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Robustness, Sensitivity and Sampling Variability of Pareto-Optimal 

Selection System Solutions to Address the Quality-Diversity Trade-off 

Abstract 

In case that both the goals of selection quality and diversity are important, a selection system 

is Pareto-optimal (PO) when its implementation is expected to result in an optimal balance 

between the levels achieved with respect to both these goals. The study addresses the critical 

issue whether PO systems, as computed from calibration conditions, continue to perform well 

when applied to a large variety of different validation selection situations. To address the key 

issue, we introduce two new measures for gauging the achievement of these designs and 

conduct a large simulation study in which we manipulate 10 factors (related to the selection 

situation, sensitivity/robustness, and the selection system) that cumulate in a design with 3888 

cells and 24 selection systems. Results demonstrate that PO systems are superior to other, non 

PO systems (including unit weighed system designs) both in terms of the achievement 

measures as well as in terms of yielding more often a better quality/diversity trade-off. The 

study also identifies a number of conditions that favor the achievement of PO systems in 

realistic selection situations. 

 

RUNNING HEAD: Robustness, Sensitivity and Sampling Variability of PO Selection Systems  
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Robustness, Sensitivity and Sampling Variability of Pareto-Optimal 

Selection System Solutions to Address the Quality-Diversity Trade-off 

Selection system design requires a number of decisions, including the type and number 

of predictors that will be used, the selection rule, the sequencing and weighing of the 

predictors, as well as the between stage retention rates that will be implemented in case of 

multi-stage selection. To assist making these decisions in cases that value both the quality 

(i.e., the expected job performance) and the diversity of the selected applicant group, De 

Corte, Sackett and Lievens (2011) proposed a decision-aid for identifying Pareto-optimal 

(PO) selection designs. As the concept of Pareto-optimality is relatively new to the 

psychological literature, it might be confusing to someone who infers that the concept refers 

to a single optimal solution.  Rather, there is a PO solution for every attainable level of 

diversity, i.e., it is the system that produces the highest level of expected performance among 

systems producing that specific level of diversity.  The result is a set of PO solutions, 

commonly referred to as a “Pareto front”, ranging from a performance-maximizing solution to 

a diversity maximizing solution.  The argument is that PO solutions should be preferred to 

non-PO solutions. However, the choice among PO solutions is a value judgment, rather than a 

technical problem, as it depends on the relative value the organization assigns to the 

performance and diversity objectives.  

Recently, Cortina, Aguinis, and DeShon (2017) reviewed key methodological 

developments in the last century and listed the Pareto-optimal (PO) approach as one of the 

methodological approaches in the last 10 years that has key applied implications for dealing 

with subgroup differences in personnel selection (see also the large-scale reviews of Bobko & 

Roth, 2013; Ryan & Ployhart, 2014). Although we agree that the PO decision-aid offers a 

sound, psychometrically based contribution to the selection design problem, some critically 

important issues remain unresolved. At present, the PO approach has been primarily 
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examined with meta-analytic input data. This is problematic for two key reasons. First, the 

model and the assumptions that drive the calculation of the expected selection outcomes will 

virtually never hold perfectly in the actual selection domain. Second, the PO decision-aid uses 

data on the composition of the applicant pool, as well as on the effect sizes, the validities and 

the intercorrelations of the predictors that are approximate at best. For example, little is 

known how results of PO systems are affected if the applicant pool is substantially smaller 

and different in composition than expected, fewer minority candidates are retained, and/or 

their scores on the selection procedures are differently distributed than assumed.  

Due to these key unresolved issues we do not know the impact of (a) violations from the 

model assumptions and (b) deviations from the input data on the PO results obtained. We are 

also in the dark which of these factors might have the most impact on the results. Our purpose 

is to provide insight into the value of PO selection system design in a large variety of 

selection conditions. We address robustness (related to the assumption violations), sensitivity 

(related to the input data deviations), and sampling variability issues.  

The structure of this paper is as follows. After providing an overview of previous 

developments on PO selection design, motivating the key research issues of the paper and 

summarizing prior research (e.g., Song, Wee & Newman, 2017), we propose new measures 

and a novel methodology for gauging the achievement of PO selection designs. This 

methodology is subsequently implemented within a factorial design to study the achievement 

of various PO designs when applied to a variety of validation settings that all differ from the 

calibration conditions (i.e., the assumptions and the predictor/criterion effect size and 

correlation data) used in deriving the PO systems. We also report on the relationship between 

the achievement level and the key dimensions that differentiate between the calibration 

conditions and the validation conditions that characterize the selection settings. Finally, we 

compare the achievement of PO designs in a large variety of selection settings to that of other 
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design choices (e.g., unit weighed predictor composites). 

In our study, we use simulation methods rather than analyzing real data sets or focusing 

on any one actual intervention implementing the principles of PO selection design. This is a 

deliberate choice, based on two considerations. First, real data sets, including not only the 

predictor but also the criterion scores of the entire applicant pool, are seldom if ever available 

in a real selection context. Second, our objective goes beyond an assessment of the 

achievement of PO selection designs in a particular context. Instead, our aim is to shed light 

on the achievement of these systems in a wide variety of selection contexts. Simulation 

methods fit this aim much better than one single selection case. 

Assessing the Achievement of PO Selection Systems  

PO Selection Systems: A Brief Tutorial 

For selection applications where the goals of selection quality and diversity are both of 

importance, De Corte, Sackett and Lievens (2011) proposed a psychometrically based 

decision-aid for rational selection design that results in selection systems that offer an optimal 

balance (i.e., a PO trade-off) between the two valued goals. The decision-aid conceives the 

shaping of a selection process as a series of mutually dependent decisions that define the 

resulting selection systems as particular sets of concrete choices with respect to the (1) 

predictor subset, (2) selection rule, (3) predictor staging, (4) predictor sequencing, (5) 

predictor weighing, and (6) between stage retention rates that will be implemented during the 

selection process.  

To derive the PO selection systems, the decision-aid proceeds in two steps. The first 

step, the inventory stage, consists of identifying the set of selection systems that are feasible 

within constraints that govern the planned selection process. Constraints may include limits 

on selection costs and limits on the number of stages in a selection system, among others. In 

the second step, the computational stage, the decision-aid computes from this set the subset of 
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selection systems that are PO with respect to the selection diversity and quality goals.  

These computations are based on the model proposed by De Corte, Lievens and Sackett 

(2007) for gauging the quality and diversity outcome value of selection systems, and the 

formulae invoked by the model depend on essentially three assumptions: (a) the joint 

distribution of the selection predictors and the job performance criterion is multivariate 

normal in both the majority and the minority applicant population1, (b) the initial applicant 

pool is a mixture of infinite size of both applicant populations, and (c) a top down selection 

rule (without applicant drop out) applies. In addition, the model calculations require data on 

the validity, the intercorrelation and the effect size of subgroup differences of the available 

predictors as well as data on the final selection rate and the majority/minority composition of 

the total applicant pool. Henceforth, the assumptions, together with the input data used in the 

calculations, are referred to as the set of calibration conditions from which the results of the 

decision-aid are derived and the symbol 𝐶𝑐 will be used to denote the set. 

To illustrate, consider the example situation, henceforth referred to as situation 𝑆0, 

where the first, inventory stage results in considering the following five predictors for 

selecting with a .20 selection rate in an applicant pool consisting of 80 percent candidates 

from the majority and 20 percent applicants from the minority population: (1) a cognitive 

ability (CA) test, (2) a structured interview (SI), (3) a conscientiousness (CO) measure, (4) a 

biographical inventory (BI), and (5) an integrity test (IN). In the inventory stage it is further 

decided that only three different selection scenarios are feasible: (a) a single stage scenario in 

which the final accept/reject decision is based on a weighed composite of the CA, CO, BI and 

IN predictors; (b) a two stage scenario where the candidates are first screened on the basis of 

a weighed composite of CA, CO and BI, and the remaining candidates (anywhere between 35 

and 60 percent of the initial number of applicants) are selected using a weighed composite of 

the SI and IN predictors; and (c) a three stage scenario where the intermediate retention 
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decisions involve top-down selection on a CA and IN composite (retaining anywhere between 

60 and 75 percent of the candidates) and a CO and BI composite (retaining 35 to 45 percent of 

the initial candidates), for the first and the second stage respectively, and the SI predictor is 

used in the final selection stage. Finally, suppose that the inventory stage also leads to the 

decision that the predictors may have weights between 0 and 1 when forming the predictor 

composites; a decision which implies that several additional scenarios such as, for example, a 

two stage scenario using only the CA predictor and the SI predictor are also feasible. 

Given the above detailed situation 𝑆0, and using data estimates on the applicant group 

composition, the predictors and the criterion (the example uses the predictor/criterion data 

values displayed in Table 1, Selection Environment 3), the decision-aid next proceeds by 

computing, over all feasible selection systems, the subset of systems that are PO with respect 

to the selection diversity and quality goals. Panel A of Figure 1 portrays the results of this 

second step, using the expected job performance of the selected applicants (expressed in 

standard score units) and the selection ratio in the minority applicant group as gauges for the 

selection quality and diversity goal respectively. The upper bold line in Panel A represents the 

set of PO goal trade-offs (i.e., the PO trade-off curve or Pareto front), whereas the area 

enclosed by the upper and lower (orange) lines depicts the entire gamut of achievable 

quality/diversity trade-offs. The figure in Panel A also represents a number of particular PO 

trade-off points (i.e., the points P1 to P4) on the PO trade-off curve. It is of key importance to 

note that these PO points not only correspond to a particular value for the quality/diversity 

trade-off, but are each also associated with a particular selection system. For example, PO 

trade-off point number 2 (point P2 on the figure) is associated with a two stage selection 

system in which the first stage selection, retaining 60 percent of the candidates, is based on a 

weighed composite of the CA and CO predictors (with weights equal to 0.707 and 0.687); 

whereas a composite of the SI and the IN predictors (with weights equal to 0.677 and .750) is 
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used in the final selection stage. 

Besides the PO trade-offs on the upper curve, Panel A of Figure 1 also displays five 

additional sets of trade-offs that all have the same diversity value as one of the PO trade-offs 

on the upper curve, but are inferior in terms of the quality value. Exploring these will be a 

major component of this paper: we will generate selection systems that are inferior to PO 

systems when assumptions are met, and then examine the achievement of these PO and 

inferior systems when assumptions are violated. 

 The trade-offs on the lower curve (labeled with the letter Z) represent the worst 

possible trade-offs, whereas the trade-offs labeled with the letter U refer to trade-offs 

associated with selection systems in which any predictor that is assigned a non-zero weight in 

a selection system is given a weight of one. These fixed weight systems are henceforth 

referred to as unit weighed systems and they reflect the practice of using unit weighting to 

either the totality or a subset of the available predictors. So, unit weighed systems do not 

necessarily assign a weight of one to each predictor in the composite, but for each composite 

at least one of the predictors has a weight of one. The unit weighed system U1, for example, 

refers to a three stage selection system with weights one and zero for the first stage predictors 

CA and IN respectively, weight one for both the second stage predictors CO and BI, and 

weight one to the third stage predictor SI. Finally, the trade-offs of the remaining three sets2 

(i.e., the sets T1 to T4, F1 to F4 and S1 to S4) correspond to feasible selection systems that 

are characterized by a quality trade-off value of a given fixed percentage as compared to the 

quality value achieved by the PO system that shows the same diversity trade-off value. These 

reflect twenty-five (T), fifty (F), and seventy-five (S) percent of the quality achieved via the 

PO system.  

In summary, the application of the decision-aid determines which of the feasible 

selection systems are PO and which are non-PO. Also, only PO systems should be 
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implemented because all other systems (e.g., the U systems or the T, F and S systems in 

Figure 1) result in a quality/diversity trade-off that can be bettered by a PO system (e.g., the 

system U2 is bettered by both P2 and P3). The decision-aid does not indicate which PO 

system is to be preferred. As noted by De Corte et al. (2011, p. 913), the final decision in 

favor of a particular PO system calls for “a value judgment on the particular kind of balance 

between selection quality and work force diversity one is aiming at”.  

