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Abstract. Biclustering of observations and the variables is of interest
in many scientific disciplines; In a single set of data matrix it is handled
through the singular value decomposition. Here we deal with two sets of
variables: Response and predictor sets. We model the joint relationship
via regression models and then apply SVD on the coefficient matrix.
The sparseness condition is introduced via Group Lasso; the approach
discussed here is quite general and is illustrated with an example from
Finance.

Keywords: Multivariate regression · Singular value decomposition ·
Dimension reduction · Mixture models

1 Introduction

In the area of data mining for high-dimensional data with ‘m’ units and ‘n’ vari-
ables, where ‘m’ and ‘n’ are very large, there is a great deal of interest to reduce
the dimensions on both sides. For the reduction of large number of variables to a
smaller number, the techniques based on Principal Component Analysis (PCA)
are normally used. The interpretation of these components is usually improved
by the sparseness constraints such as LASSO or RIDGE. On the other hand,
the reduction in the large number of units is handled by clustering techniques
or through finite mixtures models. In the former, the focus is on correlation
between the variables, and in the latter the focus is on the distance between
units with appropriate standardization of the variables. In this paper, we want
to study the relationship between two sets of variables Yt and Xt, which are of
dimensions ‘m’ and ‘n’ collected over ‘T ’ time periods via multivariate regression
model and we want to reduce the dimension of the (m × n) coefficient matrix
on both units and variables. Biclustering methods generally focus on a single
data matrix; here we focus on the estimated coefficient matrix that relates Yt to
Xt, that represents both the data matrix Y and X. But this has to be properly
weighted in for the estimation errors.
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534 R. Velu et al.

In Sect. 2, we introduce the model, review the methodology of clustering of
regression models. The following section will cover the estimation methods and
some approximate solutions for biclustering. In Sect. 4, we define the problem
of biclustering of the regression models and evaluate the procedures using both
simulated and real data. The final section will outline the future work.

2 Clustering of Regression Models

In microarray experiments, the objectives are twofold: to detect differentially
expressed genes and to group genes with similar expression. It is believed that
genes with different expression can provide disease-specific markers and co-
expressed genes can contribute to understanding the regulatory network aspect of
the gene expression (see Qin and Self [5]). In finance, there is a great deal of inter-
est in assessing the commonality in returns among stocks and how this common-
ality can be related to commonality in order flow (see Hasbrouck and Seppi [3]).
This research has led to fundamental questions related to diversification—a cen-
tral tenet of Markowitz’s portfolio theory. The basic regression model can be
written as:

Yi
T×1

= Xi
T×n

· ci
n×1

+ ei, i = 1, . . . ,m, (1)

where the times series of responses (returns) on unit i are given in Yi and the
corresponding (order flow) variables related to ith response is given in Xi.

If ei’s are assumed to be correlated over ‘i’, then the above model set-up
is called seemingly unrelated regression equations (SURE). The focus on the
clustering methods is on in-grouping ‘ci’ into gene-based groups, or in the finance
context into trading-pattern based or into industry groups.

Finite Mixture Regression Models: We will assume that there are ‘K’
groups and each set of models in (1) can come from one of these groups.
The random indicator is given by Si is distributed with unknown proba-
bility distribution η = (η1, . . . , ηK). The unknown parameters are given in
θ = (η1, . . . , ηK , c1, . . . , cK , Σ1, . . . , ΣK). The marginal distribution of Yi given
Xi and θ can be written as:

f(yi | Xi, θ) =
K∑

k=1

f(yi | Xi, Si, θ)f(Si = k | θ)

=
K∑

k=1

ηkf(yi,Xick, Σk),

(2)

as stated in Frühwirth-Schalter [2, p. 243]. It is important to note that the regres-
sion coefficients are identifiable if and only if the number of clusters is less than
the number of distinct (n− 1) dimensional hyperplanes generated by the covari-
ates. If the covariates show not much variability, there may be identifiability
problems which indicates that the groups may not be that distinctive.

