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Representation Learning on Multi-Layered
Heterogeneous Network

Delvin Ce Zhang[0000−0001−5571−9766] (�) and Hady W. Lauw[0000−0002−8245−8677]

School of Computing and Information Systems, Singapore Management University, Singapore
{cezhang.2018,hadywlauw}@smu.edu.sg

Abstract. Network data can often be represented in a multi-layered structure
with rich semantics. One example is e-commerce data, containing user-user so-
cial network layer and item-item context layer, with cross-layer user-item inter-
actions. Given the dual characters of homogeneity within each layer and hetero-
geneity across layers, we seek to learn node representations from such a multi-
layered heterogeneous network while jointly preserving structural information
and network semantics. In contrast, previous works on network embedding mainly
focus on single-layered or homogeneous networks with one type of nodes and
links. In this paper we propose intra- and cross-layer proximity concepts. Intra-
layer proximity simulates propagation along homogeneous nodes to explore la-
tent structural similarities. Cross-layer proximity captures network semantics by
extending heterogeneous neighborhood across layers. Through extensive experi-
ments on four datasets, we demonstrate that our model achieves substantial gains
in different real-world domains over state-of-the-art baselines.

Keywords: Representation Learning · Heterogeneous Network · Dimensionality
Reduction.

1 Introduction

Much of the data on the Web can be represented in a network structure, ranging from
social and biological to academic networks, etc. Network analysis recently attracts es-
calating research attention due to its importance and wide applicability. Diverse prob-
lems could be formulated as network tasks, e.g., recommending items to users on e-
commerce [12]. As the primary information is the inherent structure of the network
itself, one promising direction known as the network embedding problem is to learn the
representation of each node, which could in turn fuel tasks such as node classification,
node clustering, and link prediction.

Figure 1 illustrates an example network with various object types (users, movies,
movie actors). These objects are connected via various links, e.g., a user may friend
other users, favor some movies, and follow some actors, while a movie may share sim-
ilar contexts as another (being added to the same preference folder, or recommended
in the same movie list) or feature some actors. Network embedding learns a low-
dimensional representation for each node (user, movie, or actor), which preserves the
network information. In turn, the node representations may be used in applications such
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User social network layer

Movie actor collaboration layer

Movie-movie
context layer

Movies 
favored by users

Movie actors 
followed by users

Movies
starred by actors

Fig. 1. Illustration of multi-layered heterogeneous network. Three homogeneous layers (user so-
cial network layer, movie-movie context layer, movie actor collaboration layer) are connected by
heterogeneous interactions.

as predicting whether a user is likely to favor a movie, or whether a user is likely to
friend another user.

Present work and challenges. Previous works on network embedding focus on ho-
mogeneous networks [19, 23]. They treat all nodes and edges as the same type, regard-
less of varying relations. Such homogeneous treatment may miss out on the nuances
that arise from the diversity of associations (e.g., user favoring a movie has different
semantics from movie featuring an actor).

More recent works recognize the value of absorbing the varying semantics into the
node representation, modeling a heterogeneous network. However, to encode semantics,
models such as Metapath2vec [6] rely on the notion of meta-path scheme (sequence
of node types that make up a path). These are to be prespecified in advance, requir-
ing domain-specific knowledge (incurring manual costs) or exhaustive enumeration of
schemes (incurring computational costs). Other models [11] only consider each edge
relation as one type of connections, but ignore the two end-point nodes are sometimes
mutually homogeneous, thereby losing structural information in node embeddings.

Proposed approach and contributions. We observe that complex networks simul-
taneously exhibit homogeneous and heterogeneous tendencies. The interplay between
the two gives rise to a multi-layered structure, whereby each layer encodes the struc-
tural connectivity of objects of the same type, and connections across layers bear rich
semantics between objects of different types. Figure 1 can be seen as a multi-layered
heterogeneous network with three layers. We offer a formal definition in Section 3.

Given the dual characters of multi-layered network, we seek to learn node embed-
dings that preserve both structure and semantics to facilitate downstream tasks, e.g.,
item recommendation in e-commerce, user alignment across multiple social networks
[15]. In contrast to heterogeneous models that rely on prespecified schemes [6], the
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cross-layer proximity of our model naturally ‘induces’ various schemes by how it mod-
els layers, and its maximum order controls the semantics learning. In contrast to hetero-
geneous models [11] that do not consider that the two end-point nodes are sometimes
mutually homogeneous, we use nodes of the same type to jointly preserve semantics,
so as to embody structural proximity.

