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Abstract Recommendations are prevalent in Web applications (e.g., search rank-
ing, item recommendation, advertisement placement). Learning from bandit feed-
back is challenging due to the sparsity of feedback limited to system-provided ac-
tions. In this work, we focus on batch learning from logs of recommender systems
involving both bandit and organic feedbacks. We develop a probabilistic framework
with a likelihood function for estimating not only explicit positive observations
but also implicit negative observations inferred from the data. Moreover, we intro-
duce a latent variable model for organic-bandit feedbacks to robustly capture user
preference distributions. Next, we analyze the behavior of the new likelihood un-
der two scenarios, i.e., with and without counterfactual re-weighting. For speedier
item ranking, we further investigate the possibility of using Maximum-a-Posteriori
(MAP) estimate instead of Monte Carlo (MC)-based approximation for prediction.
Experiments on both real datasets as well as data from a simulation environment
show substantial performance improvements over comparable baselines.

Keywords Variational learning · Bandit feedback · Recommender systems ·
Computational advertising

1 Introduction

Recommender systems rely primarily on user-item interactions as feedback in
model learning. We are interested in learning from bandit feedback (Jeunen et al.,
2019), where users register feedback only for items recommended by the system.
For instance, in computational advertising (ad) (Rohde et al., 2018), a user could
respond only to the ad being shown, but not to other ads not shown. Contrast this
to organic feedback, assumed to have arisen naturally from user-driven interactions
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with the system. In rating prediction (Koren et al., 2009), users presumably select
items to rate. In Web browsing (Hidasi et al., 2016), we learn from which browsed
products end up in a purchase. These forms of users’ organic feedback and bandit
feedback are effectively collected by the websites for behavioral advertising 1.

The traditional approach to dealing with bandit feedback, which is not the
focus of this work, is a class of reinforcement learning techniques (Sutton et al.,
1998) known as multi-armed bandit. As the system gathers data sparsely, only
from the system’s own actions, the key concern is to manage the trade-off between
exploration (to gather more data for a better estimation of the reward function)
and exploitation (to realize utmost rewards based on the data gathered so far)
(Krause and Ong, 2011). The bandit algorithms may also benefit from contextual
information of the actions or the target users (Langford and Zhang, 2008; Li et al.,
2010; Joachims et al., 2018). In many cases, this trade-off is managed in an online
fashion, necessitating experimental control over the system (Kawale et al., 2015).

This work focuses on a conceptually distinct problem, i.e., learning from logged
bandit feedback (Swaminathan and Joachims, 2015b). In this case, batch learning
is based on the existing logs of bandit feedback, instead of managing the explore-
exploit trade-off online. For one advantage, it does not require experimental control
over the system, making such studies more accessible. For another, it enables reuse
of existing data, benefitting from cross-validation and offline model selection.

Problem. In particular, we are interested in learning from logged bandit feedback
where there is also relevant organic feedback (Rohde et al., 2018). Take a scenario
where a user interacts with products on an e-commerce site and in so doing gener-
ates organic feedback. Occasionally, the user may visit another “target” site (e.g.,
news), where she may be shown an ad featuring a product from the aforemen-
tioned e-commerce site. Her responses to the ads on the target site make up the
bandit feedback. Our objective is to predict how the user would respond to an ad,
in order to predict which ad to show to her the next time she visits the target site,
based on the logs of both organic and bandit feedbacks.

Existing approaches (Swaminathan and Joachims, 2015a,b) tend to rely on ex-
plicit bandit feedback alone. In practice, relative to the numerous possible items to
recommend, the observed data is sparse as we see user responses to recommended
ads only. Moreover, it uses organic feedback merely as generic features, without
recognizing its potential to learn an informative representation of user preferences.

Contributions. In this paper, we make several contributions. The first is our pro-
posed model VLIB, which encodes two principles. For one, we observe that beyond
a user’s explicit response to an ad (click/no-click), we could potentially infer fur-
ther implicit preference signals relating a clicked ad and previously unclicked ads.
Therefore, we propose a probabilistic framework for learning user preferences from
bandit feedback, which includes an adequate likelihood function for such implicit
bandit feedback. For another, we introduce a latent variable model to robustly
capture user preference distributions from both organic-cum-bandit feedbacks.

Secondly, we conduct rich analyses to investigate issues that affect learning and
prediction, such as the effect of re-weighting likelihood using inverse propensity
score as well as MAP estimate vs. Monte Carlo based approximation to speed up

1 https://www.lotame.com/what-is-behavioral-targeting/
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the predictions. Thirdly, we conduct experiments covering both simulated as well
as real datasets to address research questions concerning the above contributions.

2 Related Work

In contrast to online learning with contextual bandit feedback (Langford and
Zhang, 2008; Li et al., 2010; Joachims et al., 2018), our work is along the line of
batch learning from bandit feedback (Swaminathan and Joachims, 2015a,b), based
on log data recorded from search engines, recommender systems, etc. However,
such data tend to be proprietary, posing some barriers to open research. Fortu-
nately, recently there emerge simulation systems for recommender systems (Rohde
et al., 2018; Ie et al., 2019) which presents a platform for organic-bandit recom-
mendation problem with A/B testing evaluation. We experiment with one such
platform RecoGym (Rohde et al., 2018), as well as real datasets from Taobao.com.

In estimating the click-through probability of a recommendation, our problem
is related to click-through-rate prediction (Richardson et al., 2007; Guo et al.,
2017; Zhou et al., 2018; Lian et al., 2018). Such works are typically formulated
as supervised learning, predominately relying on user, item, or context features,
rather than organic-bandit feedback as in our case. They also focus on offline
evaluation on popular benchmark datasets2 3. It has been documented that offline
evaluation and online performance are not always congruent (Beel et al., 2013;
Garcin et al., 2014; Rossetti et al., 2016).

