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ABSTRACT
Data sparsity is a long-standing challenge in recommender systems.
Among existing approaches to alleviate this problem, cross-domain
recommendation consists in leveraging knowledge from a source
domain or category (e.g., Movies) to improve item recommendation
in a target domain (e.g., Books). In this work, we advocate a prob-
abilistic approach to cross-domain recommendation and rely on
variational autoencoders (VAEs) as our latent variable models. More
precisely, we assume that we have access to a VAE trained on the
source domain that we seek to leverage to improve preference mod-
eling in the target domain. To this end, we propose a model which
learns to fit the target observations and align its hidden space with
the source latent space jointly. Since we model the latent spaces by
the variational posteriors, we operate at this level, and in particular,
we investigate two approaches, namely rigid and soft alignments.
In the former scenario, the variational model in the target domain
is set equal to the source variational model. That is, we only learn
a generative model in the target domain. In the soft-alignment
scenario, the target VAE has its variational model, but which is
encouraged to look like its source counterpart. We analyze the pro-
posed objectives theoretically and conduct extensive experiments
to illustrate the benefit of our contribution. Empirical results on
six real-world datasets show that the proposed models outperform
several comparable cross-domain recommendation models.

KEYWORDS
Cross-Domain Recommendation, Variational Autoencoder, Collab-
orative Filtering, Neural Networks
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1 INTRODUCTION
Recommender systems play an essential role in helping the users of
modern applications to navigate the tremendous amount of choices
offered to them [8, 43]. A standard approach to recommendation
consists in fitting a statistical model to observed user-item inter-
actions (e.g., ratings, clicks) that can be generalized to estimate
unknown user-item preferences [14, 19, 29, 36, 37, 48]. This way
of solving the recommendation problem is known as model-based
collaborative filtering in the literature [5, 10, 24], and enjoys two
main benefits, namely high performance and scalability.

One perennial challenge for the family of collaborative filtering
algorithms is data sparsity, i.e., the number of observed interactions
for every user or item is typically much lower than the possible
number of interactions. It is not uncommon for data sparsity to
reach 98% or more, i.e., for an average user we observe her interac-
tions with merely 2% of all items yet seek to predict the rest. In the
extreme cold-start scenario, which we consider in this paper, we
may even seek to recommend items to users with no prior obser-
vations at all in a particular domain. This poses significant model
estimation and generalization difficulties, as collaborative filtering
relies on user-item interactions as the primary driver.

Problem. For those users who start cold in a particular domain
(hereinafter known as the target domain), one approach is to bring
in information from a different domain (hereinafter known as the
source domain) where those users have some observed interactions.
This approach is known as cross-domain recommendation [11, 13,
21, 28]. In this work, we focus on the scenario in which domains
are item categories (e.g., Movies, Books) that share the same set of
users. Under this setting, given a group of users, the goal is to use
their observations and model in the source domain (e.g., Movies)
to provide them with recommendations in the target domain (e.g.,
Books).

To meet this objective, different methods have been investigated
in the literature (see Section 2). For instance, collective matrix fac-
torization jointly factorizes rating matrices from various domains
with a shared user-latent space [42]. There are also techniques in-
spired by transfer learning, which seek to either learn a mapping
between the source and target models or infer user representations
that are domain-invariant [26, 49]. Even so, cross-domain recom-
mendation remains a relatively under-explored topic owing to its
challenging nature.

Contributions. In this work, we advocate a probabilistic ap-
proach to cross-domain recommendation contrary to existing meth-
ods that are mostly deterministic. As our building block to model
observations, we rely on deep generative latent variable models,
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namely variational autoencoders (VAEs) [18, 30], which have re-
cently and evidentially shown strong performance on the item rec-
ommendation task [20, 24, 25, 39, 46]. More precisely, we leverage
a VAE trained on the source domain to improve preference mod-
eling in the target domain. To this end, we propose a variational
autoencoder model which learns to fit the target observations and
align its hidden space with the source latent space simultaneously
(see Section 3). Since we model the latent spaces by the variational
posteriors, we operate at this level. In particular, we investigate
two approaches, namely rigid and soft alignments. In the former
scenario, the variational model in the target domain is set equal to
the source variational model. That is, we only learn a generative
model in the target domain. In the soft-alignment scenario, the
target VAE has its variational model, but which is encouraged to
look like its source counterpart. In this latter scenario, our VAE
modeling assumptions in the target domain give rise to a new ob-
jective, which we analyze theoretically to illustrate its properties
for cross-domain recommendation.

