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ABSTRACT
As a well-established probabilistic method, topic models seek to

uncover latent semantics from plain text. In addition to having tex-

tual content, we observe that documents are usually compared in

listwise rankings based on their content. For instance, world-wide

countries are compared in an international ranking in terms of elec-

tricity production based on their national reports. Such document

comparisons constitute additional information that reveal docu-

ments’ relative similarities. Incorporating them into topic modeling

could yield comparative topics that help to differentiate and rank

documents. Furthermore, based on different comparison criteria,

the observed document comparisons usually cover multiple aspects,

each expressing a distinct ranked list. For example, a country may

be ranked higher in terms of electricity production, but fall behind

others in terms of life expectancy or government budget. Each

comparison criterion, or aspect, observes a distinct ranking. Con-

sidering such multiple aspects of comparisons based on different

ranking criteria allows us to derive one set of topics that inform het-

erogeneous document similarities. We propose a generative topic

model aimed at learning topics that are well aligned to multi-aspect

listwise comparisons. Experiments on public datasets demonstrate

the advantage of the proposed method in jointly modeling topics

and ranked lists against baselines comprehensively.
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1 INTRODUCTION
Topic models provide a statistical framework for discovering latent

“topics” that occur in a text corpus. Conventional topic models, such

as LDA [3], learn topics in an unsupervised way based on word

co-occurrences alone. When a cluster of words tend to co-occur

in a significant subset of documents, these words likely convey a

topic. Documents vary in the mixtures of topics they represent.

In turn, a topic is characterized by a probability distribution over

representative words. This fundamental modeling is elegant in its

simplicity and generality, lending itself to use cases such as corpus

exploration, dimensionality reduction, etc.

However, text documents –Web pages, academic papers, product

reviews, etc. – are highly variable in their use of words. The pre-

sumption of self-sufficiency of word co-occurrences in discovering

topics may not always bear out in practice. Assistively, supplement-

ing the text, there may be further clues on the meanings contained

in a document. They may come in various structures, such as cat-

egorical labels that serve as document classes [30], links between

pairs of documents [10], user preferences [45], etc.

In this work, we seek to model a text corpus with the ancillary

structure of listwise partial rankings involving subsets of documents.

Consider a corpus involving entities of a domain. For a concrete

instantiation, we allude to Wikipedia articles of countries in the

world. A topic model would ostensibly discover topics that char-

acterize a country vis-á-vis other countries, such as the nature of

its economy, the outcomes of its healthcare policies, etc., based on

the words used to describe these characterizations. While those

may well manifest in words to some extent, we observe that there

are informative structures, such as international rankings
1
that

compare countries along multiple aspects such as life expectancy,

government budget, alcohol consumption, etc.

Incorporating such rankings into topic modeling could yield

comparative topics that help to differentiate and rank documents

along certain aspects. Indicatively, two countries may share similar

topics if they are ranked higher (resp. lower) than similar subset of

other reference countries. For example, countries with significant

agricultural sectors may be ranked similarly in terms of productions

of various crops. Similarly, countries with larger industrial bases

may be ranked similarly in terms of electricity consumption. For

another instance, we may discover topics that help shine light on

how a country’s alcohol consumption is higher than others.

Given an aspect, its various listwise partial rankings could be

aggregated into a more complete ranking for that aspect. Fig. 1 il-

lustrates this concept: (a) shows five input listwise partial rankings

𝑟1 to 𝑟5; (b) shows how rankings that share the same aspect such

as 𝑟1 and 𝑟2 and respectively 𝑟4 and 𝑟5 could each be aggregated

1
https://en.wikipedia.org/wiki/List_of_international_rankings

https://doi.org/10.1145/3459637.3482398
https://doi.org/10.1145/3459637.3482398
https://en.wikipedia.org/wiki/List_of_international_rankings
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(a) Illustration of multi-aspect partial rankings over a subset of documents.
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(b) Illustration of rank aggregation and transitive inference within each aspect.

Figure 1: Illustration of (a) multi-aspect partial rankings; (b) rank aggregation within each aspect.

per aspect. One application of exploring such a corpus with com-

parisons is to help government officials compare at which level a

country’s alcohol consumption is ranked among others.

As another application, online users may purchase products

and leave reviews. Some products satisfy users more than others.

Making a comparison of product reviews can reveal insights into

what factors of products can satisfy consumers more than others.

Problem.We formulate topic modeling for multi-aspect listwise

comparison as follows. The inputs are two sets: one is a corpus of

documents 𝐷 , as in previous topic modeling; the other is a set of

multi-aspect partial rankings 𝑅, as shown by Fig. 1(a). Each instance

of partial ranking 𝑟 ∈ 𝑅 comes from one aspect 𝑘 , and is a listwise

comparison over a subset of documents 𝐷 ′ ⊆ 𝐷 . We aim to design

a topic model that can capture both sets of inputs to derive compar-

ative topics that help to compare and differentiate documents along

multiple aspects. We obtain two sets of outputs correspondingly:

one is document-topic 𝛽 and topic-word distribution 𝜃 for topic

modeling; the other is aspect-specific ranking parameter 𝑢𝑘 that

determines the comparison outcome of documents along multiple

aspects. We would use ranking and comparison interchangeably.

We assume only partial, instead of full, rankings over documents

in𝐷 as it is the less restrictive assumption. There are often rankings

observed only over a subset, e.g., Europe, ASEAN, etc. Moreover, we

consider relative comparisons rather than assuming absolute labels.

Usually, relative comparisons are simpler to obtain than absolute

labels. For example, it is easier for government officials to compare

several countries and figure out which one has higher alcohol con-

sumption than to ask them to score each country. Even though

absolute labels are available, considering relative comparisons is

still meaningful. Comparing a set of documents yields comparative

topics that help government officials understand why a country

has higher alcohol consumption than others, while predicting only

the individual consumption value of each country without cross

comparison cannot discover such comparative topics. Though we

are using countries as an example corpus, the formulation applies to

many other corpora such as peer reviews of academic papers along

dimensions such as impact, originality, etc.; reviews of companies

as ranked according to values and benefits; reviews of hotels on

aspects such as cleanliness, location, and service.

Approach. We design a generative topic model MALIC, for

Multi-Aspect Listwise Comparisons. Broadly speaking, the prin-

ciples underlying MALIC are two-pronged. First, from a practi-
cal view, we aim at a flexible model that takes as input a set of

partial rankings of various lengths. For example, the comparison

between France and Australia in Fig. 1(a) is pairwise, while three or

more documents constitute a listwise comparison. Second, from a

summative view, the observed partial rankings should support tran-

sitive inference, which discovers unobserved comparison outcomes

by aggregation across multiple rankings of an aspect. Illustrated

by Fig. 1(b), the aggregation of the first two rankings infers the

comparison between Australia and US in life expectancy. This is

achieved by the comparison graph for each aspect. Each edge points

from lower-ranked document to the higher-ranked. An unobserved

comparison is inferred if there is a directed path between them, and

the edges on the path are not from the same partial ranking.

