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End-to-End Hierarchical Reinforcement Learning
with Integrated Subgoal Discovery

Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, Senior Member, IEEE and Chai Quek, Senior
Member, IEEE

Abstract—Hierarchical Reinforcement Learning (HRL) is a
promising approach to perform long-horizon goal-reaching tasks
by decomposing the goals into subgoals. In a holistic HRL
paradigm, an agent must autonomously discover such subgoals
and also learn a hierarchy of policies that uses them to reach the
goals. Recently introduced end-to-end HRL methods accomplish
this by using the higher-level policy in the hierarchy to directly
search the useful subgoals in a continuous subgoal space. How-
ever, learning such a policy may be challenging when the subgoal
space is large. We propose LIDOSS, an end-to-end HRL method
with an integrated subgoal discovery heuristic that reduces the
search space of the higher-level policy, by explicitly focusing
on the subgoals that have a greater probability of occurrence
on various state-transition trajectories leading to the goal. We
evaluate LIDOSS on a set of continuous control tasks in the
MuJoCo domain against Hierarchical Actor Critic (HAC), a
state-of-the-art end-to-end HRL method. The results show that
LIDOSS attains better goal achievement rates than HAC in most
of the tasks.

Index Terms—Reinforcement Learning, Hierarchical Rein-
forcement Learning, subgoal discovery.

I. INTRODUCTION

Hierarchical Reinforcement Learning (HRL) is a promising
approach for performing long-horizon goal-reaching tasks, in
which an agent needs to execute a long sequence of actions in
a large state space to reach a goal state [1]–[7]. A particular
form of HRL, referred to as Feudal HRL [4], [8], addresses the
long-horizon goal-reaching problem by learning a hierarchy
of policies that decompose the goal into a sequence of easily
reachable subgoals. A subgoal can be a state in the original
state space or in an abstract state space. In such a hierarchy, a
higher-level policy learns to choose a sequence of subgoals, as
its outputs, to reach the goal. Meanwhile, a lower-level policy
learns to choose a sequence of actions to reach a subgoal
chosen by the higher-level policy.

The main challenge in Fedual HRL is to train the hierarchy
of policies in an end-to-end manner. This means that neither
the subgoals are predefined nor the policies are pretrained.
Recent approaches achieve this by directly using the subgoal
space as the output space of the higher-level policy, where
the subgoal space is a continuous vector space containing
all possible subgoals [2], [3]. Therefore, the agent does not
require predefined subgoals and can directly learn to choose
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the subgoals by training the higher-level policy through reward
maximization. This, however, requires the higher-level policy
to incrementally update its output over a large subgoal space,
which requires a long training time.

This paper investigates the benefits of subsampling the
output space of the higher-level policy to improve the rate
at which the agent learns to reach the goals, in episodic goal-
reaching tasks. In this regard, we propose a novel subgoal
discovery heuristic which estimates the probability of occur-
rence (or simply, occurrence probability) of different subgoal
states on various state-transition trajectories1 leading to a goal
during training, finds the subgoals with higher occurrence
probabilities within local neighbourhoods in the subgoal space,
and selects those subgoals as the salient subgoals. The salient
subgoals are then used as the outputs of the higher-level
policy. The intuition behind the proposed heuristic is that a
subgoal with a higher occurrence probability recorded after
multiple episodes is more likely to appear on various possible
trajectories leading to the goal in the future episodes as well.
Hence, such a subgoal can be chosen by the higher-level policy
as an intermediate target to reach the goal.

The complete method, with the subgoal discovery heuristic
integrated with the end-to-end training of the hierarchy of
policies, is named Hierarchical Reinforcement Learning with
Integrated Discovery Of Salient Subgoals (LIDOSS). We
evaluate LIDOSS on a set of continuous control tasks in the
MuJoCo domains [9], with fixed goals and dynamic goals;
whereby its performance is compared with that of Hierarchical
Actor Critic (HAC) [2], a state-of-the-art end-to-end HRL
method which uses a continuous subgoal space as the output
space of the higher-level policy without subgoal discovery.
Additionally, we also compare LIDOSS with other heuristics
for subsampling the output space of the higher-level policy.
The results show that LIDOSS outperforms HAC and other
heuristics in most of the tasks.

LIDOSS was first introduced in our previous work [10].
It is further improved in this paper as follows: Firstly, the
previous implementation of LIDOSS used a Deep Q Network
(DQN) [11] which took a state and a goal as the inputs,
and predicted the Q-values of all subgoals that could be
chosen by the higher-level policy. The outputs of the DQN
(that is, the predicted Q-values) were independent of each
other. On the other hand, the new implementation of LIDOSS
presented in this paper uses a single-output Q network which

1A state-transition trajectory is the sequence of states observed during an
episode
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takes a subgoal as an input, along with a state and a goal,
and predicts the Q-value of that subgoal (refer to subsection
IV-A). This change has been made because the single-output
Q network approximates the higher-level Q-value function in
the continuous subgoal space by taking a subgoal as one of
the inputs; hence, it can better generalize the predicted Q-value
to the previously unseen subgoals. This is important because
the subgoals in LIDOSS are incrementally discovered. Such a
generalization cannot be achieved using DQN which predicts
independent Q-values of different subgoals.

Secondly, the previous implementation of LIDOSS only
discovered the salient subgoals with respect to the exogenous
goal specified as part of the goal-reaching task. If the agent
did not reach that goal in an episode, the episodic data was
not used for subgoal discovery. The new implementation of
LIDOSS uses the episodic data more prudently by treating
the terminal state reached in an episode as a proxy goal
and discovering different sets of subgoals with respect to
the different proxy goals encountered (refer to subsection
IV-B). This is especially favourable in a task with dynamically
changing goals (refer to section V) because the subgoals
discovered with respect to a proxy goal encountered in the
earlier episodes can be useful if the exogenous goal in a future
episode is the same as that proxy goal.

The new implementation of LIDOSS shows better perfor-
mance than the previous implementation. The ablative com-
parison of the these implementations is provided in Appendix
E of the Supplementary Material.

The rest of the paper is organized as follows: The relevant
related work is covered in section II. The essential preliminary
concepts are discussed in section III. Section IV describes the
proposed method LIDOSS. This is followed by the discussion
of experiments and results in section V. Finally, the paper is
concluded in section VI.

II. RELATED WORK

Most modern Feudal HRL methods are based on the tabular
Q-learning ‘manager’ and ‘sub-manager’ hierarchy concep-
tualized by Dayan et al. [8]. In this concept, the policy
at each level in the hierarchy is regarded as the ‘manager’
which chooses the subgoals for the lower-level policy as well
as the ‘sub-manager’ which achieves the subgoals given by
the higher-level policy (refer to subsection III-B). Vezhnevets
et al. [4] extended this concept and proposed an end-to-
end Feudal HRL method comprising of a hierarchy of deep
neural networks, for learning in high-dimensional state spaces.
A higher-level network chooses a subgoal vector from a
learned latent subgoal space. A lower-level network learns to
take the actions to achieve the subgoal. This method, called
Feudal Networks (FuN), shows better performance than a non-
hierarchical agent. However, FuN requires extensive training
to learn the latent subgoal space. Nachum et al. [3] relax this
requirement by directly using the state space of the agent as the
subgoal space in a method called HIerarchical Reinforcement
learning with Off-policy correction (HIRO). But the more
significant contribution of this work is an off-policy correction
method to deal with the issue of non-stationarity in the higher-
level Q-value updates encountered when multiple policies in

the hierarchy are being trained simultaneously. Concurrently,
Levy et al. [2] proposed a method called Hierarchical Actor
Critic (HAC) which addresses the similar non-stationarity
issue, uses the concept of Hindsight Experience Replay (HER)
[12] to learn the HRL agent with sparse rewards, and also pro-
vides a subgoal testing procedure to encourage a higher-level
policy to choose reachable subgoals for a lower-level policy.
Due to these technical features, HAC is shown to outperform
HIRO on the continuous control benchmarks. FuN [4], HIRO
[3], and HAC [2] are important contributions towards the goal
of developing end-to-end Feudal HRL. However, they might
require long periods of training since the highest-level policy
needs to adjust its output over a large continuous subgoal
space. In contrast, LIDOSS simplifies the output space of
the highest-level policy by using the discrete set of subgoals
discovered by the integrated subgoal discovery heuristic.

