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Semi-Supervised Semantic Visualization for Networked
Documents

Delvin Ce Zhang[0000−0001−5571−9766] (�) and Hady W. Lauw[0000−0002−8245−8677]

School of Computing and Information Systems, Singapore Management University, Singapore
{cezhang.2018,hadywlauw}@smu.edu.sg

Abstract. Semantic interpretability and visual expressivity are important objec-
tives in exploratory analysis of text. On the one hand, while some documents may
have explicit categories, we could develop a better understanding of a corpus by
studying its finer-grained structures, which may be latent. By inferring latent top-
ics and discovering keywords associated with each topic, one obtains a semantic
interpretation of the corpus. One the other hand, by visualizing documents, latent
topics, and category labels on the same plot, one gains a bird’s eye view of the
relationships among documents, topics, and various categories. Semantic visu-
alization is a class of methods that unify both topic modeling and visualization.
In this paper, we propose a novel semantic visualization model for networked
documents that incorporates partial labels. We introduce coordinate-based label
distribution and label-dependent topic distribution to visualize documents, top-
ics, and labels in a semi-supervised way. We further derive three variants for
singly-labeled, multi-labeled, and hierarchically-labeled documents. The focus
on semi-supervision that employs variants of labeling structures is particularly
novel. Experiments verify the efficacy of our model against baselines.

Keywords: Semantic Visualization · Topic Modeling · Dimensionality Reduc-
tion · Generative Models.

1 Introduction

While text documents are mainly expressed in words, in many cases they are inter-
connected in a network, e.g., Web page hyperlinks or paper citations. When exploring
such a corpus, we seek a comprehensive understanding in terms of both latent seman-
tics and document proximity. On one hand, topic modeling excels at latent semantics.
It represents each document by a topic distribution, and a topic is described by a group
of keywords. Lacking visual interpretation, it requires cognitive efforts to summarize.
Visualization, on the other hand, provides another view to understand the corpus by pro-
jecting high-dimensional documents to a low-dimensional space (2D or 3D), so similar
documents could be found in spatial proximities. But it offers no lexical nor seman-
tic interpretability. Given such tradeoffs, a promising direction is to pursue the ‘joint’
avenue of semantic visualization, which conducts topic modeling and visualization si-
multaneously, and visualizes documents and topics in the same scatterplot.

Existing semantic visualization models are mainly unsupervised. They do not take
advantage of the fact that many corpora are partially labeled. Documents may be par-
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titioned into categories, such as primary areas of academic publications. From this ob-
servation, we draw three critical insights. First, visualizing category labels in addition
to documents and topics would better flesh out the corpus structure, as labels summa-
rize a group of topics, and topics characterize documents. Second, by exploiting label
structure, we could improve topic modeling, as documents within the same category
would share topics or neighbors. Third, even partially available labels would be useful,
if the modeling could induce probabilistic labels in a semi-supervised way. Note that
labels are different from topics. The former capture a category of documents and are
explicit and observed, the latter are completely latent. A document usually has more
latent topics than observed labels. Documents of the same label may still vary in topics.

Of particular interest is the existence of several label structures. Single-label would
be the most common, each document is assigned only one label. Alternatively, docu-
ments may also be tagged, giving rise to a multi-label structure, e.g., news articles with
multiple tags. In some scenarios, the categorization may even be hierarchical, e.g., aca-
demic papers from the same area further fall into different sub-areas. We seek to design
a semantic visualization model capable of accommodating different label structures.

The proposed model is called SemiVN, a Semi-supervised topic model for semantic
Visualization of Networked documents. The first key design is to introduce coordinate-
based label distribution and label-dependent topic distribution to visualize documents,
topics, and labels on the same scatterplot. One can infer how documents relate to topics
and how topics relate to labels by visually sensing relative distances. Second, to support
multiple label structures, we further enrich label-dependent topic distribution and derive
three variants for single, multiple, and hierarchical labeling, respectively. Third, by de-
terministically supervising observed labels and probabilistically modeling unobserved
labels, SemiVN benefits from partially available labels in a semi-supervised manner.