cwtee@smu.edu.sg



Biclustering via Mixtures of Regression Models 535

Because the cluster membership is not known a priori, treating them as miss-
ing information and then using the EM algorithm is what is typically followed.
The initial cluster centers are formed from the least squares estimate of c’s and
grouping them via empirical clustering procedures such as K-means clustering.
The number of clusters, the choice of ‘K’ is made through some criterion of
reproducibility over two or more clustering samples. The following BIC criterion
is suggested for the selection of ‘K’:

BICK = 2loglikelihood − n ln T. (3)

Qin and Self [5] also suggest a measure for the stability of cluster centers:

BMVK = max
k=1...,K

(volume(Σ̂k)), (4)

where BMV is the bootstrapped maximum value and the volume is measured
by largest eigenvalue. The joint use of BIC and BMV will lead to a selection of
‘K’ value that has large BIC and a small BMV.

The clustering of regression models is fit by applying the EM algorithm
as follows: stack the data as Y = (Y ′

1 , . . . , Y
′
m)′ and X = (X ′

1, . . . , X
′
m)′,

S = (S1, . . . , Sm)′ and θ = (c′
1, . . . , c

′
K , η1, . . . , ηK) be the stacked parameter

vector. The E-step finds the expectation of unknown variables, such as clus-
ter membership and the M-step maximizes the likelihood to obtain parameter
estimates. These result in the following steps:

ŝik =
ηkPr(yi | sik = 1; θ)

∑K
k=1 ηkPr(yi | sik = 1; θ)

η̂k =
m∑

i=1

ŝik

ĉk =

(
m∑

i=1

ŝikX ′
iXi

)−1 m∑

i=1

ŝikX ′
iYi

σ̂2
k =

m∑

i=1

ŝik(Yi − Xiĉk)′(Yi − Xiĉk)/
m∑

i=1

T ŝik.

(5)

The convergence of these estimates depend on the choice of initial values.
From the structure of the estimates of ‘c’ coefficients in (5), it is useful to note

that the cluster ‘ck’ coefficients are weighted average of the models entertained
with weights being assigned by the chance of their belongings to the cluster
membership. Note

ĉk = (
m∑

i=1

wi)−1(
m∑

i=1

wic̃i) (6)

where wi = ŝikX
′
iXi and c̃i = (X

′
iXi)−1X

′
iYi, the least squares estimate.If the

design matrix Xi’s are same, then the above simplifies to,

ĉk =
m∑

i=1

ŝik c̃i (7)

cwtee@smu.edu.sg



536 R. Velu et al.

which implies the likelihood equations based on the data can be replaced by the
likelihood equations using the least squares estimates and their distributions.

3 Biclustering of Observations and Variables

In the last section the focus was on clustering subjects but clustering of variables
is also very useful in practice. The similarity in variables is captured through
PCA. The concept of biclustering was discussed earlier by Rao [6] who advocated
computing the singular value decomposition (SVD) of the m × n data matrix
Y where ‘m’ is the number of subjects and ‘n’ is the number of variables and
also using the SVD of Y ′. The biclustering procedure simultaneously clusters
both the subjects and the variables thus providing a way to be selective of both
subjects and the variables. This is quite useful if any investments in follow-up
studies are expensive.

The sparse singular value decomposition (SSVD) is proposed as an
exploratory tool for biclustering in Lee, Shen, Huang and Marron [4]. The
requirement is that for a ‘m × n’ data matrix, Y , use the following penalized
sum-of-squares criterion.

‖Y − suv′‖2F + λuP1(su) + λvP2(sv) (8)

where the first term is the squared Frobenius norm, P1 and P2 are sparse-
inducing penalty terms. Then penalty terms considered are LASSO-based and
the solutions are based on soft-thresholding rule. Because of our intent in biclus-
tering of regression models, we want to discuss the regression approach to solve
(8), as given in Lee et al. [4]. For fixed ‘u’, minimization of (8) with respect to
(s, v) is equivalent to minimizing (8) with respect to ṽ = sv if

‖Y − uṽ′‖2F + λvP2(ṽ) = ‖vec(Y ′) − (In ⊗ u)ṽ‖2F + λvP2(ṽ) (9)

where ⊗ denotes the Kronecker product. Note for a given ‘u’, In ⊗ u acts as the
design matrix and ṽ is the regression coefficient. Note P2(ṽ) =