In this paper, we propose Multi-Layered Heterogeneous Network Embedding, or
(MULTILAYEREDHNE), describing how it models both intra-layer proximities to ex-
plore structural similarities in a breadth-wise propagation manner and cross-layer prox-
imities for depth-wise semantics capture in Section 4. In a nutshell, like ripples ex-
panding across the water, intra-layer proximities broadcast one node’s homogeneous
neighborhood hop by hop to investigate latent structural relationships. Cross-layer prox-
imities iteratively extend heterogeneous relations layer by layer and leverage intra-layer
proximities to jointly preserve network semantics.

Our contributions in this paper are as follows:

– Though “multi-layered” notion may have appeared in prior, here we articulate a
concrete definition in the context of heterogeneous network. Importantly, we define
the novel notions of intra- and cross-layer proximities underlining our approach.

– To capture network homogeneity and heterogeneity jointly, we propose a novel
framework that encodes both structural proximity and network semantics into uni-
fied node embeddings by higher-order intra- and cross-layer proximities.

– We conduct extensive experiments on four real datasets, and the results validate the
effectiveness of our model over state-of-the-art baselines.

2 Related Work

Here we review related research works for homogeneous, heterogeneous, and multi-
layered network embedding.

Homogeneous Network Embedding. Homogeneous networks are those with one
single type of nodes and links. DeepWalk [19] generates random walk on the network
as corpus and applies skip-gram model to train the nodes. Node2vec [9] extends Deep-
Walk by simulating biased random walk to explore diverse neighborhoods. LINE [23]
learns node representations by preserving first- and second-order proximities. GraRep
[2] generalizes LINE to incorporate higher-order proximities, but may not scale effi-
ciently to very large networks. These methods mainly focus on embedding network
topology to preserve structural information.

Meanwhile, there are also models dealing with attributed homogeneous networks
with task-specific supervision (e.g., GCN [26], GAT [24]). They are different from our
model that embeds network in an unsupervised manner to support arbitrary downstream
tasks. Others that operate on attributed graph for multi-modal learning (EP [8]) and
are designed specifically for document network (Adjacent-Encoder [27]) are also not
directly comparable.

Heterogeneous Network Embedding. Some heterogeneous network models lever-
age meta-path-based random walks to capture network semantics, such as Metapath2vec
[6] and HIN2vec [7]. The applications of meta-path-based models (e.g. recommender
systems) are also widely studied [20]. Some of them simulate meta-paths of specified
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Table 1. Summary of main notations.

Notation Explanation
G the input network
V, E the node set and edge set, resp.
O,R the node type set and edge type set, resp.
L the layer set
Im
v the mth-order intra-layer proximity of node v

Cn
v the nth-order cross-layer proximity of node v

M,N maximum order of intra- and cross-layer proximity, resp.
K number of negative samples

schemes on each network to preserve complex semantics. To this end, the cross-layer
proximity of our model does not restrict to specific schemes, and its maximum order
controls the semantics learning. There also exist some methods that do not require spe-
cific meta-paths, such as HeGAN [11], which utilizes GAN to generate fake nodes to
train discriminator. More recently, Graph Neural Networks have been successfully ap-
plied to attributed heterogeneous networks with satisfactory results [25].

Multi-Layered Network Embedding. Multi-layered networks, as a set of inter-
dependent network layers, appear in real-world scenarios including recommender and
academic systems, cross-platform social networks, etc. Previous works focus on cross-
layer links inference [5, 4] and network ranking [18]. MANE [14] studies representation
learning on multi-layered networks by seeking low-dimensional node embeddings by
modeling each intra-layer and cross-layer links. Our model has a couple of distinctions.
For one, we incorporate higher-order proximities. For another, the manner in which we
model proximities integrates nodes with similar structures, instead of predicting links
individually. These differences do make a difference to the effectiveness of our node
embeddings (see Section 5).

There exists another definition of “multi-layered” network [16], which really is mul-
tiplex or multi-view network [3], where there are multiple relationships between the
same set of nodes. In contrast, multi-layered network in this paper refers to a set of
interdependent network layers, each with a different set of nodes.