Moreover, we conduct extensive experiments on six real-world
datasets derived from a couple of e-commerce providers (see Sec-
tion 4). Each dataset involves a pair of source and target domains
from the same e-commerce provider, thus sharing a common user
base which is a key vehicle to crossing domains. Comparison to
several existing cross-domain recommendation methods showcase
the utility of our proposed modeling approach.

2 RELATEDWORK
Model-based collaborative filtering is an active research topic with
a very rich literature. In this section, we briefly review work related
to our contribution.

Matrix factorization (MF) models are predominant in collabo-
rative filtering [9, 19, 33, 36, 38]. Several variants exists and the
core differences are the assumptions on the latent and observation
spaces [6, 32, 36], as well as the type of training objective, namely
pointwise (scoring) loss [14, 36] or pairwise (ranking) loss [29].
Despite their success, the main limitation of MF-based models is
their linear nature. This has motivated several contributions to
develop non-linear recommendation models based on neural net-
works [10, 37, 48]. While these methods improve upon MF models
in some situations, they turn out to be prone to overfitting when
trained on sparse user-item preferences. More recently, deep gener-
ative models, namely variational autoencoders (VAEs) [18, 30], have
shown strong performance improvement over several neural and
MF-based models [24, 25, 39, 46]. This has motivated our choice of
VAEs as the building blocks to model user-item preferences. These
vanilla model-based recommender systems can be applied to the
cross-domain task by concatenating the different domains to form a
single dataset. However it turns out that this strategy could exacer-
bate the sparsity issue, which suggests that it is worth investigating
models specifically designed for the cross-domain task.

Various cross-domain recommendation models have been pro-
posed to alleviate the sparsity issue.While some earlier contribution
were clustering-based [21], many cross-domain methods use matrix
factorization as the base model to learn from observations. Among
the popular approaches, collective matrix factorization jointly de-
composes the rating matrices of the different domains with a shared

user latent factors [42]. EMCDR, which stands for Embedding and
Mapping framework for Cross-Domain Recommendation [26], fits
MF models to the different domains and subsequently learns a
mapping from the source to the target user embeddings or fac-
tors. To increase the modeling capacity, several efforts focused
on building neural-based cross-domain recommendation methods
[11, 22, 40, 49]. The notable Deep Domain Adaptation for Cross-
Domain Recommendation (DaRec) [49] seeks to learn user rep-
resentations that are domain invariant by relying on adversarial
training. Both EMCDR and DaRec will be included as baselines.

More recently, motivated by the success of deep generative mod-
els in collaborative filtering, some authors rely on VAE to tackle
cross-domain recommendation [1, 41]. The method proposed in
[41] is very similar to EMCDR, it uses a Bayesian-VAE to learn-
ing the mapping between source and target user factors, which
are obtained by fitting MF models to the different domains. This
method is different from ours in several aspects. For instance, we
use VAE to model the user preference, while the method in [41]
uses matrix factorization. The model proposed in [1], which we
refer to in this paper as Linked-VAEs, is the most closely related
method to our contribution. Linked-VAEs jointly fits two VAEs, one
to source data and another to the target data. To link the two VAEs,
the outputs of both the source and target variational encoders are
fed to the target decoder. In this paper we investigate an alternative
VAE-based approach to cross-domain recommendation, which con-
sists in encouraging the target variational model to align with its
source counterpart. In our experiments, we include Linked-VAEs as
a baseline to assess the importance of our contribution. To further
elucidate the novelty of our approach, we will compare and contrast
the modeling components of our proposed method vis-á-vis these
related VAE-based models shortly in Section 3.

Note that there are also cross-domain recommendation models
which integrates auxiliary data such as item textual descriptions or
reviews [7, 12, 17, 23]. In this work, we do not use auxiliary data
and learn from rating data only. In principle the method we propose
can also be extended to incorporate various types of auxiliary data
[47], which we leave to feature work.

3 METHOD
We assume that we are given a set of users along with their prefer-
ences over two disjoint sets of items, namely the source and target
domains. In the rest of the paper we will use the superscripts “s”
and “t” to refer to the source and target domains respectively. The
user-item preferences in the source domain are organized into a
matrix X𝑠 = (𝑥𝑢𝑖 ) of size𝑈 × 𝐼𝑠 , where 𝑥𝑠

𝑢𝑖
denotes the interaction

(e.g., rating) between user 𝑢 and item 𝑖 . The row of this matrix x𝑠𝑢
is a vector containing all the preferences of user 𝑢. Similarly, X𝑡 is
the user-item matrix in the target domain.