∑n
j=1 |ṽj | is the

LASSO-penalty.
To solve for ‘v’, fix ũ = su and

‖Y − ũv′‖2F + λuP1(ũ) = ‖vec(Y ) − (Im ⊗ v)ũ‖2F + λuP1(ũ) (10)

with the LASSO penalty, P1(ũ) =
∑m

i=1 |ũi|. Interestingly this regression app-
roach is inherent in the solution of the classical Eckart-Young theorem, that is
applied to arrive at the components of singular value decomposition.

4 Parsimonious Regression Models

The main interest in biclustering is to discover some desirable unit-variable asso-
ciation. In the analysis of microarray data, the goal is to identify biologically
relevant genes that are significantly expressed for certain cancer types. Initially

cwtee@smu.edu.sg



Biclustering via Mixtures of Regression Models 537

the biclustering is used as an unsupervised learning tool; the measurements, the
expression levels are for thousands of genes, ‘m’ over a small number of sub-
jects, ‘n’. The information on cancer types is used a posterior to interpret and
evaluate the performance of SSVD (see Lee et al. [4]). Visually the low-rank
approximations can reveal ’checkerboard’ structure resulting from gene and sub-
jects grouping. This feature can be appreciated in many different settings and
scientific areas as well.

It is well understood that supervised learning tools fare better as they use
the additional information which would also support validating the results. Thus
in the context of microarray data, the use of information on the presence or
absence of cancer will lead to better clustering; if so, where and how do we look
for ‘checkerboard’ structure? In the regression context the covariances between
the response and the predictor variables play an important role and thus the
form of regression coefficient matrix matters. We suggest two approaches. Stack
up the ‘c’ coefficients in a matrix and use the SVD on it; we have the m × n
matrix,

C ≡ (c1, . . . , cm)′ = UΛV ′ = A · B (11)

with rows of U refer to ‘m’ subjects and the rows of V ′ refer to the combinations
of the predictors, the ‘X’ variables in the model. When the design matrices
Xi are identical, the solution to (11) can be related to reduced-rank regression
but when they are different, the calculation of A(m × r) and B(r × n) is not
straightforward. (See (Chapter 7) in Reinsel and Velu [7]). We provide some
essential details here.

With the model as stated in (1) and with the condition on the stacked coef-
ficient matrix, C as stated in (11), it follows that we want to estimate C under
the condition,

Rank(C) = r ≤ min(m,n) (12)

which implies that A and B are full-rank matrices. Notice that the model (1)
can be rewritten as

Yi = XiB
′ai + ei (13)

where each ai is of dimension r×1. Also notice that BX ′
i provides the most useful

linear combinations of the predictors and the distinction among the regression
equations in (1) are reflected in the coefficients ai. The dimension-reductions
through reduced rank seemed reasonable because of the ’similarity’ of the pre-
dictor variable sets (xi) among the m different regression equations in (1). To
move forward, we need to impose some normalization conditions (as in normal-
ization required in SVD on U and V):

A′ΓA = Ir, BΣ̂xxB′ = Λ2
r (14)

where Γ = Σ̂−1
ee and Σ̂xx = 1

mT

∑m
i=1 X ′

iXi. To set up the estimation criterion
and the resulting estimates, we closely follow the details given in Reinsel and
Velu [7].

Observe that the model (1) can be expressed in the vector form as

y = X̄c + e (15)

cwtee@smu.edu.sg



538 R. Velu et al.

where y = (Y ′
1 , . . . , Y

′
m)′, X̄ = Diag(X1, . . . , Xm) and c = vec(C ′) with e =

(e′
1, . . . , e

′
m)′, Cov(e) = Σee ⊗IT . The generalized least squares (GLS) estimator

is given as
ĉ = [X̄ ′(Σ−1

ee ⊗ IT )X̄]−1X̄ ′(Σ−1
ee ⊗ IT )y (16)