Contributions. We make the following contributions. First, we
propose MALIC. By designing a topic-regression ranking probabil-

ity component, MALIC flexibly accommodates different structures

and lengths of partial rankings, and supports transitive inference.

Second, we further extend it to a ranking mixture topic model to

support multiple aspects. Third, through extensive experiments, we

show that MALIC outperforms baselines on several tasks.
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2 RELATEDWORK
UnsupervisedTopicModels. Previously, unsupervised topicmod-

els are generative models, e.g., PLSA [18], LDA [3], SAM [36]. More

recent models are based on neural approaches. Auto-Encoder (AE)

is a class of such neural methods. Its variants include CAE [37],

DAE [41], VAE [21], Sparse AE [11, 27], etc. There are also methods

that improve LDA by using similar inference method with VAE’s,

including ProdLDA [38], DVAE [7], ETM [12], etc. However, they

learn topics based on word co-occurrences in an unsupervised way

and cannot leverage listwise document comparisons. For the latter,

one needs to pipeline their topics by a learning-to-rank method.

In contrast, MALIC joints topic modeling and multi-aspect com-

parisons. Therefore, constraining the topic model to align with the

observed multi-aspect comparisons may yield topics that help to

compare documents along certain aspects, or comparison criteria.

Supervised Topic Models. In order to incorporate additional

information within and across documents and derive more infor-

mative topics, extensions of LDA that model various metadata are

proposed. Pointwise supervised topic models require a response vari-

able for each document. sLDA [30] is designed with a regression

component and supervised by numerical values. Other models, such

as DiscLDA [22], modify topic distributions for categorical label su-

pervision. LabeledLDA [34] is proposed for multi-label documents,

while PLDA [35] is for partially labeled documents. MedLDA [52]

integrates the max-margin concept into supervised topic models.

As it relies on explicit response variable for each document, sLDA

is not appropriate for the problem at hand. We will pipeline it to

show the advantage of listwise over pointwise supervision. Models

with categorical label as supervision are not comparable, since we

cannot transform partial rankings into categorical labels.

Another class of supervised topic models is pairwise supervised
models. The closest such work is CompareLDA [40] for single-

aspect pairwise document comparisons. However, its single-aspect

modeling and pairwise comparison format are not flexible enough

to incorporate different structures and variable lengths of partial

rankings, and cannot derive one set of topics for multiple aspects

of comparisons. We will compare against it in the experiments

to highlight the advantage of jointly modeling multiple aspects.

Meanwhile, [10, 49, 50] model a pair of linked documents, but

they consider a pair of documents as sharing similar topics, not

comparatively “winner” or “loser”.

Learning to Rank. We position our work as a joint topic mod-

eling and learning-to-rank modeling [25]. Learning-to-rank, as its

name reveals, represents a class of methods that learns a permuta-

tion, or ranking sequence, over a set of items. Bradley-Terry-Luce

(BTL) model [5, 26] is proposed for pairwise item comparison, and

CompareLDA is a topic model built on top of BTL. In this paper,

we build on Plackett-Luce model [26, 32], which expresses a proba-

bility distribution of complete rankings in terms of item-specific

utility scores, but does not support multiple aspects or the infer-

ence of a previously unseen item. There are several works aiming

to design parameter estimation of Plackett-Luce model, including

EM algorithm [39], Bayesian approach [16], Generalized Method of

Moments [1], etc. Beyond a single ranking model, there are works

exploring a mixture of Plackett-Luce models. [9] describes a Dirich-

let process mixtures, [15] applies Plackett-Luce mixture to analyze

Table 1: Summary of notations.

Notation Description

𝐷 a corpus of documents

𝑑 a specific document, 𝑑 ∈ 𝐷
𝐷 ′

a subset of documents, 𝐷 ′ ⊆ 𝐷

𝑅 a set of partial rankings of different structures and lengths

𝑟𝑠 a specific partial ranking with structure 𝑠 , 𝑟𝑠 ∈ 𝑅
𝑆 a set of partial ranking structures

𝑠 a specific partial ranking structure, 𝑠 ∈ 𝑆
𝑣𝑑 positive utility score of document 𝑑

𝐾 total number of aspects

𝑘 the 𝑘𝑡ℎ aspect, 𝑘 = 1, 2, ..., 𝐾

𝑍 total number of topics

𝛽𝑑 document 𝑑’s topic distribution, 𝛽𝑑 ∈ R𝑍
𝛽 ′
𝑑

document 𝑑’s unnormalized topic distribution, 𝛽 ′
𝑑
∈ R𝑍

𝑢𝑘 the 𝑘𝑡ℎ aspect’s transformation parameter, 𝑢𝑘 ∈ R𝑍
𝜋 mixing coefficient, 𝜋 ∈ R𝐾 , ∑𝐾

𝑘=1
𝜋𝑘 = 1

𝜃𝑧 word distribution of the 𝑧𝑡ℎ topic

𝑁𝑑 total number of word occurrences in document 𝑑

𝑤𝑑,𝑛 the 𝑛𝑡ℎ word in document 𝑑 , 𝑛 = 1, 2, ..., 𝑁𝑑
𝑊 vocabulary

Irish electorates, [51] proves the identifiability of Plackett-Luce

mixture, etc. These models consider rankings alone without item

features. Other models include Mallows model [28], SVM-Rank

[19], RankNet [6], ListNet [8], etc. These learning-to-rank methods

do not have topic component, while topic models discussed above

are not appropriate for multi-aspect listwise comparisons.

Dealing with partial rankings for aggregation and inference is

well studied in literature [1, 51], but not in the topic modeling

context. Its real-word applications include meta-search [13, 43]

that combines results from multiple search engines, and preference

aggregation [44] that integrates preference of users. In this paper,

we seek to joint topic modeling and partial document comparisons.

Others. There are also more distantly related existing works.

Aspect extraction [17] seeks to extract entities (which may be a

word) on which opinions have been expressed within a document

and cluster those entities into different aspects. In contrast, we are

dealing with documents as a whole, instead of entities within docu-

ments. Furthermore, the aspect we mention here belongs to partial

rankings, not to entities. We also set apart from preference learning
for personalized recommendation using topic models [29, 45], since

we do not involve users here, and our task is not recommendations.

Comparative text mining [31, 48] aims at discovering common top-

ics across multiple collections of documents and collection-specific

topics. We are different in that we are given only one collection of

documents (e.g., country corpus), and the topics are not designed

to capture any common or specific concepts. Modeling document

comparisons is different from sentiment analysis [23]. Listwise rank-
ings are expressed by a sequence of documents, while sentiment

has two polarities, and does not have listwise rankings. Different

sentences in a document may express different sentiments [33].