To demonstrate one of SemiVN’s use cases, Fig. 1 is a screenshot of an interactive
interface of SemiVN’s output of the Coronavirus news corpus1. Effectively understand-
ing newsstream in terms of their main topics could help in selecting articles of interest
to readers efficiently. SemiVN generates topic-word and label-word distributions for
semantic interpretability, as seen by the example word clouds. A label is rendered as
a black triangle. Right-clicking would reveal its word cloud, which represents a sum-
mary of documents. Topics further split a label into sub-concepts. A topic is rendered
as a white circle. For instance, the word cloud of the label around the bottom gray area
reveals health and hospital. In turn, its surrounding topic further focuses on health sit-
uation of Boris Johnson. To see the content of a document, one can left-click on one of
the colored circles (the color reflects the category of the document), revealing the con-
tent in a separate window below the scatterplot. The placement of documents on the plot
reveals the coherence within each category, as well as the potential semantic relations
across labels and topics. For instance, Economy, business, and finance category (blue)
lies in the center, suggesting that economy is associated with diverse industries and in-
fluenced by Coronavirus from many aspects. SemiVN unifies semantic interpretability
and visual expressivity and provides a holistic understanding of the corpus.

The joining of visualization and topic modeling, within a semi-supervised frame-
work, lends SemiVN new capabilities not existing in prior models. Pure visualization

1 https://aylien.com/blog/free-coronavirus-news-dataset
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coronavirus 20

Fig. 1. Semantic visualization of Coronavirus news corpus with 20 topics.

tools, such as the widely used t-SNE [18] does not model topics, and cannot express
main topics in the scatterplot. This motivates the development of semantic visualiza-
tion. Prior works in semantic visualization are mostly unsupervised, except ContraVis
[14], which requires full supervision and accommodates only single labels. SemiVN is
designed in a semi-supervised manner to leverage a proportion of labeled documents to
visualize all and extends beyond single labeling to multiple and hierarchical labeling.

Problem. Let G = {D, E ,L} be a document network with labels. D = {di}Ni=1 is
document set. Each document d ∈ R|V| is a vector in the vocabulary space V . We use tf-
idf to represent d. E ⊆ D×D contains edges, where eij ∈ E if there is an edge between
document i and j. Here we model an undirected network, eij = eji. We will use edge
and link interchangeably. Document i’s neighbors N (i) are those directly linked to i.
As in [28], when no appropriate links are observed in a corpus, one could alternatively
induce similarity-based kNN document network based on tf-idf cosine similarity. The
set L has observed labels where `i ⊆ L if we observe document i’s label(s) `i.

Given a partially labeled document network G as input, the goal is to find visual
coordinates for i)N documents {xi}Ni=1, ii) T topics {φt}Tt=1, and iii) L labels {ψl}Ll=1,
where the Euclidean distances among coordinates reflect distributions of document-
topic, document-label, and label-topic pair.
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Contributions. First, we introduce coordinate-based label distribution and label-
dependent topic distribution, and propose a novel semi-supervised topic model for net-
worked documents that unifies semantic and visual expressivity. Second, we extend our
model for singly-labeled, multi-labeled and hierarchically-labeled documents. Third,
our model outperforms baselines quantitatively and qualitatively on public datasets2.

2 Related Work

Semantic visualization. Incorporating topic modeling into data visualization is referred
to as semantic visualization. One pioneering model is PLSV [8]. PLANE [15] is the
first attempt on semantic visualization of networked documents. However, these models
learn coordinates in an unsupervised way, and do not embed labels to reflect corpus
hierarchy. While [14] incorporates labels for contrastive visualization, it requires labels
for all the documents in the corpus, which precludes the use of unlabeled documents
or class prediction. On the contrary, SemiVN unifies networked documents, topics, and
labels into the same visualization scatterplot in a semi-supervised way. There are also
models [5, 16] visualizing documents, but without the notion of labels as well.

Document network embedding. Previously, topic models for document networks
are based on graphical models, e.g., RTM [4] leverages topics of two documents to pre-
dict the link. More recent models are based on neural approaches. NRTM [1] extends
VAE [10] by introducing a multi-layer perception [2] for link prediction. Adjacent-
Encoder [31] models network structure by neighboring document reconstruction. These
embed networked documents into topic space only, without any visualization. For the
latter, one needs a post-hoc embedding using dimensionality reduction (e.g., t-SNE
[18]). In contrast, SemiVN systematically incorporates topic modeling and visualiza-
tion as a joint approach without the necessity for post-hoc embedding. There are other
models that learn node embeddings on attributed graphs [12, 29], but they are not topic
nor visualization models. They do not generate topic-word matrix, and the learned em-
beddings are not topics. Their learning process does not offer visualization.

(Semi-)Supervised topic modeling. Supervised and semi-supervised topic mod-
els are those methods that embed both textual content and document labels and produce
label-dependent topic distributions. Graphical models include sLDA [20] and DiscLDA
[13] for single labeling, LLDA [24] for multi-labeling, and PLDA [25] for partially la-
beling documents. SemiVAE [11] and MVAE [30] are based on Auto-Encoder, a neural
topic model. Similarly, these models do not have an in-built visualization aspect, thus
need a post-hoc technique for visual comparison. We also distinguish SemiVN from
hierarchical topic modeling, such as nCRP [7], which learns hierarchical topics unsu-
pervisedly. SemiVN’s topics are not hierarchical and are semi-supervised.