3 Definitions and Problem Formulation

We introduce intra- and cross-layer proximities, and formalize our problem. Table 1
lists the notations.

Definition 1 A Heterogeneous Information Network (HIN) G = {V, E ,O,R} con-
sists of a node set V and an edge set E . This network is associated with a node type
mapping function φ: V → O and an edge type mapping function ϕ: E → R. O
and R represent the sets of predefined node types and edge types respectively, where
|O|+ |R| > 2.

We use the terms edge and link interchangeably, ditto for network and graph. Multi-
layered network is defined over HIN, with an additional requirement of layers.
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Definition 2 A Multi-Layered Heterogeneous Network G = {V, E ,O,R,L} is a con-
nected HIN that contains a layer set L of |L| > 1 homogeneous network layers. In
addition to φ and ϕ, we have two more mapping functions. The node mapping function
θ: V → L projects each node v ∈ V to a certain layer lv ∈ L. The edge mapping
function ϑ: E → L×L places each edge e ∈ E between two layers (le,1, le,2) ∈ L×L.
L × L = {(le,1, le,2)|le,1, le,2 ∈ L} represents the Cartesian product of two sets.

Thus le,1 and le,2 could be the same, and edge e is intra-layer, otherwise cross-layer.

Figure 1 illustrates a multi-layered network with three homogeneous layers (user–
user, movie–movie, actor–actor) and three heterogeneous interactions (user–movie,
movie–actor, user–actor). Intra-layer edges (black) connect nodes of the same type.
Cross-layer edges (green) of different relations connect arbitrary type of nodes. Multi-
layered networks are a subset of HIN, as each layer contains intra-layer edges.

Problem 1. Given a multi-layered heterogeneous network G = {V, E ,O,R,L}, the
goal of Representation Learning on Multi-Layered Heterogeneous Network is to
learn a mapping function to project each node v ∈ V to a low-dimensional space Rd

where d � |V|. The node representation in the new space should preserve both struc-
tural proximities and network semantics within G.

To harness contributions from intra-layer edges containing structural information
within layers and from cross-layer edges capturing semantics, we propose the MULTI-
LAYEREDHNE framework built on intra-layer proximity and cross-layer proximity.

Definition 3 The mth-order Intra-Layer Proximity of node v is defined as the set of
nodes that can be reached by m intra-layer edges from v:

Imv = {vm|vm−1 ∈ Im−1v , (vm−1, vm) ∈ E , lvm = lvm−1}, (1)

where m = 1, 2, ...,M , and I0v = {v}.

This concept is illustrated by Figure 2(a) (best seen in color). Here we suppose this
network is homogeneous within a network layer. Node v’s first-order intra-layer prox-
imity consists of four nodes inside the inner white circle with black links connecting
them. Similarly nodes lying in the gray annulus represent v’s second-order intra-layer
proximity. We can extend this concept up to M th order and obtain IMv .

Definition 4 The nth-order Cross-Layer Proximity of node v is defined as the set of
nodes that can be reached by n cross-layer edges from v:

Cnv = {vn|vn−1 ∈ Cn−1v , (vn−1, vn) ∈ E , lvn 6= lvn−1}, (2)

where n = 1, 2, ..., N , and C0v = {v}.

To illustrate this concept, we use Figure 2(d) (best seen in color). v1C represents one
node in v’s first-order cross-layer proximity with a cross-layer green link connecting
them. Extending this example up to N th order, we obtain CNv .
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Fig. 2. Illustration of intra- and cross-layer proximity modeling.

4 Model Architecture

We now describe our proposed model MULTILAYEREDHNE. It consists of two model-
ing components. First, intra-layer proximity modeling (Figures 2(a) and (b)) simulates
the breadth-wise propagation across homogeneous neighbors within layers to explore
structural similarities. Second, cross-layer proximity modeling (Figure 2(c) and (d))
captures semantics by extending heterogeneous neighborhood across layers.