The covariance matrix of ĉ that is useful to make inferences on c is given as

Cov(ĉ) = [X̄ ′(Σ−1
ee ⊗ IT )X̄]−1 (17)

The error covariance matrix is estimated by stocking the residuals êi = Yi −
Xiĉi as ê = (ê1, . . . , êm)′ and Σ̂ee = 1

T êê′.
To obtain the estimates of A and B, we need to resort to iterative procedures

as there is no one step solution as in SVD. Denote α = vec(A′) and β = vec(B′)
and θ = (α′, β′)′. The criterion to be minimized is

ST (θ) =
1

2T
· e′(Σ−1

ee ⊗ IT )e (18)

subject to the normalizing constraints in (14). Note that c = vec(C ′) = (A ⊗
In)vec(B′) = (Im ⊗ B′)vec(A′) and so e = y− X̄(A ⊗ In)β = y− X̄(Im ⊗ B′)α.
The first order equations that result from minimizing (18) leads to the following
iterative solutions—given α solve for β and vice versa.

α̂ = [X̄(B)′(Σee ⊗ IT )X̄(B)]−1X̄(B)′(Σ−1
ee ⊗ IT )y

β̂ = [X̄(A)′(Σee ⊗ IT )X̄(A)]−1X̄(A)′(Σ−1
ee ⊗ IT )y

(19)

In the above, X̄(B) = X̄(Im ⊗ B′) and X̄(A) = X̄(A ⊗ In).
If the design matrices Xi are the same, the solution is rather straight-forward.

We will comment on this model later.
Some observations are in order: Note because ci = B′αi, which from the

estimation point of view implies that,

X ′
iYi = (X ′

iXi)ci = (X ′
iXi)B′αi (20)

will lead to some simplifications in the cluster ‘θ’ estimates if we follow the
mixtures model approach taken in Sect. 2. Before formulating the problem as
finite mixtures with constraints on the regression coefficient matrix, we want to
discuss briefly an approach to introduce sparseness in the estimated A and B
matrices.

In the first approach we discuss here in similar to Lee et al. [4] where the
spareness structure on A and B matrices are introduced and the simplified struc-
ture would be used for identifying both the clusters of units and the clusters of
the variables. While sparseness studies in the context of reduced-rank regression
is of recent origin, many tend to use norms other than Frobenius. In order to
keep the focus and for continuity, we will consider Frobenius norm and in that
setting, we discuss the decomposition of C-matrix with spareness constraints.
Chen and Huang [1] discuss the simultaneous dimension reduction and variable
selection. The penalited regression version imposes group-LASSO type penalty

cwtee@smu.edu.sg



Biclustering via Mixtures of Regression Models 539

that assumes that each ‘ck’ as a group. Note that the range of ‘ck’ over vari-
ous ‘k’ is not linear space and has certain manifold structure. The methodology
provided in this paper is quite straightforward and is easy to implement.

The optimization methods related to reduced-rank regression exploit the
bilinear nature of the rank decomposition in (11). Note the coefficient matrix,
‘C’ is bilinear in the component matries, ‘A’ and ‘B’ because given either one,
the ‘C’ matrix is linear function of the other. This leads to the simplified iter-
ative solutions given in (19). Before we formulate the penalized version of the
problem, observe from (15)

y = X̄vec(C ′) + e = X̄(A ⊗ I)B + e (21)

Using (21), the criterion ST (θ) in (18) can be restated in terms of approximating
full-rank estimate of ‘C’ matrix by a matrix of reduced rank.

With (16), (17) and (21), the penalized version of the reduced-rank regression
model can be stated as,

Min
A,B

ST (θ) + λAP1(A) + λBP2(B) (22)

similar to what is given in (8) for the SSVD of the data matrix Y for one set
of variables. As argued in Chen and Huang [1], we will reduce the problem in
(22) to minimizing over ‘B’ for a given ‘A’, thus resulting in some simplification.
First note that minimizing the criterion ST (θ) in (18) under the full rank for ‘C’
matrix is equivalent to