3.1 Source Domain Model
We model the source domain data using a latent generative model
of user preferences. We assume a continuous latent space with
a standard isotropic Gaussian prior, i.e., 𝑝 (z) = N(0, I), z ∈ R𝐾 .
Conditional on the latent variables, the observations x𝑠𝑢 are assumed
to follow a Multinomial distribution parameterized using a neural
network. That is,
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𝑝 (x𝑠𝑢 |z𝑢 ) = Mult(x𝑠𝑢 ·, 𝜋 (z𝑢 )),

with z𝑢 ∼ 𝑝 (z), 𝜋 (z𝑢 ) ∝ exp {𝑔𝜃 (z𝑢 )} and 𝑥𝑠𝑢 · =
∑
𝑖

𝑥𝑢𝑖 (1)

where 𝑔𝜃 (z) is a neural network with parameters 𝜽 , which takes as
input z𝑢 and produces as output the unnormalized parameters of
the Multinomial distribution 𝑝 (x𝑠𝑢 |z). Please refer to [24] for details
on the benefits of using the Multinomial to model preference data.

To fit our model to observations, we need to infer the posterior
𝑝 (z𝑢 |x𝑠𝑢 ), which is intractable. We therefore resort to Variational
Inference (VI) [3, 4, 16], a popular and efficient approach to deal
with complex probabilistic models. The idea of VI is to approximate
the true posterior with a tractable variational model 𝑞𝜙 (z𝑢 |x𝑠𝑢 ),
governed by its own parameter𝜙 . We let the variational distribution
be a multivariate Gaussian with a diagonal covariance matrix:

𝑞(z𝑢 |x𝑠𝑢 ) = N(𝝁𝜙 (x𝑠𝑢 ),𝝈𝜙 (x𝑠𝑢 )), (2)

where 𝝁𝜙 (·) and 𝝈𝜙 (·) are vector-valued functions – we use neural
networks in this work – parameterized by𝜙 , outputting respectively
the mean and covariance parameters of the variational distributions.
The combination of the above generative and inference models,
𝑝 (x𝑠𝑢 |z𝑢 ) and 𝑞𝜙 (z𝑢 |x𝑠𝑢 ), gives rise to a variational autoencoder for
preference data [18, 24]. Learning under this framework amounts
to maximizing the Evidence Lower BOund (ELBO), w.r.t. the model
𝜽 and variational 𝝓 parameters, which takes the following form,

L =
∑
𝑢

E𝑞 (z𝑢 |x𝑠𝑢 ) [log 𝑝 (x
𝑠
𝑢 |z𝑢 )] − KL(𝑞𝜙 (z𝑢 |x𝑠𝑢 ) | |𝑝 (z𝑢 )) (3)

where KL stands for the Kullback–Leibler divergence. We use the
reparameterization trick and rely on stochastic optimization to max-
imize the above objective, which is the standard procedure to esti-
mate VAE models from data [18].

3.2 Target Domain Model
Our objective is to leverage the source data and model while mak-
ing recommendation in the target domain. To this end, the core
idea of our approach is to fit the target observations with a model
whose latent space should align with the hidden space in the source
domain. We let the target model have the same parametric form as
the source model, and investigate two variants, namely rigid and
soft alignments.

Rigid Alignment. We can achieve a perfect alignment between
the source and target latent spaces by setting the variational model
in the target domain equal to the source variational model. We
refer to this model as Rigidly Aligned VAE (RA-VAE), and its graph-
ical representation is depicted in Figure 1 (d). For learning, all we
need is to estimate the target generative model, by maximizing the
following objective,

L =
∑
𝑢

E𝑞𝜙∗ (z𝑢 |x𝑠𝑢 ) [log 𝑝 (x
𝑡
𝑢 |z𝑢 )] − KL(𝑞𝜙∗ (z𝑢 |x𝑠𝑢 ) | |𝑝 (z𝑢 ))︸                        ︷︷                        ︸

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

(4)

where the conditional likelihood 𝑝 (x𝑡𝑢 |z𝑢 ) is a Multinomial defined
as in (1), the superscript * is used to refer to the parameter values
estimated from the source data, which are held fixed when fitting
the target model. Hence, the KL-term in (4) is a constant. While

the source and target latent spaces are identical, one limitation of
this approach is that the lower bound of equation (4) may not be
tight since the variational model is fixed, which could lead to a bad
estimation of the generative model. We therefore investigate an
alternative approach, which does not enforce a rigid alignment.