4.1 Intra-Layer Proximity Modeling

Suppose that v ∈ Rd is the embedding of a node v. This is the quantity that we seek to
derive. Intra-layer proximity concerns the relationships between v and its homogeneous
neighbors from the same layer. We first consider the first-order proximity (m = 1). This
effectively concerns the direct neighbors of v, collectively denoted I1v . The embedding
of each first-order neighbor v1i ∈ I1v is denoted v1i ∈ Rd. Since intra-layer proximities
contain nodes of the same type, it is reasonable to treat these nodes homogeneously.
Thus we derive a representation of v’s first-order intra-layer proximity v1

I as a weighted
aggregation of its neighbors’ embeddings.

v1I =

|I1v |∑
i=1

α1
i v1i . (3)

Not all neighbors are equally important to v. Some may be of greater importance. There-
fore, the aggregation in Eq. 3 factors in an attention coefficient w.r.t. v.

a1i = σ(vT v1i ), α1
i =

exp(a1i )∑|I1v |
i=1 exp(a

1
i )
, (4)

where i = 1, 2, ..., |I1v |, and σ is sigmoid function. The attention values α1
i can be re-

garded as the similarity between v and v1i , as illustrated by Figure 2(a). This aggregation
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is illustrated in Figure 2(b). Here v1
I can be seen as the first-order propagation of v, or

the first “ripple” of intra-layer proximity.
Extending beyond the first-order proximity, we repeat the process above (Eqs. 3–4)

for eachmth-order intra-layer proximity up to the a specified maximum orderM , prop-
agating to the subsequent ripples. This generates a set of representations {vmI }Mm=1 =
{v1I , v2I , ..., vM

I }. For simplicity, we let v0I = v.
Proximities indicate a shared relationship. Nodes within maximum proximity from

v would likely have similar representation with v. Thus, given node v and {Imv }Mm=1,
our objective is to minimize the following negative log-likelihood.

− logP (v1I , v
2
I , ..., v

M
I |v) = −

M∑
m=1

logP (vmI |v). (5)

4.2 Cross-Layer Proximity Modeling

Beyond a single layer, connections across layers encode network semantics. Node v
and its intra-layer proximities {Imv }Mm=1 are mutually homogeneous, they are expected
to reflect the same identity. They would carry information to jointly preserve semantics
w.r.t. v’s cross-layer proximities. Formally, for each node vnC ∈ Cnv in nth-order cross-
layer proximity, we have the following negative log-likelihood.

− logP (vn
C |v0I , ..., vMI ) = − logP (vnC |

M∑
m=0

βn,mvm
I ). (6)

Given v and its intra-layer proximities {vmI }Mm=1, we force them to predict the ob-
servation of cross-layer node vn

C together. As we increase the order of intra-layer prox-
imity M and reach more nodes, more noisy nodes may inadvertently be included. Thus
we expect that different vmI may affect this prediction to different degrees. This is the
intuition behind βn,m, which measures the relative importance of vm

I .

bn,m = σ(vnTC vmI ), βn,m =
exp(bn,m)∑M

m=0 exp(b
n,m)

. (7)

This is illustrated by Figure 2(c), where we evaluate attention between v1C and {vmI }Mm=0.
βn,m is specific to each cross-layer node, since different nodes capture semantics from
different aspects. For example, a user and his friends may like superhero movies, but
suppose he is the only one who likes it because of the actors. In this case, βn,m should
be assigned equally between the user and his friends in terms of superhero genre, but
biased to only the user in terms of actors.

Similarly as for intra-layer, we extend cross-layer proximity to specified maximum
N th order, and obtain the following objective, which is also illustrated by Figure 2(d).

−
N∑

n=1

∑
vn
C∈Cnv

logP (vn
C |

M∑
m=0

βn,mvm
I ). (8)
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Table 2. Dataset statistics.

Dataset #nodes
#intra-layer

links
#cross-layer

links
#layers #labels

ACM 30,126 77,484 38,772 3 7
Aminer 17,504 72,237 35,229 3 8

TF 3,218 25,811 1,609 2 N.A.
LastFM 19,524 301,015 92,834 2 N.A.

4.3 Learning Strategy

As in [6], the conditional probabilities in Eq. 5 and 8 are defined as the heterogeneous
softmax function.

P (vj |vi) =
exp(vT

j vi)∑
lvk=lvj

exp(vT
k vi)

, (9)

where vk comes from the same network layer as vj . Here we use P (vj |vi) to denote
both conditional probabilities for simplicity. Finally, we leverage heterogeneous nega-
tive sampling to approximate both objective functions, and obtain Eq. 10, where K is
the number of negative samples. vk is a negative sample, randomly drawn from a noise
distribution Pl(vk) defined on the node set of each proximity’s corresponding layer. vnC
is one node from v’s nth-order cross-layer proximity, sampled at each iteration.