Our problem is different from session-based recommendation for next-item pre-
diction (Hidasi and Tikk, 2016; Hidasi et al., 2016; Zhou et al., 2018), which is
closer to the notion of organic feedback. Along the same line, latent variable mod-
els (Blei and Lafferty, 2006; Kingma and Welling, 2014; Rezende et al., 2014)
have been successfully applied for collaborative filtering (Liang et al., 2018) in the
context of organic feedback. In contrast, our target is prediction in the bandit set-
ting, with the benefit of organic feedback. Also, organic-bandit recommendation
might seem to be related to the notion of human-recommender system feedback
loop (Bottou et al., 2013; Sun et al., 2019), which is generally relevant to recom-
mendation. However, our work focuses on the problem of computational advertis-
ing where users leave publisher sites upon clicking on recommended advertisement.

The notion of implicit feedback has been explored under the context of rec-
ommendation (Hu et al., 2008; Rendle et al., 2009). The main idea is making
an assumption that observed user events indicate stronger preferences than un-
observed ones. Such assumption has shown to be effective in mitigating sparsity
issue in learning from preference data. Our work is relevant in that the modeling
assumption shares similar characteristic to deal with insufficient observations.

3 Problem Formulation

Figure 1 shows two end-points of the Web that we care about. One is an e-
commerce site (e.g., Amazon, Taobao), whereby users are operating in the organic

2 https://www.kaggle.com/c/avazu-ctr-prediction
3 https://labs.criteo.com/2013/12/download-terabyte-click-logs/
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Table 1: Summary of main notations.

Notation Explanation
x User events in the organic state
a Action or recommendation in the bandit state
c Binary response variable (e.g., click or no-click)
T Collection of triplets in logged bandit feedback
A Universal set of possible bandit actions
P Universal set of products on e-commerce sites
z Latent representation of user preferences

fθ, gψ Functions of generative model, parameterized by θ and ψ
µφ, σφ Functions of inference model, parameterized by φ, that output the mean

and covariance of the variational distribution of z
ξ Logging policy deployed when bandit feedback being collected

state (O). The other is a publisher site (e.g., The New York Times, Facebook),
whereby users are browsing in the bandit state (B). Figure 1 illustrates the tran-
sition between states of user sessions. A session begins at the state (S). At first,
she is in the organic state. She can then transition between organic and bandit
states, eventually terminating at the end state (E).

S O B E

Fig. 1: State transitions of user sessions.

We are interested in a recommender system for the publisher site, which pro-
vides recommendation (e.g., displays advertisement) to users. Suppose the pub-
lisher site has a logging policy ξ to collect user feedback. While in bandit state, at
time index i, suppose that based on organic feedback xi (from the publisher site),
the system recommends an action ai, to which a user provides click feedback ci (on
the target site). This forms a triplet (xi,ai, ci) for each time point. The collection
of such triplets T = {(xi,ai, ci)} constitute the logged bandit feedback. In the
scope of this work, we focus on the setting of xi being product browsing history
of users while they are in the organic state (browsing e-commerce websites).

Problem 1 (Organic-Bandit Recommendation). Given logged bandit feed-
back T , we seek to estimate, for some time i, the probability p(ci|xi,ai) that a
user associated with organic feedback xi will respond positively to an action ai.

4 Proposed Framework: VLIB

We now describe our proposed model that is called Variational Learning from Im-
plicit Bandit feedback or VLIB. We first outline the likelihood function resulting
from the proposed implicit bandit feedback. Thereafter, we discuss the variational
learning model that would optimize for that likelihood function. For ease of refer-
ence, we summarize the notations in Table 1.
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4.1 Likelihood Function for Implicit Bandit Feedback

Given an observed triplet from the logged bandit feedback (xi,ai, ci), we would
like to learn a statistical model based on an assumption on how the bandit feedback
would have been generated. Assuming a Bernoulli process, we have:

ci ∼ Bernoulli(σ(gψ(xi,ai)))

where σ(.) is the sigmoid function and gψ(., .) is some function, parameterized by
ψ, capturing interactions between xi and ai. Learning ψ can be done via maximum
likelihood principle. To avoid clutter in the notation, in the following we would
derive the log-likelihood for one data point. In turn, the log-likelihood of the
dataset can be obtained by averaging over all the observations:

log pψ(ci|xi,ai) = ci log σ(gψ(xi,ai)) + (1− ci) log(1− σ(gψ(xi,ai))) (1)

From the log-likelihood function above, we need to model the probability p(ci|xi,ai)
of an action ai being clicked, given user’s organic events xi. In real scenarios, we
may only observe logged (xi,ai, ci) for one particular action ai determined by the
logging policy ξ, and not for the other possible actions A \ {ai}. Due to this na-
ture of logged bandit feedback, it is especially challenging to estimate the clicked
probability distribution because of insufficient observations. Important as they are,
positive observations (xi,ai, ci = 1) (i.e., recommended actions being clicked) are
relatively rare. Furthermore, they intensity the latter phenomenon that a positive
observation usually means that we may not observe other occurrences of negative
observations involving xi and other actions A \ {ai}.