3 MODEL ARCHITECTURE AND ANALYSIS
This section describes the proposed model MALIC, whose graphical

model is shown by Fig. 2(b). Table 1 summarizes the notations.
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Again, as input, we are given a corpus of documents𝐷 and a set of

multi-aspect partial rankings 𝑅. Each specific partial ranking 𝑟 ∈ 𝑅,
of aspect 𝑘 , is a listwise comparison over a subset of documents

𝐷 ′ ⊆ 𝐷 . As output, we derive document-topic distribution 𝛽 , topic-

word distribution 𝜃 , and rank parameter 𝑢𝑘 , 𝑘 = 1, 2, ..., 𝐾 .

Generative Process. As an overview, the MALIC model is de-

scribed by the following generative process.

(1) For each topic 𝑧 = 1, 2, ..., 𝑍 , draw its distribution over words

𝜃𝑧 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼1)
(2) For each document 𝑑 ∈ 𝐷 :
(a) Draw topic distribution 𝛽 ′

𝑑
∼ N(0, 𝜎−1

1
I) and transform to

𝛽𝑑 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝛽 ′
𝑑
)

(b) For each word𝑤𝑑,𝑛 where 𝑛 = 1, 2, ..., 𝑁𝑑 :

(i) Draw a topic 𝑧 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝛽𝑑 )
(ii) Draw a word𝑤𝑑,𝑛 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝜃𝑧)

(3) Draw an aspect distribution 𝜋 ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝛼2)
(4) For each aspect 𝑘 = 1, 2, ..., 𝐾 :

(a) Draw 𝑍 -dimensional parameter 𝑢𝑘 ∼ N(0, 𝜎−1
2

I)
(5) For each partial ranking 𝑟 ∈ 𝑅:
(a) Draw an aspect 𝑘 ∼ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝜋)
(b) Draw a partial ranking 𝑟 ∼ PL(𝑟 |𝑢𝑘 , {𝛽𝑑 }𝑑∈𝑟 )

The first two steps concern content generation. Differently from

LDA [3], Step 2 uses a softmax 𝛽𝑑,𝑧 =
exp(𝛽′

𝑑,𝑧
)∑𝑍

𝑧′=1 exp(𝛽
′
𝑑,𝑧′ )

for normal-

ization, instead of Dirichlet. As we will see at parameter learning,

the optimization of 𝛽 ′
𝑑
does not have a closed form and requires

gradient descent. Drawing from a Dirichlet would add a sum-to-one

constraint, leading to a more complex optimization.

The next three steps concern the ranking modeling. The key is

how topic and ranking modeling interact via topic distributions 𝛽𝑑 .

This is borne out in the graphical model in Fig. 2(b), topic model

on the left and ranking model on the right, linked by 𝛽 ′
𝑑
.

3.1 Topic-Regression Ranking
First, we illustrate how a document’s topic distribution 𝛽 ′

𝑑
helps de-

termine its rank position (Step 5b).We build on a ranking probability

model based on Plackett-Luce [26, 32]. A ranking 𝑟 is a comparison

over items. Plackett-Luce (PL) defines a probability distribution

over all possible rankings of the same set of items 𝐷 . It associates

each item 𝑑 ∈ 𝐷 with a positive utility score 𝑣𝑑 > 0. The higher the

value of 𝑣𝑑 , the more likely 𝑑 would be ranked on top. Formally,

the probability of a specific ranking 𝑟 = [𝑑𝑖1 > 𝑑𝑖2 > ... > 𝑑𝑖 |𝐷 | ] is

PL(𝑟 |𝑉 ) =
|𝐷 |∏
𝑙=1

𝑝𝑙 (𝑟 |𝑉 ) where 𝑝𝑙 (𝑟 |𝑉 ) =
𝑣𝑖𝑙∑ |𝐷 |
𝑞=𝑙

𝑣𝑖𝑞

. (1)

𝑉 = {𝑣𝑖𝑙 }
|𝐷 |
𝑙=1

are learnable parameters. We interpret Eq. 1 as follows.

We rank items from the first position to the last one in sequence.

At the beginning, all items are candidates, thus the probability of

any item ranked at the top-1 place is 𝑝1 (𝑟 |𝑉 ). The higher the utility
score, the more probable the corresponding item is selected. Having

ranked the first one, we select the second-place item from the

remaining |𝐷 |−1 candidates by 𝑝2 (𝑟 |𝑉 ). We repeat this process until

the rank list 𝑟 is finished and yield PL(𝑟 |𝑉 ) as a joint probability.
A limitation of the basic PL is that it assumes all items are ob-

served beforehand. It cannot infer utility score for unseen items, as

𝜃𝑧

𝑤𝑑,𝑛

𝑍

𝑧 𝛽𝑑
′ 𝑟𝑠 𝜋

𝑢𝑘

𝑘
|𝐷|𝑁𝑑

𝐾

|𝑅|

𝜃𝑧

𝑤𝑑,𝑛

𝑍

𝑧 𝛽𝑑
′
|𝐷|𝑁𝑑

𝑠
|𝑆|

(a) LDA (b) MALIC

Figure 2: Graphical model of (a) LDA and (b) MALIC.

learnable parameters 𝑉 are item-specific. One solution is to bring

learnable parameters to the feature space. To rank documents, we

express utility score 𝑣𝑑 by a topic regression function using 𝑑’s

topic distribution 𝛽𝑑 ∈ R𝑍 and model-specific parameter 𝑢 ∈ R𝑍
by 𝑣𝑑 = exp(𝑢𝑇 𝛽𝑑 ), 𝑍 is the number of topics. We use exponen-

tial to ensure a positive value. Two documents with similar topics

would present similar score 𝑣𝑑 , thus are ranked at similar positions.

3.2 Partial Ranking Structures
In the exposition so far, presumably 𝑟 at Eq. 1 is a full ranking over

the entire set 𝐷 , from the first item to the last. However, as men-

tioned in the Introduction section, here we assume partial rankings
of various lengths and structures over a subset of documents. From

a practical view, we thus propose partial rankings over a subset

of items 𝐷 ′ ⊆ 𝐷 . As illustrated by Fig. 1(a), different partial rank-

ings present different structures. The first two 𝑟1 and 𝑟2 are strict

comparisons with different lengths, while the next three 𝑟3, 𝑟4, and

𝑟5 allow unranked documents. Based on the intuition of ranking

process of Eq. 1, by appropriate redefinition, we model distributions

for partial ranking structures below. We associate each partial rank-

ing 𝑟𝑠 with structure 𝑠 ∈ 𝑆 . For clarity and illustration purpose, we

propose three common structures (others can be similarly defined).

(1) 𝐿-way Partial Ranking. We rank a subset of items 𝐷 ′
where

|𝐷 ′ | = 𝐿. 𝑟𝐿−𝑤𝑎𝑦 = [𝑑𝑖1 > 𝑑𝑖2 > ... > 𝑑𝑖𝐿 ].