3 Model Architecture and Analysis

In this section, we describe the technical details of proposed generative approach, whose
graphical models are given by Fig. 2. See Table 1 for the summary of notations.

2 Source code and datasets are available at https://github.com/cezhang01/semivn.
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Table 1. Summary of notations.

Notation Description
G document network
D document set
E edge set
L label set
V vocabulary
di document i’s tf − idf representation in the vocabulary space, di ∈ R|V|

N (i) document i’s neighbor set
`i document i’s observed label(s)
N number of documents, N = |D|
T number of topics
L number of labels
xi visualization coordinate of document i
φt visualization coordinate of topic t
ψl visualization coordinate of label l
ŷi document i’s estimated label distribution, ŷi ∈ RL, or ŷi ∈ RD (hierarchical variant only)
yi document i’s ground-truth label distribution, yi ∈ RL, or yi ∈ RD (hierarchical variant only)
D depth of the hierarchical softmax tree
H number of different paths on the tree
h a path on the tree
M number of negative samples
ti document i’s topic distribution, ti ∈ RT

d̂i document i’s generated content, d̂i ∈ R|V|

Nl number of documents with observed label l
z dimension of visualization coordinates (2 or 3 in general)

3.1 Coordinate-Based Distribution

To tightly couple topic modeling and visualization, we devise a model whose parame-
ters are visualization coordinates that give rise to the probability distributions that un-
derlie a topic model. We define coordinate-based label distribution and label-dependent
topic distribution, then discuss three modelings: labels L, links E , and text D.

Labels represent main categories of a corpus and summarize a group of topics;
topics in turn characterize documents. We preserve corpus structure with a nested ap-
proach. First, we introduce a label distribution p(l|i) for document i. The generation
of each link eij can be characterized as follows. For document i, we draw its label
l ∼ p(l|i), representing i’s main category. Its linked neighbor j is then generated based
on i and its label l by j ∼ p(j|i, l). Formally,

p(eij) = p(j|i)p(i) ∝
∑
l

p(j|i, l)p(l|i) (1)

where we assume p(i) = 1
N . Since label is a general description of corpus, and groups

a set of topics, given document i and its label assignment, we factorize p(j|i, l) into
topic distributions

∑
t p(j|t)p(t|i, l). Eq. 1 can be rewritten as

p(eij) ∝
∑

l p(j|i, l)p(l|i) =
∑

l

∑
t p(j|t)p(t|i, l)p(l|i) =

∑
t p(j|t)

∑
l p(t|i, l)p(l|i).

(2)
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Fig. 2. Graphical models of (a) Single-Label SemiVN, (b) Multi-Label SemiVN, and (c)
Hierarchical-Label SemiVN.

We interpret Eq. 2 as follows. Each document i is represented by its label distribu-
tion p(l|i), wherein each label is decomposed into topic distribution p(t|i, l). In turn,
each topic generates neighboring document j by p(j|t). Each link is generated in a
nested process, and corpus structure is preserved.

Since we are interested in modeling visualization coordinates, we define label dis-
tribution p(l|i) as

p(l|i) =
exp(− 1

2 ||xi − ψl||2)∑
l′ exp(−

1
2 ||xi − ψl′ ||2)

. (3)

This is expressed in terms of the Euclidean distances between a document i’s coordinate
xi and those of different labels ψl′ . The closer is xi to a specific ψl, the higher is the
probability p(l|i), which aligns with the objective of semantic visualization. In turn,
for each document and label, we introduce a coordinate-based label-dependent topic
distribution p(t|i, l)

p(t|i, l) =
exp(− 1

2 ||xi − φt||
2) exp(− 1

2 ||ψl − φt||2)∑
t′ exp(−

1
2 ||xi − φt′ ||2) exp(−

1
2 ||ψl − φt′ ||2)

. (4)

The topic distribution is jointly determined by both document i’s coordinate xi and its
label coordinate ψl. Document i has a high topic probability p(t|i, l) when it is close to
topic φt, plus φt is a nearby topic of label ψl. Finally, p(j|t) is similarly defined.

p(j|t) =
exp(− 1

2 ||φt − xj ||
2)∑

j′ exp(−
1
2 ||φt − xj′ ||2)

. (5)

So far, we have assumed no label has been observed, and we model such uncertainty
in a probabilistic way. Since documents are partially labeled, if we observe document
i’s label `i, its deterministic label distribution is p(`i|i) = 1 and p(l 6= `i|i) = 0.
We substitute it into topic distribution (

∑
l p(t|i, l)p(l|i) at Eq. 2), and obtain p(t|i, `i),

instead of a summation over all possible labels. We rewrite Eq. 2 below.

p(eij |I(`i)) ∝
∑
t

p(j|t)p(t|i, I(`i)),

where p(t|i, I(`i)) =

{∑
l p(t|i, l)p(l|i) if I(`i)=∅,

p(t|i, `i) otherwise.