To rectify the latter in particular, we seek to leverage the concept of implicit
feedback, which has found great success in mitigating the sparsity issue in collab-
orative filtering (Rendle et al., 2009; Hu et al., 2008). Upon observing a positive
feedback instance involving an action ai, we presume that all other actions in A
are negative. This effectively induces a set of pseudo-observations involving the
same organic events xi, which we refer to as implicit negative feedback. Reason-
ably, such implicitly negative pseudo-observations would be treated with a lower
‘confidence’ than the explicitly positive observations. We thus derive a new log-
likelihood taking into account the implicit negative feedback:

log pψ(ci|xi,ai) = ci log σ(gψ(xi,ai))

+ (1− ci) log(1− σ(gψ(xi,ai)))

+
∑

aj∈A\{ai}

λci log(1− σ(gψ(xi,aj))) (2)

where A is the set of actions, and hyper-parameter λ controls how confident we
are about the implicit negative feedback. The value of λ lies in range of [0, 1], in
which λ = 1 implies certainty, and with λ = 0 we recover Eq. 1 that models only
explicit observations. In other words, λ < 1 recognizes that a pseudo-observation
instance would not be more important than an explicit observation instance.
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Fig. 2: Graphical representation of VLIB generative model. NO and NB are the
number of organic sessions and bandit events, respectively.

4.2 Variational Learning for User Preferences

Latent Gaussian model has shown success in learning meaningful representations
from data (Kingma and Welling, 2014; Rezende et al., 2014; Miao et al., 2016),
especially for collaborative filtering (Liang et al., 2018). In our proposed model, we
seek to learn a good D-dimensional variational latent representation zi encoding
user preference, that would result in better approximation of click probability
p(ci|zi,ai) for recommendations. We consider the following generative process:

zi ∼ N (0, ID)

xi ∼ Multinomial(Ni, π(fθ(zi)))

ai ∼ Categorical(|A|, ξ)
ci ∼ Bernoulli(σ(gψ(zi,ai)))

where the latent representation zi is sampled from a standard Gaussian prior. It is
transformed via function fθ(zi) and gψ(zi,ai) to produce probability distributions
from which the organic events xi and the bandit event ci are drawn, respectively.
The organic events xi, represented as a bag-of-words vector, are presumably sam-
pled from a multinomial distribution, π(.) is the softmax function, and the total
number of the organic events is Ni =

∑
k xik. The bandit action ai, given by the

logging policy ξ, is assumed to be sampled from a categorical distribution and
represented as an one-hot vector. The bandit event ci is sampled from a Bernoulli
distribution, where the function gψ(., .) now receives (zi,ai) as input.

Given xi ⊥⊥ ci | zi, the joint log-likelihood of xi and ci can be decomposed as:

log pψ,θ(xi, ci|zi,ai) = log pθ(xi|zi) + log pψ(ci|zi,ai) (3)

with the log-likelihood for organic events is:

log pθ(xi|zi) =
∑
k

xik log πk(fθ(zi)) (4)

and the log-likelihood for the bandit event follows Eq. 2:

log pψ(ci|zi,ai) = ci log σ(gψ(zi,ai))

+ (1− ci) log(1− σ(gψ(zi,ai)))

+
∑

aj∈A\{ai}

λci log(1− σ(gψ(zi,aj))) (5)
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4.3 Optimization

To learn the parameters {ψ, θ} of the generative model, for each observation, we
need to approximate the posterior distribution p(zi|xi,ai, ci), which is intractable.
Variational inference technique (Jordan et al., 1999) allows us to approximate
the true intractable distribution with a simpler distribution q(zi). Here we use
Gaussian distribution with diagonal covariance matrices:

q(zi) = N (µi, diag{σi})

For system scalability, it is nigh impossible to learn free variational parameters
{µi,σi} for each observation, especially in recommendation scenario which we are
dealing with. Amortized inference (Kingma and Welling, 2014) offers a solution by
learning an inference model to produce data-dependent variational distributions:

qφ(zi|xi,ai, ci) = N (µφ(xi,ai � ci),diag{σφ(xi,ai � ci)})

where µφ(., .) and σφ(., .) are functions, parameterized by φ, that output the vari-
ational parameters. � denotes the element-wise multiplication.

Under variational inference framework, learning latent variable models boils
down to maximizing the lower-bound of the marginal log-likelihood over observa-
tions (Blei et al., 2017). The parameters of the variational distributions are learned
so that Kullback-Leibler divergence KL(q(zi)||p(zi|xi,ai, ci)) is minimized. For
each bandit event, we optimize:

log pψ,θ(ci,xi|ai) ≥ Eqφ(zi|xi,ai,ci)[log pψ,θ(ci,xi|zi,ai)]
− KL(qφ(zi|xi,ai, ci)||p(zi))

= L(ψ, θ, φ; xi,ai, ci) (6)

This objective function, or evidence lower bound (ELBO), is estimated by sampling
zi ∼ qφ and maximized using stochastic gradient ascent. One challenge during
optimization is to take the gradients with respect to φ. Using re-parameterization
trick (Kingma and Welling, 2014; Rezende et al., 2014), we derive an unbiased
Monte Carlo estimator of the ELBO, which yields:

L̃(ψ, θ, φ; xi,ai, ci) =
∑

xi,ai,ci

[log pψ,θ(ci,xi|z̃i,ai)− KL(qφ(zi|xi,ai, ci)||p(zi))]

(7)
where we re-parameterize zi = µφ(xi,ai, ci) + ε� σφ(xi,ai, ci) with ε is sampled
from N (0, IK).