J =Jintra + Jcross

=−
M∑

m=1

(
log σ(vmT

I v) +
K∑

k=1

Evk∼Pl(vk) log σ(−vmT
k v)

)

−
N∑

n=1

Evn
C∼Cnv

(
log σ(vnT

C

M∑
m=0

βn,mvmI ) +

K∑
k=1

Evk∼Pl(vk) log σ(−vTk
M∑

m=0

βn,mvm
I )

)
.

(10)
Complexity. We use Imax to denote the maximum size of intra-layer proximity,

and |Ecross| to denote the number of cross-layer links in the network, thus we have
O(|Ecross|Md(Imax + K)) per iteration for intra-layer proximity modeling, where d
represents the dimensionality of node embeddings. The complexity of cross-layer prox-
imity modeling is O(|Ecross|Nd(M + K)) on a training iteration. Putting two compo-
nents together, we have O(|Ecross|d(MImax +MN +KM +KN)) per iteration.

5 Experiments

Our experimental objective is to validate the node embeddings learned by MULTILAY-
EREDHNE as compared to baselines.

5.1 Setup

We conduct experiments on four publicly available datasets from different domains. Ta-
ble 2 summarizes their statistics. ACM [21] and Aminer [14] are two academic datasets
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Table 3. Micro-F1 and Macro-F1 scores of node classification on ACM.

Model
Micro-F1 Macro-F1

20% 40% 60% 80% 20% 40% 60% 80%
DeepWalk 0.916 0.920 0.919 0.919 0.872 0.877 0.876 0.878

LINE (1st+2nd) 0.924 0.926 0.927 0.927 0.875 0.879 0.880 0.879
Metapath2vec 0.921 0.921 0.922 0.926 0.887 0.887 0.888 0.887

HIN2vec 0.936 0.938 0.938 0.937 0.902 0.908 0.907 0.906
HeGAN 0.938 0.940 0.941 0.941 0.903 0.908 0.910 0.918
MANE 0.842 0.850 0.854 0.859 0.711 0.742 0.756 0.759

GAT 0.867 0.908 0.927 0.921 0.786 0.853 0.883 0.875
HAN 0.828 0.869 0.900 0.905 0.728 0.773 0.824 0.834

MULTILAYEREDHNE 0.951* 0.954* 0.956* 0.953* 0.919* 0.928* 0.933* 0.929*

Table 4. Micro-F1 and Macro-F1 scores of node classification on Aminer.

Model
Micro-F1 Macro-F1

20% 40% 60% 80% 20% 40% 60% 80%
DeepWalk 0.959 0.962 0.963 0.964 0.922 0.930 0.934 0.931

LINE (1st+2nd) 0.964 0.967 0.968 0.969 0.925 0.930 0.933 0.935
Metapath2vec 0.962 0.963 0.964 0.964 0.870 0.876 0.886 0.893

HIN2vec 0.960 0.962 0.963 0.963 0.922 0.925 0.926 0.927
HeGAN 0.955 0.960 0.963 0.966 0.875 0.892 0.895 0.905
MANE 0.949 0.953 0.956 0.955 0.876 0.893 0.900 0.903

GAT 0.946 0.958 0.965 0.969 0.867 0.919 0.927 0.925
HAN 0.908 0.942 0.956 0.959 0.888 0.911 0.918 0.931

MULTILAYEREDHNE 0.972* 0.974* 0.975* 0.975* 0.926* 0.935* 0.943* 0.944*

with three network layers: co-authorship, paper citation, and venue citation layer. Two
types of cross-layer links are author-paper and paper-venue links. Twitter-Foursquare
(TF) [29] is a cross-platform social network dataset, containing two social networks:
Twitter and Foursquare. Each node only has one cross-layer link, representing his iden-
tity across two platforms. LastFM [12] is a recommendation dataset with two layers:
user-user social network and artist-artist context network. TF and LastFM are reserved
for link prediction task only, since they do not have labels for nodes.