Key Research Issues 

The results of the decision-aid are all dependent on the validity of the calibration 

conditions 𝐶𝑐. Yet, there is no doubt that these conditions will rarely, if ever, correspond to 

the unknown conditions that characterize the real selection situation. So, although input 

predictor, criterion, and applicant data values might come from a prior local validity study or 

from generalized validity evidence (e.g., transporting validity from a closely related setting or 

meta-analytic findings), they might at best approximate the values that will be found in the 

actual selection situation of interest. In addition, recruitment efforts may in real situations 

result in a size and a composition of the applicant pool such that different retention rates and a 

different selection rate than the rates initially used in deriving the PO systems must be applied 

to obtain the required number of selected candidates. Finally, it will almost surely be the case 

that the majority and minority candidates in the applicant pool will not represent samples 

from a multinormal distribution with mean and correlation structure values as assumed under 

𝐶𝑐, but rather come from a possibly nonnormal distribution with a different mean and 

correlation structure. 

So, the PO selection systems identified by the decision-aid correspond to calibration 

conditions 𝐶𝑐 that at best approximate the typically unknown conditions that characterize the 

actual selection application. Denoting the actual prevailing conditions, henceforth also 

referred to as the validation conditions, as 𝐶𝑣, the key issue then becomes how the 
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achievement of the PO selection systems, as computed under the calibration conditions 𝐶𝑐, 

evolves when these systems are implemented for a selection application where the validation 

conditions 𝐶𝑣 apply. Also, it is equally important to assess the two major types of 

circumstances that may impact the achievement level of the PO selection systems: (1) the 

nature of the selection environment and the calibration conditions 𝐶𝑐 the systems are 

computed from, and (2) the features that differentiate between the calibration conditions 𝐶𝑐 

and the actually prevailing validation conditions 𝐶𝑣. Finally, it is also worthy to consider 

whether the achievement in the validation conditions varies across the range of PO systems 

and to study the possibly different impact on the achievement in the validation condition of 

PO as compared to non PO systems such as the unit weighed systems.  

As a consequence, the first key research issue of the paper focuses not only on the 

achievement level of PO systems when applied in a large variety of validation settings, but 

also on the relative impact on the achievement level of (1) the nature of the selection 

environment and the calibration conditions the systems are computed from, and (2) the 

features that differentiate between the calibration and the validation conditions. As a second 

research issue, the paper compares the achievement, across various validation circumstances, 

of PO selection systems to the achievement of non PO systems, including unit weighted 

systems. Together both of these issues speak not only to the robustness for violations of the 

distributional assumptions and the sensitivity to variability in the input data of PO selection 

system design, but also to the relative level of robustness and sensitivity of these systems 

relative to other non PO systems. Finally, by considering actually realized applicant pools as 

finite sized samples obtained under the validation conditions 𝐶𝑣, we address the issue of 

sampling variability in the PO systems achievement as well. 

Previous Related Research 

In general, prior related research focused on comparing the quality/diversity trade-off of 
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PO and unit weighed selection systems, as computed from calibration conditions 𝐶𝑐, to the 

trade-off achieved by the systems when applied in validation settings 𝐶𝑣 that differ only in 

terms of the predictor/criterion correlation and effect size data values (e.g., De Corte et al., 

2011; Song et al., 2017; and Wee et al., 2014). Also, only single stage selection systems were 

investigated. In a first study, De Corte et al. (2011) used the calibration trade-off value of PO 

and unit weighed selection systems to link each of these systems to a corresponding set of so-

called “dominated” selection systems; that is to a set of systems that under 𝐶𝑐 result in quality 

and diversity trade-off values that are at best equal to the trade-off achieved by the former 

system. The achievement of the systems in the validation setting 𝐶𝑣 was subsequently 

assessed as the proportion of times that the trade-off of these systems continued to dominate 

the trade-off of their corresponding dominated systems when they were all applied under 𝐶𝑣. 

In a second sample to population cross validation study De Corte et al. compared (a) the 

average value on the quality objective of sample based, calibration PO and unit weighed 

systems when implemented in the population, validation setting to (b) the corresponding 

average that is optimally achievable in the validation setting at the identical value for the 

diversity objective. Wee, Newman and Joseph (2014) studied the gain in the diversity 

objective when using a PO selection system instead of the unit weighed system, assigning a 

weight of one to each predictor, across a large number of (population) validation settings, 

each corresponding to a different set of values for the predictor/criterion effect size and 

correlation data. Finally, Song et al. (2017) also adopted a sample to population cross 

validation approach to study the quality (equated to the validity of the predictor composite) 

and diversity (indexed by the adverse impact ratio, AIR) shrinkage when PO systems 

computed from sample calibration data are applied to approximate population settings. 

By and large, the previous studies reported rather favorable results on the achievement 

of PO selection systems when applied in new, validation settings. De Corte et al. (2011) found 
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that in these new settings both PO and unit weighed systems continue to outperform their 

dominated systems to a fairly similar degree. Also, evaluated at identical diversity levels, PO 

systems, computed from calibration sample predictor/criterion data, maintained on average a 

high quality level relative to the average quality achieved by the corresponding PO systems as 

derived from the population validation data. Wee et al. (2014) concluded that the average gain 

in the diversity objective, when using the PO system with the same quality level as the unit 

weighed system, remains substantial across different validation settings. The average gain 

was also quite stable across different levels of sampling variability in the validation 

predictor/criterion data. Finally, Song et al. (2017) observed that validity shrinkage in the 

validation setting is fairly negligible when the PO systems are computed from calibration data 

obtained from samples of at least 100. Diversity shrinkage is more pronounced for samples of 

the same size, however, especially when some of the selection predictors show small effect 

sizes as is illustrated in Figure 2 of Song et al. by the considerably larger shrinkage along the 

diversity axis as compared to the shrinkage along the validity axis. The shrinkage also relates 

to the type of PO system: PO systems that give priority to the quality objective are more 

prone to validity shrinkage, whereas PO systems that favor the diversity objective show more 

diversity shrinkage. Finally, even accounting for the shrinkage observed for PO systems 

computed from small sample predictor/criterion data, these systems still offered potential for 

diversity/validity improvements over unit weighted selection systems. 

Although previous studies suggests that PO systems may compare favorably to other 

selection system designs, further research is highly needed for several reasons. First, the 

previous studies do not cover the robustness issue and are all limited to the situation where the 

initial (calibration) and the new (validation) setting differ only in terms of the 

predictor/criterion correlation and effect size data, thereby neglecting the common instance 

where the calibration and the validation setting also differ in terms of the selection rate and 
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the size and composition of the applicant pool. Second, thus far only single stage selection 

systems have been investigated. Third, and even more importantly, all previous results are 

tentative at best because they relate to situations where the validation setting involves the 

applicant population instead of samples of limited size from this population3. Yet, as argued 

by Cattin (1980), personnel selection researchers and practitioners are essentially interested in 

how well selection systems derived in the calibration condition will perform in new, limited 

sized validation sample conditions. Finally, all previous research fails to address the question 

whether the quality/diversity trade-off of the PO systems achieved in the validation condition 

continues to compare favorably to the diversity/quality trade-offs that are at all possible in the 

validation situation.4 

Figure 2 is particularly helpful to explain the latter issue. At the same time, the figure 

illustrates the main difference between the approach of Song et al. (2017) and the one adopted 

in the present paper to evaluate the validation potential of calibration based PO systems. The 

figure relates to a single stage selection situation (using a weighed composite with 

nonnegative weights of the five predictors of Selection Environment 3 detailed in Table 1) 

with a .15 selection rate and a 167 proportion of minority candidates in the applicant 

population. The vertical and horizontal axis of the figure correspond to the quality objective 

(operationalized as the predictor composite validity) and the diversity objective (measured as 

the minority applicant selection rate), respectively. The points 1̅𝑐, 2̅𝑐, …, 10̅̅̅̅
𝑐 on the figure 

indicate the average quality/diversity trade-off achieved by 10 PO systems in the calibration 

condition across a total of 10,000 sample calculations, where the computation of the PO 

system trade-off values in each replication is based on the predictor/criterion correlation and 

effect size values as obtained for samples of size 40 from the total applicant population. The 

other points, with labels 1̅𝑣, 2̅𝑣, …, 10̅̅̅̅
𝑣, correspond to the average trade-off achieved by the 

calibration PO systems when implemented in the validation context (i.e., with respect to the 
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population predictor/criterion correlation and effect size data of Environment 3 in Table 1). 

To evaluate the validation potential of the PO systems Song et al. focus on the diversity 

(validity) shrinkage of the PO systems, defined as the difference between the calibration and 

validation average diversity (quality) trade-off value of the systems. The dashed lines in the 

figure exemplify this diversity (quality) shrinkage for the PO systems 1 (which strongly 

favors the quality objective), 8 and 10 (which strongly favors the diversity objective). 

Observe that the diversity (quality) shrinkage of the PO systems 1, 8 and 10 in Figure 2 

clearly substantiates the conclusion of Song et al. that PO systems, that favor more strongly 

the diversity (quality) objective, show larger diversity (quality) shrinkage. 

Whereas Song et al. (2017) focus on diversity (quality) shrinkage to assess the 

validation potential of the PO systems, the present approach proposes comparing the 

validation diversity/quality trade-off of the PO systems to the set of trade-offs that are at all 

possible in the validation condition. The area enclosed by the solid line contour in Figure 2 

represents the latter gamut of possible diversity/quality trade-offs, and the average 

diversity/quality trade-offs achieved by the PO systems in the validation condition (i.e., the 

trade-offs 1̅𝑣, 2̅𝑣, …, 10̅̅̅̅
𝑣) are all within the gamut. Surprisingly however, and although the 

PO systems that favor more strongly the diversity (quality) objective show the largest 

diversity (quality) shrinkage, these systems perform rather inversely when compared relative 

to the maximum and minimum possible diversity (quality) level that can be achieved at their 

corresponding quality (diversity) level. As an example, consider the diversity shrinkage of the 

calibration PO systems 1 (giving maximum priority to the quality objective) and 10 (giving 

maximum priority to the diversity objective) and compare this shrinkage to the relative 

position of the average validation trade-off of the systems with respect to the points P1 and 

W1 (for system 1) and the points P10 and W10, respectively. Clearly, calibration PO system 

10 shows a larger diversity shrinkage (equal to the difference between the diversity value of 
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the average calibration trade-off 10̅̅̅̅
𝑐, .21, and the diversity value of the average validation 

trade-off 10̅̅̅̅
𝑣, .12, resulting in a value of .09) than system 1 (with a diversity shrinkage equal 

to .08 - .06 = .02). Yet, compared to system 1, the .12 diversity value of the average validation 

trade-off of system 10 corresponds to a higher proportional achievement level relative to the 

best and worst possible diversity level that can be achieved in the validation context at the 

same quality level. (i.e., a proportional achievement level for system 10 equal to 
.12− .06

.14− .06
=

 .75, with .06 and .14 the worst and the best possible diversity value in the validation 

condition at the system 10 quality value of .38, cf. the points W10 and P10 in Panel A; and a 

proportional achievement level for system 1 equal to 
.06− .05

.08− .05
=  .33 for system 1). 

Alternatively PO system 1 has a larger quality shrinkage than system 10 despite the fact that 

its validation quality value shows a substantially higher proportional achievement level as 

compared to system 10. So, focusing on the diversity/quality trade-offs that are at all possible 

in the validation condition (present approach), instead of using shrinkage (Song et al. 

approach) as a measure for gauging the achievement of PO systems in the validation 

condition, may very well lead to quite different conclusions about the validation potential of 

calibration PO and other selection systems. 

The next section further develops the basic idea underlying the present approach for 

gauging the validation potential of calibration based selection systems. These developments 

lead to new measures for quantifying the achievement of PO and other selection system 

designs when applied in validation settings involving applicant groups of both limited and 

unlimited size. The new measures also enable a straightforward comparison of the 

achievement level of the various systems in these settings.  