Soft Alignment. In this variant we seek to encourage the target
variational model to look like its source counterpart. To do so in
a principled way, we use the approximate posterior distribution
𝑞𝜙∗ (z𝑢 |x𝑢 ) from the source domain as a prior over the latent vari-
ables in the target domain. That is, the target preferences of user
𝑢 are assumed to have been generated from the following genera-
tive model 𝑞𝜙∗ (z𝑢 |x𝑠𝑢 )𝑝 (x𝑡𝑢 |z𝑢 ), where 𝑝 (x𝑡𝑢 |z𝑢 ) is defined as in (1)
by substituting x𝑡𝑢 for x𝑠𝑢 . We call this variant Softly Aligned VAE
(SA-VAE), please refer to Figure 1 (e) for a graphical representation.
Similar to the source model, we have to resort to variational infer-
ence to estimate our model from data. We introduce the following
variational model, which as we shall see shortly, combined with
the above specification of the generative model will give rise to an
objective satisfying our desiderata.

𝑞𝜓 (z𝑢 |x𝑡𝑢 ) = N(𝝁𝜓 (x𝑡𝑢 ),𝝈𝜓 (x𝑡𝑢 )), (5)

where 𝝁𝜓 (·) and 𝝈𝜓 (·) are vector-valued functions – we use neural
networks in this work – parameterized by𝜓 , outputting respectively
the mean and covariance parameters of the variational distribution.
Note that we choose a variational model where the conditioning
on the observations is explicit only on the target data x𝑡𝑢 . The
conditioning on source data is implicit, and more insights on this
are provided in the next section. With the generative and variation
inference models in place, the ELBO for the target model takes the
following form,

L =
∑
𝑢

E𝑞𝜓 (z𝑢 |x𝑡𝑢 ) [log𝑝 (x
𝑡
𝑢 |z𝑢 )] − KL(𝑞𝜓 (z𝑢 |x𝑡𝑢 ) | |𝑞𝜙∗ (z𝑢 |x𝑠𝑢 ))

(6)

It is now clear how the objective of equation (6) encourages the tar-
get variational model to be similar to the source variational model
thanks to the KL-term. Note that by maximizing the above lower
bound w.r.t. the target variational parameters 𝜓 we can make it
tighter. Similar to the vanilla VAE, we rely on the reparameteri-
zation trick and stochastic optimization to estimate the model 𝜽
and variational parameters𝜓 from data. In the next section we will
analyse this objective theoretically to gain more insight into some
of its desirable properties for the cross-domain recommendation
task.

3.3 Theoretical Analysis and Connection with
the Information Bottleneck Principle

In this section, we provide an information-theoretic analysis of
SA-VAE’s criterion to gain more insights into some of its properties.
Consider the following equivalent expression of (6), which is more
convenient to work with for the purposes of our analysis.
1
𝑈

× L =E𝑞 (x𝑡 ,x𝑠 )𝑞𝜓 (z |x𝑡 ) [log 𝑝 (x𝑡 |z)] − KL(𝑞𝜓 (z|x𝑡 ) | |𝑞𝜙 (z|x𝑠 ))
(7)

where 𝑞(x𝑡 , x𝑠 ) is the joint empirical data distribution of the source
and target domain preferences, i.e.,𝑞(x𝑡 ) = 1

𝑈

∑𝑈
𝑢=1 𝛿 (x𝑡−x𝑡𝑢 )𝛿 (x𝑠−
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Figure 1: Graphical representation of different VAE-based cross-domain recommendation models. Note that EMCDR was ini-
tially used with matrix factorization, here we use it with VAE as the base model to learn user representations, which offers
superior performance compared to using matrix factorization.

x𝑠𝑢 ), with𝛿 (·) denoting theDirac delta function,𝑞𝜓 (z|x𝑡𝑢 ) ≜ 𝑞𝜓 (z𝑢 |x𝑡𝑢 )
and 𝑞𝜙 (z|x𝑠𝑢 ) ≜ 𝑞𝜙 (z𝑢 |x𝑠𝑢 ) by definition. With these new notations
in place, we derive the following alternative expression of SA-VAE’s
objective function,
1
𝑈

× L =E𝑞 (x𝑡 ,x𝑠 )𝑞𝜓 (z |x𝑡 ) [log𝑝 (x𝑡 |z)] − I𝑞 (z, x𝑡 ) + Ĩ𝑞 (z, x𝑠 ) (8)

where I𝑞 (z, x𝑡 ) is the mutual information between z and x𝑡 induced
by the joint 𝑞(z, x𝑡 ) =