Algorithm 1 sketches the parameter learning procedure. Input data is a collec-
tion T = {(xi,ai, ci)}Ni=1, where each instance (xi,ai, ci) consists of user’s organic
events xi, bandit recommendation ai, and bandit feedback ci. Model parameters
{θ, ψ, φ} are updated to maximize the ELBO (Eq. 6) using gradient ascent. In
practice, instead of online stochastic update as described, we employ mini-batch
gradient ascent to speed up the learning with parallel computation. Each mini-
batch B = {(xi,ai,yi)}batch sizei , uniformly sampled from the collection T , is used
to estimate the gradients instead of a single observation. Consequently, the opti-
mization is more stable, and the time for the model to converge reduces drastically.
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Algorithm 1: Parameter learning with stochastic gradient ascent

Data: T = {(xi,ai, ci)}Ni=1
Result: Learned parameters {θ, ψ, φ}
η ← learning rate;
θ, ψ, φ← randomly initialized;
while not converged do

forall (xi,ai, ci) ∈ T do
µi = µφ(xi,ai � ci);
σi = σφ(xi,ai � ci);
Sample z̃i ∼ N (µi,diag{σi});
θ = θ + η · ∂

∂θ
[log pψ,θ(ci,xi|z̃i,ai)−KL(qφ(zi|µi,σi)||p(zi))];

ψ = ψ + η · ∂
∂ψ

[log pψ,θ(ci,xi|z̃i,ai)−KL(qφ(zi|µi,σi)||p(zi))];
φ = φ+ η · ∂

∂φ
[log pψ,θ(ci,xi|z̃i,ai)−KL(qφ(zi|µi,σi)||p(zi))];

end

end
return {θ, ψ, φ};

Perspectives on optimizing the ELBO. (Higgins et al., 2016) propose a modi-
fication of the optimization objective, reminiscent of Eq. 6, by introducing a hyper-
parameter β controlling the effect of Kullback–Leibler divergence as follows:

L(ψ, θ, φ; xi,ai, ci) = Eqφ(zi|xi,ai,ci)[log pψ,θ(ci,xi|zi,ai)]
− β × KL(qφ(zi|xi,ai, ci)||p(zi)) (8)

When setting β 6= 1.0, we are no longer maximizing a lower bound of the log
marginal likelihood. One perspective to look at the optimization, when β > 1.0,
is learning disentangled representations of the data. Increasing β will force the
posterior to be close to the prior (isotropic Gaussian). In turn, the learnt rep-
resentations will be more independent in each of their latent dimensions, which
improves the degree of disentanglement. This is important when the objective is
having more control and interpretation over newly generated samples. However,
our goal is not sampling more user organic and bandit histories, but rather a good
predictive accuracy on future observations. Another perspective is to view the KL
term in Eq. 8 as regularization factor. With that, we are more interested in the
scenario, when β < 1.0, in which the model is putting more of its capacity on
maximizing the likelihood. In other words, the focus is on maximizing negative
reconstruction error while having weaker constraint on the form of the posterior
distribution. Under this perspective, determining a proper amount of regulariza-
tion, by selecting a good setting of hyper-parameter β, would potentially lead to
better predictive performance of our model given a specific dataset.

Despite potential benefit from choosing a good value for β, our main focus
is on analysing the effectiveness of the proposed likelihood function with implicit
bandit feedback. Therefore, if not explicitly mentioned, the value of β is set to
1.0 by default, which is equivalent to maximizing the original ELBO (Eq. 6).
For completeness, we still conduct experiment with varying values of β ∈ [0, 1]
in conjunction with our new likelihood, and provide in-depth analysis, later in
RQ#3. One important aspect that we would like to emphasize is choosing value
for λ (Eq. 2), which determines our likelihood function, is orthogonal to search-
ing for a good value of β, which controls the model regularization. Alemi et al.



Variational Learning from Implicit Bandit Feedback 9

(2018) provide a perspective on the effect of β in maximizing the ELBO under
the information-theoretic framework. Obeying that interpretation, choosing λ is
defining a Rate-Distortion (RD-plane) for the model to operate on, while choosing
β is searching for an optimal point in that RD-plane. Such optimal point is a good
balance between the distortion (D) measuring the reconstruction error over the
samples in the training set, and the rate (R) measuring the relative KL divergence
between the encoding distribution and p(z). Thus, ones should look for a suitable
value of λ given the problem at hand before optimizing the value of β.

4.4 Prediction

Our goal is to provide recommendation to users while they are in the bandit state.
In order to do so, we are interested in estimating the following:

p(c|x,a) =

∫
p(c|z,a)p(z|x)dz ≈ Eqφ(z|x)pψ(c|z,a)

We compute the expectation using Monte Carlo based approximation, first by
drawing S samples:

z(s) ∼ N (µφ(x,0),diag{σφ(x,0)})

and then compute:

p(c|x,a) =
1

S

S∑
s

p(c|zs,a)

Another solution is to apply MAP estimate for zi as follows:

p(c|x,a) = p(c|µφ(x,0),a)

The latter will get rid of the sampling process and produce fast approximations
(in exchange for the loss of information captured by the covariances).

To produce a recommendation, we rank all possible actions based on the prob-
abilities p(c|x,a). The best action can be chosen in greedy fashion.

a? = argmax
a

p(c|x,a)

4.5 Complexity Analysis

Assuming that fθ, gψ, µφ, and σφ are linear transformations, given a collection
of logged bandit feedback T , the computational complexity (i.e., the number of
floating point operations) for one optimization epoch is O(|T |× (|A|+ |P|)× 4D).
A computational burden in our approach is to approximate the multinomial dis-
tribution π(fθ(z)) when the universal set of products P in the organic state is big.
This is a common challenge in statistical modeling (e.g., learning a language model
when the size of vocabulary is huge). If this computation becomes a bottleneck, it
can be mitigated by well-developed efficient sampling method (Botev et al., 2017)
or other approximation techniques (Chen et al., 2016; Morin and Bengio, 2005).