Measuring the Achievement of Selection Systems in the Calibration Condition 

We first consider measuring the achievement level of selection systems as obtained in 

the calibration stage. In this stage, the systems are computed using the model proposed by De 
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Corte et al. (2007) implying that the achievement level of the systems expresses the 

achievement as obtained with respect to an infinitely sized applicant pool; that is with respect 

to the total applicant population. Panel A of Figure 1 represents such a situation. Suppose 

now that we aim for a measure, with values ranging between 0 and 1, to assess the 

achievement of the selection systems P1 to P4 and Z1 to Z4 depicted in the panel. In that case, 

the obvious choice is to assign a value of 1 to the systems P1,…, P4 and a value of 0 to the 

systems Z1,…, Z4 because the former systems show the maximum possible quality at the 

corresponding diversity level, whereas the latter systems have the worst possible quality at the 

same diversity level. Given these values, it is then straightforward to assign achievement 

values to the other systems (e.g., U1, F2, and so on) reflecting the percentage of the possible 

improvement over the Z system that is obtained with the PO system. More specifically, the 

achievement of these other systems can be expressed as a proportion relating (a) the 

difference in quality value of the system and the quality value of the worst possible system 

with the same diversity value to (b) the difference in quality value of the best and the worst 

possible system with the same diversity value. In the extreme rare event that the latter 

difference equals zero we adopt the convention that the system has a performance value of 

one.  

As an illustration of the proposed achievement measure, consider the system U2. The 

system shows a quality/diversity trade-off of 1.086/0.126, whereas the best and worst possible 

systems with the same diversity value (i.e., P2 and Z2) have a quality value of 1.256 and 

0.788 respectively. With these values, the achievement of system U2 is then equated to 

1.086−0.788

1.256−0.788
= .64. In other words, system U2 obtains 64% of the gain over the worst possible 

system that could be obtained with the best (i.e., PO) system.  

In what follows, the above described measure for the achievement of a selection system 

will be referred to as the calibration quality achievement of the system. So, the calibration 
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quality achievement of a selection system indicates the proportional achievement, on the 

quality objective, of the system at its corresponding diversity level as computed under the 

calibration conditions 𝐶𝑐. 

As the natural companion of the former gauge, we also introduce the calibration 

diversity achievement measure. Similar to the calibration quality achievement measure, the 

calibration diversity achievement measure indicates the proportional achievement in the 

calibration condition, but this time with respect to the diversity objective, of a selection 

system at its corresponding quality level. Using system S1 of panel A (with a diversity/quality 

trade-off value of .10/1.18) as an example, it can be seen that the systems with labels W1 and 

B1 have the same quality value (i.e, 1.18) as the system S1, with W1 showing the worst 

possible diversity value (i.e., .07) and B1 the best possible diversity value (i.e., .15). The 

calibration diversity achievement therefor equals (.10-.07)/(.15-.07)=.38. 

Observe that the calibration diversity and the calibration quality achievement measure 

are undefined if the denominator in the corresponding proportion equals zero. As illustrated in 

Panel A of Figure 1, this will typically be the case for only four selection systems: the 

systems NB, NE, NO and P1. System P1, for example, shows a zero difference between the 

lowest and the highest attainable diversity trade-off value at its quality trade-off level, but in 

this case as well as for the other three systems it is obvious to equate the corresponding 

calibration diversity (quality) achievement measure to one. It is also important to note that 

both new measures result in dimensionless quantities that share the same metric. Although the 

quantities still relate to one specific selection objective, they do no longer share the metric of 

the objective. In particular a value of, for example, .75 on the calibration quality achievement 

(calibration diversity achievement) measure does not mean that the system has a value of .75 

for the quality (diversity) objective but that its achievement on the quality (diversity) 

objective is at 75 percent of the gain over the worst possible system that could be obtained 
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with the best system at the same diversity (quality) level of the system. Also, because both 

new measures share the same metric, it is admissible to combine their values to one aggregate 

achievement measure by taking the average of the two measure values.  

Measuring the Achievement of Selection Systems in the Validation Condition 

In selection practice, one is less interested in the achievement of selection systems when 

applied to an entire population but rather in the expected achievement of the systems when 

applied to a future, finite applicant pool because real world applicant pools are always of 

finite size. We therefor focus on measuring the achievement of selection systems in validation 

conditions involving either a single finite sized applicant pool or a population of finite sized 

pools. Panel B of Figure 1 (the subsection “Computing the Validation Achievement of 

Selection Systems” details the procedure for obtaining the results depicted in the panel) 

illustrates the development of the achievement measures in the first case. The panel depicts 

the trade-offs achieved by the calibration selection systems of Panel A when applied to a 

given applicant pool of size 250 with an equal number of minority and majority applicants 

using an overall selection rate of 0.3. Panel B also shows the gamut of trade-offs that can be 

achieved in the validation applicant pool. 

Comparing both panels of Figure 1 illustrates how the gamut of achievable 

quality/diversity trade-offs and the trade-offs of the PO and the non PO selection systems as 

obtained under the calibration condition 𝐶𝑐 may change substantially for the validation 

applicant pool. First, the upper and lower boundary of the gamut of achievable trade-offs 

consists of only a limited number of points because the validation condition involves a finite 

sized applicant pool such that only certain values for the minority selection rate are possible. 

Similarly, and for the same reason, the gamut no longer corresponds to the area enclosed by 

the boundary points, but reduces to the collection of vertical dashed lines connecting the 

corresponding upper and lower boundary points (cf. the vertical orange dashed lines in Panel 
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B). Also, within each vertical line, only a finite number (quickly increasing with the size of 

the applicant pool) of different quality values is achievable. Finally, observe the changes in 

the trade-off achieved by the selection systems in the calibration condition (cf. Panel A) 

versus the validation applicant pool. Consider, for example PO system P2. Under 𝐶𝑐, the 

system has a quality/diversity trade-off of 1.26/0.13 (cf. Panel A), whereas the same system 

results in a trade-off of 1.09/.16 when applied to the validation pool. Also, none of the 

systems that are PO under 𝐶𝑐 remain PO in the validation pool because each one is dominated 

by a feasible system that has the same diversity, but a higher quality value (cf. the systems 

corresponding to the trade-offs B1,…, B4 in Panel B). 

Despite the differences between the calibration and the validation conditions, the 

principle used to measure the achievement of the selection systems in the calibration 

condition can also be invoked to gauge the achievement of these systems when applied to the 

validation applicant sample. To distinguish the resulting measures for the applicant sample in 

the validation context from the corresponding measures in the calibration condition, they are 

henceforth referred as the sample validation diversity achievement and the sample validation 

quality achievement respectively. Thus, given the trade-offs achieved in the validation pool 

of, for example, P2, B2, W2, W2D and B2D (i.e., 1.09/.16, 1.20/.16, .51/.16, 1.09/.12 and 

1.09/.23 for P2, B2, W2, W2D and B2D, respectively; cf. Panel B), the sample validation 

quality achievement of system P2 can now be equated to (1.09-.51)/(1.20-.51)=0.84; whereas 

the sample validation diversity achievement of the system equals (.16-.12)/(.23-.12)=.36.  

If the validation conditions refer to a population of finite sized applicant pools, the 

sample validation achievement value of the selection systems will vary across the set of all 

possible applicant samples that are consistent with the validation conditions 𝐶𝑣. To account 

for this sampling variability the validation diversity (quality) achievement of a selection 

system under such more general validation conditions 𝐶𝑣 is henceforth defined as the 
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expected sample validation diversity (quality) achievement across all possible applicant 

samples according to 𝐶𝑣. 

As is the case for the calibration achievement measures, the validation achievement 

measures are undefined if the denominator in the corresponding proportion equals zero. 

Although the condition will generally not hold for the validation quality achievement 

measure, the same is not true for the validation diversity measure, especially if the validation 

conditions relate to a selection with a small selection rate applied to a small applicant pool. In 

that case, the number of possible values for the selection diversity trade-off, as gauged by 

either the minority selection rate or the AIR, is (very) small and the worst and the best 

possible diversity value for a given quality level are often identical5. So, although both 

validation achievement measures are conceptually on an equal footing, the validation quality 

achievement measure has, compared to the validation diversity measure, the net advantage 

that it is almost never undefined. 

Compared to previously proposed gauges, the novel measures of validation achievement 

have two distinct advantages. First, the measures offer an adequate, intuitively appealing and 

easily interpretable quantification of the validation achievement level of a selection system. In 

essence, the measures tell by means of a proportion how well a system is expected to perform 

on the quality (diversity) objective in a new setting 𝐶𝑣 as compared to the best and the worst 

possible selection system designs that, under 𝐶𝑣, have the same diversity (quality) value as the 

system. Also, because the measures are dimensionless and in the same metric they can be 

combined to a single aggregate validation achievement measure. Second (and except for the 

earlier discussed limitation for the validation diversity achievement measure), the measures 

are generally applicable because they can be used to evaluate the validation achievement of 

both PO and other selection systems with respect to any applicant pool corresponding to any 

set of validation conditions 𝐶𝑣 and therefore enable comparing the validation achievement of 
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any one selection system with that of any other system either under the same conditions 𝐶𝑣 or 

across different conditions. 

Finally, observe that the values on the new validation achievement measures as well as 

differences between these values can easily be converted to corresponding quantities that are 

of immediate relevance to practitioners. For example, consider again Panel B of Figure 1. The 

panel shows that the systems U4, P4, W4, and B4 result in the same minority selection rate of 

.21. Yet, each of these has quite a different value for the quality objective (i.e., quality values 

of .36, .82, .93 and 1.15 for W4, U4, P4 and B4, respectively), resulting in sample validation 

quality achievement values of 0, .58, .72 and 1 respectively. Obviously, the P4 system 

outperforms the U4 system and the difference in sample validation quality achievement, equal 

to .14, can be translated to a difference of .93 - .82 = .11 standard units in the expected job 

performance of the selected applicants. 

Computing the Validation Achievement of Selection Systems 

We developed two suites of programs and accompanying shell scripts to compute the 

validation achievement in the validation conditions Cv of selection systems as derived under 

the calibration conditions Cc. The first suite is restricted to the study of single stage selection 

systems with respect to validation conditions involving an infinite sized applicant pool as in 

the Song et al. (2017) study and the suite is executable on a personal computer. The suite also 

calculates the shrinkage in the quality and diversity objective of the systems in the validation 

conditions. The program solves a series of nonlinear optimization problems similar to the 

ones described in De Corte et al. (2011), using a classic, gradient based sequential quadratic 

programming algorithm. The suite, including documentation about its usage, can be 

downloaded from http://users.ugent.be/~wdecorte/software.html and the online material 

accompanying the paper presents an application studying the robustness and sensitivity of 

both the shrinkage and the validation achievement of various single stage selection systems 
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under population validation conditions. These results assist the discussion on the main results 

reported in the paper. 

In contrast to the limited capabilities of the first suite of programs, the second suite 

addresses both single and multi stage selection systems6 under general validation conditions 

related to a finite sized applicant pool. The previous section shows that in that case the 

computation of the validation diversity (quality) achievement of a selection system in 

validation conditions 𝐶𝑣 requires generating a large number of applicant samples according to 

𝐶𝑣, computing the sample validation diversity (quality) achievement of the system for each 

sample, and taking the average of the resulting achievement values. Because these 

computations are extremely demanding, the second suite can only be executed on a high 

performance computing facility. 

To generate the applicant samples in the second suite, we use the procedure described 

by Ruscio and Kaczetow (2008) because it can deal with virtually any type of joint 

distribution (including real data distributions) of the predictor/criterion in the majority and the 

minority applicant populations and the procedure can, therefor accommodate a very broad 

range of 𝐶𝑣 conditions. Next, to compute the validation achievement values of the systems in 

each of the generated applicant samples, we wrote a mixed C and Fortran 77 program. The 

program repeatedly applies the evolutionary multi objective optimization (EMOO) algorithm 

as implemented in the NSGA-2 program developed by Deb, Pratap, Agarwal, and Meyarivan 

(2002) to calculate the maximum and minimum quality (diversity) value that can be achieved 

(over all feasible selection systems) at the diversity (quality) level obtained by the systems in 

the sample. We adopted the latter EMOO algorithm because with finite sized validation 

applicant pools the calculation of both the maximum and minimum achievable quality 

(diversity) involves the global, constrained optimization of a nonlinear, nonanalytic function 

(corresponding to either the quality or the diversity of the system) where one of the equality 
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constraints (related to the diversity or the quality in case the quality or the diversity is 

maximized or minimized) is also nonanalytic. These optimization problems can not be solved 

with classical, gradient based methods, such as invoked by the decision-aid of De Corte et al. 