∫
𝑞(x𝑡 , x𝑠 )𝑞𝜓 (z|x𝑡 )𝑑x𝑠 , while Ĩ𝑞 (z, x𝑠 ) is a

variational lower bound on the mutual information I𝑞 (z, x𝑠 ) in-
duced by the joint 𝑞(z, x𝑠 ) =

∫
𝑞(x𝑡 , x𝑠 )𝑞𝜓 (z|x𝑡 )𝑑x𝑡 . We have ex-

pressed the KL-term in (7) as follows,

KL(𝑞𝜓 (z|x𝑡 ) | |𝑞𝜙 (z|x𝑠 )) = I𝑞 (z, x𝑡 ) − Ĩ𝑞 (z, x𝑠 ). (9)

The derivation details of expression (9) are given at the end of
this section. Interestingly, the mutual information part in Equation
(8) form a variational bound on the Information Bottleneck (IB)
objective [2, 44, 45]. That is, for 𝛽 ≤ 1, we have

IB =I𝑞 (z, x𝑠 ) − 𝛽I𝑞 (z, x𝑡 ) ≥ Ĩ𝑞 (z, x𝑠 ) − I𝑞 (z, x𝑡 ) (10)

Hence the proposed SA-VAE can be viewed as a generative model
regularized with the Information Bottleneck principle. Recall that
theMutual information is a measure of mutual dependence between
two variables. Equation (8) reveals that learning SA-VAE by maxi-
mizing its ELBO, encourages the latent variable z to be independent
of the target observations x𝑡 and to be dependant of the source data
x𝑠 simultaneously, while explaining the target observations thanks
to maximizing the decoder model 𝑝 (x𝑡 |z). Hence, intuitively, as
long as the model can explain the target observations, it prefers
to rely more on the source data than the target data to infer the

latent representations. This is a beneficial property in the context
of cross-domain recommendation since, at test time, we seek to
leverage the source domain model to make recommendation for
new instances (users) in the target domain.

We now provide the derivation details of Equation (9).
Proof. Equation (8) can be obtained starting from (7) and rewriting
the KL-term as follows.

KL(𝑞𝜓 (z|x𝑡 ) | |𝑞𝜙 (z|x𝑠 ))

= E𝑞 (x𝑡 ,x𝑠 )𝑞𝜓 (z |x𝑡 ) log
𝑞𝜓 (z|x𝑡 )
𝑞𝜙 (z|x𝑠 )

𝑎
= E𝑞 (x𝑡 ,x𝑠 )𝑞𝜓 (z |x𝑡 ) log

𝑞𝜓 (z|x𝑡 )𝑞(x𝑡 )
𝑞(x𝑡 )𝑞𝜓 (z)

×
𝑞𝜓 (z)
𝑞𝜙 (z|x𝑠 )

𝑏
= I𝑞 (z, x𝑡 ) + E𝑞 (x𝑡 ,x𝑠 )𝑞𝜓 (z |x𝑡 ) log

𝑞𝜓 (z)𝑞(x𝑠 )
𝑞𝜙 (z|x𝑠 )𝑞(x𝑠 )

= I𝑞 (z, x𝑡 ) − Ĩ𝑞 (z, x𝑠 ), (11)

where in awehave introduced themarginals 𝑝 (x𝑡 ) =
∫
𝑝 (x𝑡 , x𝑠 )𝑑x𝑠 ,

𝑝𝜓 (z) =
∫ ∫

𝑞(x𝑡 , x𝑠 )𝑞𝜓 (z|x𝑡 )𝑑x𝑡𝑑x𝑠 , and in b we have introduced
𝑝 (x𝑠 ) =

∫
𝑝 (x𝑡 , x𝑠 )𝑑x𝑡 . The term is Ĩ𝑞 (z, x𝑠 ) is a variational lower

bound on the mutual information I𝑞 (z, x𝑠 ) since,

E𝑞 (x𝑠 )

∫
𝑞𝜓 (z|x𝑠 ) log𝑞𝜓 (z|x𝑠 )𝑑z

≥ E𝑞 (x𝑠 )
∫

𝑞𝜓 (z|x𝑠 ) log𝑞𝜙 (z|x𝑠 )𝑑z. (12)