Baselines. To investigate the efficacy of modeling heterogeneity, we compare to two
homogeneous baselines that treat all nodes and links as the same type: DeepWalk [19]
and LINE [23]. For LINE, we consider the advanced version with first- and second-
order proximities with d/2 dimensions each. To study the effects of homogeneity in ad-
dition to heterogeneity, we compare to three heterogeneous baselines: Metapath2vec
[6], HIN2vec [7], and HeGAN [11]. To see if higher-order proximities are useful, we
compare to a multi-layer baseline: MANE [14]. Although GCN-based models are de-
signed with task-specific supervision, and different from our unsupervised model, for
completeness, we still compare to GAT [24] and HAN [25].

Implementation details. Hyperparameters are chosen based on validation set. For
MULTILAYEREDHNE, intra-layer proximity order M is 1 on all datasets. The cross-
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Table 5. NMI on node clustering.

Model ACM Aminer
DeepWalk 0.519 0.787

LINE (1st+2nd) 0.458 0.800
Metapath2vec 0.358 0.570

HIN2vec 0.201 0.589
HeGAN 0.322 0.586
MANE 0.473 0.789

GAT 0.497 0.832
HAN 0.499 0.781

MULTILAYEREDHNE 0.534* 0.862*

layer proximity order N is 4 for ACM and Aminer, 1 for TF and LastFM. The number
of negative samples K is 16. For random walk models, as in [25], the number of walks
per node is 40, the walk length is 100, the window size is 5. For Metapath2vec, the
combination of meta-path schemes APVPA and APPVPPA has the best performance on
ACM and Aminer. TTTF and TFFF produce the best results on TF, while for LastFM
we combine UAUA, UUUA, and UAAA. For other baselines, we follow the hyperpa-
rameter settings in the original paper. For fair comparison, as in [11], the embedding
dimension is set to 64 for all methods.

5.2 Node Classification

We expect a good model to embed nodes from the same category closely, while sep-
arating different categories. We train a logistic regression based on the embeddings,
varying the ratio of the training set from 20% to 80% (of these, 10% is further reserved
for validation). We report Micro-F1 and Macro-F1 scores on the testing sets in Table 3
and 4 for the two respective datasets that are applicable. In this paper we use “*” to de-
note that the performance of our model is significantly different from the best baseline
model’s based on the paired t-test at the significance level of 0.01.

MULTILAYEREDHNE consistently outperforms the baselines across all training
splits. As the training ratio increases, all models tend to perform better, as expected.
It is worth noting that HIN-based models, including MULTILAYEREDHNE, generally
classify nodes more accurately than those models working solely on homogeneous net-
works, highlighting the effectiveness of modeling network semantics. Among HIN em-
bedding models, Metapath2vec based on only specific cross-layer links performs the
worst, emphasizing the necessity of modeling both intra-layer and cross-layer links.

5.3 Node Clustering

Intuitively, good node embeddings would put “similar” nodes together. We apply K-
means algorithm [1] to perform clustering on the node embeddings. Since for ACM and
Aminer, nodes are labeled, we can assess whether nodes in a cluster tend to share the
same labels. We evaluate the clustering quality using Normalized Mutual Information
(NMI) w.r.t. the true labels (not used in training).
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Table 6. Intra-layer link prediction results.

Model
ACM Aminer TF LastFM

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1
DeepWalk 0.900 0.908 0.688 0.880 0.860 0.685 0.678 0.651 0.683 0.587 0.600 0.693

LINE (1st+2nd) 0.962 0.972 0.668 0.811 0.731 0.739 0.701 0.725 0.661 0.665 0.729 0.666
Metapath2vec 0.786 0.830 0.672 0.851 0.840 0.667 0.620 0.621 0.666 0.789 0.778 0.502

HIN2vec 0.871 0.872 0.671 0.579 0.544 0.667 0.770 0.749 0.667 0.884 0.876 0.682
HeGAN 0.509 0.517 0.667 0.641 0.626 0.667 0.512 0.510 0.667 0.507 0.504 0.665
MANE 0.973 0.978 0.675 0.871 0.858 0.688 0.750 0.693 0.679 0.864 0.873 0.667
GAT 0.674 0.675 0.589 0.854 0.812 0.583 - - - - - -
HAN 0.592 0.607 0.585 0.647 0.638 0.608 - - - - - -

MULTILAYEREDHNE 0.979* 0.983* 0.799* 0.897* 0.890* 0.795* 0.798* 0.823* 0.722* 0.880 0.892* 0.768*

Table 5 presents the results. Overall, MULTILAYEREDHNE outperforms baseline
models significantly. In comparison to DeepWalk and LINE that model all nodes and
links homogeneously, we observe that our distinctive treatment of intra-layer and cross-
layer proximities is helpful. MULTILAYEREDHNE also clusters nodes more effectively
than MANE, demonstrating that higher-order proximities could help better explore net-
work structure. Overall, MULTILAYEREDHNE achieves performance gains over the
closest baseline by 2.8% and 7.7%, respectively.