(2011), leaving no other option than to use a general meta heuristic approach instead. To 

assist the EMOO algorithm, its execution is preceded by an extensive grid search to generate 

an initial population of problem variable values that meet the nonanalytic equality constraint. 

Although the above procedure succeeds in computing the minimum and maximum 

achievable quality at the diversity level obtained by a selection system in the validation 

sample, the procedure is unreliable when solving for the corresponding diversity 

optimizations at the quality level obtained by the system7. Using a different metaheuristic 

approach (i.e., ant colony optimization, Dorigo and Stutzle, 2004) instead of the evolutionary 

based approach does not solve the problem. Apparently, the problems with the present 

procedure to maximize/minimize diversity under the quality equality constraint is caused by 

the fact that in finite applicant pools the number of possible values for the quality objective 

(gauged by the average job performance of the selected applicants) at a given diversity level 

is much larger than the corresponding number of possible values for the diversity objective 

(gauged by either the minority selection rate or the AIR) at a given quality level, making it 

much harder to implement the equality constraint with respect to the quality objective as 

compared to the implementation of the constraint with respect to the diversity objective.  

Despite these computational problems, we decided to adopt the general approach for the 

remainder of the paper, even though this means that only results about the validation quality 

achievement of the systems will be reported. The decision is motivated by the fact that only 

the general approach can shed light on the achievement of both single and multi stage 

selection systems when applied in realistic validation conditions, that is in conditions 

involving finite sized applicant pools. Also, using the findings from the study reported in the 
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online supplement it is possible to at least indicate how the results about the validation 

diversity achievement of different selection systems are expected to evolve. Finally note that, 

even without the computational problems, the integration of the validity diversity 

achievement measure in the present study could still be somewhat problematic because the 

measure is often undefined for small applicant pool validation conditions (cf. the section 

“Measuring the Achievement of Selection Systems in the Validation Condition”). 

Studying the Robustness and Sensitivity of Selection Systems  

We use simulation methods within a design structured by 10 factors to address the key 

research questions about the validation achievement of PO and other selection systems when 

these systems are applied to a large variety of validation selection settings. The design adopts 

the framework of sensitivity analysis (Saltelli, Tarantola, Campolongo & Ratto, 2004). This 

framework aims to assess the effect of different sources of uncertainty (variability or error) in 

the input data of a model on the model output, often using simulation and regression or 

ANOVA methods within a (preferably) factorial design to identify the most prominent 

sources of uncertainty or variability. The framework is therefore ideally suited to address the 

key research questions of the paper. In addition, the present design also permits studying 

issues concerning the population to sample and the sample to sample cross-validation (cf. 

Cattin, 1980) of PO selection system designs. 

The first three factors of our design, henceforth referred to as the selection situation 

factors, capture the impact of the nature of the selection environment and the initial 

calibration conditions 𝐶𝑐 the systems are computed from. A second set of five factors, 

addressing the sensitivity and robustness issues, relates to the major features that differentiate 

between the initial conditions 𝐶𝑐 and the actually prevailing validation conditions 𝐶𝑣. Finally, 

the remaining two factors, labeled as the selection system factors, structure the characteristics 

of the analyzed selection systems. 
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Selection Situation Factors 

The first two selection situation factors relate to the overall selection rate under 𝐶𝑐 (with 

three levels: .1, .2 and .4), and the proportional representation under 𝐶𝑐 of the majority 

applicants in the candidate population (with two levels: a .8 and a .5 majority applicant 

representation) respectively. We included these factors in the design to investigate whether 

PO and other selection systems, as derived for different combinations of selectivity rate and 

majority/minority mixture proportion values under 𝐶𝑐, show different levels of robustness and 

sensitivity. The choice of the actual levels of both factors was driven by a double concern: 

sufficient variation in the level values to capture an eventual effect of the factors and 

maintaining a reasonable degree of realism. 

The final selection situation factor, labeled as the selection environment factor, has 

three levels that each refer to a quite different selection setting. Table 1 and 2 detail the three 

environments. The first table identifies the available predictors in each environment and 

summarizes the predictor/criterion mean and intercorrelation data used to compute the 

different selection systems under 𝐶𝑐 within the environment. In turn, Table 2 describes the 

contextual and other relevant constraints that demarcate the set of feasible selection systems 

for each environment. 

We choose these three selection environments because we first and foremost wanted to 

assess the validation achievement of PO and non PO systems over a wide variety of selection 

settings, even though this implied considering environments that differ not only in terms of 

the type and number of the predictors and, hence, in the predictor/criterion data, but also vary 

with respect to the staging of the predictors (i.e., single vs two stage selection and mixed 

single, two and three stage selection) and the nature of the feasible selection designs. At the 

present early stage of research on the robustness and sensitivity of PO selection system 

design, we decided in favor of including a wide variety of factors, representing all major types 
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of circumstances that may impact on the validation achievement of the selection systems, 

rather than focusing too much on a single, albeit important aspect such as the nature of the 

selection environment. Given the multitude of ways in which selection environments may 

differ from each other (e.g., with respect to the number and type of predictors, the distribution 

of the predictor/criterion effect sizes, the factorial structure of the predictor battery and the 

nature of the set of feasible selection designs), a detailed analysis of the impact of this factor 

is best postponed until more is known about the other circumstances that are critical to the 

robustness and sensitivity of PO and other systems. For now, the decision to first consider the 

full scale of possibly important factors implied choosing between a set of fairly homogeneous 

levels for the selection environment factor that differ in only one aspect such as, for example, 

the staging of the selection process, and a set of heterogeneous levels. We decided in favor of 

the latter option because it enables a more general and informative answer about the 

validation achievement of PO as compared to other selection systems, even though this choice 

may entail some difficulties with the interpretation of the effect of the factor. 

With three levels for the selection rate and the selection environment, and two levels for 

the proportional minority/majority representation, the crossing of the three selection situation 

factors results in a total of 18 different studied selection situations. These 18 situations are at 

best exemplary for the broad range of situations encountered in practice, but we believe that 

the situations are sufficiently heterogeneous to assure that the study provides at least guiding 

evidence on the validation achievement of PO selection system designs. 

Factors Differentiating Between the Calibration and the Validation Conditions 

The design also includes five factors to capture the ways in which the validation 

conditions of the selection application, 𝐶𝑣, may deviate from calibration conditions, 𝐶𝑐. The 

first factor targets the robustness issue because it relates to the nature of the distribution 

(under 𝐶𝑣) of the predictor/criterion scores in the majority/minority applicant populations 
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from which the applicant pool is sampled in the validation conditions. The other four factors 

address the sensitivity issue. More specifically, these factors focus on the differences in the 

data values under 𝐶𝑣 as compared to 𝐶𝑐 of (1) the proportional representation of the majority 

and minority applicants in the applicant pool, (2) the overall selection rate, (3) the size of the 

applicant pool, and (4) the mean and the intercorrelation of the predictors/criterion in the 

majority/minority populations the applicant pool is sampled from. Observe that the latter 

factor relates to differences of the mean and intercorrelation data at the population and not at 

the sample level.  

Although the above five factors permit a fairly exhaustive investigation of the 

robustness and sensitivity issues, it is again noted that the choice of the number and the nature 

of the factor levels reflects a balance between the concerns of feasibility and adequate 

coverage. Thus, proportional representation under 𝐶𝑣 of the minority/majority applicants has 

only two levels: either the same or different to the one under 𝐶𝑐 (i.e., if different, the 

proportion majority applicants under 𝐶𝑣 equals .8 (.5) when the corresponding proportion is .5 

(.8) under 𝐶𝑐). In turn, the selection rate under 𝐶𝑣 is limited to three levels, with level one 

indicating an identical selection rate and the levels two and three corresponding to the case 

where the selection rate under 𝐶𝑣 is 1.5 and 0.5 times the selection rate under 𝐶𝑐. The size of 

the applicant pool has four levels, covering the range from rather small (80) to medium  (250) 

to large (800) and very large (2500) applicant pools. Next, the difference of the mean and 

correlation structure of the joint predictor/criterion distribution under 𝐶𝑐 versus 𝐶𝑣, has three 

levels with level one corresponding to the situation where the mean and the correlation values 

of the predictors/criterion in the majority/minority applicant populations are identical under 

𝐶𝑐 and 𝐶𝑣. This situation permits studying population to sample cross-validation issues. The 

levels two and three represent increasing degrees of difference between the mean and 

correlation values under 𝐶𝑣 vs 𝐶𝑐 where the random distorted correlation matrices under 𝐶𝑣 
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are constructed according to the procedure described by Hardin, Garcia and Golan (2013) and 

random sampling from a rectangular distribution is used to generate the distorted mean 

values. Under level two (three), the noise added to the initial 𝐶𝑐 correlation structure is at 30 

(60) percent of the maximum possible value (to ensure that the distorted matrix is still 

positive semi-definite) and the mean (i.e., effect size) values are sampled from the rectangular 

distribution centered on the initial value and having a range equal to .30 (.60). So, the levels 

two and three of the factor represent the condition of mildly distorted and substantially 

distorted mean/correlation data respectively. Considering the mean and correlation structure 

under 𝐶𝑐 as a sample structure that can occur under 𝐶𝑣, both conditions enable addressing, 

albeit in a limited form, sample to sample cross-validation issues. 

Finally, the factor about the normality vs non-normality of the joint predictors/criterion 

score distribution in the parent majority and minority population from which the applicant 

pools are sampled from under 𝐶𝑣, has three levels. Level one corresponds to sampling from 

the multinormal distribution, whereas the levels two and three indicate sampling from 

moderately and severely nonnormal distributions (i.e., generalized lambda distributions, 

Chalabi, Scott & Wuertz, 2012) respectively. More specifically, the marginal distributions of 

the predictors/criterion scores have skew and kurtosis of .75 (2.0) and 4 (9) under level 2 (3) 

of the factor. In this way, both levels reflect the characteristics of predictor/criterion score 

distributions as often encountered in real samples (cf. Micceri, 1989; Blanca et al., 2013). 

Also, the heavily skewed criterion score distribution under level three accords with recent 

arguments by O’Boyle and Aguinis (2012) that actually observed job performance scores 

follow a Pareto distribution; however, see Beck, Beatty, and Sackett (2014) for a contrary 

view. 

Selection System Factors 

The selection systems studied within each cell of the design correspond to the crossing 
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of two selection system factors: the selection system type factor with six levels and the 

selection system relative diversity factor with four levels. More specifically, the first five 

levels of the selection system type factor differentiate the studied selection systems in terms 

of the calibration quality achievement level attained under 𝐶𝑐. Level one selection systems are 

PO under 𝐶𝑐, and therefor show the best possible calibration quality achievement value (i.e., a 

value of one or 100 percent), whereas the level two, three, four and five systems have, under 

𝐶𝑐, a 0, 25, 50 and 75 percent calibration quality achievement value respectively. Panel A of 

Figure 1 illustrates the different types of selection systems: the systems corresponding to the 

trade-offs P1 to P4 represent level one type of selection systems, the systems corresponding to 

the trade-offs Z1 to Z4 are level two type systems, and so on. The sixth level of the selection 

system type factor refers to selection systems in which unit weighed composites are used to 

perform the selection. In Panel A of Figure 1, these systems correspond to the trade-offs U1 to 

U4.  

The inclusion of the selection system type factor permits addressing the differential 

robustness and sensitivity of different types of selection systems. Also, given the particular 

levels chosen for the factor it is possible to study whether PO selection systems, as derived 

under 𝐶𝑐, continue to outperform other selection system types and, in particular, unit weighed 

selection systems when these systems are applied in a large variety of validation settings. 