Min
θ

S∗
T (θ) =

1
2T

(ĉ − c)′[X̄ ′(Σ−1
ee ⊗ IT )X̄](ĉ − c) (23)

and thus for a given ‘A’, it is the same as,

Min
B

S∗
T (θ) +

n∑

i=1

λi

∥∥βi
∥∥ (24)

where ‘βi’ denotes the ith row of vector of ‘B′’ matrix and λi’s are penalty fac-
tors that are positive. The condition is known as group-LASSO which implies
that the ith predictor can be taken out of the regression framework. The formu-
lation in (24) is more direct and relates how even in the extended set-up, the
problem simplifies to calculating SVD of appropriately weighed full-rank regres-
sion coefficient matrix. Observe that minimizing criterion in (24) can be further
simplified to, because ĉ − c = ĉ − (A ⊗ I)β, for a given A, (24) reduces to,

Min
β

[(A′Σ−1
ee ⊗ I)ĉ − β]′[X̄ ′(Σ−1

ee ⊗ IT )X̄]

[(A′Σ−1
ee ⊗ I)ĉ − β] +

n∑

i=1

λi

∥∥βi
∥∥

(25)

Here βi is the transpose of Bi and denotes the i-th subpart of the ’β’ vector.

cwtee@smu.edu.sg



540 R. Velu et al.

Solving (25) requires iterative procedures. Before we describe and apply these
methods, we want to observe that certain simplifications that occur when the
design matrix, Xi = X, in a commonly used multivariate regression model. With
X̄ = IT ⊗ X, the optimization in (25) reduces to

Min
β

[(A′Σ−1
ee ⊗ I)ĉ − β]′[Σ−1

ee ⊗ XX ′]

[(A′Σ−1
ee ⊗ I)ĉ − β] +

n∑

i=1

λi

∥∥βi
∥∥ ,

(26)

the criterion given in Chen and Huang [1]. The solution is easier to obtain because
of the simplified structure of

ĉ = (Σ−1
ee ⊗ XX ′)−1(Σ−1

ee ⊗ XY ′) = Im ⊗ (X ′X)−1X ′Y (27)

Our model although appears to be more complex, but it is solvable by numerical
routines.

The subgradient solution we suggest here follows Yuan and Lin [8]. The
subgradient equations are:

[(A′Σ−1
ee ⊗ I)ĉ − β]l + λlsl = 0 (28)

where [·] denotes the lth subvector of β, where l = 1, 2, · · · , n.
Here sl = βl/

∥∥βl
∥∥ if βl �= 0 and sl is a vector with ‖sl‖2 < 1 otherwise.

When
∥∥βl

∥∥ = 0, to obtain the subgradient equations, inpute ‘β’ without the
‘lth’ variable and go through the same process of computations and the soft-
threshold estimator is given as:

β̂l =
(

1 − λl

‖sl‖
)

+

sl (29)

In our practice, the subgradient algorithm converges in several iterations (less
than five) and is not so computationally costly for big datasets.

There may be other ways to obtain this and the research is underway to
explore these methods.

5 Parsimonious Finite Mixtures Biclustering

The parsimonious modeling proposed in (22) where both ‘A’ and ‘B’ matrices are
shrunk through LASSO type penalty may be appropriate to reduce the number
of coefficients. But it is not clear how this can be used for grouping. The finite
mixture model has the natural appeal as it can be used systematically to decide
the number of clusters as well as the probabilities of each unit belonging to var-
ious clusters. Recall that in the decomposition the regression coefficient matrix,
‘C’, the part ‘A’ represents the units’ side and the part ‘B’ represents variables’
side. While the parsimonious or sparse representation may be appropriate, it is
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not clear how the spareness in ‘A’ can easily lead to clustering of observations.
So we begin with model (13), where the ‘r’ dimensional ‘ai’ corresponds to unit
‘i’. Assume that there are ‘K’ groups and for a given ‘B’, thus given x∗

i = xiB
′,

we postulate that, ai’s come from one of these groups. Thus from (2),

f(yi | X∗
i , θ) =

K∑

k=1

f(yi | X∗
i , Si, θ)f(Si = k | θ)

=
K∑

k=1

η∗
kf(yi,X

∗
i ak, Σk),

where θ = (η1, . . . , ηK , a1, . . . , aK , Σ1, . . . , ΣK).