(6)
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Here I(`i) is an indicator on the observation of i’s label, I(`i) = `i if observed, I(`i) =
∅ otherwise.

3.2 Label Modeling

Not all corpora share identical label structures. We observe distinct structures that give
rise to three variants of SemiVN.

Single-Label. Each document has one label. Still, we observe the labels of only a
proportion of documents in the corpus. With coordinate-based label distribution ŷi =
p(l|i) = [ŷi,1, ŷi,2, ..., ŷi,L]

T estimated by Eq. 3, we maximize the following log-
likelihood for document i’s observed label `i.

Jlabel = log p(yi|i) =
L∑

l=1

yi,l log ŷi,l. (7)

Here yi = [yi,1, yi,2, ..., yi,L]
T is the ground-truth label distribution with yi,l=`i = 1

and yi,l 6=`i = 0.
Multi-Label. SemiVN can be extended to model multi-labeled documents. In this

case, document i’s observed label set contains more than one label, |`i| > 1. Coordinate-
based label distribution at Eq. 3 ŷi = [ŷi,1, ŷi,2, ..., ŷi,L]

T is no longer softmax. Each
single label probability is modified to

ŷi,l = σ(−1

2
||xi − ψl||2), (l = 1, 2, ..., L), (8)

Jlabel = log p(yi|i) =
L∑

l=1

yi,l log ŷi,l + (1− yi,l) log(1− ŷi,l). (9)

Again yi is the ground-truth label distribution. Coordinate-based label-dependent topic
distribution Eq. 4 is extended to

p(t|i, `i) =
exp(− 1

2 ||xi − φt||
2)

∏
l∈`i exp(−

1
2 ||ψl − φt||2)∑

t′ exp(−
1
2 ||xi − φt′ ||2)

∏
l∈`i exp(−

1
2 ||ψl − φt′ ||2)

. (10)

Hierarchical-Label. In contrast to independent labels in the multi-label scenario,
hierarchical-label relies on label dependency in a D-level tree (with labels as nodes).
Document i’s label is thus a path on the tree `i = {`i,d}Dd=1. See Fig. 3 for illustration of
NET dataset. Motivated by hierarchical softmax [23], we modify coordinate-based label
distribution Eq. 3 to ŷi = [ŷ

(1)
i , ŷ

(2)
i , ..., ŷ

(H)
i ]T , where H is the number of different

paths on the tree. The probability of each path is ŷ(h)i =
∏D

d=1 ŷ
(h,d)
i , and each single-

label probability ŷ(h,d)i of dth label on path h is Eq. 8. The log-likelihood function is
similar to Eq. 9, except that the summation is in terms of H , rather than L. Finally, its
label-dependent topic distribution aligns with Eq. 10.
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3.3 Link and Content Modeling

Link modeling. To model all the links in a given network, we maximize the log-
likelihood of each observed link, log p(eij |I(`i)) at Eq. 6. Directly maximizing this
objective is intractable for large networks, we instead maximize its lower bound below.

Jlink = Et∼q(t|i,j,I(`i))[log p(j|t)]−KL[q(t|i, j, I(`i))||p(t|i, I(`i))]. (11)

Here q(t|i, j, I(li)) is a variational distribution that approximates the true posterior
p(t|i, j, I(li)), and KL divergence KL(·||·) measures the difference between two distri-
butions. We similarly define variational distribution q(t|i, j, I(li)) as

q(t|i, j, I(`i)) =

{∑
l q(t|i, j, l)q(l|i, j) if I(`i)=∅,

q(t|i, j, `i) otherwise.
(12)

We parameterize q(l|i, j) and q(t|i, j, `i) using coordinates.

q(l|i, j) =
exp(− 1

2 ||xi ⊕ xj − ψl||2)∑
l′ exp(−

1
2 ||xi ⊕ xj − ψl′ ||2)

(13)

q(t|i, j, l) =
exp(− 1

2 ||xi ⊕ xj − φt||
2) exp(− 1

2 ||ψl − φt||2)∑
t′ exp(−

1
2 ||xi ⊕ xj − φt′ ||2) exp(−

1
2 ||ψl − φt′ ||2)