Note that the study does not include regression weighed selection systems as an additional 

level for the selection system type factor because these systems may, depending on the 

predictor/criterion correlation structure, assign negative weights to the predictors in forming 

the predictor composites. As a consequence the regression weighed systems may violate the 

constraint on the feasible selection systems, imposed in all three studied selection 

environments, that only non-negative weights are permissible in forming the predictor 

composites. 
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The four levels of the selection system relative diversity factor refer to increasing 

degrees of diversity achieved by the systems under 𝐶𝑐. The actual values of the four diversity 

levels vary across the 18 different studied selection situations, however, because these 

situations differ in terms of the selection environment, the selection rate and the 

majority/minority applicant composition such that it is impossible to construct selection 

systems that show identical diversity values across the situations. The relative diversity factor 

is therefore nested within the crossing of the three selection situation factors. Also, within 

each situation, the diversity level values were chosen according to two criteria. First, the 

values must be attainable by at least one of the unit weighed selection systems that are 

feasible in the situation. Second, the level values should span as evenly as possible the major 

part of the range of diversity values achievable between the diversity level associated with the 

highest quality PO system (under 𝐶𝑐) and the diversity corresponding to the least quality PO 

system (under 𝐶𝑐). The diversity trade-off values corresponding to the PO systems P1 to P4 in 

Panel A of Figure 1 illustrate the resulting four factor levels for the selection situation 𝑆0 

described in the section “PO Selection Systems: a Brief Tutorial”.  

We added the relative diversity factor to the design because both the measures of 

calibration and validation quality achievement are defined with reference to the diversity level 

of the system and it is therefore important to assess whether the robustness/sensitivity of PO 

selection systems varies, depending on the diversity trade-off value of the systems. Also, 

Song et al. (2017) found that validity (diversity) shrinkage in PO systems is more pronounced 

to the extent that the PO system gives priority to the validity (diversity) objective. If this 

finding would also apply to the validation quality achievement of PO systems, then the low 

diversity PO systems (i.e., the systems that give a high priority to the quality objective) will 

show a lower level of validation quality achievement than the high diversity PO systems.  

Finally, note that the relative diversity factor harbors an ambiguity with respect to the 
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unit weighed selection systems. Whereas variable weight systems may show different quality 

trade-off values for the same diversity trade-off value by adjusting the predictor weights in the 

composites, this is not the case with unit weighed systems. For these systems the diversity 

trade-off value corresponds to a unique quality trade-off value and, hence, to a unique value. 

So, choosing the unit weighed selection systems within each selection situation according to 

the diversity level value also fixes the calibration quality achievement value of the systems. 

As a consequence, the levels of the relative diversity factor confound diversity and calibration 

quality achievement in case (but only in case) of the unit weighed systems, and this confound 

will have to be taken into account when comparing the validation achievement of unit 

weighed and PO selection systems. 

Overview and Implementation of the Study Design 

Table 3 provides a summary of the 10 factors of the design. The design corresponds to 

the full crossing of nine of the factors, whereas the relative diversity level of the selection 

systems factor is nested within the crossing of the three selection situation factors. Given the 

number of levels of the eight factors that are used to provide a fairly exhaustive coverage of 

the different selection situations and the ways in which real settings deviate from the idealized 

conditions 𝐶𝑐, the design has a total of 3888 cells, with 24 selection systems (corresponding to 

the crossing of the two selection system factors) studied in each cell.  

The implementation of the design proceeded in two stages, using throughout the 

minority selection rate and the average score on the job performance criterion as gauges for 

the diversity and the quality objective respectively. In the first stage a modified version of the 

COPOSS program (De Corte et al., 2011; De Corte, 2011) is used to identify the 24 selection 

systems under 𝐶𝑐 for each of the 18 different selection situations obtained from the crossing 

of the three selection situation factors. The second, simulation stage involved the computation 

of the validation quality achievement of these systems when applied in the validation 
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conditions 𝐶𝑣 corresponding to each of the 3888 cells of the design. 

The actual execution of the second stage consisted of two steps. In the first step, the 

procedure of Ruscio and Kaczetow (2008) was used to generate 500 applicant 

predictor/criterion data samples within each of the 3888 cells according to the situational 

features and the 𝐶𝑣 conditions that are specific for the cell. In the second step, the above 

described procedure for assessing the validation quality achievement of the selection systems 

was applied to each data sample within each cell of the design, resulting in the sample 

validation quality achievement value of the selection systems for the particular sample.  

Obviously, given the size of the design and the numerical complexity, especially of the 

step to determine the validation quality achievement of the different systems for each sample 

within each of the cells of the design, the implementation of the study required massive 

computational resources as can only be delivered by a High Performance Computing facility. 

In particular, all computational resources and services used in this work were provided by the 

VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) 

and the Flemish Government – department EWI. All results were subsequently transferred to 

the SAS/Stat software environment for further analysis, using the means, tabulate and 

ANOVA procedure to provide answers to the key research questions of the paper. 

Validation Quality Achievement of PO vs Other Selection Systems 

First, we focus on the validation quality achievement of PO selection systems and, on 

the outcomes related to the sensitivity and the robustness of these systems. Next, we compare 

the sensitivity and robustness of the validation quality achievement of PO systems to that of 

other types of selection systems. Given the categorical measurement level of the studied 

factors, all results are obtained using appropriate ANOVA models. When the dependent 

variable in the models is a (function of a) proportion, we first applied the logit transformation 

to the dependent before executing the ANOVA analyses8. For each analysis we report the 
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percentage of variance explained by the models (i.e., the effect size measure 𝜂2 expressed as a 

percentage), without correcting for the number of terms in the model because the latter, 

corrected percentages are virtually identical to the uncorrected percentages because of the 

large number of observations (i.e., at least 500) within the cells of the design. The effect size 

measure 𝜂2 (expressed as a percentage) is also used to report the size of the effect of the 

important terms in the ANOVA models. As the present study is the first to explore the 

conditions that may affect the actual performance of PO selection designs, all conditions that 

show at least a small effect size value (i.e., explain at least one percent of the variance, cf. 

Cohen, 1988) are reported. Finally, note that the effect sizes of the terms in each ANOVA 

model sum to the effect size of the entire model because the models apply to an orthogonal 

design. 

Robustness and Sensitivity of PO Selection Systems 

To address the first key research question we conducted an ANOVA with the validation 

quality achievement value of the PO selection systems as the dependent variable. The set of 

independent variables in the ANOVA comprises all terms in the full model of nine of the ten 

design factors. The selection system type factor can be dropped because we study only one 

type of selection system (i.e., PO systems). The model explains 46.4 percent of the total 

variance and the bulk of the explained variance is due to the main effect of three factors: (1) 

the diversity of the system under 𝐶𝑐, explaining 19.6 percent of the variance, (2) the selection 

environment, 14.6 percent, and (3) the size of the applicant pool, 6.5 percent. Table 4 presents 

the average validation quality achievement value of the PO systems overall and broken down 

according to the levels of the three factors. The tabled values reveal that, across all studied 

conditions, the systems that are PO under 𝐶𝑐 have an average validation quality achievement 

value of .661, but the level of achievement varies substantially across the three selection 

environments and the levels of diversity that characterize the systems. Thus, the validation 
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quality achievement is highest in selection environment three, whereas PO systems with 

higher diversity trade-off levels under 𝐶𝑐 show a poorer achievement. The higher average 

validation quality achievement in environment three probably relates to the fact that this 

environment uses fewer predictors than the other environments. Previous research on 

shrinkage in regression models and the formulas used to predict the shrinkage (e.g., Cattin, 

1980) indicate that the amount of shrinkage is inversely related to the number of predictors in 

the model; a result that is mirrored by the present finding that the selection environment with 

the least number of predictors offers the best validation achievement. 

In contrast, the result about the lower validation quality achievement of high diversity 

(and therefore low quality) PO systems defies the expectation as based on the shrinkage 

results of Song et al. (2017). Whereas Song et al. found that low quality PO systems exhibit 

less quality shrinkage (i.e., less validity shrinkage as Song et al. use validity for the quality 

objective) we find that these systems have a lower validation quality achievement than the 

high quality (low diversity) PO systems. Apparently PO systems that give a higher priority to 

the diversity objective (and, hence a lower priority to the quality objective) tend to show a 

smaller validation quality achievement as compared to the lower diversity systems. The 

finding thereby indicates that quality shrinkage, as proposed by Song et al., could be 

misinterpreted by users as a gauge for the loss in the quality achievement by a PO system 

when implemented in validation conditions, at least when smaller quality shrinkage would be 

considered as an indication of higher quality achievement. Looking back at Figure 2, this 

finding does not come as a surprise, however, because the figure clearly shows that quality 

shrinkage and validation quality achievement are rather inverse indicators of the validation 

potential of selection systems: whereas smaller quality shrinkage might suggest a higher 

quality achievement, the reverse is the case. This is further substantiated by the results of the 

study reported in the section “Comparing Shrinkage and Validation Achievement” of the 
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online material. This study, albeit restricted to validation conditions involving the applicant 

population, additionally shows that the relationship between the corresponding diversity 

(quality) shrinkage and validation diversity (quality) achievement measures is not linear and 

even not entirely monotone. 

Although the present research does not permit studying the relation between the relative 

diversity of the PO systems and validation diversity achievement of the systems in general 

validation conditions with finite applicant pools, the online material presents at least 

indicative results on this issue in the case of validation conditions involving applicant 

populations instead of finite applicant pools. These results show a rather proportional 

relationship between the relative diversity of a system and its validation diversity 

achievement, again contrary to the expectation based on the diversity shrinkage results. 

From the four factors in the design that aim to study the sensitivity of the PO selection 

systems for discrepancies between the calibration conditions 𝐶𝑐 and the validation conditions 

𝐶𝑣 only the size of the applicant pool explains at least one percent of the variability in the 

validation quality achievement values. As expected, the validation quality achievement of the 

PO systems is higher when the applicant pool is larger. In small applicant pool samples, as 

compared to large sized samples, the variability of the predictor correlation, validity and 

effect size values is considerably larger, implying that these values are more often 

substantially different from the values on which the PO selection systems are based, thereby 

resulting in a poorer validation quality achievement of the systems.  

The effects related to the other sensitivity factors, although statistically significant (as 

almost all other effects in the ANOVA analysis because of the huge number of cases) explain 

only a negligible fraction of the total variability. Thus, the validation quality achievement of 

PO selection systems depends very little on the discrepancies between 𝐶𝑐 and 𝐶𝑣 as related to 

the proportional representation of the majority/minority candidates in the applicant pool and 
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the predictor/criterion mean and correlation structure values in the majority/minority 

populations, although the level averages of the latter factor show that the average validation 

quality achievement decreases for larger discrepancies in the predictor/criterion mean and 

correlation structure.  

The ANOVA further indicates that the effect of the factor about the normality vs non-

normality of the joint predictors/criterion distribution is also quite small (i.e., less than 1 

percent explained variance). Although the validation quality achievement decreases somewhat 

in settings where the distribution is non-normal, the effect is not entirely consistent across the 

different environments and the levels of the applicant pool size factor. By and large, the 

finding implies that the assumption invoked by the decision aid about the multivariate normal 

distribution of the predictor/criterion scores in the applicant populations is not really critical. 

Fairly different joint predictor/criterion distributions only marginally affect the validation 

quality achievement of the PO systems.  

Finally, the ANOVA reveals that none of the effects related to the interaction of the 

selection environment factor with (any combination of) the other factors explains a sizable 

portion of the total variance, implying that the above discussed effects about selection system 

diversity level and the size of the actual applicant pool apply in a similar way across the 

different types of selection environment and therefor are quite general. The result is also of 

key importance with regard to future studies about the features of the selection environment 

that impact on the actual performance of PO systems because it suggests that this future 

research can be conducted using a much more simple design that focuses on only these 

features without considering any additional factors. 

Sampling Variability of the Validation Quality Achievement of PO Systems 

With more than 50 percent unexplained variance, the ANOVA also shows that the 

sampling variability of the validation quality achievement of PO systems is quite large. Figure 
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3 illustrates this by showing the density plot of the validation quality achievement by 

selection environment (upper panel), by size of the applicant pool (middle panel) and by the 

diversity level of the PO systems (lower panel). Within the panels we also represented for 

each density the .1 (filled square) and the .9 quantile (filled circle) of the density, thereby 

indicating the interval that contains the 80 percent middle values of the validation quality 

achievement. Even for the largest applicant pool size, the width of this interval, with .1 and .9 

quantile values of .52 and .92, is still quite substantial. 