5.4 Link Prediction

Here we predict intra- and cross-layer links, respectively. For intra-layer link predic-
tion, we predict the author-author link on ACM and Aminer [22], user-user link on
Twitter of TF [28], and artist-artist link on LastFM. As in leave-one-out evaluation
[10], for nodes with more than one intra-layer links, we hide one as the ground truth
positives, and randomly sample the same number of disconnected node pairs as negative
instances. The remaining network is our training set. Since this is a binary classifica-
tion for the held-out links, we adopt inner product [13] to make predictions, and report
AUC, Average Precision (AP), and F1 score in Table 6. For cross-layer link prediction,
we predict author-paper links on ACM and Aminer [11], user-user links on TF, and
user-artist links on LastFM. We hide cross-layer links similarly with intra-layer. Table
7 presents the results. Since GAT and HAN are designed with label supervision to learn
embeddings, they do not have link prediction results on TF and LastFM.

MULTILAYEREDHNE generally outperforms baselines significantly on all evalua-
tion metrics, except for the sole case of the LastFM dataset. For intra-layer link predic-
tion, compared with DeepWalk and LINE, this task verifies the effectiveness of MUL-
TILAYEREDHNE on predicting links between homogeneous nodes. We attribute this
to the network heterogeneity captured by our model. For cross-layer link prediction,
MULTILAYEREDHNE benefits from the structure-preserving embeddings learned via
intra-layer proximity as compared with heterogeneous baselines.

5.5 Network Visualization

Visualization provides an intuitive sense of how nodes are embedded. We visualize node
embeddings using t-SNE [17], and color nodes using their corresponding labels. Figure
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Table 7. Cross-layer link prediction results.

Model
ACM Aminer TF LastFM

AUC AP F1 AUC AP F1 AUC AP F1 AUC AP F1
DeepWalk 0.891 0.887 0.690 0.923 0.919 0.687 0.707 0.720 0.669 0.606 0.617 0.647

LINE (1st+2nd) 0.912 0.920 0.685 0.894 0.842 0.781 0.725 0.750 0.663 0.714 0.746 0.646
Metapath2vec 0.780 0.798 0.704 0.819 0.773 0.691 0.916 0.911 0.752 0.923 0.906 0.476

HIN2vec 0.929 0.939 0.223 0.921 0.924 0.173 0.524 0.561 0.173 0.265 0.397 0.276
HeGAN 0.530 0.534 0.268 0.683 0.683 0.545 0.705 0.685 0.168 0.535 0.527 0.027
MANE 0.923 0.913 0.670 0.906 0.857 0.673 0.724 0.727 0.646 0.736 0.765 0.645
GAT 0.653 0.629 0.549 0.880 0.832 0.574 - - - - - -
HAN 0.606 0.590 0.554 0.690 0.669 0.667 - - - - - -

MULTILAYEREDHNE 0.950* 0.948* 0.812* 0.936* 0.925* 0.827* 0.954* 0.952* 0.799* 0.919 0.911* 0.837*

(a) LINE (b) HIN2vec (c) MANE (d) Multi-LayeredHNE

Fig. 3. t-SNE visualization on ACM dataset.

3 presents four models on ACM dataset. By encoding network structural proximity
and semantics, MULTILAYEREDHNE provides denser clusters with clearer category
boundaries than others.

5.6 Model Analysis

Here we conduct several analysis on MULTILAYEREDHNE to better understand the
underlying mechanism of it.

Homogeneity and heterogeneity. To investigate if MULTILAYEREDHNE effec-
tively leverages network homogeneity and heterogeneity, we conduct ablation anal-
ysis here. MULTILAYEREDHNE-homo removes the intra-layer proximity modeling,
and only maintains cross-layer proximity. Conversely, MULTILAYEREDHNE-hetero
assumes all nodes and links are of the same type, and discards network layer concept to
investigate network semantics.