(30)

This implies that although the row rank of ‘A’ is taken to be ‘m’, based on the
distance between the rows, it can be reduced to ‘K’ independent rows.

The EM algorithm (5) can be applied to estimate θ. This is conditional on
‘B’ given; thus replace ‘Xi’ in (5) by X∗

i . Now given ‘A’, estimate ‘B’ via the
second equation in (19). This process can be iterated back and forth between
(5) and the estimation of ‘β’.
Sparseness: To introduce further sparseness in ‘B’, we can follow the logic given
following equation (21). For a given ‘A’, use equation (25) and the subgradient
method ((28) and (29)) to solve for ‘β’. With this the joint modeling of clustering
and the dimension reduction are both achieved.

The appropriate model selection as one can see is going to depend upon a
number of parameters: rank of the ‘C’ matrix, ‘r’ and the row rank of the ‘A’
matrix, K and the associated other parameters. We will use the grid search via:

BIC(r,K) = 2loglikelihood − n ln T

BMV(r,K) = max
r,K

(volume(Σ̂r,K)) (31)

This approach is novel and combines both the clustering via finite mixtures and
the dimension reduction via SVD. Its performance and its properties are to be
studied in depth.

6 Numerical Illustration

The illustration given here is not meant to draw any serious implications toward
economic theory but our goal is eventually relate the methodology to draw some
useful inferences on the trading behavior on major stocks. Since the early 2000s,
both academics and practitioners have paid more attention to the magnitudes
of cross-sectional interactions among stocks. However, the study of commonal-
ity in short-horizon returns, order flows, and liquidity is still of interest in the
microstructure analysis of equity markets. Hasbrouck and Seppi [3] note that
both short-horizon returns and order flows are characterized by common fac-
tors. With this, two research questions have emerged.

cwtee@smu.edu.sg



542 R. Velu et al.

Liquidity commonality can easily arise even when trading activity runs in
different directions for different stocks, because sizable buy or sell motivated
trading can strain liquidity. But commonality in returns can arise because of less
firm-specific and more market-wide factor. For instance public information flows
and correlation in order imbalances across market, that may affect all stocks.
Furthermore, commonality in order flows may be influenced by the differential
liquidity of individual stocks as well as by other factors such as asymmetric
information, idiosyncratic risks, transaction costs and other forms of market
imperfections.

If commonality in stocks’ order flows account for the covariance structure of
short-term returns, how should we characterize relationships involving common-
ality in both returns and order flows? Microstructure research focuses on how
individual asset price adjusts to new idiosyncratic information. If the market is
efficient, new information would be disseminated and interpreted immediately
by all market participants, thus prices would quickly adjust to a new equilib-
rium value determined by the content of the information. But in practice, the
price adjustment does not seem to be processed at the same speed for all stocks.
Therefore, the price discovery and order flow dynamics have more complex rela-
tionship when we consider multiple assets at the same time.

We chose the Dow stocks as our sample because first, the rapid pace of
trading provides frequently updated prices and allows us to construct some high-
frequency trading measures. Of the 30 firms in the index, we excluded Kraft
Foods, for which data are not available for some duration. Second, these 29
stocks, considered as the large capitalization stocks, are normally categorized
in the same style and traded mainly by institutional traders, that is, we can
expect more correlated trading on these stocks such as index arbitrage, dynamic
hedging strategies and naive momentum trading.

Our sample covers 252 trading days in 2015. We establish a standard time
frame for the data series using 15-min intervals covering 9:30–9:45, 9:45–10:00,
..., 15:45–16:00 for a total of 26 intervals per trading day. The 15-min time
resolution represents a compromise between, on the one hand, needing to look at
correlations in contemporaneous order flows across stocks at very short intervals
and, on the other hand, requiring enough time for feedback effects from prices
into subsequent order submissions. Such data smoothing is essential in handling
high frequency data.