To determine the conditions that affect the sampling variability we applied a second 

ANOVA, with the within-cell (logit transformed) interquartile range of the validation quality 

achievement of the PO systems as the dependent variable and the main and the interactions 

effects (up to the fourth order) of the nine relevant factors of the design as independent 

variables. The model explains 94.4 percent of the variance. As expected, the effects related to 

the number of selected applicants provide together the largest contribution (i.e., the size of the 

applicant pool, 42.2 percent, and the selection rate under 𝐶𝑐 and 𝐶𝑣 factors with 5.0 and 2.3 

percent, respectively), whereas the relative diversity factor (26.5 percent), the discrepancy 

between the moments of the joint predictor/criterion score distribution under 𝐶𝑐 versus 𝐶𝑣 (3.9 

percent) and the selection environment factor (4.6 percent) are largely responsible for the 

remaining part of the explained variance. The average values of the dependent variable 

corresponding to these factors further show that the sampling variability of the validation 

quality achievement of a PO system is directly proportional to the relative diversity level of 

the system (i.e., the interquartile range values for the diversity levels 1 to 4 are 0.134, 0.150, 

0.174 and 0.213), increases for systems using a larger number of predictors (i.e., the 

interquartile range values for the environments 1 to 3 are 0.179, 0.170, and 0.155), and 

decreases in situations with a larger number of (selected) applicants. The variability also 

increases for bigger differences between the validation predictor/criteria moment data and the 
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calibration moment data used to derive the PO systems (i.e., interquartile range values of 

0.157, 0.164 and 0.182 for the levels one to three of the difference of the mean and correlation 

structure of the joint predictor/criterion score distribution under 𝐶𝑐 versus 𝐶𝑣).  

Integrating the results of the previous analyses it can be concluded that the conditions 

that substantially affect the magnitude and the variability of the validation quality 

achievement of a PO system are by and large the same. One may expect a higher validation 

quality achievement, and at the same time be more confident about this expectation (i.e., the 

sampling variability is smaller) when implementing a low diversity PO system, derived from 

fairly accurate predictor/criterion data and involving a small number of predictors, in a 

selection situation with a large number of (selected) applicants. However, the substantial 

decline from the value of 1 for the calibration quality achievement to the value of .661 for the 

validation quality achievement of the PO systems may raise concerns about the real practical 

utility of adopting these designs instead of other, more simple designs to address the selection 

quality/diversity quandary. To settle this issue, the next sections compare the robustness, the 

sensitivity and the sampling variability of both PO and other non-PO selection system 

designs, including the unit weighed designs.  

Comparing the Robustness, Sensitivity and Sampling Variability of PO and Sub-PO 

Systems 

We first report the results of the analysis comparing the validation quality achievement 

of the PO and the 0, 25, 50 and 75 percent calibration quality achievement systems. The 

analysis again applies an ANOVA model to the (logit transformed) validation quality 

achievement of the selection systems as the dependent variable, but this time using a slightly 

restricted model containing the main effects and all possible interactions up to the seventh 

order of all ten factors in the design. We imposed the restriction to stay within the limitations 

inherent to the SAS ANOVA procedure. The restriction does not affect the quality of the 
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analysis, however. Because the design is orthogonal, the sum of squares (and, hence, the 

proportion of explained variance) associated with the different effects remains the same 

whatever the set of effects that is included in the model. 

The ANOVA model explains 52.6 percent of the total variance, with four effects related 

to the selection system type factor contributing at least one percent: the main effect of 

selection system type (25.9 percent), and the interaction of selection system type with the 

selection environment factor (9.1 percent) , the size of the applicant pool (2.8 percent) and the 

system relative diversity (1.5 percent) respectively. Table 5 summarizes the average 

validation quality achievement values corresponding to these four effects. The averages 

support the major conclusion that the order in the validation quality achievement level of the 

selection systems is maintained when these systems are applied in a large variety of selection 

settings. Note in particular that the three interaction effects do not invalidate this conclusion. 

Both overall and within each selection environment, within each size of the total applicant 

pool, and within each relative diversity level of the systems, the PO systems perform best, 

followed by the 75 (the S systems), the 50 (the F systems), 25 (the T systems) and the zero 

percent estimated performance systems (the Z systems), but the degree of separation between 

the validation quality achievement validation levels of the different selection systems varies 

significantly across the selection environments, the applicant pool size conditions and the 

system diversity levels. Also note that the average of validation quality achievement values of 

the different selection system types across the levels of the applicant pool size factor reflect 

the expectation that the validation quality achievement of selection systems with a high 

calibration quality achievement level (i.e., the 75 EP and the PO systems) is directly 

proportional to the size of the applicant pool, whereas the reverse is the case for the selection 

systems with a low calibration quality achievement level (i.e., the 0 and the 25 EP systems). 

Higher variability in the predictor/criterion data because of smaller applicant pool size should 
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more often benefit the validation quality achievement of systems with a low calibration 

quality achievement and have the opposite effect for high calibration quality achievement 

systems. 

With more than 47 percent unexplained variance, the ANOVA again indicates 

substantial sampling variability. Figure 3 further illustrates the issue by displaying the density 

of the validation quality achievement of the five different selection system types, both overall 

and by the different selection environments. To study whether the different selection system 

types are more or less susceptible to sampling variability we performed a follow up ANOVA 

with the within cell (logit transformed) interquartile range of the validation quality 

achievement of the systems as dependent and the main effects of all ten design factors as well 

as the corresponding interactions (up to the fourth order) as independents. The ANOVA 

explains 94.7 percent of the variance with several effects related to the selection system type 

factor contributing at least one percent. Briefly summarized, the average interquartile range 

values corresponding to these effects reveal that the sampling variability is inversely related 

to the validation quality achievement level of the systems, that the trend is more pronounced 

for lower relative diversity systems, but weaker for larger sizes of the applicant pool. Yet, 

despite this variation, the important practical finding remains that PO systems apparently 

show a smaller within cell sampling variability than the non PO systems. 

Comparing the validation quality achievement of PO and Sub-PO Systems at the Same, 

Single Application Level 

Although PO systems maintain the highest validation quality achievement level, 

without showing more sampling variability, the substantial overlap of the density plots in 

Figure 3 suggests that PO systems may with some frequency result in a lower validation 

quality achievement than the sub-PO systems. To gather more precise information about this 

possibility, we recorded for each sample within each cell of the design the proportion with 
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which the validation quality achievement of PO systems is at least equal to that achieved by 

the corresponding 0, 25, 50 and 75 percent calibration achievement systems. Averaged across 

all samples and cells, these proportions equal .87, .84, .79 and .70, respectively, implying that 

the overall odds that PO systems outperform (i.e., have a higher validation quality 

achievement value) 0, 25, 50 and 75 percent systems at the single application level are 6.69, 

5.25, 3.76 and 2.33 to one, respectively. These odds clearly show that PO selection systems 

not only maintain the highest validation quality achievement level, but also are much more 

likely to perform better than the sub PO systems when applied to the same single selection 

application. 

From a practical perspective, the comparison in terms of robustness, sensitivity and 

sampling variability between the PO and the sub-PO systems showed that selection 

practitioners may expect a substantially better and a less variable validation quality 

achievement when implementing a PO instead of a sub-PO system. In the next section we 

study whether PO systems also maintain an advantage when compared to simpler unit 

weighed designs. 

Comparing the Robustness, Sensitivity, Sampling Variability and Validation Quality 

Achievement at the Same, Single Application Level of PO and Unit Weighed Systems 

The ANOVA analysis to explore the comparative robustness and sensitivity of PO and 

unit weighed selection systems, using the full model of all ten factors, explains 48.5 percent 

of the variance of the validation quality achievement of the systems. Only four of the effects 

related to the selection system type factor contribute at least one percent to the explained 

variance: the main effect of system type (13.8 percent), and the first order interaction of 

selection system type with the selection environment (1.8 percent), the applicant pool size 

(1.5 percent) and selection system diversity (3.6 percent). Table 5 summarizes the average 

validation quality achievement values associated with these effects. Except for the latter 
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selection system type by selection system diversity interaction effect, the averages related to 

the other effects essentially repeat the findings reported in the previous section, albeit this 

time with respect to the unit weighed systems: PO systems show a higher validation quality 

achievement than unit weighed systems, the difference grows for larger pool sizes and varies 

across selection environments. 

The interpretation of the selection system type by selection system relative diversity 

interaction effect is less straightforward, however, because the relative diversity level of the 

unit weighed systems is inevitably confounded with the level of calibration quality 

achievement of these systems. Whereas PO systems have, by definition, 100 percent 

calibration quality achievement, the unit weighed systems have a calibration quality 

achievement that varies across the levels of the relative diversity factor. The selection system 

type by selection system relative diversity interaction may therefor very well reflect this 

difference in calibration quality achievement rather than indicate that the unit weighed 

systems have a different validation quality achievement pattern across the levels of the 

relative diversity factor as compared to that of the PO systems 

The study comparing the PO and unit weighed systems also included the above detailed 

analyses focusing on (a) the susceptibility to within cell sampling variability of the two 

systems, and (b) the likelihood that the PO systems show a better validation quality 

achievement than the unit weighed systems at the same, single application level. By and large 

both analyses result in essentially the same findings as the corresponding studies comparing 

between PO and non PO systems. Thus, the first additional analysis reveals that PO systems 

show substantially less sampling variability than the unit weighed systems (cf. Figure 3) and 

that the difference in sampling variability between the two systems varies across selection 

environments and across the levels of the relative diversity and the applicant pool size factors. 

However, the average interquartile range values associated with these interactions never 



Robustness, Sensitivity and Sampling Variability of PO Selection Systems  

 

 

43 

indicate that PO systems have a larger within cell sampling variability. The variability in the 

calibration quality achievement of the unit weighed systems, as compared to the 

corresponding fixed 100 percent achievement of the PO systems, probably explains why the 

latter systems exhibit a smaller within cell sampling variability of the validation quality 

achievement values. 

In turn, the second additional analysis results in an overall proportion of .75 that PO 

systems have a better validation quality achievement than unit weighed systems when applied 

in the same setting. The results of this and the previous analyses therefore warrant the 

conclusion that PO systems not only outperform variable weight sub-PO systems (i.e., 

systems using variable weights for the predictors in forming the predictor composites), but 

also fixed, and in particular, unit weight systems. 

Comparing the Validation Trade-off Achieved by the Different Selection Systems 

Thus far, all analyses and results focus on the new validation quality achievement 

measure as the criterion for evaluating the merits under general validation conditions of PO, 

sub-PO and unit weighed systems. Yet, despite the advantage of using this measure instead of 

other possible gauges it remains true that selection practitioners will often also be interested in 

the merits of the different selection systems as operationalized by the diversity/quality trade-

off value achieved by the systems under such general validation conditions. In particular, they 

may wonder whether PO systems, when applied in validation conditions, are expected to 

result in a better diversity/quality trade-off (i.e., a trade-off where the value of the PO system 

on one of the objectives is higher than the corresponding value of the non-PO system, 

whereas the value of the PO system on the other objective is at least as high as the 

corresponding value of the non-PO system) as compared to the one achieved by a non-PO 

system in the same setting.  

To clarify whether or not this is the case, we conducted a final analysis. For each of the 
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total of 7,776,000 studied sample selections we registered whether the trade-off achieved by 

the PO system, as compared to the trade-off achieved by the corresponding 0, 25, 50 and 75 

percent calibration achievement systems is better, worse or incomparable. We found that the 

percentages with which the PO systems result in a better trade-off than the 0, 25, 50 and 75 

percent systems equals 50, 48, 47 and 43, respectively, whereas the corresponding 

percentages with which the PO systems results in a poorer trade-off is equal to 6, 8, 10 and 

15. In the remaining 44, 44, 43 and 42 percent of the comparisons with the 0, 25, 50 and 75 

percent systems the trade-offs were incomparable in that neither trade-off is better than the 

other trade-off. Compared to the unit weighed systems, the PO systems result in a better 

(worse) trade-off in 48 (12) percent of all cases, with 40 percent incomparable results. Note 

that the substantial percentage of incomparable outcomes once again illustrates that an 

evaluation and comparison of both PO and non PO systems solely on the basis of the trade-off 

that these systems achieve under validation conditions is quite unsatisfactory and that 

achievement measures such as proposed in the paper are necessary to achieve this purpose. 