Several subgoal discovery heuristics also exist in the HRL
literature, such as the count-based statistics [13], [14], graph-
based clustering [15]–[17], spectral analysis [18], [19] etc.
These approaches perform off-line subgoal discovery which
is separated from the process of learning the HRL agent’s hi-
erarchy of policies. This causes an overhead because the agent
cannot start learning to perform a task without going through
a separate phase of subgoal discovery. In contrast, LIDOSS
trains an agent in an end-to-end manner via integration of the
subgoal discovery heuristic and the learning of the hierarchy
of policies.

Lastly, hierarchical learning paradigms also exist in the
area of unsupervised clustering in the form of hierarchical
clustering [20], [21], and in the area of supervised classifi-
cation in the form of hierarchical classification [22], [23].
Hierarchical clustering develops a hierarchy of clusters by
either repeatedly merging small clusters into a larger one
(agglomeration strategy) or splitting a larger cluster into
smaller ones (divisive strategy) [21]. Yildirim et al. [21]
proposed a k-Linkage agglomeration strategy which evaluates
the distance between two lower-level clusters by calculating
the average distance between k pairs of observations, one
from each cluster. The lower-level clusters are merged into the
higher-level ones based on these calculated distances. This k-
Linkage approach is shown to yield more stable hierarchical
clusters than other standard linkage methods for inter-cluster
distance estimations. Hierarchical classification is the process
of classifying a given data into classes that are organized
into a hierarchy. A limitation of the standard hierarchical
classification is that the exact hierarchy of the class labels
needs to be predefined for the data instances, which makes
incremental classification hard. Recently, Park et al. [23]
addressed this problem of incremental hierarchical classifica-
tion using hierarchically stacked modules of fuzzy Adaptive
Resonance Theory-supervised Predictive Mapping (ARTMAP)
[15]. The module at each level assigns the class at that level
to a new data instance and also decides whether to perform
classification at the higher level. In this way, the stacked
ARTMAP performs incremental hierarchical classification.
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Notation Definition
S State space

A Primitive action space

G Goal space

G General notation for a goal in the goal space G
Gsub Subgoal space

g General notation for a subgoal in the subgoal space Gsub

φ Abstraction function for mapping a state to a goal, that is, G = φ(s); where s ∈ S
φsub Abstraction function for mapping a state to a subgoal, that is, g = φsub(s); where s ∈ S
πHL Highest-level policy of a general Feudal HRL agent

πεHL Highest-level policy of the LIDOSS agent, which is an ε-greedy policy

πHL−1 Intermediate-level policy of a general Feudal HRL agent (same for LIDOSS)

πLL Lowest-level policy of a general Feudal HRL agent (same for LIDOSS)

GsubSDM (G) Discrete salient subgoal set discovered by LIDOSS, containing subgoals of G

gHL Subgoal chosen by πHL from Gsub (in general) or by πεHL from GsubSDM (G) (in case of LIDOSS)

gHL−1 Subgoal chosen by πHL−1 from Gsub

QHL Highest-level Q-value function of a general Feudal HRL agent (same for LIDOSS)

QHL−1 Intermediate-level Q-value function of a general Feudal HRL agent (same for LIDOSS)

QLL Lowest-level Q-value function of a general Feudal HRL agent (same for LIDOSS)

Rin Internal reward used by a general Feudal HRL agent (same for LIDOSS) to learn QHL−1, QLL, πHL−1, and πLL

cHL Time period for which a highest-level subgoal gHL is repeated before choosing a new one

cHL−1 Time period for which an intermediate-level subgoal gHL−1 is repeated before choosing a new one

q The quantization size for the subgoal space quantization in the subgoal discovery heuristic of LIDOSS (in SDM; subsection IV-B)

qG The quantization size for the goal space quantization in the subgoal discovery heuristic of LIDOSS (in SDM)

|LMX| The size of Local Max (LMX) kernel used by the subgoal discovery heuristic of LIDOSS (in SDM)

ψth The threshold occurrence probability of a quantized subgoal within LMX for it to be considered as salient subgoal (in SDM)

SRR SDM Refresh Rate. The SDM updates the salient subgoal sets after every SRRth episode

TABLE I: Notations and their definitions.

III. PRELIMINARIES

The concepts outlined in the following subsections III-A,
III-B, and III-C are crucial to understand the design of
our method LIDOSS (in section IV) and the results of the
experiments (in section V). A list of notations used in various
sections of the paper is provided in Table I.

A. Universal Markov Decision Process

We consider a problem setting in which an agent is given
a goal that should be reached within a limited amount of
time. Such a problem can be specified to the agent in the
form of a Universal Markov Decision Process (UMDP) [2].
A UMDP consists of a state space S, an action space A,
a goal space G, a reward function R(s, a|G) defined with
respect to a goal G ∈ G, a state s ∈ S, and an action
a ∈ A. The solution of a UMDP is a goal-conditioned policy
π(a|s,G): S × G → A which takes a state and a goal as
inputs and chooses an action a ∈ A as the output. This
policy is obtained by maximizing a goal-conditioned Q-value
function [24] which is defined as follows, Qπ(a|s,G)(s, a|G) =

Eat∼π(at|st,G)[
∑t=T sG
t=0 γtR(st, at|G)|s0=s, a0=a], where γ ∈

(0, 1] is a discount factor and T sG is the time-horizon over
which G is reached from the start state s. We use TG to
denote the average time-horizon over which G is achieved
from different start states.

In this paper, the goal space G is defined as a lower-
dimensional abstraction of the state space S, obtained using
a predefined domain-specific2 abstraction function φ(s). This
function can map a set of states to the same goal. Technically,
a goal represents a set of target states, any of which the agent
needs to reach.

All the components of the UMDP discussed above, includ-
ing the goal, are externally specified to the agent as part
of the goal-reaching problem. Henceforth, we refer to the
externally specified UMDP as the core UMDP. The externally
specified goal is referred to as exogenous goal wherever
it is necessary to clearly distinguish it from any goal or
subgoal internally chosen by the agent for learning or subgoal
discovery, discussed later.

B. Feudal HRL and Temporal Abstraction

In the scope of this paper, Feudal HRL [2], [8] can be
formally defined in terms of a hierarchy of UMDPs as follows:

Given a core UMDP, the Feudal HRL agent internally
decomposes it into a hierarchy of subgoal-based UMDPs. The
agent has two internal components: a subgoal space Gsub and a
reward function Rin(s, a|g) defined with respect to a subgoal
g ∈ Gsub. Similar to the goal space, the subgoal space is

2specific to a particular task domain (refer to section V)
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Fig. 1: An example of Feudal HRL, with larger temporal abstraction at the highest level and shorter-horizon (reachable) subgoals at the
lowest level.

also defined as a lower-dimensional abstraction of the state
space. A state s ∈ S can be mapped to a corresponding lower-
dimensional subgoal in Gsub, via a predefined domain-specific
abstraction function φsub(s). The abstraction function can map
a set of states to the same subgoal. Technically, a subgoal
represents a set of intermediate states between the current
state and the goal. The internal reward Rin(s, a|g) is domain-
specific, but generally defined as greater than or equal to zero
only in the states near the subgoal, otherwise it has a negative
value [2].