We define the stock returns as the difference between the log end-of-interval
quote midpoint and the log begin-of-interval quote midpoint. We also consider
the following eight order flow measures: (1) Total number of trades; (2) Total
share volume; (3) Total dollar volume using log price as stock price (4) The
square root of the dollar volume defined as the sum of the square root of each
trade’s dollar volume using regular stock price; (5) Signed trades defined as the
difference between buy trades and sell trades; (6) Signed share volume defined
as the difference between buying share volume and selling share volume; (7)
Signed dollar volume defined as the difference between buying dollar volume
and selling dollar volume using log price as stock price; (8) The square root of
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the signed dollar volume defined as the difference between the sum of the square
root of each buy trade’s dollar volume and the same measure for each sell trade
using regular stock price. These measures are in the 15-min intervals of trading
and as the stocks considered are high capitalization stocks, the time intervals
always have active observations. These measures generally reflect two dimen-
sions of order flows (See Fig. 1). Table 1 presents two corresponding eigenvectors
and shows that the first eigenvector is dominated by “aggregate measures” and
the second one is by “signed measures”. Thus the first component represents a
‘sum’ measure and the second component, a ‘contrast’ measure. The contrast is
between two sides, buy and sell.

Fig. 1. Scree plot of eight standardized order flows measures

Figure 2 presents the histogram of average returns and averages of eight order
flow measures for 29 stocks in the sample. Because these variables have signif-
icantly different order of magnitude, we standardize our variables to have unit
variance and to remove the time-of-day effects. For a representative variable “z”,
let zi,d,k denote the observation from firm i on the k-th 15-miniute subperiod of
day d. Then the standardized variable becomes z∗

i,d,k = (zi,d,k−μi,k)/σi,k, where
μi,k and σi,k are the mean and standard deviation for firm i and subperiod k,
estimated across days.
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Table 1. Eigenvectors corresponding to first two largest eigenvalues of eight standard-
ized order flows measures

Eigenvector 1 Eigenvector 2

Signed trades −0.099 0.470

Num of trades 0.482 0.117

Signed share volume −0.127 0.487

Total share volume 0.487 0.113

Signed dollar volume −0.126 0.487

Total dollar volume 0.486 0.115

Sqrt signed dollar volume −0.114 0.501

Sqrt total dollar volume 0.490 0.120

Fig. 2. The histograms of returns mean and 8 order flow measures mean for 29 stocks

We run the following regression for each stock i and set the coefficient equals
to 0 if it is insignificant at 0.1 level. The whole 29×8 coefficient matrix is shown
in Table 5.

ri,t =
8∑

k=1

ckxk,i,t + ei (32)

where ri,t is the return for stock i at time t, xk,i,t is the k-th order flow measure
for stock i at time t. The coefficient matrix clearly indicates that not all order
flow variables are significant. This is an ad-hoc calculation that does not account
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for any commonality in the stocks. The methodology developed in this paper
provides a more comprehensive framework.

Table 2. Two centroids generated by the K-means clustering (K = 2)

Variables Centorid 1 (1) Centorid 2 (2) Difference (2)–(1)

Signed trades 0.203 0.041 −0.162

Num of trades −0.109 −0.109 0.000

Signed share volume −0.155 0.811 0.966**

Total share volume 0.020 0.063 0.043

Signed dollar volume 0.159 −0.840 −0.999**

Total dollar volume −0.029 −0.018 0.011

Sqrt signed dollar volume 0.150 0.454 0.305*

Sqrt total dollar volume 0.097 0.090 −0.007
∗, ∗∗ denote significant at 5% and 1% level, respectively.

Fig. 3. The histograms of coefficients with 2 clusters

First, financial theory confirms that there are two types traders in the market:
noise traders and informed trader, therefore we simply use K-means clustering
(K = 2) to group the stocks based on the coefficient matrix. Two centroids are
shown in Table 2. We observe that the signed share volume and signed dollar

cwtee@smu.edu.sg



546 R. Velu et al.

Table 3. Rank two approximation of coefficient matrix using SVD and SSVD algorithm
(U matrix)

Company name SVD SSVD

U (1) U (2) U (1) U (2)