Discussion 

When learning about PO selection design, and the decision-aid for deriving these 

designs in particular, selection experts and practitioners may question whether PO systems 

will live up to expectations when implemented in a large variety of validation selection 

situations. These doubts can never be resolved conclusively because every future selection 

application harbors a number of inherent uncertainties. That said, the present paper offers a 

theoretical as well as a practical contribution that together succeed in generating rather 

convincing evidence to decide on the issue of the validation achievement of PO selection 

system design. From a theoretical perspective the paper introduces two new gauges for 

expressing the achievement of PO and other selection systems when applied under almost any 

type of validation condition. Compared to previous approaches, the validation quality and the 
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validation diversity achievement measures permit an adequate, unbiased and intuitively 

appealing assessment and comparison of the validation achievement of both PO and non PO 

selection system designs 

From a practical perspective, the paper presents two novel procedures for computing the 

validation achievement of any selection system design as applied to virtually any selection 

situation, involving either finite applicant pool or infinite applicant population conditions. 

These procedures prove reliable, except for the evaluation of the validation diversity 

achievement in validation situations related to finite applicant pools. Also, the procedure for 

studying validation achievement with respect to applicant population validation conditions is 

made available to other researchers and practitioners. We encourage others to use the 

procedure because the analyses reported in the online material indicate that there is no real 

alternative short cut procedure that can provide a more easily obtainable estimation of the 

validation achievement of selection systems, even in the case of applicant population 

validation conditions. Finally, it is shown how the new procedures can be integrated within a 

factorial design to provide answers not only about the validation achievement of PO selection 

system design in a wide variety of validation conditions, but also, and even more importantly, 

about the major key issues addressed in the paper: do PO selection systems result in a higher 

validation achievement than non PO systems and is this higher achievement consistent across 

a large variety of validation conditions? 

Are PO selection systems to be preferred to non PO systems? 

Given our results, the answer to the above question is strongly in favor of a “yes”. In 

particular, we found an overall difference in validation quality achievement between the PO 

and the corresponding unit weighed systems of .16 (cf. Table 5). Using the procedure outlined 

in the section “Measuring the Achievement of Selection Systems in the Validation 

Condition”, this difference corresponds to an overall difference in expected job performance 
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of .10 standard units. Although this may not seem impressive at first, this is the same 

difference one may expect to obtain when switching from a predictor with a rather low 

validity of .30 to a predictor with a substantially higher validity of .42 when performing a 

selection with a .20 selection rate. Also, the gain of .10 standard units in average job 

performance did not come at the expense of a lower minority selection rate because both the 

PO and the unit weighed systems showed a virtually identical overall value (i.e., .166 versus 

.164 for the PO and the unit weighed systems) for this selection rate. 

The validation quality achievement of PO systems also consistently and substantially 

exceeds that of other non PO systems. Furthermore, and although the sampling variability of 

the validation quality achievement level may be quite large for both PO and non PO systems, 

the odds, that PO systems have a higher validation quality achievement than the sub PO or the 

unit weighed systems when they are all applied to the same setting, are well above two to one 

in virtually all studied validation conditions. Finally, we found no evidence confirming that 

unit weighed systems are more robust and/or less sensitive than variable weight systems and 

PO selection systems in particular.  

Observe that the present results substantially extend previous findings about the merits 

of PO selection systems. Whereas all former findings relate to the behavior of these systems 

in validation contexts involving the total applicant population, the present results inform 

about the achievement in (small, medium sized, etc.) sample validation conditions that are the 

real center of interest in an applied setting like personnel selection. In addition, the new 

measures used to assess the merits of the different selection systems avoid the deficiencies 

associated with the previously used methods. 

Summing up, the message of the present analyses should be clear. If both the goals of 

selection quality and diversity are of importance, at least approximate data on the 

predictor/criterion characteristics are available, and provided that the design of the selection 
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process is not entirely fixed by the constraints of the selection situation, practitioners have 

good reasons to implement a PO selection system design. Any selection design boils down to 

a decision that is to be made and according to the results of the present study, PO selection 

designs represent the decision with the most favorable expected consequences. When probed 

under a large variety of validation conditions, these designs show the best validation quality 

achievement. In addition, when applied to the same single selection, the odds that PO systems 

attain a higher validation quality achievement level than the non PO systems are favorably, 

exceeding two to one in almost all applications. Finally, compared to non PO systems, the 

implementation of PO systems results more often in a quality/diversity trade-off that is better 

than the trade-off achieved by these other systems. 

Limitations of the Study and Avenues for Further Research 

Let us start by repeating that neither the present nor any following study can produce 

conclusive and final answers about the robustness and sensitivity of PO selection systems. 

Although the design of the study aimed for a comprehensive inclusion of the factors that may 

affect the robustness/sensitivity of these systems, using representative levels for these factors, 

certain possibly important factors may have been omitted and other more pertinent 

specifications for the levels of the factors (e.g., smaller applicant pool sizes and higher 

selection rates than those considered to reflect current labor shortages) may have been missed. 

Thus, future studies could be designed to provide more detailed answers about the features of 

the selection environment that either favor or impede the robustness/sensitivity of PO 

systems. Although we varied the nature of the selection environment and, in particular, the 

number of available predictors in the different environments, other features, related to, for 

example, the specific blend of available predictors (e.g., the set of predictors is quite 

homogeneous, with all predictors assessing either the same construct or different lower order 

variations of the same construct, or more heterogeneous, focusing on a mixture of different 
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constructs), the application context and the demarcation of the set of feasible selection 

systems, were not really considered systematically. To this end, a number of smaller scale 

studies, focusing on only one or a limited number of these environment features (e.g., 

comparing single stage versus multi stage environments, keeping all other features constant) 

may be more appropriate. The present results, showing that none of the interaction effects of 

the selection environment factor with the other studied factors explains a sizable portion of 

the PO system variability, indicates that such smaller scale studies may indeed be adequate. 

As a second limitation, the study does not present results on the validation diversity 

achievement of the selection systems primarily because of as yet unresolved technical issues 

in the computation of the measure in validation conditions with finite applicant pool sizes, but 

we also note that even without these issues, the measure is still somewhat problematic for 

studying the validation achievement in small applicant pool validation conditions because its 

value will often be undefined in these conditions. Also, the online material reports results 

about both the quality and diversity achievement in case of validation conditions related to 

applicant populations. These results confirm the finding that lower diversity PO systems (and, 

hence, higher quality PO systems) tend to show a higher validation quality achievement as 

compared to the higher diversity PO systems. In addition, they suggest a rather opposite trend 

with respect to the validation diversity achievement of the systems: lower diversity PO 

systems have a lower validation diversity achievement. These results once again underscore 

that focusing on the level of diversity and quality shrinkage between the calibration and the 

validation condition as proposed by Song et al. (2017) may result in users forming a rather 

poor picture of the true merits under validation of the selection systems. The online 

supplement study implements side by side both the Song et al. shrinkage and the novel 

validation achievement calculations showing that higher rather than lower levels of quality 

(diversity) shrinkage correspond to higher validation quality (diversity) achievement. 
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Whereas the present study confirms this for validation conditions involving finite applicant 

pools with respective to the quality dimension, future studies should consider the diversity 

dimension as well, provided that the difficulties regarding the computation of the validation 

diversity achievement in finite applicant pool validation conditions can be resolved.  

As a further possibility for future study it would be interesting to assess how the 

validation achievement of PO systems is affected by common realities such as the refusal of 

job offers or the drop-out of candidates during the selection process. Several variants of job 

refusal/drop-out could be considered in the validation condition, paying attention to, among 

others, the differential effect of random versus systematic forms of candidate self-selection 

where job refusal/drop-out is related to the quality of the candidates. 

Adding the sample to sample cross-validation approach more explicitly to the study 

design constitutes a final avenue for future research. To achieve this purpose only one major 

extension is required. Instead of computing the PO and other systems only once, the systems 

(and the corresponding calibration trade-offs) should be computed with respect to a large 

number of (calibration) sample based data as done by Song et al. (2017). The sample to 

sample cross-validity research question can then be addressed by invoking the above outlined 

procedure for computing the validation achievement of the systems when applied to a large 

number of finitely sized validation samples and by averaging the thus obtained achievement 

values. 

Conclusion 

The paper reports a massive simulation study investigating whether PO systems live up 

to expectations when implemented under a large variety of validation selection conditions. 

Although by no means conclusive, the obtained results nevertheless converge to the 

conclusion that PO systems, as derived by the psychometric approach proposed by De Corte 

et al. (2007, 2011) are indeed expected to outperform other non PO systems, including unit 
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weighed systems. The results therefore add substantial weight to the advice that selection 

practitioners and researcher should consider applying PO selection designs whenever 

possible. Otherwise they may face complaints and even legal actions because plaintiffs can 

argue quite convincingly, not only on the formal grounds implied by the formulas of the 

psychometric approach, but also based on the results of the present study, that a better design 

was indeed possible. 
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Footnotes 

1In the paper and in the simulations we assume that the joint distribution of the 

predictors and the criterion in the total applicant population is a mixture of two multivariate 

distributions characterized by the same variance/covariance matrix but a different mean 

vector in both the minority and majority applicant population. It is well known that this 

implies a different variance/covariance matrix in the total population (e.g., Day, 1969) and 

that a mixture of normal distributions with a different mean is no longer normal. These 

consequences are of little if any practical consequence in the present context, however (cf. De 

Corte et al., 2011). Also, the assumption that the minority and the majority populations share 

the same variance/covariance matrix can easily be dropped. 

2The T,F and S systems are computed by solving a constrained nonlinear program 

similar to the program used to calculate the PO systems in the decision-aid of De Corte et al. 

(2011). However, two nonlinear equality constraints are added to the program formulation to 

ensure that the T, F and S systems have the desired selection quality and diversity value.  

3Wee et al. (2014) did not generate finite sized samples of predictor/criterion scores but 

sampled predictor/criterion correlation matrices and effect sizes, and inserted the thus 

obtained correlation/effect size data in the population formula of De Corte et al. (2006) to 

compute the selection system trade-off values in the validation condition. The obtained trade-

offs therefor apply to validation settings involving the total applicant population. A similar 

remark also applies to the Song et al. (2017) study because this study used very large 

validation samples of 10,000 applicants as a proxy for the total applicant population. 

4The procedure adopted in De Corte et al. (2011) anticipates on this limitation but leads 

to an unsatisfactory quantification of the achievement in the new setting of PO and other 

selection systems because it compares each system to a different set of dominated systems 
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and, hence, uses a different gauge for each of the systems. 

5For general multi stage selections, the diversity trade-off can only be gauged by either 

the minority (majority) selection rate or the AIR. Also, although the issue on undefined 

validation diversity achievement values can again be resolved by adopting the convention to 

assign a value of one, this practice will distort the results when studying, for example, the 

effect of the validation applicant pool size on the validation diversity achievement of selection 

systems. 

6In case of a multi stage selection system with a final selection ratio, as specified under 

𝐶𝑣, that differs from the selection rate indicated under 𝐶𝑐 we translated the intermediate 

retention rates of the system corresponding to 𝐶𝑐 to matching retention rates under 𝐶𝑣 such 

that the ratio between the overall selectivity rate under 𝐶𝑐 and the overall selectivity rate 

under 𝐶𝑣 is evenly distributed across the selection stages. As an example, consider the 

situation where under 𝐶𝑐 the selection rates of a two stage selection system are equal to .30 

after the first stage and .10 after the final stage, whereas the final selection rate equals .40 

under 𝐶𝑣. In that case, the ratio between the overall selection rate under 𝐶𝑐 and the overall 

selection rate under 𝐶𝑣 is equal to ¼ and evenly distributing this ratio across the two stages 

implies being ½ less selective in both stages, implying selection rates of 0.60 and 0.40 in 

stage one and two for the translated system under 𝐶𝑣.  