The highest-level UMDP in the hierarchy is denoted as
l = HL. Its state space and goal space are the same as those of
the core UMDP. However, its action space is the subgoal space
Gsub. The highest-level policy, denoted as πHL(gHL|s,G),
takes a state s ∈ S and an exogenous goal G ∈ G as the inputs,
and chooses a subgoal gHL ∈ Gsub as its action3. The chosen
subgoal is repeated for cHL time steps or until it is reached,
before a new subgoal can be chosen (refer to subsection III-C
to understand how this is implemented). cHL is greater than
one but less than TG. Henceforth, we refer to the chosen
subgoal as the output of πHL rather than action, to avoid
confusion with the per-step action taken by the agent in the
core UMDP. The reward used to train the highest-level policy
is defined as RHL(st, g

HL|G) =
∑i=cHL

i=0 γiR(st+i, at+i|G).
Here, R(s, a|G) is the reward function of the core UMDP
(subsection III-A) and at ∈ A is an action taken by the agent
in the core UMDP at time t, using the lowest-level policy
described below. The Q-value is denoted as QHL(s, gHL|G).

The intermediate-level UMDP in the hierarchy is denoted
as l = HL − 1. Its state space is the same as that of
the core UMDP. However, both the goal space and the ac-
tion space are same as the subgoal space Gsub. The policy
at this level, denoted as πHL−1(gHL−1|s, gHL), takes the
output subgoal gHL of the highest-level policy πHL as an
input along with the state s ∈ S, and chooses a subgoal
gHL−1 ∈ Gsub as the action. Henceforth, we refer to the
chosen subgoal as the output of πHL−1 rather than the action.

3The general notation for a subgoal is g ∈ Gsub. The superscript in gHL

is used to clarify that the subgoal is chosen by the highest-level policy.

The output gHL−1 is basically a subgoal of the highest-level
subgoal. The chosen subgoal is repeated for cHL−1 time
steps or until it is reached, before a new subgoal can be
chosen. cHL−1 is greater than one but less than cHL. The
reward used to train the intermediate-level policy is defined as
RHL−1(st, g

HL−1|gHL) =
∑i=cHL−1

i=0 γiRin(st+i, at+i|gHL),
where Rin(s, a|gHL) is the internal reward function of
the agent, defined earlier. The Q-value is denoted as
QHL−1(s, gHL−1|gHL).

The lowest-level UMDP in the hierarchy is denoted as
l = LL. Its state space and the action space are the same
as those of the core UMDP. However, its goal space is the
subgoal space Gsub. The policy at this level, denoted as
πLL(a|s, gHL−1), takes the output subgoal gHL−1 ∈ Gsub of
the intermediate-level policy as an input along with the state
s ∈ S, and chooses an action a ∈ A. Henceforth, we refer to a
as a primitive action. The repetition time of the chosen action
is cLL = 1, that is, the agent takes a primitive action at every
time step. The reward used to train the lowest-level policy
is RLL(st, at|gHL−1) = Rin(st, at|gHL−1). The Q-value is
denoted as QLL(s, a|gHL−1).

1) Temporal Abstraction in Feudal HRL: When the
exogenous goal is distant from all the start states in a core
UMDP, it poses the long-horizon goal-reaching problem
which can be difficult to solve using standard reinforcement
learning approaches [4], [25]. Feudal HRL addresses this
problem through temporal abstraction [26] achieved using
the subgoals. Temporal abstraction at the highest level of
the hierarchy means that each individual decision step of
the policy πHL (that is, choosing a subgoal gHL) occurs
after multiple primitive action steps (equal to cHL steps).
This reduces the long-horizon goal-reaching problem into
a shorter-horizon problem at the highest level, since the
policy πHL needs to learn a sequence of subgoals that is
much shorter than the sequence of primitive actions (see the
example in Fig. 1). At the same time, the intermediate-level
policy πHL−1 takes the highest-level subgoal as the target
and chooses a sequence of subgoals, which provides temporal
abstraction at the intermediate level (Fig. 1). Lastly, the
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lowest-level policy πLL takes an intermediate-level subgoal
as the target to choose the primitive actions, which poses
a shorter-horizon learning problem at the lowest level
(Fig. 1). This hierarchical decomposition of a long-horizon
goal-reaching problem into the shorter-horizon problems
can potentially improve the learning of the goal-reaching
behaviour [2]–[4].

2) Trade-off between Temporal Abstraction and Subgoal
Reachability: The benefit of temporal abstraction could be
obtained using a two-level hierarchy with just πHL and πLL.
However, larger temporal abstraction at the highest level means
that the lowest-level policy πLL must take a longer sequence
of primitive actions to reach a subgoal. Such a subgoal might
become unreachable within a limited time when the lowest-
level policy is untrained. On the other hand, the intermediate-
level policy πHL−1 in a three-level hierarchy might resolve
this trade-off. In this case, the highest-level policy πHL can
choose a subgoal gHL at a larger temporal abstraction but
that subgoal is not given to the lowest-level policy πLL as an
input. Rather, πHL−1 takes that subgoal as input and chooses
a subgoal of subgoal gHL−1, which requires fewer primitive
actions to be reached using πLL (see Fig. 1). Hence, subgoal
reachability is maintained at the lowest level. This trade-
off between temporal abstraction and subgoal reachability
is important for analyzing the construction of our approach
(section IV) and the results of the experiments (section V).

C. Base Framework: Hierarchical Actor Critic (HAC)

Hierarchical Actor Critic (HAC) [2] is a state-of-the-art
framework for end-to-end training of a Feudal HRL agent.
HAC provides both temporal abstraction and subgoal reacha-
bility, as discussed further below. It uses an actor-critic [27]
combination at each level of the hierarchy of policies. The
critic at level l is a Q-value function Ql which is learned by
minimizing the following squared error [27],(
Ql(si, g

l|gl+1; θQ
l

)−
[
Rl + γc

l

Ql(si+cl , ĝ
l|gl+1; θQ

l

])2

(1)

where ĝl is the next subgoal chosen by πl and θQ
l

are the
parameters of the Q-value function. The actor is a policy πl

which is learned using the following policy gradient [27],

∇glQl(si, gl|gl+1)∇
θπl
πl(gl|si, gl+1; θπ

l

) (2)

Here, gl is the output of πl in a state si and θπ
l

are the
parameters of the policy πl. For l = HL, gl+1 = G ∈ G, that
is, the exogenous goal. For l = LL, the output gl = a ∈ A,
that is, the primitive action. Equation 2 implies that the output
of the policy πl is incrementally shifted in the continuous
subgoal space until it converges on a region where the Q-
value is maximum and the gradient ∇glQl(si, gl|gl+1) tends
to zero.

How does HAC achieve temporal abstraction? As per
equation 2, the actor at each level (above the lowest-level)
is trained to choose a subgoal that has a larger Q-value, from
the continuous subgoal space. In a continuous subgoal space,

the subgoals closer to the goal have a higher Q-value as
compared to the subgoals closer to the current state, especially
if the rewards are greater than or equal to zero only near the
goal states. This naturally encourages the actor to choose the
subgoals which are farther from the current state and closer to
the goal, hence requiring multiple primitive actions to reach
and achieving temporal abstraction.