Inequality (12) can be easily demonstrated using the fact that

KL(𝑞𝜓 (z|x𝑠 ) | |𝑞𝜙 (z|x𝑠 )) ≥ 0 (13)
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Table 1: Data Statistics

Dataset #Users #Items #Ratings Sparsity (%)

Amazon

Source Target Shared Source Target Source Target Source Target

MoviesTV Books 3,658 7,542 9,899 221,765 183,388 99.20 99.49
MoviesTV Musics 2,051 5,154 4,477 129,164 90,352 98.78 99.02
Books VideoGames 2 365 7,810 8,581 69,731 38,322 99,62 99,81
Books Musics 1,088 3,598 3,193 28,974 17,758 99,26 99,49

Douban
Movies Books 10,638 18,403 15,691 2,283,322 633,797 98.83 99.62
Movies Musics 9,704 18,117 20,497 2,140,749 936,214 98.78 99.53

4 EXPERIMENTS
In this section we investigate the performance the proposed model
on several real-world datasets. We conduct a systematic comparison
with comparable cross-domain recommendation models.

4.1 Datasets
Weuse six publicly available datasets fromAmazon [27] andDouban
[15], which are commonly used in the context of cross-domain rec-
ommendation. Table 1 depicts these datasets and their statistics
after preprocessing. Every dataset consists of a set of users along
with their ratings across a pair of product categories representing
the source and target domains. Following the common practice in
related literature, we preprocess each dataset to keep only users
with at least ten ratings. We further binarize the integer ratings by
treating all available user-item interactions as positive feedback.

4.2 Comparative Baselines
We compare the proposed model with several cross-domain recom-
mender models:

• EMCDR (Embedding and Mapping framework for Cross-
Domain Recommendation) [26] learns a mapping between
the source user latent space and target user latent space. This
mapping is then leveraged to make recommendations for
cold start users in the target domain for which we observe
some ratings in the source domain. Note that, originally in
EMCDR, the source and target user latent factors (embed-
dings) are obtained with matrix factorization. For parity in
comparisons, in our experiment we use VAE to learn the user
embeddings in the different domains. Figure 1 (c) depicts a
graphical representation of our EMCDR baseline.

• DARec (Deep Domain Adaptation for Cross-Domain Recom-
mendation) [49] is a recently proposed deep learningmethod,
which tackles the problem of cross-domain recommendation
by learning user representations that are domain-invariant.

• LinkedVAEs [1] fits two VAEs, one to the source data and
another to the target data. For cross-domain recommenda-
tion purposes, the latent spaces of the two VAEs are linked
by further feeding the user’s source representation to the
target decoder. The dependency structure of LinkedVAEs is
illustrated in 1 (b).

• VAE (Variational Autoencoders for Collaborative Filtering)
[24] has recently shown strong performance on the item rec-
ommendation task. To apply this model to the cross-domain
recommendation task, we first concatenate the source and
target domain preference matrices to form one dataset, i.e.,
x = [x𝑡 , x𝑠 ]. We then fit VAE to the resulting dataset x. Figure
1 (a) provides a graphical illustration of this method, which
seeks to learn a joint distribution of the source and target
observations. Comparisons with VAE would allow us to gain
insights to whether it is worth designing specific models
for cross-domain recommendation. We rely on the VAE’s
implementation available in the Cornac recommendation
framework [35].

4.3 Evaluation Metrics
We assess the recommendation accuracy on a set of held-out items
(the test set) with two widely-used measures for top-𝑀 recommen-
dation [5, 34].

NDCG@M (Normalized Discount Cumulative Gain) is an effec-
tive measurement for the quality of ranking. The DCG@𝑀 mea-
sures the gain of each item relative to its position in a list of top-𝑀
recommended items. Formally, for each user 𝑢,

𝐷𝐶𝐺𝑢@𝑀 =
∑
𝑖∈𝐷𝑢

1[𝑖 ∈ 𝐿𝑢 ]
log (𝑟𝑎𝑛𝑘𝑖 + 1) ,

where 𝐷𝑢 denotes the set of held-out items for user 𝑢, 1[.] is the
indicator function, 𝑟𝑎𝑛𝑘𝑖 is the rank of item 𝑖 in the top-𝑀 recom-
mended items 𝐿𝑢 , and

𝑁𝐷𝐶𝐺𝑢@𝑀 =
𝐷𝐶𝐺𝑢@𝑀

𝑖𝑑𝑒𝑎𝑙𝐷𝐶𝐺𝑢@𝑀
,

where the 𝑖𝑑𝑒𝑎𝑙𝐷𝐶𝐺𝑢@𝑀 is the best achievable𝐷𝐶𝐺𝑢@𝑀 inwhich
all the held-out items are ranked at the top.