Results in Figure 4 reveal three insights. First, MULTILAYEREDHNE-homo per-
forms worse than MULTILAYEREDHNE, showcasing the advantage of modeling struc-
tural information. Second, MULTILAYEREDHNE can indeed encode semantics, since
MULTILAYEREDHNE-hetero, which ignores heterogeneity, leads to worse performance
compared to MULTILAYEREDHNE. Third, by comparing MULTILAYEREDHNE-homo
and MULTILAYEREDHNE-hetero, we conclude that network structural proximity is
more informative than semantics, as MULTILAYEREDHNE-homo drops more than
MULTILAYEREDHNE-hetero from MULTILAYEREDHNE.

Parameter sensitivity. We vary maximum order of intra- and cross-layer proxim-
ity to investigate performance sensitivity. We report the results of clustering (NMI) on
ACM dataset in Figure 5. We first test intra-layer proximity order M . Compared with
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M = 0 where no intra-layer proximity is modeled, MULTILAYEREDHNE achieves no-
table performance gain at M = 1. However, our model deteriorates its clustering when
M is greater than 1, since more noisy neighbors are involved.

We then vary the order of cross-layer proximity N . Too small N apparently could
not effectively explore network semantics. The clustering quality is boosted as the or-
der increases, emphasizing the efficacy of modeling cross-layer proximity to capture
network heterogeneity and semantics.

Intra-layer proximity size |Imv |. We limit the size of each intra-layer proximity to
further investigate the robustness of MULTILAYEREDHNE on sparse scenarios. Figure
5(c) shows the results. With the increase of the size of intra-layer proximity, the perfor-
mance of MULTILAYEREDHNE is improved at first, because a larger set of neighbors
can encode more structural information on the network. But the clustering results de-
crease slightly and then stay flat when the size is too large. Overall, the performance is
stable w.r.t. different sizes.

Number of dimensions d. To check the impact of different embedding dimensions
d on model performance, we vary the value of d and report the results (Figure 5 (d)).
With the growth of d from 16 to 32, NMI rises at first, and fluctuates slightly when
d > 32. Since small dimensions cannot fully encode the rich information embodied
by the networks, increasing d could potentially capture more features, thereby boosting
experiment results. When d is overly large, e.g., d = 256, over-fitting problem may
happen, and the performance decreases. Overall, our model still performs relatively
stable with different dimensions.
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Fig. 6. Case study on ACM dataset (best seen in color). t-SNE visualization of various confer-
ences (orange) from different years and most active authors (green) in those years.

5.7 Case Study

As an illustration of how MULTILAYEREDHNE encodes homogeneity and heterogene-
ity, we conduct a case study on ACM dataset. We randomly select two or three years
of each conference, and draw the most active authors in those years. Figure 6 shows
the t-SNE visualization. Interestingly, the distance between 12th and 13th WWW con-
ferences (top right corner) is shorter than their distances to 17th WWW conference.
SIGMOD (bottom right corner) also has similar observations, where 1995 and 1997
are almost overlapping, but far from 2008. That closer years are more related is quite
intuitive. Researchers tend to cite more recent papers, authors also collaborate with re-
cently active researchers. Due to intra-layer modeling, our model is able to capture these
homogeneous connections.

Figure 6 also depicts close relationships between conferences and their highly-
profiled authors. Moreover, different areas tend to display some separation. Data points
from Data Mining, Databases, and Artificial Intelligence dominate the right-hand side,
while left-hand side has more from Information Security, Operating Systems, and Com-
puter Architecture. This layout among conferences from diverse domains, and among
authors actively involved in conferences of different years, demonstrates the embedding
ability of MULTILAYEREDHNE to preserve network heterogeneity.

6 Conclusion

We formalize the multi-layered heterogeneous network embedding problem, and pro-
pose a novel framework MULTILAYEREDHNE to model intra- and cross-layer proxim-
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ity. Due to the dual characters of multi-layered networks on homogeneity and hetero-
geneity, our model learns node embeddings that preserve network topology and seman-
tics jointly. Extensive experiments verify the effectiveness of our model on four public
datasets. With ablation analysis, we show that our model could effectively benefit from
both modeling components.
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