How does HAC maintain subgoal reachability? HAC main-
tains subgoal reachability via a procedure called subgoal
testing. HAC tests if a subgoal gl chosen by a higher-level
policy πl is achieved within cl time steps or not, where cl is
the designated subgoal repetition time. If the subgoal is not
achieved within cl time steps, the policy πl receives a penalty
(negative reward) proportional to cl, for choosing that subgoal.
This encourages πl to learn to choose those subgoals which
can be reached within cl time steps.

Other features of HAC are discussed in Appendix A of the
Supplementary Material. Our method, discussed in section IV,
uses HAC as the base framework. Therefore, it uses the above-
mentioned features of HAC.

IV. LIDOSS: HRL WITH INTEGRATED DISCOVERY OF
SALIENT SUBGOALS

This section presents the details of our method LIDOSS,
including the composition of the LIDOSS agent (in subsection
IV-A) and the heuristic used for subgoal discovery (in subsec-
tion IV-B). A list of advantages and limitations of LIDOSS is
provided in the Conclusion (section VI) of this paper.

A. LIDOSS Agent Composition

The LIDOSS agent shares the following components with
the HAC framework: The lower-level policies (actors) πHL−1

and πLL, the lower-level Q-value functions (critics) QHL−1

and QLL, their input space, output space, and the learning
rules (equation 1 and 2) are the same as in HAC. LIDOSS also
uses the subgoal testing (subsection III-C) at all the levels to
learn to choose reachable subgoals.

LIDOSS differs from HAC by integrating the subgoal
discovery at the highest level, using a non-parametric discrete-
action policy as the highest-level policy, and using the discrete
set of discovered subgoals as the outputs of that highest-level
policy. These aspects of LIDOSS are as described below.

In HAC, the highest-level policy πHL incrementally shifts
its output over the continuous subgoal space via the policy
parameter-update (∇θπHL ) based on the gradient of the Q-
value of the current output (∇gHLQHL(si, g

HL|G)) (equation
2). This can be interpreted as the highest-level policy searching
for an optimal subgoal over the large continuous subgoal
space. On the other hand, LIDOSS uses a Subgoal Discovery
Module (SDM) to discover a sparse and discrete set of salient
subgoals from the continuous subgoal space Gsub, which can
be used as the discrete outputs of the highest-level policy. This
effectively reduces the search space of the highest-level policy
by restraining it to the discovered salient subgoals.

Furthermore, LIDOSS uses a non-parametric discrete-
action ε − greedy policy at the highest level, denoted as
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Fig. 2: The flow of operations in the Subgoal Discovery Module (SDM).

πεHL(gHL|s,G). It chooses the subgoal with the largest Q-
value with probability 1−ε and chooses a random subgoal with
probability ε (for exploration), from the set of the discovered
salient subgoals. This also reduces the overhead of learning a
parametric continuous-action policy, such as in HAC.

The Q-value functions at all levels, including the highest
level, are implemented using single-output Q networks. The
highest-level Q network takes a subgoal as an input along with
a state and exogenous goal, and predicts the Q-value of that
subgoal (as also mentioned in section I). The learning rule for
the highest-level Q-value function is same as in equation 1,
with the subgoals chosen by πεHL.

SDM is described in subsection IV-B. It incrementally
extracts the salient subgoals from the continuous subgoal
space Gsub by using a probability-based subgoal discovery
heuristic. The discrete set of salient subgoals corresponding
to an exogenous goal G is denoted as GsubSDM (G). At the
beginning of each episode, the LIDOSS agent fetches the
subgoal set GsubSDM (G) from SDM, for the exogenous goal
G given in that episode. The goal itself is added to this set,
making the set of outputs of πεHL equal to GsubSDM (G) + {G}.
Thus, if the salient subgoals are not available initially, the
intermediate-level policy πHL−1 takes the exogenous goal as
the input subgoal. This usually happens in the initial stages of
training since the subgoal discovery in SDM is an incremental
process. When the salient subgoals are available in GsubSDM (G),
the policy πεHL chooses a subgoal from GsubSDM (G) + {G},
which is then given as the input to πHL−1.

In the next subsection, we discuss how the SDM discovers
a set of salient subgoals.

B. LIDOSS Subgoal Discovery

The subgoal discovery heuristic used in LIDOSS searches
for the subgoal states that appear more frequently than

others on the state-transition trajectories4 connecting various
start states to the goal(s). It selects such subgoals as the
salient subgoals, which are then used as the outputs of
the highest-level policy of the LIDOSS agent (subsection
IV-A). The frequency of occurrence of any subgoal g on
the trajectories leading to a goal G is represented by an
occurrence probability p(g|G), which is estimated using the
episodic data gathered by the agent during exploration and
training. The intuition behind the proposed heuristic is based
on the following assumption,

Assumption 1: A subgoal g with a greater occurrence
probability p(g|G) recorded after multiple episodes is more
likely to appear on various possible trajectories leading to
the goal G in the future episodes as well. Hence, it is one of
the salient subgoals and it can be used as one of the outputs
of the highest-level policy of LIDOSS agent. That policy
can choose g as an intermediate target to reach the goal in
the future. This assumption also holds if the behaviour of
the agent changes in the future as a result of training or
stochasticity, leading to the discovery of new salient subgoals.
In such a case, g can still be retained in the salient subgoal
set without directly affecting the highest-level policy, because
that policy chooses an output from the salient subgoal set
based on the latest Q-values (refer to subsection IV-A).

The proposed subgoal discovery heuristic is designed to
achieve the following properties without using the rewards or
the subgoal testing penalty (subsection III-C) that are used to
train the policies:

Bottleneck Subgoal Discovery: Bottlenecks are those states
in the state space where several trajectories leading to the
goal(s) converge [13], [28]. The implication is that the topol-

4A state-transition trajectory is the sequence of states observed during an
episode
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ogy of the state space forces the agent to go through the
bottleneck states to reach the goal(s). Such bottlenecks in-
crease the difficulty of reaching the long-horizon goal(s). The
probability-based subgoal discovery in LIDOSS is intended to
find the subgoals corresponding to such bottleneck states (re-
member that a subgoal is an abstraction of a state; subsection
III-B).

Subgoal Reachability: As discussed in subsection III-B,
subgoal reachability is important in the end-to-end HRL.
Hence, the subgoal discovery heuristic must select the salient
subgoals in such a manner that the subgoal reachability is
maintained. This is achieved by comparing the p(g|G) val-
ues of different subgoals within local neighbourhoods in the
subgoal space, rather than comparing them globally. This is
called Local Max Saliency determination, described later in
subsection IV-B2. Selecting the subgoals with globally larger
p(g|G) might result in most of the discovered subgoals being
concentrated only around the bottlenecks. If the bottleneck
subgoals are themselves difficult to reach during the early
stages of training, then the performance of the agent might
suffer. The heuristic of LIDOSS selects at most one subgoal
from each local neighbourhood as the salient subgoal through
the local comparison of p(g|G) values. This ensures that the
discovered salient subgoals are not over-concentrated in a
single neighbourhood, such as around the bottlenecks, but
more widely distributed over the subgoal space to maintain
the local reachability of the subgoals.

The subgoal discovery heuristic is further explained below.
A corresponding pseudo code is provided later in Algorithm 1.