7Repeatedly solving the same optimization problem, starting from different initial 

values for the problem variables, typically resulted in solutions that either differed in the 

solution value for the objective function or (more often) violated the equality constraint 

imposed on the quality level of the selection system. However, note that the computation of 

the validation diversity achievement measure is perfectly reliable for validation conditions 

involving applicant populations because in that case both the objective function and the 

equality constraint of the optimization problems are analytic instead of nonanalytic functions 
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such that classic gradient based methods, that can routinely handle nonlinear equality 

constraints, can be used to solve the problems. 

8To avoid problems with proportions equal to 0 or to 1, we adopted the suggestion of 

Smithson and Verkuilen (2006) to first transform the proportions p to (p(n-1)+0.5)/n, with n 

the sample size equal to the number of cases within the cells (i.e., n=500) and then apply the 

logit transformation. We also duplicated the analyses, applying beta regression (Cribari-Neto 

and Zeileis, 2010) to a number of simpler models, but found that both the present and the beta 

regression approach result in virtually the same effect size estimates for the effects in the 

models. 

  



Robustness, Sensitivity and Sampling Variability of PO Selection Systems  

 

 

58 

Table 1. 

Predictor/Criterion Data for the Three Types of Selection Environment 

 

Selection Environment 1 (cf. GATB, US Department of Labor, 1970) 

Predictor 𝑑# 1 2 3 4 5 6 7 8 9 

1. Intelligence 0.95          

2. Verbal 0.87 0.74         

3. Numerical 0.71 0.76 0.67        

4. Spatial 0.74 0.64 0.46 0.54       

5. Form Perc 0.54 0.64 0.47 0.58 0.59      

6. Clerical  0.47 0.61 0.62 0.66 0.39 0.65     

7. Motor 0.10 0.36 0.37 0.41 0.20 0.45 0.54    

8. Finger 0.32 0.25 0.17 0.24 0.29 0.42 0.32 0.37   

9. Manual 0.14 0.19 0.10 0.21 0.21 0.37 0.26 0.46 0.32  

Criterion           

1. Performance 0.38 0.29 0.27 0.35 0.26 0.31 0.34 0.30 0.24 0.25 

 

 
Selection Environment 2 (cf. Johnson et al., 2004) 

Predictor 𝑑# 1 2 3 4 5 6 7 8 9 

1. General Science 1.008          

2. Arithmetic Reasoning 0.725 .598         

3. Verbal 0.684 .780 .629        

4. Mathematics Knowledge 0.162a .467 .694 .475       

5. Mechan. Comprehension 0.992 .596 .620 .561 .413      

6. Auto & Shop Info 1.213 .593 .432 .506 .090 .725     

7. Electronics Information 0.797 .649 .516 .622 .335 .642 .757    

8. Assembling Objects 0.502 .430 .532 .426 .456 .574 .348 .398   

9. Coding Speed 0.178 .272 .373 .337 .415 .192 .029 .169 .294  

Criterion           

1. Performance 0.380 .522 .545 .561 .407 .545 .529 .525 .442 .341 
a  This d value seems low, but it is the value mentioned by Johnson et al. 

 

 

Selection Environment 3 (cf. De Corte et al., 2011) 

Predictor 𝑑# 1 2 3 4 5 

1. Cognitive Ability 0.72      

2. Structured Interview 0.32 .31     

3. Conscientiousness 0.06 .03 .13    

4. Biodata 0.57 .37 .17 .31   

5. Integrity 0.04 .02 -.02 .34 .25  

Criterion       

1. Performance 0.38 .52 .48 .22 .32 .42 

#: d corresponds to the standardized mean difference between the majority and the minority 

applicant populations. 
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Table 2.  

Constraints Demarcating the Set of Feasible Selection Systems 

 

Selection Environment 1 

Only single stage selection systems are admissible.  

Any combination of the available predictors may be used as the selection composite 

provided that the weight of the predictors in the composite has a value between 0 and 1 

(both included) and the composite is not less valid than the most valid predictor (i.e., has a 

validity not less than .35). 

Selection Environment 2 

A selection system is feasible if it corresponds to a two stage selection design in which a 

composite of the first four predictors is used in the first stage and a composite of the 

remaining five predictors is used in the second stage. 

The predictor weights in the composites must have a value between 0 and 1 (both 

included). 

The retention rate after the first stage must be between .3 and .6, .4 and .7, and .55 and .75 

when the selection rate under 𝐶0 equals .1, .2 and .4, respectively. 

Selection Environment 3 

A selection system is feasible if it corresponds to (a) a single stage design in which the final 

accept/reject decision is based on a weighed composite of the CA, CO, BI and IN 

predictors, (b) a two stage design where the candidates are first screened on the basis of a 

weighed composite of  CA, CO and BI, and the remaining candidates  are selected/ rejected 

using a weighed composite of the SI and IN predictors, or (c) a three stage design where the 

intermediate retention decisions involve top-down selection on a CA and IN composite and 

a CO and BI composite for the first and the second stage respectively, and the SI predictor 

is used in the final selection stage.  

The predictor weights in the composites must have a value between 0 and 1 (both 

included). 

For the two stage selection systems, the retention rate after the first stage must be in the 

range .3-.6, .35-.6, and .55-.75 when the selection rate under 𝐶0 equals .1, .2 and .4, 

respectively. 

For the three stage selection systems, the retention rate after the first (the second) stage 

must be in the range .55-.70 (.25-40), .60-.75 (.35-.45) and .70-.80 (.50-.55) when the 

selection rate under 𝐶0 equals .1, .2 and .4, respectively. 
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Table 3. 

Study Design Factors 

 

Selection Situation Factors 

1: Selection Environment, with 3 levels (see Tables 1 and 2 for details) 

2: Selection Rate under 𝐶𝑐, with 3 levels: .10, .20 and .40 

3: Proportional Representation of the Majority Group under 𝐶𝑐, with 2 levels: .50 and 

.80 

Factors Differentiating between the Calibration Conditions 𝐶𝑐 and the Validation 

Conditions 𝐶𝑣 

4: Normality vs non-normality of the Joint Distribution under 𝐶𝑣 of Predictors and 

Criterion (i.e., the nature of the joint predictors/criterion score distribution in the 

parent majority and minority validation population from which applicant pools are 

sampled), with 3 levels: 1. multivariate normal, 2. moderate non normal with 

marginal distributions having skew 0.75 and kurtosis 4, and 3. strong non normal with 

marginal distributions having skew 2.00 and kurtosis 9.00 

5: Difference of the Mean and Correlation Structure of the Joint Population 

Predictor/Criterion Score Distribution under 𝐶𝑐 versus 𝐶𝑣 with 3 levels: identical, 

moderate difference (i.e., absolute difference between corresponding mean elements 

of .10 and .05 absolute difference between corresponding correlation elements), and 

strong difference (i.e., absolute difference between corresponding mean elements of 

.20 and .10 absolute difference between corresponding correlation elements), 

6: Selection Rate under 𝐶𝑣, with 3 levels: 1. identical to the 𝐶𝑐 selection rate, 2. 50 

percent higher than the 𝐶𝑐 selection rate, and 3. 50 percent smaller than the 𝐶𝑐 

selection rate. 

7: Proportional Representation of the Majority Group under 𝐶𝑣, with 2 levels: 1. 

Identical, and 2. Different (e.g., the Proportional Representation of the Majority 

Group under 𝐶𝑣 equals 0.5 when the Proportional Representation of the Majority 

Group under 𝐶𝑐equals 0.80) 

8: Size Applicant Pool under 𝐶𝑣, with 4 levels: 80, 250, 800 and 2500 

Selection System Factors 

9: Selection System Type with 6 levels: 1. PO with 100 percent estimated performance 

value (i.e., 100 percent performance value under 𝐶𝑐) (P systems), 2. Non PO with 0 

percent estimated performance value (W systems), 3. Non PO with 25 percent 

estimated performance value (T systems), 4. Non PO with 50 percent estimated 

performance value (F systems), 5. Non PO with 75 percent estimated performance 

value (S systems), and 6. Unit weighing system (U systems) 

10: Diversity Trade-off Value Selection System (under 𝐶𝑐) with 4 levels: level 1 lowest, 

level 4 highest 
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Table 4.  

Validation Quality Achievement of PO Systems: Global and According to the Relative 

Diversity of the Selection System (DIV, with levels 1 to 4 coding for increasing degrees of 

diversity), Selection Environment (SEN, with levels 1 to 3 coding for the environments 1 to 3; 

see Tables 1 and 2), Size of the Applicant Pool (SIZ, with level 1: 80 applicants; level 2: 250 

applicants; level 3: 800 applicants; and level 4: 2500 applicants).  

 

Validation Quality Achievement 

Overall .661    

 Level 

 1 2 3 4 

DIV .746 .715 .646 .538 

SEN .619 .612 .753  

SIZ .612 .625 .671 .736 
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Table 5.  

Average Validation Quality Achievement of PO and non PO Systems (0 Percent Calibration 

Quality Achievement, 0 CA, until 75 Percent Calibration Quality Achievement , 75 CA): 

Overall, by Environment, by Size of the Applicant Pool and by Relative Diversity of the 

Selection System. 

 

 

 

 

 

 

 

 

  

  Selection System Type 

  0 CA 25 CA 50 CA 75 CA PO Unit 

Overall  0.287 0.383 0.472 0.567 0.661 0.502 

Environment 1 0.436 0.483 0.529 0.575 0.619 0.516 

 2 0.282 0.366 0.452 0.533 0.612 0.457 

 3 0.144 0.300 0.434 0.593 0.753 0.535 

Size Pool  1 (80) 0.381 0.439 0.494 0.553 0.612 0.519 

 2 (250) 0.307 0.388 0.463 0.544 0.625 0.494 

 3 (800) 0.251 0.358 0.457 0.565 0.671 0.492 

 4 (2500) 0.211 0.346 0.473 0.606 0.736 0.505 

Diversity 1 (low) 0.345 0.445 0.540 0.648 0.746 0.515 

 2 0.299 0.406 0.506 0.614 0.715 0.536 

 3 0.258 0.355 0.450 0.543 0.646 0.559 

 4 (high) 0.247 0.325 0.392 0.464 0.538 0.399 
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Figure 1. 

Quality/Diversity Trade-offs Achieved by Various Selection Systems for Situation 𝑆0 under 

Calibration Conditions 𝐶𝑐 (Panel A) and Validation Conditions 𝐶𝑣 (Panel B). Under 𝐶𝑐 the 

systems with trade-offs P1 to P4 are Pareto optimal (100 percent calibration quality 

achievement); the systems with trade-offs W1 to W4 are the worst possible (0 percent 

calibration quality achievement); and the systems with trade-offs S1 to S4, F1 to F4, and T1 

to T4 have 75, 50 and 25 percent calibration quality achievement, respectively. The systems 

with trade-offs U1 to U4 correspond to unit weighed selection systems. In panel B, the same 

symbols identify the trade-offs achieved by the systems under conditions 𝐶𝑣, whereas the 

symbols B1 to B4 and W1 and W4 show the best possible and the worst possible 

corresponding trade-offs that can be achieved under 𝐶𝑣. 
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Figure 2. 

Average Diversity/Quality Shrinkage in a Validation Condition Involving the Applicant 

Population 
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Figure 3.  

Sampling Variability Validation Quality Achievement of PO Selection Systems. The square 

dots on the horizontal axis indicate the .10 quantile of the density, whereas the circle dots 

show the .90 quantile. 
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Figure 4. 

Sampling Variability Validation Quality Achievement of PO and non PO Systems (P SYS: PO 

System; Z SYS: zero percent calibration quality achievement system; T SYS: 25 percent 

calibration quality achievement system; F SYS: 50 percent calibration quality achievement 

system; S SYS: 75 percent calibration quality achievement system; U SYS: unit weight system 
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