For prediction, the reconstruction of organic events x is not required. Each
recommendation takes O((2|A|+|P|)×D) if using MAP estimation, and O((2|A|+
|P|)×2D+S×D) if using MC approximation (S is the number of drawing samples).
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5 Experiments

Our objective is to evaluate the performance of the proposed model VLIB as com-
pared to other learning approaches on the logged bandit feedback. In particular,
we would organize the experimental analysis along several research questions on
learning effective model as well as generating predictions efficiently for scalable
online recommender systems.

5.1 Datasets

Bandit data tend to be proprietary, posing some barriers to open research. Fortu-
nately, recently there emerge simulation systems for recommender systems (Rohde
et al., 2018; Ie et al., 2019) that provide a platform for organic-bandit recommen-
dation problem with A/B testing evaluation.

– We first conduct our experiments on simulated data from RecoGym (Rohde
et al., 2018) simulation enviroment of product recommendation in online ad-
vertising. Using RecoGym, we evaluate all the agents with two settings of 100
and 1000 products, denoted as RG-100 and RG-1000, respectively.

– We also experiment on real data 4 of online advertising display on Taobao.com
e-commerce website. The dataset comes with users’ organic behaviors (product
browsing, adding to the shopping cart, favoring, buying) and ad bandit click
events. We filter duplicate records and retain the logs of 2000 most frex quent
brands, which yields 294,191,912 organic events and 26,557,962 bandit events
by 1,129,944 users in total. In the end, we create two datasets with the number
of brands are 500 and 2000, TB-500 and TB-2000, respectively. To simulate
user sessions, organic and bandit events of each user are lined up based on
their timestamps. This is a standard experimental procedure for session-based
recommendation in which we seek to model users’ future adoption.

The evaluation scheme consists of offline training and online testing. In the training
phase, the models receive logs of 1000 users as training data (approximately 80,000
bandit events for RG-100 and RG-1000, and 23,000 bandit events for TB-500
and TB-2000). In the testing phase, the models are deployed and evaluated over
another 1000 users with roughly the same numbers bandit events.

5.2 Evaluation Metrics

As the main objective is for online advertising, we seek high Click-Through Rate
(CTR) measured as:

CTR =
number of clicks

number of bandit events
× 100(%)

In addition, we are interested in the ranking quality of the models in the context
of top-K recommendations. Thus, we employ two widely used ranking metrics for
recommendation evaluation, Hit Ratio (HR) and Normalized Discounted Cumu-

lative Gain (NDCG). Let r
(t)
K ⊂ A be the K actions with the highest predicted

4 https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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probabilities {p(ct|xt,at) | at ∈ r
(t)
K } at time t (right before user transits to the

organic state), and v(t+1) the very first viewed product in the organic state. We
compute HR@K and DCG@K as follows:

HR@K =

{
1 if v(t+1) ∈ r

(t)
K

0 otherwise.
DCG@K =

K∑
i=1

21[v(t+1)∈r(t)K ] − 1

log(i+ 1)

NDCG@K is the DCG@K normalized into [0, 1] after normalizing it with the
best possible DCG@K, in which v(t+1) is ranked at the top. For all metrics, we
compute the average results over all testing user sessions. The reported numbers
are averaged results across 10 independent runs for each experiment.

5.3 Comparative Methods

We compare the proposed VLIB with simple heuristic baselines in recommenda-
tion, statistical and deep learning methods for click-through rate prediction, as
well as state-of-the-art method for learning from bandit feedback:

– Random is the simplest baseline without learning from data. The actions are
randomly selected with uniform probability p(a) = 1/|A|.

– MostPop is a simple yet effective baseline in the context of recommendation,
selecting action of the most popular item in the organic events.

– Cooccur selects the actions that have the highest co-occurrences with the
latest organically-viewed item (i.e., it assumes first-order Markov dependency
and takes into account the temporal information).

– MLR (Multinomial Logistic Regression) directly models the probability of an
action given the organic events p(a|x), its goal is to learn a policy that would
maximize number of clicks if was being deployed instead of the logging policy
ξ, thus, observations are re-weighted by the inverse propensity score of the
logging policy wi = ci/ξ(ai). More details on this method can be found in
(Jeunen et al., 2019).

– xDeepFM (eXtreme Deep Factorization Machines) (Lian et al., 2018) is a
strong method for click-through rate prediction. It combines the power of fac-
torization machines (FM) for recommendation, deep neural network (DNN)
for capturing feature interactions with the proposed Compressed Interaction
Network (CIN). xDeepFM is included as a representative baseline of the family
of models, which try to estimate the probability of user-click p(c|x,a), treat-
ing organic events as input features without further assumption. The model
uses second-order FM with the searched-grid of hyper-parameters as follows:
E ∈ [8, 16, 32] is the size of embeddings, T ∈ [1, 2, 3] is the number of hidden
layers in DNN and CIN, H ∈ [64, 128, 256] is the number of neuron units per
layer. Each neuron uses hyperbolic tangent as non-linear activation function.

– POEM (Policy Optimizer for Exponential Models) (Swaminathan and Joachims,
2015b) tackles the counterfactual effect with Counterfactual Risk Minimization
(CRM) learning principle. It is considered state-of-the-art for the problem of
learning from logged bandit feedback (Jeunen et al., 2019). We follow the au-
thors’ recommendation of clipping constant M based on propensity score, and
search for the best hyper-parameter c ∈ [10−6, ..., 1] in multiples of 10.
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Table 2: Comparison between VLIB and comparative methods on various datasets.