1) Procedure of Subgoal Discovery: The procedure of sub-
goal discovery involves multiple stages of operations carried
out after every episode. The operations are depicted as part of
the Subgoal Discovery Module (SDM) in Fig. 2. Firstly, the
state-transition trajectory taken by the agent during an episode
is received by the SDM. The terminal state in this trajectory
is abstracted as a proxy goal G ∈ G using the pre-defined
goal space abstraction function φ(s). Using the terminal states
as the proxy goals helps the SDM discover multiple sets of
subgoals corresponding to a variety of goals and also avoid
wasting an episodic data if the exogenous goal is not achieved
in that episode. Furthermore, each state in the trajectory is
mapped to a corresponding subgoal in the subgoal space Gsub
via the predefined subgoal abstraction function φsub(s). The
trajectory consisting of the subgoals is denoted as Γg .

Next, the SDM quantizes the proxy goal and the subgoals
present in Γg . Quantization is performed to enable the counting
(across multiple episodes) of the occurrence of the proxy goal,
and the occurrence of subgoals on the trajectories leading to
the proxy goal. In a continuous space, the exactly same proxy
goal or subgoal may not be encountered twice in different
episodes [29]. This could make the count of every subgoal and
proxy goal equal to one, leading to equal occurrence proba-
bilities and failure of subgoal discovery. Quantization ensures
that the occurrences of the subgoals (or proxy goals) which
are very close to each other are added into the occurrence
of a single quantized subgoal (or quantized proxy goal). The

quantization is performed as follows:

ḡ = bg
q
c × q (3)

for the subgoal, and

Ḡ = b G
qG
c × qG (4)

for the goal. Here, ḡ and Ḡ are the quantized subgoal and
proxy goal, respectively. q and qG are the quantization sizes.
The notation b·c indicates the floor function. The quantization
sizes are kept very small such that the quantized subgoals and
proxy goals do not violate the topology of the subgoal space
Gsub and the goal space G, respectively (refer to Appendix C
of the Supplementary Material). The new quantized subgoal
trajectory is denoted as Γ′ḡ .

After quantization, SDM updates a Saliency Table for the
entries corresponding to different pairs (ḡ, Ḡ). The Saliency
Table consists of the following entries: (i) (ḡ, Ḡ) pair, which is
the key of a row. (ii) n(Ḡ), which is the count of occurrence of
a quantized proxy goal Ḡ, incremented over multiple episodes.
(iii) n(ḡ, Ḡ), which is the count of occurrence of a quantized
subgoal ḡ on the trajectories terminating in the proxy goal Ḡ,
incremented over multiple episodes. (iv) ψ(ḡ, Ḡ), which is the
saliency value of ḡ with respect to Ḡ. Then, the occurrence
probability is calculated as p(ḡ|Ḡ) = n(ḡ,Ḡ)

n(Ḡ)
.

In this manner, SDM maintains the counts of the quantized
subgoals and quantized proxy goals over multiple episodes.
SDM updates the salient subgoal sets, denoted as GsubSDM (Ḡ),
corresponding to different quantized proxy goals stored in
the Saliency Table, after every SRRth episode. Here, SRR
stands for SDM Refresh Rate. The update procedure is
described in the following subsections IV-B2 and IV-B3.

2) Local Max Saliency: As mentioned earlier, the subgoal
discovery heuristic selects the salient subgoals within local
neighbourhoods such that their reachability is maintained.
SDM determines the saliency of a quantized subgoal by com-
paring its probability values with its local neighbour quantized
subgoals. Local comparisons ensure that if the occurrence
probability of a quantized subgoal is higher than its neighbours
and passes a threshold, it is selected as a salient subgoal even
if it does not have a globally higher occurrence probability.

The saliency of a quantized subgoal is determined us-
ing equation 5, defined below. In this equation, LMX(ḡ)
is a Local Max kernel which consists of the neighbouring
quantized subgoals around ḡ (Fig. 2). The number of neigh-
bours in this kernel is denoted as |LMX|. We use a spatial
neighbourhood to constitute LMX. Then, maxLMX(ḡ) =
maxḡ′∈LMX(ḡ) p(ḡ

′|Ḡ) is the maximum occurence probability
among the neighbours of ḡ, with respect to a proxy goal Ḡ.
If the saliency ψ(ḡ, Ḡ)=1, then ḡ is considered as a salient
subgoal with respect to Ḡ.

ψ(ḡ, Ḡ) =


0, if p(ḡ|Ḡ) < maxLMX(ḡ)

0, if maxLMX(ḡ) <=

p(ḡ|Ḡ) < ψth

1, otherwise

(5)



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

Equation 5 implies that a quantized subgoal ḡ is considered
salient with respect to a quantized proxy goal Ḡ only if
it passes two conditions. The first condition is that the
probability p(ḡ|Ḡ) should not be less than the maximum
probability among the neighbouring quantized subgoals (that
is, maxLMX(s̄)). The second condition is that even if p(ḡ|Ḡ)
is greater than or equal to the maximum probability among
the neighbours, it should not be less than ψth, which is a
threshold probability value called saliency threshold. If there
are multiple states within LMX(ḡ) with non-zero saliency,
only one of them is chosen as the salient subgoal.

3) Updating the Salient Subgoal Sets: The salient subgoal
set GsubSDM (Ḡ) corresponding to each quantized proxy goal Ḡ
in the Saliency Table is updated as follows:

GsubSDM (Ḡ) =


GsubSDM (Ḡ) + {ḡ}, if ψ(ḡ, Ḡ) = 1

∧ s̄ /∈ GsubSDM (Ḡ)

GsubSDM (Ḡ)− {ḡ}, if ψ(ḡ, Ḡ) = 0

∧ s̄ ∈ GsubSDM (Ḡ)//pruning
(6)

Equation 6 implies that a quantized subgoal ḡ is added
to the subgoal set GsubSDM (Ḡ) if it is salient (ψ(ḡ, Ḡ) = 1)
and not already present in the set. On the other hand, ḡ is
removed from GsubSDM (Ḡ) if it is present in the set but not
salient anymore. This is called pruning. This update operation
for each Ḡ in the Saliency Table is performed after every
SRRth episode.

As mentioned in subsection IV-A, the LIDOSS agent gets
the salient subgoal set corresponding to an exogenous goal
at the beginning of every episode and uses that as the output
space of the highest-level policy. If the non-quantized exoge-
nous goal is G, the salient subgoal set is obtained as GsubSDM (G)
= GsubSDM (Ḡ), if Ḡ = b G

qG
c × qG, as per equation 4.

4) Remarks on the Subgoal Discovery Heuristic: The sub-
goal discovery heuristic, described above, does not use the
rewards from the core UMDP. Hence, it is difficult to provide a
theoretical analysis of the heuristic from the policy optimality
perspective. The heuristic is designed to work without reward-
based supervision and to find salient subgoal states that include
topological bottlenecks in the state space. Hence, the subgoal
discovery uses the occurrence probability of the subgoals to
identify the salient subgoals. The efficacy of this heuristic is
empirically shown in the task domains which contain bottle-
necks (refer to the experiments discussed in section V). Hence,
LIDOSS is more suitable than a simple uniform sampling of
subgoals if the task domain contains bottlenecks.

Moreover, subgoal discovery occurs continuously as long as
new data is made available through the exploration performed
by the agent. Hence, the set of outputs of the highest-level pol-
icy of LIDOSS keeps changing dynamically. This did not pose
a practical issue in the task domains used in our experiments
(section V), in which the subgoal space is bounded and not
very large, since new subgoals are not discovered after the
agent has completely explored the subgoal space. However,
learning may not be stable in other task domains with a very
large or infinite subgoal space.

