bipartite 0.2 0.2 0.0 — 54.26 67.42
UFLP 0.0 0.0 -0.1 — 67.12 78.07
Poly 0.1 0.1 0.1 — 67.12 78.13

BiPoly 0.1 0.0 -0.1 -0.1 82.66 89.47

M
ul

ti-
L

in
gu

al

Bipartite 0.2 0.2 0.0 — 27.55 41.96
UFLP 0.0 0.0 -0.2 — 59.30 77.39
Poly -0.2 -0.2 -0.8 — 68.95 86.15

BiPoly 0.2 0.2 0.0 0.2 70.82 86.48

We can compare Robust vs. Max-weight objectives in
Table III. For instance, robust Bipartite outperforms max-
weight Bipartite. The same generally holds for Poly and
BiPoly as well. In particular, the robust objective makes a
more significant difference on Multi-Lingual than on Cross-
Platform, as the former has noisier similarities arising from the
translation from Chinese to English when deriving similarity
weights. The robust objective, designed to counter noises,
apparently delivers on this count. BiPoly’s coverage improves
from 74% with max-weight to 85% with the robust objective.
For subsequent discussion, we focus on the robust objective.

D. Greedy Approximation

We present the greedy solutions in Table IV. For one, BiPoly
outperforms the baselines. For another, we can appreciate
how closely the greedy solutions approach the optimal by
comparing across Table IV and Table III. Observably, they
get very close to the optimal on Cross-Platform, which we
attribute to its relatively ‘cleaner’ and presumably more infor-
mative similarity weights. On the noisier Multi-Lingual, the
gap is expectedly larger, but even so there is still a credible
outperformance over the baselines by BiPoly. In both cases,
the difference in tradeoff is less than coverage, as greedy is
able to match records that contain more matching entities and
only miss out on matches in records with far lower similarity.

E. Sensitivity Analysis

Figure 3 tracks coverage and tradeoff as reclusivity ω and
receptivity η vary respectively on Multi-Lingual with BiPoly.

Varying Reclusivity ω (blue curves). Increasing ω when
η = 0 tends to reduce coverage and correspondingly the
tradeoff. At ω = −1, there is a penalty for being a reclusive
host. There are few singletons and the matched clusters result
in high coverage. As we increase ω to 1, there is a reward to
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Fig. 3: Varying reclusivity ω and receptivity η for Multi-
Lingual for BiPoly. param = ω when η = 0 and vice versa.

being reclusive, and progressively there are more singletons to
the point where there is no connected component when ω = 1.

Varying Receptivity η (red curves). When η = −1, there
is a severe penalty to being a receptive host, and all nodes
remain single. As η increases, some formerly reclusive hosts
are incentivized to be receptive, attracting clients either from
other former reclusive hosts or clients of other open hosts, thus
increasing coverage and recall. Ultimately, when η = 1, we
realize as many receptive hosts as possible, but each is part of
a small 2-node cluster, reducing coverage and tradeoff.

VI. RELATED WORK

Constraint matching stems from the assignment problem
(AP) that assigns ‘tasks’ to ‘agents’ [11], [12]. One distinction
is how task and agent in AP are designated apriori, whereas an
entity could take on either host or client role in our problem.
For entity matching, the emphasis is placed on cost-focused
approaches to maximize similarity weights. Classical ones
include one-to-one [11] and (unidirectional) one-to-many [13].
The classic AP is known as the weighted bipartite matching
[14], the one-to-many AP is akin to max-weighted poly-
matching. In turn, the aforementioned UFLP is an extension
of generalized AP [15]. These instantiations of AP for entity
matching have been included as baselines.

There are various directions in improving Entity Matching
(EM) [16], [17]. One is to improve the similarity estimation
either by better representation [18], or multiple attributes [2],
[19], or employing supervised learning [20], [21]. Another
direction is to improve the efficiency of the matching process,
by using blocking [22], hashing [23], or end-to-end workflow
[10]. Our work pursues an orthogonal direction in applying
‘global constraints’ to improve the quality of matching overall,
particularly for multi-granular entities. Few prior works have
studied leveraging global constraints. While [24], [25] use
some constraints, their conditions apply between two records,
e.g., John Doe and J. Doe must live at the same zip code
to match. While [3] applied one-to-one and one-to-many
constraints on matching, there have not been any studies on
multi-granular datasets nor robustness.

VII. CONCLUSION

We address bidirectional poly-matching of multi-granular
entities. Key to its robustness are novel notions of reclusivity

and receptivity, which cooperatively help to counter the noisy
similarity. We develop both an optimal solution via linear
programming as well as an efficient greedy algorithm. Com-
prehensive experiments validate our contributions and shed
light on the workings of the algorithms on real-world datasets.
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[23] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A
comparison of hash function types and querying mechanisms,” Pattern
recognition letters, vol. 31, no. 11, pp. 1348–1358, 2010.

[24] S. E. Whang, O. Benjelloun, and H. Garcia-Molina, “Generic entity
resolution with negative rules,” VLDBJ, vol. 18, no. 6, 2009.

[25] S. Chaudhuri, A. Das Sarma, V. Ganti, and R. Kaushik, “Leveraging
aggregate constraints for deduplication,” in SIGMOD, 2007.


	Robust bipoly-matching for multi-granular entities
	Citation

	Introduction
	Problem Formulation
	Matching Constraints
	Objective Function

	Linear Programming Models
	Formulation

	Greedy Approximation
	Experiment
	Datasets
	Evaluation Measures
	Optimal Solutions via Linear Program
	Greedy Approximation
	Sensitivity Analysis

	Related Work
	Conclusion
	References