CTR(%) HR@10 NDCG@10
R
G
-1

0
0

Random 1.069± 0.050 0.071± 0.058 0.038± 0.026
MostPop 1.128± 0.332 0.796± 0.047 0.496± 0.053
Cooccur 1.400± 0.214 0.848± 0.030 0.594± 0.042
MLR 1.493± 0.258 0.796± 0.034 0.604± 0.044
xDeepFM 1.513± 0.253 0.763± 0.029 0.590± 0.046
POEM 1.542± 0.223 0.824± 0.036 0.624± 0.043
VLIB 1.672± 0.263? 0.879± 0.024? 0.659± 0.039?

R
G
-1

0
0
0

Random 1.069± 0.043 0.010± 0.019 0.003± 0.006
MostPop 2.043± 0.752 0.591± 0.093 0.372± 0.077
Cooccur 2.316± 0.166 0.656± 0.079 0.451± 0.076
MLR 2.460± 0.167 0.626± 0.079 0.477± 0.077
xDeepFM 2.479± 0.174 0.612± 0.086 0.422± 0.073
POEM 2.501± 0.165 0.634± 0.079 0.481± 0.078
VLIB 2.613± 0.134? 0.719± 0.065? 0.522± 0.073?

T
B
-5

0
0

Random 1.073± 0.042 0.044± 0.081 0.035± 0.078
MostPop 1.823± 0.684 0.620± 0.117 0.394± 0.108
Cooccur 2.149± 0.204 0.685± 0.093 0.473± 0.100
MLR 2.297± 0.224 0.666± 0.083 0.503± 0.094
xDeepFM 2.302± 0.236 0.634± 0.081 0.465± 0.092
POEM 2.315± 0.225 0.674± 0.085 0.508± 0.095
VLIB 2.453± 0.157? 0.743± 0.077? 0.544± 0.091?

T
B
-2

0
0
0

Random 1.071± 0.044 0.003± 0.004 0.001± 0.001
MostPop 2.220± 0.646 0.512± 0.081 0.318± 0.064
Cooccur 2.503± 0.088 0.573± 0.071 0.386± 0.068
MLR 2.610± 0.086 0.556± 0.061 0.417± 0.064
xDeepFM 2.613± 0.092 0.522± 0.075 0.352± 0.069
POEM 2.627± 0.101 0.550± 0.080 0.418± 0.076
VLIB 2.678± 0.099? 0.642± 0.064? 0.462± 0.067?

? improvements over the second-best baseline are statistically signif-
icant with paired sample t-test (p-value < 0.01).

VLIB could learn highly expressive functions fθ and gψ with deep neural net-
works if such modeling capacity is required to discover complex interactions be-
tween x and a (see the discussion on Proposed Framework: VLIB). Here, we pri-
oritize efficiency and experiment with simpler linear functions for both fθ and gψ,
as these already achieve competitive performances. The number of dimensions for
the latent variable z is D = 50 across all datasets, while hyper-parameter λ is
searched within [10−4, . . . , 1] in multiples of 10. The best obtained values for λ are
0.01 on RG-100, RG-1000, TB-500 datasets, and 0.1 on TB-2000 dataset.

5.4 Empirical Results and Discussion

We analyze the empirical results along five research questions (RQ#1 to RQ#5).

RQ#1: How Does VLIB Perform as Compared to the Baselines?
The experimental results in Table 2 show that in many cases, the simple methods
MostPop and Cooccur achieve competitive performance to the model-based ap-
proaches. Cooccur even surpasses learning methods MLR, xDeepFM, and POEM
in terms of HR measurement, though the ranking quality is not as good, as re-
flected by lower NDCG scores. xDeepFM achieves competitive performance in
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Table 3: Effectiveness of including implicit bandit feedback.

CTR(%) HR@10 NDCG@10

RG-100
Exp 1.177± 0.070 0.204± 0.043 0.095± 0.022
Imp 1.555± 0.216 0.802± 0.049 0.563± 0.056

RG-1000
Exp 1.764± 0.124 0.179± 0.026 0.094± 0.014
Imp 2.414± 0.127 0.571± 0.087 0.394± 0.072

TB-500
Exp 1.607± 0.103 0.195± 0.031 0.101± 0.017
Imp 2.248± 0.154 0.619± 0.105 0.427± 0.099

TB-2000
Exp 2.000± 0.110 0.182± 0.024 0.104± 0.017
Imp 2.568± 0.081 0.480± 0.088 0.337± 0.071

terms of CTR as it is what the model is designed for. However, the model per-
forms poorly for top-K ranking metrics (i.e., HR and NDCG). One explanation
for that could be on the perspective of learning of the model family which tries to
estimate p(c|x,a). The model is lacking negative samples to contrast with the pos-
itive ones (i.e., clicked recommendations). This affirms our motivation to come up
with the notion of implicit bandit feedback and the corresponding likelihood func-
tion (Eq. 2). POEM consistently shows better performance than both xDeepFM
and MLR, especially in CTR metric. The improvement can be credited to better
learning algorithm derived from CRM.

Evidently, VLIB achieves the highest performance. The gaps are notable es-
pecially in terms of the top-K recommendation metrics. We attribute that to the
contribution of learning better representation of preferences via generative mod-
eling of observational events together with implicit bandit feedback. Thus, VLIB
can better rank the actions as compared to MLR and POEM, that directly opti-
mize for determining only the best action. We statistically test the performance of
VLIB against the second best method POEM using paired samples t-test, and find
VLIB to be significantly better than POEM across all metrics. This suggests that
VLIB is an effective approach for dealing with organic-bandit recommendation.