. (14)

We use ⊕ to denote element-wise average operation. For each link eij , we utilize Eq.
12 to evaluate topic distribution, and adopt gumbel-softmax reparameterization [9, 19]
to sample a topic. Evaluating log p(j|t) in Eq. 11 is computationally expensive on large
networks, since it requires summation over all the documents. Inspired by negative
sampling [22], we replace log p(j|t) with

log σ(−1

2
||φt − xj ||2) +

M∑
m=1

Ev∼Pn(v)[log(1− σ(−
1

2
||φt − xv||2))], (15)

σ(x) = 1
1+exp(−x) is sigmoid, Pn(v) is a noise distribution over documents, and M is

the number of negative samples.
Content modeling. Another important objective is topic modeling by learning topic-

word associations. Following previous neural topic models [31, 27], with coordinate-
based label-dependent topic distribution ti = p(t|i, I(`i)) at Eq. 6, we generate its ob-
served plain text, and parameterize this decoder using a fully connected neural network
by d̂i = p(di|ti) = σ(Wti + b). Here σ(x) is sigmoid function, W ∈ R|V|×T repre-
sents topic-word associations, and b ∈ R|V| is bias. The log-likelihood of the observed
textual content log p(di|ti) is

Jcontent =
|V|∑
w=1

di,w log d̂i,w + (1− di,w) log(1− d̂i,w). (16)
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Table 2. Dataset statistics.

Name #Documents #Links Vocabulary #Labels Labeling

DS 570 1,336 3,085 9 Single
ML 1,980 5,748 4,431 7 Single

COVID 1,500 6,418 2,226 5 Single
NET 1,278 4,610 6,832 6 Hierarchical

DBLP 14,036 40,269 8,600 4 Multiple

NET

Mobility Transmission

Wireless Internet Protocols Routing

Dataset

Level 1

Level 2

Fig. 3. Label hierarchy of NET.

3.4 The Complete Model

Given a document network G with links E , document content D, and a proportion of la-
bels L, putting the three components together, we obtain J = Jlink+Jcontent+Jlabel
as the overall log-likelihood. We intuit that two linked documents are similar if both
share many common neighbors. Thus, we add a label smoothness regularizer to objec-
tive function, which helps to distinguish different neighbors and encourages strongly
connected neighbors to have similar label distributions. Specifically, the regularizer is

Jreg =
∑
eij

αijd(p(l|i), p(l|j)), αij =
|N (i) ∩N (j)|
|N (i) ∪N (j)|

. (17)

N (i) is i’s neighbor set. As in [26], αij is a similarity measure based on common neigh-
bors. d(·, ·) measures the difference between two distributions. We use KL divergence
for single-label and squared difference for multi- and hierarchical-label. Although KL
is asymmetric, i.e., KL(p(l|i), p(l|j)) 6= KL(p(l|j), p(l|i)), in this paper we model
undirected links and consider both eij and eji, which removes the effect of asymmetry.
Finally, the ultimate loss is (we take negative for log-likelihood for minimization)

J = −Jlink − Jcontent − Jlabel + λJreg. (18)

λ is a balancing hyperparameter.
Inference. After convergence, in addition to the visualization coordinates, we ob-

tain topic-word association matrix W in the content decoder. To infer label-word asso-
ciation, we have p(d|l) =

∑
t p(d|t)

∑
i∈D p(t|i, l)p(i|l). Label-dependent topic distri-

bution p(t|i, l) is Eq. 4. p(i|l) = 1
Nl

if `i = l, 0 otherwise. Nl is number of documents
with label l. p(d|t) is content decoder. The keywords (word cloud) of each topic t and
label l are those with highest value at p(d|t) and p(d|l), respectively. Every topic and
label has its own word cloud, but for clarity, we only show some topics and labels. As
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in previous semantic visualization works, word cloud is not our design, our focus is to
extract latent semantics and learn coordinates to visualize documents, topics, and la-
bels. Similarly, as with previous works, including t-SNE, SemiVN is transductive. Our
emphasis is using SemiVN to explore existing documents in a corpus for visual and
semantic understanding.

Complexity. Single- and multi-labeling is O(
∑

lNlLz), hierarchical-labeling is
O(

∑
lNlDHz). z is the dimension of visual coordinates (typically 2 or 3). Note that∑

lNl = N only if all the documents are labeled,
∑

lNl < N otherwise. For simplic-
ity, we use F to denote L and DH . Link modeling is O(|E|(zT |`i|max + zM)). Con-
tent modeling is O(NT |V|). Putting all three together, we obtain O(|E|(zdT |`i|max +
zM) + NT |V| +

∑
lNlFz). SemiVN converges in one hour on DBLP dataset (see

Table 2), while some baseline, PLANE [15], even did not converge in 48 hours. Eval-
uations were conducted on a machine with Intel Xeon E5-2650v4 2.20 GHz CPU and
256GB RAM.