PL(𝑟𝐿−𝑤𝑎𝑦 |𝑉 ) =
𝐿∏
𝑙=1

𝑣𝑖𝑙∑𝐿
𝑞=𝑙

𝑣𝑖𝑞

. (2)

(2) Top-𝐿 Partial Ranking. We rank top-𝐿 items within a subset

𝐷 ′
where |𝐷 ′ | > 𝐿, other items are unranked. 𝑟 = [𝑑𝑖1 >

𝑑𝑖2 > ... > 𝑑𝑖𝐿 > 𝐷 ′\{𝑑𝑖1 , ..., 𝑑𝑖𝐿 }].

PL(𝑟𝑇𝑜𝑝−𝐿 |𝑉 ) =
𝐿∏
𝑙=1

𝑣𝑖𝑙∑ |𝐷′ |
𝑞=𝑙

𝑣𝑖𝑞

. (3)

(3) Choice-𝐿 Partial Ranking. We select the best item within a

subset 𝐷 ′
where |𝐷 ′ | = 𝐿 > 1, and other items are unranked.

𝑟 = [𝑑𝑖1 > 𝐷 ′\{𝑑𝑖1 }].

PL(𝑟𝐶ℎ𝑜𝑖𝑐𝑒−𝐿 |𝑉 ) =
𝑣𝑖1∑𝐿
𝑞=1 𝑣𝑖𝑞

. (4)

In a nutshell, 𝐿-way is a strict comparison over a subset 𝐷 ′
, corre-

sponding to 𝑟1 and 𝑟2 at Fig. 1(a) with 2-way and 3-way, respectively;

top-𝐿 allows unranked or no-difference items, and 𝑟3 is top-2 with

length of 4 documents; choice-𝐿 is one-step selection, which is the

format of 𝑟4 and 𝑟5 with choice-3. These structures do not limit



Topic Modeling for Multi-Aspect Listwise Comparisons CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

comparisons into any strict format. Pairwise is a special case of

2-way or choice-2. Step 5b draws a partial ranking using Eq. 2–4.

Definitions above obey transitive closure shown at Fig. 1(b).

Given two partial rankings 𝑟1 and 𝑟2 at Fig. 1(a) as an example, the

maximization of log-likelihood of 𝑟1, i.e., log
𝑑𝐴

𝑑𝐴+𝑑𝐹 = log
1

1+𝑑𝐹 /𝑑𝐴 ,
pushes Australia’s utility score 𝑑𝐴 higher than France’s 𝑑𝐹 . Mean-

while, the log-likelihood of 𝑟2 is the sum of two terms, log
𝑑𝑆

𝑑𝑆+𝑑𝐹 +𝑑𝑈
and log

𝑑𝐹
𝑑𝐹 +𝑑𝑈 . 𝑟2’s maximization pushes 𝑑𝑆 higher than 𝑑𝐹 and

𝑑𝑈 (the first term), and 𝑑𝐹 higher than 𝑑𝑈 (the second term). As

reflected by the utility scores, 𝑑𝐴 > 𝑑𝐹 > 𝑑𝑈 , transitive closure is

preserved. More generally, the definition of Plackett-Luce at Eq. 1

ranks items from the first to the last in sequence. Items with higher

utility scores are more likely to be ranked higher than others. Since

transitivity is reflected by utility scores, Plackett-Luce model as

well as proposed partial rankings Eq. 2–4 preserve such properties.

Theorem 1. Based on the definitions of partial ranking above, we
draw the following observations about their relationships.

(1) For the same set of items 𝐷 ′ where |𝐷 ′ | = 𝐿, Top-1 ranking is
equivalent to Choice-𝐿 ranking.

(2) For the same set of items 𝐷 ′, if |𝐷 ′ | = 𝐿 + 1, Top-𝐿 ranking is
equivalent to (𝐿 + 1)-way ranking.

(3) 𝐿-way ranking is the recursive process of Choice-𝐿 ranking for
all items in 𝐷 ′.

Proof. (1) PL(𝑟𝑇𝑜𝑝−1 |𝑉 ) = 𝑣𝑖𝑙∑|𝐷′ |
𝑞=𝑙

𝑣𝑖𝑞

= PL(𝑟𝐶ℎ𝑜𝑖𝑐𝑒−𝐿 |𝑉 ) .

(2) PL(𝑟𝑇𝑜𝑝−𝐿 |𝑉 ) =
∏𝐿
𝑙=1

𝑣𝑖𝑙∑|𝐷′ |
𝑞=𝑙

𝑣𝑖𝑞

=
∏𝐿
𝑙=1

𝑣𝑖𝑙∑𝐿+1
𝑞=𝑙

𝑣𝑖𝑞
× 𝑣𝑖𝐿+1
𝑣𝑖𝐿+1

=∏𝐿+1
𝑙=1

𝑣𝑖𝑙∑𝐿+1
𝑞=𝑙

𝑣𝑖𝑞
= PL(𝑟 (𝐿+1)−𝑤𝑎𝑦 |𝑉 ).

(3) PL(𝑟𝐿−𝑤𝑎𝑦 |𝑉 ) = ∏𝐿
𝑙=1

𝑣𝑖𝑙∑𝐿
𝑞=𝑙

𝑣𝑖𝑞
=
∏𝐿
𝑙=1

PL(𝑟𝐶ℎ𝑜𝑖𝑐𝑒−𝐿 |{𝑣𝑖𝑞 }𝐿𝑞=𝑙 ) .
□

3.3 Multi-Aspect Mixture Model
Having introduced listwise partial rankings (Step 5b), we now turn

to the concept of multiple aspects (Step 5a). Each PL regression

model represents a distinct ranked list by utility scores of a particu-

lar aspect. To accommodate multiple aspects jointly, we propose a

mixture with 𝐾 aspects as a distribution for partial rankings.

PL
(𝐾) (𝑟𝑠 |𝜋,𝑉1, ...,𝑉𝐾 ) =

𝐾∑
𝑘=1

𝜋𝑘PL(𝑟𝑠 |𝑉𝑘 ) (5)

where

∑𝐾
𝑘=1

𝜋𝑘 = 1. 𝑉𝑘 = {𝑣𝑘,𝑑 }𝑑∈𝑟𝑠 = {exp(𝑢𝑇
𝑘
𝛽𝑑 )}𝑑∈𝑟𝑠 is topic

regression for every aspect 𝑘 and every document 𝑑 . When 𝐾 ≥ 2,

two aspects with similar ground-truth rankings tend to present

similar parameters 𝑢𝑘 . During the generative process, one set of

topics of a document is shared across multiple aspects, thus differ-

ent aspects interact with each other through this shared parameter.

Even though one document does not contain certain content of one

aspect for comparison, it may present relevant content of another

related aspect. Through their similar aspect-specific parameters

𝑢𝑘 , these two aspects can complement useful information of that

document for each other. Therefore, given observed partial rank-

ings, different aspects collaboratively extract useful information

for learning, and both ranking modeling and topic modeling can

be improved. When 𝐾 = 1, Eq. 5 degenerates to Eq. 2–4.