Algorithm 1 Subgoal Discovery Procedure of LIDOSS
Initialize q, qG, SRR, |LMX|, ψth (refer to Table I)
Initialize ntable ← 0 . Size of Saliency Table
Initialize nTrain← number of training episodes
foreach EP ∈ [0, nTrain) do

Run the training episode
Save the state-transition trajectory Γs at the end of the
episode
Initialize subgoal trajectory Γg ← ∅
foreach s ∈ Γs do

Insert subgoal φsub(s) in Γg . Abstraction
sT ← terminal state in Γs.
Proxy goal G ← φ(sT ) . Abstraction
Quantize proxy goal: Ḡ← b G

qG
c × qG . Quantization

Initialize quantized subgoal trajectory Γ′ḡ ← ∅
prev ← ∅
foreach g ∈ Γg do

Quantize subgoal: ḡ ← b gq c × q . Quantization
if ḡ 6= prev . avoid consecutive duplicates
then

Insert ḡ in Γ′ḡ
prev ← ḡ

. Time complexity of quantization: O(|Γg|)
foreach ḡ ∈ Γ′ḡ do

if (ḡ, Ḡ) /∈ Saliency Table then
Insert (ḡ, Ḡ) in Saliency Table.
ntable ← ntable + 1
Set n(Ḡ)← 0, n(ḡ, Ḡ)← 0, ψ(ḡ, Ḡ)← 0

n(Ḡ)← n(Ḡ) + 1 . Count increment
n(ḡ, Ḡ)← n(ḡ, Ḡ) + 1 . Count increment

. Time complexity of count increments: O(|Γ′ḡ|)
if (EP mod SRR) = 0 then

foreach (ḡ, Ḡ) in Saliency Table do
Initialize LMX(ḡ)← ∅
Get |LMX| nearest quantized subgoal neighbours
of ḡ, add them to a temporary set temp
foreach ḡ′ ∈ temp do

if (ḡ′, Ḡ) ∈ Saliency Table then
Insert ḡ′ into LMX(ḡ)

p(ḡ|Ḡ) = n(ḡ,Ḡ)
n(Ḡ)

Determine saliency ψ(ḡ, Ḡ) as per equation 5
Update GsubSDM (Ḡ) as per equation 6

. Time complexity of the updates: O(ntable×|LMX|)

. Average time complexity per episode: O(|Γg|) + O(|Γ′ḡ|)
+ O(ntable×|LMX|

SRR )

V. EXPERIMENTS

This section describes the experiment setup to evaluate
LIDOSS (subsection V-A), the methods it is compared with
(subsection V-B), and the observed results along with their
analysis (subsection V-C). A discussion about the computation
time required by LIDOSS and HAC is provided in Appendix
D of the Supplementary Material.
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(a) Ant agent. (b) Ant Four Rooms. (c) Ant Maze. (d) Ant Key-Lock.

Fig. 3: MuJoCo Ant environments for continuous control tasks used in our experiments. The labels are as follows: ‘A’ is Agent, ‘G’ is
exogenous Goal, ‘K’ is Key, and ‘D’ is Door. The solid-border boxes show the regions within which a goal can be specified. The dashed-
border boxes show the regions within which the agent can start.

A. Setup

The experiments are performed using a set of simulated
MuJoCo continuous control task domains [9], described later.
The task environments are deterministic. The tasks require
goal-directed navigation, in which the agent has to traverse
through the continuous state space using continuous primitive
actions, to reach the target goal state(s). The task environment
The agent is a simulated Ant robot with a torso and four limbs,
depicted in Fig. 3(a). The state, goal, subgoal, and primitive
action spaces are as follows:

The state space S is a continuous vector space with 29
dimensions. The first 3 dimensions represent the location of
the Ant agent, denoted as (X,Y, Z). The 16th and 17th dimen-
sions represent the velocity of the Ant in the directions of X
and Y , respectively. The rest of the dimensions represent the
orientation of Ant’s torso and joints, and the velocities of the
joints. The primitive action space A is eight-dimensional and
continuous. Various dimensions of the action space represent
the torques to be applied on the Ant’s limb joints.

The goal space G is three-dimensional and continuous. It is
obtained using the predefined abstraction function φ(s) (refer
to subsection III-B), which extracts the first three dimensions
from a state s ∈ S as a goal G ∈ G . Therefore, a
goal is a target location in the three-dimensional navigation
environment.

The subgoal space Gsub is five-dimensional and continuous.
The predefined subgoal abstraction function φsub(s) (refer to
subsection III-B) extracts the first three dimensions (location
(X,Y, Z)) and the 16th and 17th dimensions (velocity) from
a state s ∈ S as a subgoal g ∈ Gsub. Thus, a subgoal is an
intermediate location and the velocity at that location that the
agent should achieve to potentially reach the goal location.

All the spaces described above are taken exactly as defined
by Levy et al. [2] for HAC, which is used as the baseline
method in the experiments.

For all experiments, the training and testing is done in
alternating batches of 100 episodes each, similar as the pro-
cedure used by Levy et al. [2] for HAC. One experiment trial
consists of multiple alternating training and testing batches.
For each testing batch, the percentage of the episodes (out of
100) in which the agent successfully reaches the exogenous
goal is recorded as the success rate in that batch. The success
rate is used as the performance measure during a trial. The
experiments are divided into two types: fixed goal experiments

and dynamic goal experiments. In the fixed goal experiments,
the exogenous goal is randomly selected from the goal space
at the beginning of the first episode of a trial. The same goal
is then selected for the entirety of every subsequent episode in
that trial. The purpose of this setup is to test how quickly does
the agent learn to reach a particular goal from different distant
start states. In the dynamic goal experiments, the exogenous
goal is randomly selected at the beginning of each new episode
in a single trial. The purpose of this setup is to test how quickly
does the agent generalize to dynamically changing goals.

The MuJoCo task domains used for the experiments are
shown in Fig. 3. The Ant Four Rooms domain [2] requires
the agent (labelled ‘A’) to navigate from one room to another
to reach the exogenous goal (labelled ‘G’). The rooms are
separated by walls and connected by passages (bottlenecks).
We perform both fixed goal and dynamic goal experiments in
this domain. The Ant Maze domain [3] requires the agent to
navigate a ‘A’ shaped corridor to reach the exogenous goal.
We perform only fixed goal experiments in this domain. The
Ant Key-Lock is our custom task domain in which the agent
has to fetch a key (bottleneck, labelled ‘K’) from one room
before it can open a closed door (bottleneck, labelled ‘D’) and
reach the exogenous goal in another room. We perform only
fixed goal experiments in this domain. Additionally, we also
perform dynamic goal and fixed goal experiments in a very
simple task domain called Ant Reacher [2], which does not
contain obstacles or bottlenecks. Further details about the task
domains are provided in Appendix B of the Supplementary
Material.