In Figure 3, we report the performance of VLIB in terms of click-through
rate with different level of user’s organic activity (how many organic events by
a user before she enters a bandit state). POEM which is the second-best base-
line (Table 2) is also included as a reference compared to VLIB. Overall, a clear
trend is that both models perform better when observing more organic events. In
other words, users’ preferences are being captured from their organic feedback,
which turns into more accurate recommendations during bandit state. Among the
two methods, VLIB is consistently better than POEM, especially in the lower
percentiles (lack of organic events). The gap is closer with higher percentiles (suf-
ficient organic events for modelling user preferences). This result emphasizes that
VLIB is suitable for dealing with less organically active users (viewing less items
on the organic states), and it also explains the improvements of VLIB over the
compared baselines. Furthermore, recommendations by VLIB are more accurate
and reliable when observing more organic feedback (error bars shrinking). This is
particularly prominent for RG-1000 (Figure 3b) and TB-2000 (Figure 3d).

RQ#2: Does Learning From Implicit Bandit Feedback Improve the Ac-
curacy?
Table 3 reports an experiment comparing the two choices of likelihood functions
for learning from logged bandit feedback. Exp (see Eq. 1) relies only on explicit
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Fig. 3: Click-through rate (CTR) breakdown with increasing levels of user’s organic
activity (how many organic events by a user before she enters a bandit state).
POEM (second-best baseline) is included as a reference for comparison with VLIB.

feedback. Imp (see Eq. 2) is based on both explicit and implicit bandit feedback.
We see that the improvement of Imp over Exp is substantial and consistent. Imp
generalizes Exp and has the advantage of controlling the confidence using λ. The
effectiveness of the additional term in the Imp likelihood will be further analyzed
later when answering a research question on re-weighting samples.

We analyze the effect of implicit bandit feedback on the performance of VLIB.
Figure 4 shows the results in terms of CTR while varying the values of hyper-
parameter λ. Generally, we observe that the best click-through rate is achieved
when λ > 0, demonstrating the positive impact of implicit bandit feedback on our
model. Intuitively, we might think that the optimal value of λ is data-dependent
and needs to be carefully selected. However, this experiment suggests that CTR
is less sensitive to λ when λ reaches a certain threshold, λ = 0.01 in this case.
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Fig. 4: Effect of the implicit feedback on VLIB in terms of click-through rate
(CTR). The y-axis displays CTR, and the x-axis shows varied values of the hyper-
parameter λ controlling the certainty of implicit negative feedback (Eq. 2).
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Fig. 5: Convergence of VLIB in terms of click-through rate (CTR). The y-axis
displays CTR, and the x-axis shows the number of epochs through training data.

To avoid doing grid search, one heuristic approach to select good value for λ is
based on annealing. λ can be set to 1.0 at first and decreasingly annealed during
training. While annealing, we perform validation and stop decreasing λ when we
notice the validation metric dropping.

Figure 5 illustrates the performance of VLIB in terms of CTR with differ-
ent number of training epochs. The model achieves good performance after a few
epochs, and its results keep improving and stabilizing when we increase the time
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Table 4: Effectiveness of learning variational representation of user preferences.

CTR(%) HR@10 NDCG@10

RG-100
Det 1.555± 0.216 0.802± 0.049 0.563± 0.056
Var 1.672± 0.263 0.879± 0.024 0.659± 0.039

RG-1000
Det 2.414± 0.127 0.571± 0.087 0.394± 0.072
Var 2.613± 0.134 0.719± 0.065 0.522± 0.073

TB-500
Det 2.248± 0.154 0.619± 0.105 0.427± 0.099
Var 2.453± 0.157 0.743± 0.077 0.544± 0.091

TB-2000
Det 2.568± 0.081 0.480± 0.088 0.337± 0.071
Var 2.678± 0.099 0.642± 0.064 0.462± 0.067

for training. This shows that optimizing the proposed Eq. 2 would lead to im-
provements in CTR, the main objective when displaying online advertisements.

RQ#3: How Effective Is Learning Variational Representation of User
Preferences?
One contribution in the proposed framework is to learn a latent variable model
that can explain both organic and bandit feedbacks. We examine the effect of
representing user preferences in a low D-dimensional space as opposed to directly
modeling the relationship between x and a. We denote the former as Var (for vari-
ational), and the latter as Det (for deterministic). For parity, we only learn linear
mapping functions fθ, gψ, as well as µφ and σφ for Var. In terms of model capacity,
Var has fewer parameters than Det, thus has no advantage in memorization.

In Table 4, we can see that Var ’s outperformance over Det is especially re-
markable in terms of ranking metrics (HR and NDCG). From one perspective,
Var imposes stronger modeling assumptions than Det, the prior of latent space,
and therefore could be more robust when the feedback is scarce. From another per-
spective, there is a regularization effect in forcing z to also explain x, which drives
Var model away from putting all capacity in being discriminative of p(c|x,a), as
Det model does. That could be an explanation for improvements in the ranking
measurements as Var can rank actions better than rather just determine the best
action. This result proves the effectiveness of learning variational representation
of user preferences for better recommendation to the problem at hand.