Summary. Having elaborated all three key designs in ranking

modeling component, herewe summarize them as a completemodel.

Step 3 draws the mixture of aspects 𝜋 ; Step 4 draws parameters for

aspect-specific ranking 𝑢𝑘 . Step 5 generates observed multi-aspect

partial rankings. As topic model (Steps 1-2) and ranking model

(Steps 3-5) interact by topic distribution 𝛽 ′
𝑑
, the generation of text

forwards influences ranking modeling, the optimization of rankings

backwards enhances topic model in a comparative way.

Unsupervised vs. Supervised. The generative process out-

lined above assumes a fully unsupervised setting where we do not

observe the ground-truth aspects of partial rankings. We model

such uncertainty by probabilistically drawing an aspect 𝑘 at Step 5a.

Our model also accommodates a supervised setting where we ob-

serve the ground-truth aspects 𝑘 of a proportion of partial rankings.

Thus Step 5a can be replaced with setting 𝑘 to the ground-truth

aspect 𝑘𝑟𝑠 . We will test both settings in experiments.

4 PARAMETER LEARNING
Optimization is conducted by maximum a posteriori (MAP) with

EM algorithm [2]. Log-likelihood is

L(Ψ|𝐷, 𝑅) =𝜆
∑
𝑑∈𝐷

∑
𝑤𝑑,𝑛

log

𝑍∑
𝑧=1

𝑝 (𝑤𝑑,𝑛 |𝑧, 𝜃𝑧)𝑝 (𝑧 |𝛽𝑑 )

+
∑
𝑠∈𝑆

∑
𝑟𝑠 ∈𝑅

log

𝐾∑
𝑘=1

𝜋𝑘PL(𝑟𝑠 |𝑉𝑘 ) .

(6)

where 𝜆 is a hyperparameter, balancing the relative importance

of two modeling components. Parameters to be inferred are Ψ =

{𝜋,𝑢𝑘 , 𝜃𝑧 , 𝛽 ′𝑑 } for 𝑘 = 1, ..., 𝐾 , 𝑧 = 1, ..., 𝑍 , and 𝑑 ∈ 𝐷 . Note that

we optimize 𝛽 ′
𝑑
instead of 𝛽𝑑 . The conditional expectation of the

complete-data log-likelihood with priors is

Q(Ψ|Ψ̂) = 𝜆
∑
𝑑∈𝐷

∑
𝑤𝑑,𝑛

𝑍∑
𝑧=1

𝛾 (𝑧𝑑,𝑤𝑑,𝑛
) log 𝑝 (𝑤𝑑,𝑛 |𝑧, 𝜃𝑧)𝑝 (𝑧 |𝛽𝑑 )

+
∑
𝑠∈𝑆

∑
𝑟𝑠 ∈𝑅

𝐾∑
𝑘=1

𝛾 (𝑘𝑟𝑠 ) log𝜋𝑘PL(𝑟𝑠 |𝑉𝑘 ) + log𝑝 (𝜋 |𝛼2)

+
𝐾∑
𝑘=1

𝑝 (𝑢𝑘 |𝜎2) +
𝑍∑
𝑧=1

𝑝 (𝜃𝑧 |𝛼1) +
∑
𝑑∈𝐷

𝑝 (𝛽 ′
𝑑
|𝜎1) .

(7)

where Ψ̂ is current estimation.

E step. Optimization is conducted by repeating E step and M

step until log-likelihood convergence. We first present E step.

𝛾 (𝑧𝑑,𝑤𝑑,𝑛
) = 𝑝 (𝑧 |𝑑,𝑤𝑑,𝑛) =

𝑝 (𝑤𝑑,𝑛 |𝑧, 𝜃𝑧)𝑝 (𝑧 |𝛽𝑑 )∑𝑍
𝑧′=1 𝑝 (𝑤𝑑,𝑛 |𝑧′, 𝜃𝑧′)𝑝 (𝑧′ |𝛽𝑑 )

. (8)

𝛾 (𝑘𝑟𝑠 ) = 𝑝 (𝑘 |𝑟𝑠 ) =
∑
𝑐=0,1 𝜋𝑘𝛿

𝑐
𝑘
PL
𝑐 (𝑟𝑠 |𝑉𝑐 )∑𝐾

𝑘′=1

∑
𝑐=0,1 𝜋𝑘′𝛿

𝑐
𝑘′
PL
𝑐 (𝑟𝑠 |𝑉𝑐 )

. (9)

M step. After evaluating posterior probabilities at E step, we

now update parameters Ψ = {𝜋,𝑢𝑘 , 𝜃𝑧 , 𝛽 ′𝑑 } at M step. 𝜋 and 𝜃𝑧
have closed-form solution, and are updated by Eq. 10–11. To update
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others, we use gradient-based numerical optimization method, such

as Quasi-Newton method [24]. Gradients are evaluated at Eq. 12–13.

𝜋𝑘 =

∑
𝑠∈𝑆

∑
𝑟𝑠 ∈𝑅 𝛾 (𝑘𝑟𝑠 ) + 𝛼2∑𝐾

𝑘′=1

∑
𝑠∈𝑆

∑
𝑟𝑠 ∈𝑅 𝛾 (𝑘 ′𝑟𝑠 ) + 𝐾𝛼2

. (10)

𝜃𝑧,𝑤 =
𝜆
∑
𝑑∈𝐷

∑
𝑤𝑑,𝑛
I(𝑤𝑑,𝑛 = 𝑤)𝛾 (𝑧𝑑,𝑤𝑑,𝑛

) + 𝛼1
𝜆
∑
𝑤∈𝑊

∑
𝑑∈𝐷

∑
𝑤𝑑,𝑛
I(𝑤𝑑,𝑛 = 𝑤)𝛾 (𝑧𝑑,𝑤𝑑,𝑛

) + |𝑊 |𝛼1
.

(11)

𝜕Q
𝜕𝑢𝑘,𝑧

=
∑
𝑠∈𝑆

∑
𝑟𝑠 ∈𝑅

𝑝 (𝑘 |𝑟𝑠 ) 𝜕 log PL(𝑟
𝑠 |𝑉𝑘 )

𝜕𝑢𝑘,𝑧
− 𝜎2𝑢𝑘,𝑧 . (12)

𝜕Q
𝜕𝛽 ′
𝑑,𝑧

= 𝜆
∑
𝑤𝑑,𝑛

(𝛾 (𝑧𝑑,𝑤𝑑,𝑛
) − 𝛽𝑑,𝑧)

+
∑
𝑠∈𝑆

∑
𝑟𝑠 ∈𝑅
I(𝑑 ∈ 𝑟𝑠 )

𝐾∑
𝑘=1

𝛾 (𝑘𝑟𝑠 )
∑
𝑐=0,1

𝛾 (𝑐𝑟𝑠 ,𝑘 )
𝜕 log PL𝑐 (𝑟𝑠 |𝑉𝑐 )

𝜕𝛽 ′
𝑑,𝑧

− 𝜎1𝛽 ′𝑑,𝑧 .