4 Experiments

Experimental objective is to investigate the quality of visual coordinates. Evaluating
visualization is indeed not an easy task. After reviewing many previous visualization
works, we summarize some standard experiments, including coordinate classification,
link prediction, and topic interpretability as quantitative tasks. In addition, we further
conduct user study, involving both static and interactive study.

Datasets. Cora [21] is a public collection of papers with abstract as content and
citations as links. Two papers are linked by an undirected link if one cites the other. We
extracted three independent datasets, Data Structure (DS), Machine Learning (ML),
and Networking (NET). DS and ML contain singly labeled documents, NET is orga-
nized into hierarchical labels (Fig. 3). Besides Cora, we created a co-authorship network
DBLP. Each author is represented by the aggregation of her publications. Two authors
are linked if they have collaboration. If an author publishes at least three papers on
one type of conference, we consider her having the corresponding label. Around 11%
authors have more than one label. We also created a Coronavirus news corpus. Each
article belongs to one category. Since no appropriate links are observed, we generate
kNN (k = 5) network using tf − idf cosine similarity. Table 2 shows the statistics.

Baselines. We compare to several categories of baselines. i) Topic modeling on
networked documents, including RTM, NRTM, and Adjacent-Encoder. ii) Semantic
visualization. PLSV visualizes documents individually, and PLANE visualizes net-
worked documents. Neither has labels. iii) Semi-supervised topic model, including
PLDA, SemiVAE, and MVAE. In addition, recently there are models for attributed
graph embedding. Strictly speaking, they are not topic models, nor baselines. For com-
pleteness, we still compare to iv) GraphTSNE [17] with GCN [12] and t-SNE as a joint
model. Models in category i) and iii) extract topics only, we pipeline their topics by
t-SNE to obtain coordinates. By comparison to these disjoint models, we showcase the
advantage of jointly modeling topics and visualization. The comparison to joint models
(PLSV, PLANE, GraphTSNE) shows the importance of modeling labels. Each result is
obtained by 5 independent runs.
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Fig. 4. Coordinate classification on five datasets.

Hyperparameters are chosen based on validation set. We set 2, 0.01, and 0.01 as
Dirichlet prior for RTM, PLANE, and PLSV, respectively. We input texts, adjacency
matrix, and labels for MVAE. Other baselines use default settings. For SemiVN, we set
the number of negative samplesM to 5. Regularizer λ is searched in [0.1, 0.2, 0.5, 1, 2, 5]
and set to 1. tf − idf is generated by sklearn (https://scikit-learn.org).

4.1 Quantitative Evaluation

Coordinate classification. A good visualization is expected to group coordinates from
the same category closely, and separate different categories. For DS, ML, COVID, we
adoptK-nearest neighbors as classifier. Our goal is to use labeled coordinates to predict
labels for the unlabeled coordinates. We report classification accuracy at T = 30 in Fig.
4(a). For clarity, we only report std.dev. of SemiVN and best-performing baselines. We
first fix 80% labeling percentage (we further split 10% among them for validation),
and vary K for classification. Fig. 4(a-1-3) summarizes the results. Although SemiVN
performs similarly with GraphTSNE at K = 20 on ML, as K increases, SemiVN stays
stable, but GraphTSNE deteriorates its results. This verifies that SemiVN benefits from
modeling labels to better separate different groups of coordinates. We then fix K = 20
for KNN and vary the percentage of labeled coordinates for training. Fig. 4 (a-4-6)
reveals that as labeling increases, most models improve results. SemiVN significantly
outperforms baselines on DS. It is competitive with GraphTSNE on ML and COVID,
but still outperforms the best topic model, Adjacent-Encoder, showcasing SemiVN’s
advantage of jointly modeling topics and visualization.

NET and DBLP represent a multi-label classification task, thus we train a one-
vs-the-rest logistic regression as a multi-label classifier. We report Micro and Macro
F1 scores. We exclude PLANE on DBLP, since it did not converge in 48 hours. Fig.
4(b) presents the results at T = 30 when varying labeling percentage. Overall, semi-
supervised models tend to improve results with increasing labeling.

Coordinate-based link prediction. Following previous work in semantic visual-
ization [15], we could use coordinates of two documents to predict a link. Following
[18], the link probability is p(eij) ∝ 1

1+||xi−xj ||2 . For documents with more than three
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Table 3. F1 score and AUC of link prediction at T = 30 (results are in percentage).