Recall@M denotes the ratio of correct items in a user’s list
of top-𝑀 recommendations to the number of her held-out items.
Formally, for each user 𝑢,

𝑅𝑒𝑐𝑎𝑙𝑙𝑢@𝑀 =

∑
𝑖∈𝐷𝑢

1[𝑖 ∈ 𝐿𝑢 ]
|𝐷𝑢 |

.

To evaluate an entire model we average each measure over all
users.
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Figure 2: Recall@50 performance (y-axes) for every model, across different datasets and test set sizes (x-axes).

4.4 Experimental Settings
For training and testing under the cross-domain recommendation
task, we follow the common approach, which consists in randomly
splitting the target users into train and test sets. As in [26], the
members of the test set are considered to be cold-start users in the
target domain, i.e., all the target ratings of the test users are held-out
for testing. This simulates the scenario where some users are active
in some source domain and now begins anew in a target domain.
We consider different proportions of such test users, namely 10%,

20% and 30% respectively. Hypothetically, the larger the proportion
of the test users, the more challenging the task is, as there are fewer
users in the training set to help inform the learning. We use (Recall)
to tune the different models based on held-out validation sets (5%
of training users).

The number of latent dimensions 𝐾 for user representations is
set to 20. We do not observe any significant change with higher
numbers of latent dimensions. For the autoencoder family, we rely
on multilayer perceptrons (MLPs) to parameterize the inference
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Figure 3: NDCG@50 performance (y-axes) for every model, across different datasets and test set sizes (x-axes).

and generative models. We explore MLPs with 0, 1, 2, and 3 hidden
layers, finally retaining 1-hidden layer with 40 dimensions (2 × 𝐾 )
for the inference models, and 0-hidden layer for the decoders. More
layers provide only slight improvement, while introducing signifi-
cant computational overhead. This is consistent with the findings
of Liang et al. [24], who also recommend similar settings for VAE
when applied to collaborative filtering. To introduce non-linearities
at the hidden-layers, we use Tanh activation function, which we
found to be superior to ReLU function. Since the observations are

binary, we use Sigmoid activation function at the output of the
different decoders.

To set the learning rate and number of training epochs, we
perform a hyperparameter search. For the former, the search space
is {1𝑒−4, . . . , 1𝑒−1} with multiples of 10. For the number of epochs
the search space is {100, . . . , 500} with steps of 100. All models
are fit to observation using stochastic gradient descent with the
Adam update rule and a batch size of 128 instances. For any other
remaining hyperparameter for the baseline methods, we follow the
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Table 2: Summary of two-tailed paired t-test results (p-values) between the top three performing models.

Amazon Douban

Model Pair
MovieTV

Books

MovieTV

Musics

Books

VideoGames

Books

Musics

Movies

Books

Movies

Musics

Recall@50

SA-VAE
RA-VAE

< 0.01/6 < 0.01/6 < 0.01/6 < 0.01/6 < 0.05 0.08

SA-VAE
EMCDR

< 0.01/6 < 0.01/6 < 0.01/6 < 0.01/6 < 0.01/6 < 0.05

RA-VAE
EMCDR

< 0.01/6 < 0.01/6 0.12 < 0.01/6 < 0.01/6 < 0.05

NDCG@50

SA-VAE
RA-VAE

< 0.01/6 < 0.01/6 0.06 < 0.01/6 < 0.01/6 < 0.05

SA-VAE
EMCDR

< 0.01/6 < 0.01/6 0.07 < 0.01/6 < 0.01/6 < 0.01/6

RA-VAE
EMCDR

< 0.01/6 < 0.01/6 0.09 < 0.01/6 0.11 < 0.05

recommendations by the original authors of each corresponding
model.

4.5 Results and Discussion
Figures 2 and 3 depict the performance of the competing models
for different test-set sizes across all datasets in Recall and NDCG
respectively. We repeat each experiment thirty times with different
seeds and report the average result for each model. To assess the
statistical significance of the results, we conduct two-tailed paired
samples t-tests.