(13)

Complexity. For E step, we have O(𝑍 |𝐷 |∑𝑑∈𝐷 𝑁𝑑 + |𝑅 |𝐾 +
𝐿2
max

) for one iteration. 𝐿max is the maximum length of partial

rankings. Since 𝐿-way is the most complex one among the listed

three, we assume all rankings are 𝐿-way as the worst case. For M

step, we have O(|𝑊 | |𝐷 | (∑𝑑∈𝐷 𝑁𝑑 +𝑍 )+𝑍 |𝐷 |𝐾 |𝑅 |max𝐿
2

max
) for one

iteration. |𝑊 | is the size of vocabulary, and |𝑅 |max is the maximum

number of rankings containing the same document.

Brief Comment on Running Time. Since MALIC is the first

topic model for multi-aspect listwise comparisons, our focus is on

effectiveness, not efficiency. We just briefly report running time.

The training takes less than 1h on small datasets, less than 10 hours

on large dataset. Experiments were conducted on a machine with

Intel Xeon E5-2650v4 2.20 GHz CPU and 256GB RAM.

Testing. We can use parameters for prediction at testing.

i) Ranking Prediction. Given an unseen test document 𝑑 ′ ∈
𝐷𝑡𝑒𝑠𝑡 , we infer its topic distribution and utility score by

𝛽𝑑′ = 𝑝 (𝑧 |𝑑 ′) =
𝑝 (𝑧, 𝑑 ′)∑𝑍

𝑧′=1 𝑝 (𝑧′, 𝑑 ′)

=

∑
𝑑∈𝐷𝑡𝑟𝑎𝑖𝑛

∏
𝑤𝑑′,𝑛 𝑝 (𝑤𝑑′,𝑛 |𝑧)𝑝 (𝑧 |𝑑)𝑝 (𝑑)∑𝑍

𝑧′=1
∑
𝑑∈𝐷𝑡𝑟𝑎𝑖𝑛

∏
𝑤𝑑′,𝑛 𝑝 (𝑤𝑑′,𝑛 |𝑧′)𝑝 (𝑧′ |𝑑)𝑝 (𝑑)

(14)

𝑣𝑘,𝑑′ = exp(𝑢𝑇
𝑘
𝛽𝑑′) 𝑘 = 1, ..., 𝐾 . (15)

𝑝 (𝑑) = 1

|𝐷𝑡𝑟𝑎𝑖𝑛 | . The position of 𝑑 ′ in aspect 𝑘 is determined by

𝑣𝑘,𝑑′ in a descending order, greater value ranks higher.

ii)Aspect Assignment. Given an unseen partial ranking 𝑟𝑠 , we

predict its aspect by posterior probability Eq. 9.

5 EXPERIMENTS
The main objective is to evaluate the quality of topics derived by

our model from multi-aspect listwise partial rankings.

Datasets.We rely on four public datasets as listed in Table 2. In

addition Wikipedia’s Country dataset, our model is applicable to

review datasets that compare product reviews to reveal which fac-

tors/attributes better satisfy consumer preferences, such as prices,

quality, and functionalities. Note that here we consider relative

comparisons of a set of documents, instead of rating prediction.

• Country. Each document is a Wikipedia page of a country.

We include 12 aspects from Wikipedia’s lists of international

rankings, i.e., life expectancy, net exports, alcohol consumption,

Table 2: Dataset statistics.

Name #Documents Vocabulary #Aspects

#Partial

Rankings

PCC Among

Aspects

Country 312 2,920 12 5,400 0.38

Paper Review 1,104 2,761 6 2,700 0.20

Company Review 1,870 3,006 5 2,250 0.52

Hotel Review 53,507 5,017 7 110,250 0.62

wealth per adult, cigarette consumption, natural disaster risk,
vehicles per capita, GDP, electricity production, obesity rate,
irrigated land area, and government budget.

• Paper Review. Each document is a paper review at a CS

conference [20]. Each review judges 6 aspects of a submis-

sion, including meaningful comparison, originality, impact,
substance, appropriateness, and clarity. All 6 aspects are orig-
inally given integer ratings from 1 to 5, which we transform

into partial listwise rankings.

• Company Review. Each review evaluates 5 aspects of a
company, they are culture values, career opportunities, com-
pany benefit, work balance, and senior management.

• Hotel Review. Each hotel review has 7 aspects, including
check-in at front desk, value, cleanliness, location, service, busi-
ness service, and rooms [46, 47].

After removing short documents, stop words, punctuations, we

keep the most frequent 3,000 words for the first three datasets, and

5,000 for the large dataset. Table 2 presents the summary statistics.

Pearson Correlation Coefficient (PCC) is the average correlation of

rankings across all pairs of aspects. Higher means more correlated.

For each aspect, we consider 9 lengths of partial rankings, of 3

structures, i.e., {3, 4, 5}-way, top-{2, 3, 4}, and choice-{5, 10, 15}. We

vary the length of rankings in Sec. 5.3. For each length, we randomly

sample 50 partial rankings for the first three datasets, and 1,750

for Hotel Review dataset, since its corpus size is relatively 35 times

larger than previous three. The full breakdown of these sampled

rankings results in 80:20 for the number of pairwise comparisons

to documents (this ratio is consistent with previous work). We

investigate the effect of different number of sampled rankings in

Section 5.3. Our model can incorporate more structures of partial

rankings, but for clarity, here we enumerate these three.

Baselines.We compare against three categories of topic models.

(1) Rank-agnostic. Topic models including generative models

such as LDA and ProdLDA, and neural Auto-Encoders such

as DAE, VAE, KATE only use word co-occurrences without

document labels for training. As rank-agnostic baselines can-

not incorporate document comparisons, we pipeline their

topics by a comparable learning-to-rank model PLRMM [39],

whose aspect-awareness helps to outperform other learning-

to-rank methods, e.g., RankNet [6], ListNet [8], etc. By com-

paring against these pipelined modeling, we highlight the

advantage of jointly modeling topics and ranking.

There are supervised and unsupervised settings introduced

in the discussion of Sec. 3. For supervised setting, we observe

the ground-truth aspect of partial rankings during training.

Unsupervised setting does not observe any aspect before-

hand, and the model needs to infer the clustering of partial

rankings. PLRMM can accommodate both settings.
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Figure 3: Supervised and unsupervised partial ranking prediction with different number of topics.

(2) Pointwise. Following [40], we consider sLDA as the point-

wise baseline. It requires PLRMM’s preprocessing (either

supervised or unsupervised) to convert listwise comparisons

into pointwise scores before feeding to sLDA as supervision

for each aspect. By comparison, we showcase the utility of

listwise vs. pointwise supervision.