Model
DS ML NET DBLP

F1 AUC F1 AUC F1 AUC F1 AUC
RTM 52.4±0.5 80.1±0.7 46.8±0.4 75.0±0.4 47.9±0.5 72.6±0.3 53.5±0.3 81.1±0.2

NRTM 55.7±0.4 83.6±0.8 32.9±0.7 65.6±0.5 47.6±0.7 72.2±0.6 57.6±0.2 59.3±0.1
Adjacent-Encoder 72.8±0.3 94.2±0.4 65.3±0.2 90.3±0.2 67.5±0.1 86.9±0.3 74.0±0.1 90.3±0.1

PLANE 75.4±0.3 95.0±0.4 53.3±0.4 90.6±0.4 61.7±0.4 92.6±0.3 - -
PLSV 59.1±0.6 55.4±1.6 64.6±0.2 50.1±0.2 42.8±0.2 76.6±0.4 45.0±0.5 84.0±0.1
PLDA 59.3±0.9 79.2±1.0 50.6±0.2 79.9±0.4 48.2±0.5 74.7±0.3 53.6±0.4 82.2±0.1

SemiVAE 34.3±0.6 61.1±1.6 38.8±0.3 48.7±1.1 60.6±0.5 55.1±0.6 33.9±0.0 61.8±0.2
MVAE 60.8±0.3 86.6±0.8 42.1±0.8 82.2±0.3 67.3±0.4 71.1±0.3 14.9±0.2 63.0±0.1

GraphTSNE 77.7±0.6 95.7±0.4 65.9±0.4 90.8±0.3 70.2±0.5 90.1±0.2 61.4±0.1 87.9±0.1
SemiVN 80.5±0.8 96.0±0.3 79.0±0.9 92.9±0.6 78.6±0.4 92.9±0.1 78.3±0.4 88.2±0.4

Table 4. Topic Coherence NPMI (in percentage) at T = 30. GraphTSNE is not a topic model,
thus is not included.

Model
NPMI

DS ML COVID NET DBLP
RTM 8.5±0.4 7.4±0.3 22.8±0.4 14.5±0.7 2.8±0.2

NRTM 6.7±0.3 7.6±0.2 19.5±1.5 12.4±0.2 6.0±0.9
Adjacent-Encoder 5.6±0.5 8.6±0.9 9.9±1.6 11.2±1.2 7.5±1.3

PLANE 8.2±0.1 9.0±0.2 21.1±0.8 14.5±0.6 -
PLSV 8.6±0.2 10.1±0.3 25.9±0.7 15.4±0.2 6.9±0.6
PLDA 4.0±0.5 2.8±0.3 9.1±0.4 5.0±0.6 4.8±0.2

SemiVAE 3.5±0.8 7.1±1.0 9.1±0.6 8.4±2.1 1.2±1.0
MVAE 4.4±0.6 6.3±0.5 7.9±0.3 11.0±0.9 1.8±0.7

SemiVN (topic) 9.8±0.3 9.9±0.4 25.0±1.6 17.6±0.7 8.4±0.7

SemiVN (label) 9.5±0.4 9.7±0.2 24.2±1.1
17.0±0.9 (level 1)

8.1±0.2
17.2±1.3 (level 2)

links, we randomly hold out one. In total 15%-17% links are hidden. We sample the
same number of disconnected pairs as negative instances. The remaining network is
used for training. Our goal is to predict the held-out links. We report F1 score and AUC
in Table 3. As mentioned, we pipeline some baselines with t-SNE. These disjoint mod-
els would increment errors from two separate components, thus achieving worse results
than SemiVN. SemiVN outperforms PLSV and PLANE, indicating that incorporating
labels can indeed help to group related coordinates together and predict links better.
We do not report the results on COVID dataset, since this dataset does not explicitly
observe links. It contains texts and labels only, and we induce kNN network based on
tf − idf cosine similarity. Unlike other datasets where we predict citations or coauthor-
ship, predicting links on COVID does not make any sense in real-word scenarios.

Topic interpretability. We use normalized PMI (NPMI) [3] to evaluate the coher-
ence of top 10 words of each topic. Google Web 1T 5-gram Version 1 [6] is the external
corpus for evaluation. GraphTSNE is not a topic model, thus is excluded. Table 4 shows
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Table 5. Classification accuracy (in percentage) of variants at T = 30, K = 20, 80% labeling.