Figure 6 illustrates the performance of our model in terms of CTR while vary-
ing the value of hyper-parameter β (in Eq. 8). As discussed earlier, ones should
look for a suitable value of λ (in Eq. 2) before optimizing the value of β. In this ex-
periment, λ = 0.001 for TB-2000 and λ = 0.01 for the rest of the datasets as they
show the best performance in the previous experiment (see Fig. 4), while the value
of β is varied in the range of [0, 1]. We observe a clear improvement with β = 0.9
on TB-2000 dataset while it is negligible on the others. Nevertheless, with β = 1.0,
our model still achieves competitive performance suggesting that optimizing the
ELBO lies near the optimal point of the RD-plane if properly defined via a good
selection of value for λ. Our proposed framework is less sensitive to the value of
β, although with a cost of searching it potentially yields an improvement. While
β is decreasing towards 0.0, weakening the effect of KL term and approaching the
deterministic learning, the CTR performance drastically declines. It vividly show-
cases the effectiveness of learning variational representation (Var) as compared to
deterministic representation (Det), which reinforces the same observation demon-
strated in Table 3.
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Fig. 6: Effect of the KL regularizer on VLIB in terms of click-through rate
(CTR). The y-axis displays CTR, and the x-axis shows varied values of the hyper-
parameter β controlling the regularization effect on our model (Eq. 8).

Table 5: Effect of re-weighting likelihood function.

CTR(%) HR@10 NDCG@10

RG-100
NoIPS 1.672± 0.239 0.879± 0.024 0.659± 0.039
IPS 1.672± 0.263 0.867± 0.030 0.627± 0.048

RG-1000
NoIPS 2.613± 0.134 0.719± 0.065 0.522± 0.073
IPS 2.563± 0.159 0.679± 0.080 0.468± 0.084

RQ#4: Does Re-weighting Likelihood Function Using IPS Help?
When using a simple model with the standard maximum likelihood approach,
the model may underfit and only focus on minimizing error around the common
observations (xi,ai) by the logging policy. The problem has been characterized and
commonly known as covariance shift (Shimodaira, 2000). One solution is to re-
weight the likelihood to compensate for underrepresented samples. In the context
of bandit feedback, we can practically achieve that by using inverse propensity
score (IPS) of the logging policy wi = 1/ξ(ai). Table 5 reports the comparison of
VLIB using the proposed likelihood (Eq. 2) denoted as NoIPS and re-weighted
version IPS. We conduct the experiment on two datasets RG-100 and RG-1000,
TB datasets are omitted because we do not have access to the logging policy.

Interestingly, the results favor NoIPS, i.e., the proposed likelihood without re-
weighting tends to perform better. One explanation could be the contribution of
the implicit feedback assumption. The additional term to the likelihood function
also has re-weighting effect by emphasizing the importance of the positive feedback,
which is usually scarce. Furthermore, it augments the data with more observations
of organic feedback and negative action pairs (xi,aj), aj ∈ A \ {ai}.

RQ#5: Can We Use MAP Estimate Instead of MC Sampling for Pre-
diction?
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Table 6: MC sampling vs. MAP for prediction.

CTR(%) HR@10 NDCG@10

RG-100
MC 1.661± 0.245 0.881± 0.025 0.659± 0.039
MAP 1.672± 0.239 0.879± 0.024 0.659± 0.039

RG-1000
MC 2.606± 0.135 0.720± 0.063 0.523± 0.071
MAP 2.613± 0.134 0.719± 0.065 0.522± 0.073

TB-500
MC 2.460± 0.161 0.742± 0.076 0.544± 0.091
MAP 2.453± 0.157 0.743± 0.077 0.544± 0.091

TB-2000
MC 2.706± 0.094 0.646± 0.073 0.463± 0.075
MAP 2.678± 0.099 0.642± 0.064 0.462± 0.067

There are two ways to obtain predictions from VLIB due to the variational repre-
sentation of user preferences. Using Monte Carlo sampling, we use the uncertainty
captured by the covariance of the variational distributions. This comes at a cost as
we need a reasonable number of samples for a stable prediction. It makes deploy-
ment of real-time recommender systems challenging. For faster approximation, we
apply MAP estimate to only use the mean µ of z and ignore the covariance σ.

Table 6 provides the comparison between the two approaches across the four
datasets. For the former approach, denoted as MC, we draw 200 samples for each
approximation. The latter point estimate approach is denoted as MAP. As shown
by the results, it is perhaps surprising that just using the posterior mean can
perform similarly well to the Monte Carlo approach. The gain by MC is marginal
in terms of HR and NDCG, where, there are noticeable differences in terms of
CTR on TB datasets. This result suggests that MAP estimate can be effectively
used for deployment of real-time recommender systems with a low cost of accuracy
in return for a remarkable gain in efficiency.

6 Conclusion

We address the problem of learning from logged bandit feedback, which is a differ-
ent scenario from online reinforcement learning in that the former is batch learning
from existing logs. The proposed method VLIB optimizes a more adequate likeli-
hood function incorporating implicit negative feedback involving organic events
associated with positive bandit feedback. Comprehensive experiments on sim-
ulated bandit scenario using RecoGym and real-life datasets from Taobao.com
yield insightful results. VLIB outperforms comparable baselines comprehensively.
We further validate the contributions of modeling components ablatively, such as
the proposed implicit feedback (vs. modeling just the explicit user response) and
variational learning of user preferences (vs. deterministic learning). In terms of
likelihood estimation, we discover that re-weighting using inverse propensity score
does not make much difference, while using MAP in place of Monte Carlo sampling
provides efficiency gains at minimal accuracy loss.

As future work, we would further investigate the impact of implicit bandit
feedback. The objective is to gain more theoretical insights on how not only it
improves click-through rate prediction but also eases the need of using inverse
propensity score re-weighting, which is not trivial when the access to logging policy
is limited.
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