(3) Pairwise. Since MALIC incorporates multi-aspect listwise

comparisons, our main baseline is the recent CompareLDA

for single-aspect pairwise comparisons. Pairwisemodel Com-

pareLDA treats single-aspect pairwise comparisons as input,

thus we fully break down all partial rankings into pairwise,

and apply CompareLDA to each aspect. By comparison, we

show the importance of jointly learning multiple aspects vs.

single aspect. In the unsupervised setting, where the aspects

are not known, we need to use PLRMM to cluster partial rank-

ings first, then apply CompareLDA to each cluster/aspect.

We choose hyperparameters based on validation set. We ran-

domly split 80% documents for training, among them 10% are for

validation. For DAE, Gaussian noise with 0.25 std.dev. generates

the best results. For KATE, we set number of non-sparse neurons

to 4, 6, 8, 10, 12 when 𝑍 = 10, 20, 30, 40, 50, respectively. For other

baselines, we use their default hyperparameters. For MALIC, we set

𝛼1 = 𝛼2 = 0.01, 𝜎1 = 𝜎2 = 0.01, 𝜆 = 0.01. Each result is obtained by

5 independent runs, we report both average and standard deviation.

5.1 Ranking Evaluation
Since our model comprises two components, topic modeling and

rankingmodeling, we conduct experiments to evaluate each of them.

We focus on ranking quality here and evaluate topic modeling next.

Partial Ranking Prediction. We expect a model to generalize

well to unseen documents and accurately infer their comparisons.

Following [40], we randomly hide 20% documents and their associ-

ated partial rankings. We only observe 80% documents and partial

rankings among them for training. During testing, we infer utility

scores of held-out documents by Eq. 14–15 and compare their in-

ferred partial rankings against the previously hidden ground-truths.

Fig. 3 presents the results when varying number of topics. We

use normalized Kendall’s tau [14] (from 0 to 1) as metric (higher is

better). We report std.dev. of MALIC and best-performing baselines.

Some models perform stably, thus their error bars are not visible.

CompareLDA performs well on supervised setting, but the results

deteriorate in unsupervised setting. Compared to supervised setting

where we explicitly apply CompareLDA to each aspect, this dis-

joint process increments the error from two separate components,

thereby influencing the results. MALIC outperforms CompareLDA,

due to modeling multiple aspects jointly. KATE also presents de-

cent results, but is still worse than our model, demonstrating the

importance of incorporating rankings for learning. Most models

increase results before 30 topics, after which some keep flat while

others deteriorate, we fix 30 topics for following experiments.

Rank Aggregation. As mentioned in Section 1, a good model

should well aggregate partial rankings for transitive inference. For

evaluation, we input all documents and partial rankings from mul-

tiple aspects. The goal is to test how well we aggregate observed

rankings for transitivity, while partial ranking prediction above

aims to test the generalization ability. Table 3 presents the normal-

ized Kendall’s tau at 𝑍 = 30 on both supervised and unsupervised

settings. MALIC consistently outperforms baselines. Among base-

lines, CompareLDA and sLDA perform better, verifying the advan-

tage of using rankings to learn aspect-oriented topics compared

to unsupervised baselines. MALIC still presents better results than

CompareLDA and sLDA, which demonstrates that the transitivity

can be captured by the proposed ranking mixture model.
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Table 3: Supervised and unsupervised experiments on rank aggregation at 𝑍 = 30 (results are in percentage).

Model

Supervised Unsupervised

Country Paper Review Company Review Hotel Review Country Paper Review Company Review Hotel Review

LDA 78.20±0.01 58.93±0.00 66.95±0.00 73.53±0.00 66.69±1.20 53.82±0.51 63.92±0.66 72.48±0.27
ProdLDA 60.49±0.06 56.09±0.04 54.77±0.04 50.29±0.33 51.63±0.29 51.63±1.00 51.16±0.15 50.07±0.04
DAE 57.73±0.01 59.78±0.05 66.48±0.01 74.20±0.01 52.05±1.71 55.43±1.55 61.68±1.60 66.26±1.43
VAE 61.20±0.00 61.44±0.05 70.62±0.01 69.06±0.00 52.81±3.58 53.16±0.02 60.80±1.19 64.69±3.13
KATE 81.84±0.01 61.83±0.02 72.07±0.00 72.30±0.00 62.94±1.30 58.06±1.20 68.10±0.58 69.39±0.23
sLDA 75.92±0.33 64.12±0.68 70.27±0.38 75.61±0.13 68.62±0.31 54.16±0.65 69.28±0.31 74.43±0.08

CompareLDA 82.70±0.21 80.87±0.84 74.03±0.44 72.19±0.08 58.54±1.19 55.56±1.74 58.73±0.66 58.52±0.09
MALIC 95.26±0.08 84.63±0.45 86.26±0.41 83.20±0.25 73.11±0.09 68.22±0.65 75.11±0.45 79.82±1.07

Table 4: Supervised and unsupervised experiments on aspect assignment at 𝑍 = 30 (results are in percentage).

Model

Supervised Unsupervised

Country Paper Review Company Review Hotel Review Country Paper Review Company Review Hotel Review

LDA 30.30±0.37 53.08±1.98 28.84±1.65 23.25±0.13 15.26±0.12 21.92±0.21 2.60±0.67 2.57±0.10
ProdLDA 17.05±0.86 49.85±2.26 20.89±1.28 14.35±0.11 5.17±0.46 18.96±2.07 1.41±0.30 0.05±0.00
DAE 10.04±1.45 50.41±2.14 26.13±1.31 23.78±0.13 8.25±1.21 20.11±2.12 2.19±0.43 2.85±0.33
VAE 11.45±1.00 44.55±0.42 26.29±2.59 18.93±0.18 5.76±0.75 17.25±1.32 2.56±0.50 2.58±0.11
KATE 32.41±0.67 51.70±1.24 31.16±1.31 23.33±0.04 21.09±1.24 21.28±1.40 3.69±1.06 2.49±0.03
sLDA 30.56±0.71 57.54±1.40 28.76±1.60 24.52±0.26 16.77±0.63 27.39±1.85 2.85±0.77 3.08±0.09

CompareLDA 21.07±1.17 60.65±1.71 29.55±1.77 24.07±0.21 10.73±0.67 31.30±1.93 5.04±1.37 5.44±0.11
MALIC 52.83±1.87 85.85±1.80 52.89±3.75 35.72±0.93 36.09±1.50 68.39±2.87 18.80±4.23 9.24±0.72

(a) Country (b) Paper Review (c) Company Review (d) Hotel Review
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Figure 4: Topic coherence, Normalized Pairwise Mutual Information (NPMI), with different number of topics.