Overall, the proposed models, namely RA-VAE and SA-VAE offer
noticeably higher performances than the baselines in most cases.
The results hold across different test-sizes, and the improvements
reached by the proposed models are statistically significant in the
majority of cases. Table 2 summarizes the t-test results between
the top three performing models, namely SA-VAE, RA-VAE and
EMCDR, when 10% of target users are held-out for testing. For
every pair of models, to account for multiple comparisons across
different datasets [31], we consider the Bonferroni correction, which
consists in testing each individual hypothesis at a significance level
𝛼/𝑛, where 𝛼 is the significance threshold and 𝑛 is the number of
hypotheses—corresponding to the number of datasets in our case.
Besides the strong performance of our models, these results reveal
some interesting insights, which we discuss below.

The VAE model exhibits the lowest results among baselines in
many cases. Recall that to use this method under the cross-domain
recommendation setting, we first concatenate the source and tar-
get domains to form a single dataset, and then we fit VAE to the
resulting dataset. The concatenation operation however is likely
to exacerbate data sparsity, which could explain the low perfor-
mance of this baseline. This stresses the importance of tailoring
recommendation model for the cross-domain setting.

Among the cross-domain baselines, while the patterns are more
mixed, EMCDR seems to preform best in most cases, followed by
LinkedVAEs, then DaRec. Interestingly, the former two models,
EMCDR and LinkedVAEs, are also VAE-based as opposed to DaRec,
which provide further support to using VAE as a building block
to model observations. Our models consistently outperform the
cross-domain baselines including the other VAE-based ones thereby
demonstrating the significance of our approach.

Focusing on the proposed RA-VAE and SA-VAE variants, the
performance is either statistically indistinguishable or SA-VAE is
superior. One advantage of SA-VAE over RA-VAE is that the former
variant has its variational model with free parameters. At each
learning step, SA-VAE optimizes the ELBO w.r.t. the variational
parameters to make this bound tighter to the true but intractable
likelihood. RA-VAE however, uses the variational model from the
source domain, which may result in a loose ELBO that can nega-
tively impact the training of the target decoder model.

To investigate the robustness of our models regarding the num-
ber of observations per-user in the source domain, in Figure 4 we
report the recommendation performance across several groups with
different user-activity levels (number of ratings). The top two rows
concern performance at Recall on the six datasets, while the bottom
two rows concern the corresponding performance at NDCG. We
retain the top three performing models only, namely SA-VAE, RA-
VAE, and EMCDR, to avoid cluttering the figures. While the results
are quite data-dependent, the proposed models consistently outper-
form EMCDR, which is the strongest baseline. It is also interesting
to note that on some datasets (e.g., Amazon: Books->VideoGames
and Douban: Movies->Musics) under low user-activity regimes (<10
ratings) our models, especially SA-VAE, improve substantially upon
the performance of EMCDR. This suggests that the proposed mod-
els are more robust regarding user-activity in the source domain.
Regarding the two proposed models, SA-VAE and RA-VAE, either
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Figure 4: Recall and NDCG results across groups with different user-activity (number of observed preferences in the source
domain).

the former outperforms the latter (in several cases) or the results
are tight. The most important differences between the two models
seem to occur in groups with a user-activity less than 30.

5 CONCLUSION
We propose a VAE-based approach for cross-domain recommen-
dation. The core idea of our method is as follows. Given a VAE

trained on the source domain, introduce another model in the tar-
get domain that simultaneously learns to fit observations and align
its latent space with its source counterpart. We investigate two
variants, namely rigid and soft alignments. In the former, rigid
alignment scenario, the source and target latent space are identical.
This is achieved by setting the variational model in the target do-
main equal to the source variational model. In the soft alignment
case, the target variational model is encouraged to look like its
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source counterpart. We achieve this objective in a principled way
by using the source variational model as a prior over the latent
space of target domain. This gives rise to a new objective which en-
joys useful properties for the cross-domain recommendation task as
illustrated by our information-theoretic analysis. Empirical results
on six real-world datasets demonstrate the importance of our contri-
bution. The proposed models, noticeably outperform several strong
cross-recommendation methods including neural and VAE-based
ones. Moreover, our experiments also reveal some useful insights
such as the importance of tailoring recommendation models for
the cross-domain scenario. Among the two variants we propose,
namely RA-VAE and SA-VAE, we find that the latter SA-VAE shows
comparable or superior performance to RA-VAE.

Future work could include integrating auxiliary data (e.g., item
content information) [47] to the proposed models to further alle-
viate the sparsity issue, tackle other cross-domain scenarios, such
as the situation without user overlap between the source and tar-
get domains, or extend the ideas proposed in this paper to BiVAE
[46] to address cross-domain recommendation on the user-side and
item-side simultaneously.
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