The hyper-parameters are the same across all tasks. The
quantization sizes are q = qG = 0.5 for the subgoal space and
the goal space. The saliency threshold ψth is 0.3. The SDM
refresh rate is SRR = 50. The number of neighbours in the
LMX kernel are |LMX|= 24. The ε value of the highest-
level policy of LIDOSS is equal to 0.3 during training and 0.0
during testing. Each episode is terminated after 700 time steps.
The subgoal repetition time at the highest-level is cHL = 100
time steps and at the intermediate-level it is cHL−1 = 10 time
steps. The core UMDP reward (R) is −1 at each step and 0
only when the agent is in proximity to the exogenous goal.
Similarly, the internal reward of the HRL agent (Rin; refer
to subsection III-B) is −1 at each step and 0 only when the
agent is in proximity to a subgoal. Please refer to Appendix B
of the Supplementary Material for the details about how the
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(a) HAC+Qn Subgoals. (b) HAC+QnFPS Subgoals. (c) LIDOSS Subgoals.

Fig. 4: Distribution of the subgoals discovered using different heuristics, in the Ant Four Rooms domain. This is a projection of the subgoals
on a two-dimensional plane for the purpose of visualization.

proximity to an exogenous goal or a subgoal is determined.
As discussed in subsection IV-B, the subgoal discovery

heuristic of LIDOSS sub-samples a discrete set of salient
subgoals from the continuous subgoal space. The degree of
discretization is controlled by the hyper-parameters q and
|LMX|. The details about how we set these hyper-parameters
are provided in Appendix C of the Supplementary Material.

B. Methods Compared

LIDOSS is compared against the following methods in the
experiments:

Hierarchical Actor Critic (HAC) [2]: This method is used
as the standard end-to-end Feudal HRL baseline without sub-
goal discovery or quantization. For details, refer to subsection
III-C.

HAC + Quantization (HAC+Qn): This method is designed
by ablating the subgoal discovery heuristic of LIDOSS and
using the discrete set of subgoals, obtained only by the
quantization of the continuous subgoal space (equation 3),
as the outputs of the highest-level ε-greedy policy. For fair
comparison, the quantization size is set as q = 0.5 similar
to LIDOSS. Quantization provides a discrete set of subgoals
distributed in a uniform grid-pattern over the subgoal space
(Fig. 4(a)). HAC+Qn also works incrementally like LIDOSS,
by periodically quantizing the subgoals which are the abstrac-
tions of the explored states, at an interval equal to the SDM
Refresh Rate (SRR) of LIDOSS.

HAC + Quantization + FPS (HAC+QnFPS): This is an
alternative method for salient subgoal selection. It is designed
by replacing the probability-based local salient subgoal dis-
covery heuristic of LIDOSS with the Farthest Point Sampling
(FPS) algorithm [30]. The FPS algorithm starts by randomly
sampling one of the quantized subgoals. Then, it samples
another quantized subgoal which is the farthest from the first
one, where the distance measure is the Euclidean distance in
the subgoal space. Subsequently, it samples a third quantized
subgoal which is the farthest from the first two, and so
on. In this manner, it discovers 300 subgoals5 to form the
discrete set of outputs of the highest-level ε-greedy policy of
HAC+QnFPS agent. The FPS algorithm does not depend on
the exogenous or proxy goals, hence HAC+QnFPS discovers
only one common set of subgoals. The subgoals are widely

5LIDOSS discovers approximately 300 subgoals corresponding to a proxy
goal in the different task domains by the end of training.

distributed over the subgoal space with similar concentration
in different regions (Fig. 4(b)). Their arrangement is not
directed towards bottlenecks, unlike the subgoal distribution of
LIDOSS (Fig. 4(c)). HAC+QnFPS also works incrementally
by applying the FPS sampling at an interval equal to the SDM
Refresh Rate (SRR) of LIDOSS.

C. Results and Discussion

The results for the fixed goal and dynamic goal experiments
performed in different task domains are shown in Fig. 5.
As mentioned earlier, the training and testing batches are
executed alternately, where each batch is of 100 episodes.
Thus, the success rate after N testing batches also indicates the
performance of an agent after N training batches. All methods
perform comparably in the Ant Reacher domain (Fig. 5(e)),
with similar results for both dynamic goal and fixed goal setup.
This indicates that neither quantization nor subgoal discovery
has a beneficial effect if the topology of the environment is
very simple, that is, it contains no obstacle or bottleneck,
and the agent can simply navigate straight to the goal in an
open space. The rest of the domains have a more complicated
topology, including obstacles and bottlenecks such as doors,
passages, and key (Fig. 3). In those domains, various methods
show a noticeable difference in performance.

Before analyzing the results further, the following points
need to be recalled from section III: The efficacy of end-to-end
HRL depends on both the temporal abstraction of the subgoals
chosen by the highest-level policy and the reachability of
those subgoals using the lowest-level policy. The highest-level
policy learns to choose the subgoals with larger Q-values; such
subgoals are farther from the current state and closer to the
goal if the rewards are greater than or equal to zero only
near the goal. This gradually leads to temporal abstraction
during training, in combination with the repetition of a chosen
subgoal for multiple time steps. At the same time, the highest-
level policy also receives a large penalty for choosing a
subgoal that cannot be reached using the lowest-level policy
within limited time steps, which ensures the reachability of
the subgoals.

Now, the performance of various methods is analyzed as
follows. LIDOSS, HAC+Qn, and HAC+QnFPS achieve better
final success rate than HAC, to varying degrees. The common
aspect of these three methods is the non-parametric ε-greedy
policy at the highest level of the HRL agent’s hierarchy of
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(a) Ant Four Rooms Fixed Goal. (b) Ant Key-Lock Fixed Goal. (c) Ant Maze Fixed Goal.

(d) Ant Four Rooms Dynamic Goal. (e) Ant Reacher Dynamic/Fixed Goal

Fig. 5: Success Rates in different task domains, calculated per 100 episodes in a testing batch. The result for each method is an average of
50 trials. The x-axis shows the number of finished testing batches, which is also equal to the number of finished training batches. The scale
of the y-axis is restricted to show the differences between the success rates more clearly.

policies. As discussed in subsections III-C and IV-A, the
parametric HAC policy incrementally shifts its output over
the continuous subgoal space, based on the gradient of the
Q-value. Thus, HAC requires more training time until the
highest-level policy output converges near the region of the
subgoal space with larger Q-values. On the other hand, the
ε-greedy policies of LIDOSS, HAC+Qn, and HAC+QnFPS
directly choose a subgoal from the discrete set of subgoals,
based on the largest Q-value (since ε value is zero dur-
ing testing). Hence, the performance benefit for LIDOSS,
HAC+Qn, and HAC+QnFPS over HAC comes from avoiding
the overhead of learning a parametric continuous-action policy
at the highest level. The default learning rate for the parameters
of HAC’s highest-level policy is 0.001. We also tested HAC by
decreasing and increasing the learning rate, but it still achieved
lower success rates than other methods.

1) LIDOSS versus Pure Quantization: The results also
show that quantization alone (that is, HAC+Qn) does not lead
to the best gain in performance over HAC (Fig. 5). HAC+Qn
uses a set of subgoals that are very densely distributed over the
subgoal space (Fig. 4(a)). In contrast, LIDOSS discovers a set
of subgoals that are sparsely distributed over the subgoal space
(Fig. 4(c)). We observed that the sparse distribution provides
an additional temporal abstraction effect to the LIDOSS agent.
The highest-level policy of the HAC+Qn agent chooses a
long and haphazard sequence of subgoals in a few episodes.
This sometimes restricts the exploration done by the HAC+Qn
agent, which might also affect learning. It happens due to
the quantized subgoals being very close to each other. On

the other hand, the highest-level policy of LIDOSS chooses
subgoals that are naturally distant from each other, in terms
of the number of time steps needed to reach them, because of
the sparsity. This additional temporal abstraction effect helps
in exploration and learning, leading to a better performance
shown by LIDOSS.