Model DS ML COVID
SemiVN−reg 70.6±1.6 78.7±2.5 70.9±1.0
SemiVN−α 72.2±2.0 81.2±2.2 74.3±0.7

SemiVN 73.1±1.3 82.6±1.3 77.3±0.3

ml 30ds 30

(a) DS (b) ML

(c) NET (d) DBLP

(a-3) Adjacent-Encoder

(a-1) SemiVN

(b-3) Adjacent-Encoder

(b-1) SemiVN(a-4) PLANE (b-4) PLANE

(c-1) NET (level 1) (c-2) NET (level 2)

(a-2) GraphTSNE (b-2) GraphTSNE

Fig. 5. Semantic visualization with T = 30 topics and 80% labeling (best seen in color).

that SemiVN (topic) generates more coherent words and interpretable topics than oth-
ers. This supports the importance of labels to improve the quality of topic model.

In addition to those of topics, we also evaluate word coherence of labels. No baseline
extracts label-word association. SemiVN (label) is consistently lower than topics’, since
labels’ associated keywords are overly general and capture multiple aspects, resulting
in fewer co-occurrences.

Analysis. To evaluate the label smoothness regularizer, we compare to two variants.
i) SemiVN−reg removes the regularizer. ii) SemiVN−αmaintains it, but uses the same
αij in Eq. 17, and neighbors are equally important. Table 5 shows that i) regularizer is
helpful to embed neighbors closely, thus achieves better results; ii) modeling neighbors
differently is necessary, since disregarding it leads to worse performance.

4.2 Visualization

To sense how SemiVN embeds networked documents, topics, and labels into the same
scatterplot, we present visualizations in Fig. 5. See Fig. 1 for COVID. The similarity
of topics and labels can be revealed by the relative distance among coordinates. Similar
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Table 6. Results of user study.

Question Adjacent-Encoder PLANE GraphTSNE SemiVN
Q1 10.0% 40.0% 2.5% 47.5%
Q2 2.67/5 3.08/5 2.55/5 4.17/5
Q3 2.19/5 3.08/5 1.75/5 4.69/5

topics and labels tend to group together, distinct ones are separate. Labels and topics
split visual space into different semantic subspaces. NET’s labels are hierarchical at
Fig. 5(c). Label coordinates in Fig. 5(c-1) center within two categories, while in Fig.
5(c-2) the second-tier labels separate into four subspaces. Overall, SemiVN produces
clearer separation than baselines.

4.3 User Study

We conduct a user study to test the effectiveness of visualization from human perspec-
tives. We design a survey involving 20 participants who are not authors. The survey
comprises 22 questions, of three question types (Q1, Q2, and Q3 below). Each partici-
pant is presented with randomly shuffled questions.

– Q1 (MCQ): Given masked plots of 4 anonymized and shuffled models, which best
reflects <#labels> clusters?

– Q2 (Rating): Given a colored visualization plot of a model, how good does it sepa-
rate different categories?

– Q3 (Rating): How related is the clicked article to its surrounding topic and label?

For Q1, we randomly generate visualizations on DS, ML, and COVID. i) We re-
move topic and label coordinates, and maintain document coordinates only. ii) We
use the same color for all the categories. This question looks into the appropriateness
of semi-supervision, i.e., if users can identify the correct number of categories from
masked plots. For Q2, we consider all five datasets. We go through the same procedure
i) as above. Different from ii), we color coordinates based on their own labels. This
question tests the separation quality, i.e., if coordinates from different categories are
separated. For Q3, we further allow users to interact with visualization. We ask them to
select topics of interest based on keywords, then click surrounding article for reading.
This investigates if users can use SemiVN to stay informed and select relevant articles
in practice, and if the article is visualized at the correct place w.r.t. topics and labels.

We compare SemiVN to three representative baselines: Adjacent-Encoder, PLANE,
and GraphTSNE. Q1 contains multiple-choice questions, we report the percentage of
participants who favor each model. Q2 and Q3 involve ratings from 1 (terrible) to 5
(excellent), we report the average rating of each model. Table 6 shows that SemiVN
outperforms baselines on three types of questions, indicating that users are more satis-
fied with its ability to visualize documents, topics, and labels. PLANE is the best among
baselines, verifying the advantage of modeling topics and visualization jointly.
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5 Conclusion

We propose SemiVN, a semi-supervised semantic visualization model that embeds
networked documents, topics, and labels into the same visualization scatterplot. Its
versatility accommodates different labeling structures: single-label, multi-label, and
hierarchical-label variants. Extensive experiments verify the effectiveness of SemiVN
in both semantic interpretability and visual expressivity. Future work includes extend-
ing SemiVN to inductive scenarios so as to generalize to unseen documents.
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