Aspect Assignment. Given a previously unseen partial rank-

ing, we could predict its aspect. We split dataset the same way as

for partial ranking prediction. After convergence, we use posterior

probability Eq. 9 to predict aspects. Since supervised setting ob-

serves aspects of training rankings, and aspects of testing rankings

are hidden, this task becomes partial ranking classification. We

report classification accuracy over testing rankings as metric. On

the contrary, unsupervised setting does not observe aspects of any

rankings, including both training and testing set, this task becomes

partial ranking clustering. We use Normalized Mutual Information

(NMI) [42] for clustering evaluation. Table 4 presents the results at

𝑍 = 30. KATE, sLDA, and CompareLDA tend to outperform other

baselines. Results, especially NMI, on Company Review and Hotel

Review are lower than the other two datasets for all models, since

their rankings of different aspects are highly correlated (see PCC at

Table 2), a partial ranking is likely observed by more than one as-

pect, making aspect assignment more difficult. But overall, MALIC

still assigns correct aspects to partial rankings more accurately than

baselines on both settings, due to its multi-aspect modeling.

5.2 Topic Analysis
To see if MALIC’s gain in ranking quality is at the expense of

topic modeling, we evaluate topic coherence and perplexity. Since

we do not observe significant difference between supervised and

unsupervised settings, for clarity, we report unsupervised results.

Topic Coherence. Topic-word distribution 𝜃 ∈ R𝑍×𝑊 indicates

the keywords of each topic. Each row of 𝜃𝑧 corresponds to one topic,

and its keywords are those with highest probability on that row. We

select top-10 words of each topic, and use Normalized PMI (NPMI)

[4] for evaluation of word pair associations. Fig. 4 presents the

results when varying topics. MALIC performs better than baselines

most of the time, indicating that modeling multi-aspect rankings

does not hurt, and tends to improve the topic modeling. Since

multi-aspect rankings provide additional information on document
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Figure 5: Model analysis on Country dataset.

Table 5: Top-5 keywords of 5 randomly selected aspects.

Aspect Keywords of aspect’s most related topic

natural disaster risk saudi, puerto, arabia, oil, rico

alcohol consumption country, lithuania, hungary, european, national

GDP world, states, china, european, largest

wealth per adult european, netherlands, union, luxembourg, austria

life expectancy world, south, korea, country, china

Table 6: Perplexity of test documents, smaller is better.

Model Country Paper Review Company Review Hotel Review

LDA 9.630±0.115 8.189±0.071 7.583±0.066 7.591±0.014
ProdLDA 7.904±0.002 7.244±0.003 7.133±0.003 8.341±0.000
DAE 14.567±0.322 18.545±0.041 19.654±0.089 16.134±0.070
VAE 58.955±0.712 20.905±0.144 21.917±0.180 19.320±0.018
KATE 15.744±1.236 11.166±0.012 13.436±0.074 46.720±0.019
sLDA 8.237±0.010 7.883±0.019 7.926±0.011 8.314±0.007

CompareLDA 13.114±0.003 14.161±0.006 12.665±0.008 9.637±0.002
MALIC 7.576±0.002 7.225±0.001 7.125±0.001 7.258±0.000

relative similarities, modeling them enhances topic modeling qual-

ity. CompareLDA generally extracts more coherent topics than

other baselines, verifying the effectiveness of modeling rankings.

To develop an intuitive sense of what the learned topics cap-

ture, we randomly select 5 aspects and present the most positive

topic in their parameter𝑢𝑘 . Table 5 shows Country dataset. Alcohol

consumption aspect tends to discuss European countries (Lithua-

nia, Hungary). GDP reveals US, EU, and China. Modeling multiple

aspects can help gather countries that are similar across aspects.

Perplexity. A topic model should generalize well to test docu-

ments. For evaluation, we split the dataset the same as for partial

ranking prediction.We evaluate perplexity [3], exp{− log𝑝 (𝐷𝑡𝑒𝑠𝑡 )∑
𝑑′∈𝐷𝑡𝑒𝑠𝑡

𝑁𝑑′
},

of the held-out 20% documents. Since perplexity is exponential

and varies much w.r.t. its power, we instead report the power

− log𝑝 (𝐷𝑡𝑒𝑠𝑡 )∑
𝑑′∈𝐷𝑡𝑒𝑠𝑡

𝑁𝑑′
for clarity (smaller is better). Table 6 reveals that

MALIC provides high likelihood to test documents, which we at-

tribute to modeling multi-aspect rankings, since they bring addi-

tional information on relative document similarities.

5.3 Model Analysis
To better explore the sensitivity of models on different scenarios,

we now conduct several analyses.

Different Numbers of Partial Rankings. In above experi-

ments, we fix 50 and 1,750 partial rankings for each length and

each aspect. To test the effect of partial ranking densities, we vary

the number of partial rankings from sparse to dense. Fig. 5(a) shows

unsupervised rank aggregation. Since each aspect has 9 lengths

of partial rankings, of three structures, horizontal axis represents

different number of partial rankings for each length and each as-

pect. MALIC performs well even when a small set of rankings is

available. When the number of partial rankings increases, most

models improve their results, since they obtain more useful infor-

mation for training. After 100 rankings, most models reach the limit

of performance and start to keep flat. The full breakdown of 200

rankings already results in more pairwise comparisons than what

the ground-truth rank list contains. With such a dense observation

on comparisons, MALIC still outperforms others, highlighting its

ability to model document comparisons better than baselines.

Different Lengths of Partial Rankings. In above experiments,

we select {3, 4, 5}-way, top-{2, 3, 4}, and choice-{5, 10, 15} as the 9
lengths of partial rankings. To explore how models perform w.r.t.

different lengths, we vary the length from short to long. Results

on unsupervised rank aggregation are at Fig. 5(b). +2 at horizontal
axis means we increase the length of each ranking by 2 documents,

i.e., {3 + 2, 4 + 2, 5 + 2}-way, top-{2 + 2, 3 + 2, 4 + 2}, and choice-

{5+ 2, 10+ 2, 15+ 2}. Longer rankings provide more information on

document similarities, boosting results for sLDA and CompareLDA,

while others keep flat, since they reach the limit of performance.

Different Numbers of Aspects. Modeling multiple aspects of

rankings is one key design of our model. To look into how MALIC

benefits from multiple-aspect modeling, we vary the number of as-

pects for partial ranking prediction. Fig. 5(c) summarizes the results.

Similarly, when the number of aspects increases, both MALIC and

baselines observe an improved performance, since these models

indeed leverage multiple aspects to learn heterogeneous rankings.

Compared to the extreme case of one aspect where all rankings

are considered coming from the same aspect, MALIC benefits from

modeling multiple aspects and provides a better result.

6 CONCLUSION
We propose a topic model for multi-aspect listwise comparisons.

By designing topic-regression ranking mixture, MALIC incorpo-

rates multiple structures of partial rankings from different aspects.

Experiments demonstrate the effectiveness of MALIC.
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