2) LIDOSS versus other Subgoal Discovery Heuristics:
LIDOSS performs slightly better than HAC+QnFPS in the task
domains which contain bottlenecks, that are Ant Four Rooms
and Ant Key Lock (please see Figure 5 in this document for
the experiment results). This is because HAC+QnFPS does
not explicitly discover the subgoals that lie at or near the
bottlenecks in the Four Rooms and Key-Lock domains, since
the FPS algorithm samples the subgoals that are more uni-
formly distributed over the subgoal space. In those domains,
we observed that the HAC+QnFPS agent gets stuck at the
walls in a few cases and it is not able to traverse through the
bottlenecks, while the LIDOSS agent chooses the bottleneck
subgoals and traverses through them. However, in the Ant
Maze domain without bottlenecks, the two methods perform
comparably. Hence, LIDOSS is more suitable for the task
domains containing bottlenecks.

Finally, we also tested LIDOSS after ablating the Local Max
kernel and only extracting the top 300 subgoals corresponding
to a proxy goal, sorted by their occurrence probabilities com-
pared globally. A majority of such subgoals are concentrated
near the bottlenecks. The final performance of that agent is
found to be similar to LIDOSS in the Four Rooms domain but
worse than LIDOSS in the Key-Lock domain. The bottlenecks
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Task LIDOSS 3-levels HAC 3-levels LIDOSS 2-levels HAC 2-levels 1-level
Four Rooms - fixed goal 94.8 ± 27.6 74.2 ± 29.5 36.3 ± 28.3 37.1 ± 30.2 6.7 ± 3.2

Four Rooms - dynamic goal 94.6 ± 28.3 85.9 ± 27.2 38.4 ± 31.1 44.7 ± 33.4 7.4 ± 3.5
Key Lock 50.6 ± 27.2 24.8 ± 18.1 8.5 ± 6.3 10.2 ± 7.1 1.1 ± 0.2

Maze 81.2 ± 14.4 41.6 ± 22.2 2.3 ± 0.4 5.5 ± 1.2 0.5 ± 0.2

TABLE II: The final success rate of an agent as a function of the depth of its hierarchy of policies, recorded after 70 testing batches in Ant
Maze and 50 testing batches in other tasks. The 1-level agent is a standard RL agent with a single policy and no hierarchy or subgoals. The
results for each task are the average of 50 trials.

in the Four Rooms domain (Fig. 3(b)) are the passages which
can be easily reached from the adjacent rooms. However, the
bottlenecks in the Key-Lock domain (Fig. 3(d)) are harder
to reach from certain states. For e.g., the Key is harder to
reach from outside the Key (K) room and the Door to the goal
room (D) is harder to reach from the Key room, via a simple
traversal on a straight path. In such cases, the reachability of
the intermediate states also matters, which is achieved by the
local selection of the salient subgoals using the Local Max
kernel of LIDOSS (subsection IV-B).

3) Effect of the Depth of the HRL Agent’s Hierarchy of
Policies: As discussed in subsection III-B, a hierarchy of
policies with more than two levels possibly offers the advan-
tage of greater temporal abstraction at the highest level while
also maintaining the reachability of the subgoals at the lowest
level. On the other hand, in a two-level hierarchy, the highest-
level policy has to choose the subgoals which are closer to
the current state to avoid excess penalties if the agent cannot
reach the subgoals (refer to subgoal testing in subsection
III-C). This causes the highest-level policy to choose a longer
sequence of subgoals to reach an exogenous goal within an
episode, reducing the benefit from temporal abstraction and
increasing the required training time. This trade-off between
temporal abstraction and subgoal reachability is most likely
the reason that a 3-level HRL agent performs better than a
2-level HRL agent for both HAC and LIDOSS, as reported in
Table II. We also test a 1-level non-hierarchical agent, which
is a standard RL policy that takes a state and a goal of the
core UMDP as the inputs, and chooses a primitive action from
the continuous action space as the output. This agent does not
use any subgoal, hence it has to reach the long-horizon goal
using only the primitive actions. It can be seen that the 1-level
agent performs the worst in all the domains.

VI. CONCLUSION

This paper presents a method called Hierarchical Reinforce-
ment Learning with Integrated Discovery Of Salient Subgoals
(LIDOSS) which integrates a subgoal discovery heuristic into
the end-to-end learning of an HRL agent’s hierarchy of poli-
cies. The heuristic discovers a sparse and discrete set of salient
subgoals from a large continuous subgoal space. The salient
subgoals are simultaneously used as the output of the highest-
level policy of the LIDOSS agent. The subgoal discovery
heuristic is based on the local comparison of the probabilities
of occurrence of different subgoals on various state-transition
trajectories leading to the goal(s). It finds a set of subgoals
that includes those lying at the bottleneck regions of the state
space.

LIDOSS is compared with a recently introduced end-to-end
HRL method called Hierarchical Actor Critic (HAC) [2] in a
set of continuous control tasks in the MuJoCo task domains
[9]. In HAC, the highest-level policy directly uses the large
continuous subgoal space as its output space, without subgoal
discovery. The experiments show that LIDOSS performs better
than HAC in all task domains that contain obstacles or
bottlenecks. The better performance of LIDOSS is mainly due
to the use of a discrete-action highest-level policy and the
reduced overhead of learning a continuous-action policy, such
as in HAC.

a) Advantages and Limitations: LIDOSS has the follow-
ing main advantages: (i) It reduces the overhead of learning
a continuous-action highest-level policy over a continuous
subgoal space. (ii) It explicitly includes the subgoal states lying
at the bottleneck regions, among other discovered subgoals,
which is beneficial in the task domains containing the state-
space bottlenecks. LIDOSS also has a few key limitations as
follows: (i) LIDOSS might not have an advantage over other
subgoal discovery heuristics, such as the Farthest Point Sam-
pling (FPS) [30] used in our experiments, in task domains that
do not contain bottlenecks. (ii) LIDOSS requires quantization
of the subgoal space, which might be difficult if the subgoal
space is high-dimensional, due to the curse of dimensionality.
(iii) LIDOSS is not suitable for task domains with a very
large (potentially infinite) state space because the continuous
subgoal discovery makes the set of outputs of the highest-level
policy unstable, which affects learning.

b) Future Work: To address the second limitation, we
plan to replace the quantization operation with subgoal clus-
tering using a learned subgoal similarity function in the future
work. One scheme to learn such a similarity function is to
label two subgoals as similar (label value equal to 1) if they
are separated by a limited number of time steps on an episodic
trajectory, otherwise, label them as dissimilar (label value
equal to 0). A neural network can be pre-trained using this
labelled data in a supervised manner to predict the similarity
or dissimilarity of two high-dimensional subgoals. A similar
scheme is used in a recent work on topological memory-based
planning [31]. During the training of the HRL agent, the pre-
trained similarity function can be used to find the similar
subgoals and cluster them into a discrete centroid subgoal,
which will provide the same effect as quantization.

LIDOSS is a model-free HRL method which requires a
significant amount of data to learn the hierarchy of policies
from scratch to reach new goals. In the future, we will
investigate the task or goal decomposition from a different
perspective, which is aligned with model-based planning [31],
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[32]. The agent will use the exploration data to build state-
transition models at different levels of temporal abstraction, it
will use those models to sample the subgoals, and use planning
to find the paths to the goal(s) through the subgoals. A model-
based approach can help the agent memorize the structure or
topology of the state space and subgoal space, and reduce the
amount of data required to learn to reach new goals.
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