Alcoa −0.139 −0.134 −0.122 0.114

American Express 0.217 −0.211 0.208 0.221

Boeing 0.011 −0.241 0 0.246

Bank of America −0.212 −0.123 −0.199 0.099

Caterpillar 0.103 −0.050 0.087 0.041

Cisco −0.275 −0.206 −0.277 0.186

Chevron −0.010 −0.048 0 0.035

Du Pont −0.006 −0.082 0 0.070

Disney 0.001 −0.402 0 0.418

General Electric −0.253 −0.363 −0.255 0.364

Home Depot 0.005 −0.100 0 0.093

Hewlett-Packard 0.010 −0.105 0 0.093

IBM 0.101 −0.054 0.084 0.045

Intel −0.004 −0.142 0 0.131

Johnson & Johnson 0.352 −0.259 0.354 0.277

JPMorgan Chase −0.147 −0.383 −0.136 0.379

Coca-Cola −0.003 −0.141 0 0.134

McDonald −0.015 −0.083 0 0.069

3M 0.162 −0.239 0.147 0.248

Merck 0.004 −0.022 0 0.011

Microsoft −0.022 −0.143 0 0.130

Pifzer 0.006 −0.269 0 0.274

Procter & Gamble −0.021 0.028 0 −0.022

AT& T −0.716 0.070 −0.738 −0.107

Travelers 0.012 −0.259 0 0.259

United Technologies 0.131 −0.068 0.116 0.061

Verizon −0.158 0.007 −0.150 0

Wal-Mart −0.007 −0.016 0 0

Exxon Mobil −0.008 −0.061 0 0.048

volume have significant difference in these two centroids. It implies that these
two variables represent important features for classifying the stocks with different
trading behaviors. Figure 3 supports our observation because only the histograms
of signed share volume and signed dollar volume have no overlap.
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Furthermore, we compute the singular value decomposition (SVD) and the
sparse singular value decomposition (SSVD) on the regression coefficients matrix
as in (8), (9) and (10). Table 3 shows the results for the U matrix using SVD and
SSVD algorithm. When we use K-means clustering(K=2) to cluster these stocks
based on U matrix we get from SVD, we obtain the same clustering results as the
one using the whole coefficient matrix. It implies that rank-two approximation
matrix may have captured most of the information in the structure and the
coefficient matrix. From the elements of U (1) from SSVD, we can refer that
there may be three groups.

Table 4. Rank two approximation of coefficient matrix using SVD and SSVD algorithm
(V matrix)

Variables SVD SSVD

V (1) V (2) V (1) V (2)

Signed trades 0.063 −0.391 0.039 0.383

Num of trades −0.031 0.516 −0.010 −0.534

Signed share volume −0.678 0.015 −0.683 0

Total share volume −0.026 −0.165 −0.006 0.145

Signed dollar volume 0.699 −0.005 0.705 0

Total dollar volume −0.043 0.275 −0.026 −0.267

Sqrt signed dollar volume −0.203 −0.448 −0.182 0.426

Sqrt total dollar volume 0.054 −0.526 0.033 0.543

Table 4 presents the ‘V ’ matrix using SVD and SSVD algorithm, we notice
that “signed share volume” and “signed dollar volume” dominate all the other
variables in both SVD and SSVD cases. Furthermore, it can be observed that
more weights are assigned to these two variables when we use the SSVD
algorithm.
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Table 5. Estimated coefficients of the regressions (32) for all 29 stocks

Company

name

Signed

trades

Num of

trades

Signed

share

volume

Total

share

volume

Signed

dollar

volume

Total

share

volume

Sqrt signed

dollar

volume

Sqrt total

dollar

volume

Alcoa −0.10* 0 0.32* 0 −0.37* 0 0.70* 0

American

Express

0.23* −0.23* −0.69* 0 0.70* 0 0.11* 0.28*

Boeing 0.30* −0.35* 0 0 0 0 0 0.34*

Bank of

America

−0.29* 0 0.59* 0 −0.53* 0 0.82* 0

Caterpillar 0.24* 0 −0.30* 0 0.35* 0 0 0

Cisco 0.41* −0.18* 0.92* 0.40* −0.93* −0.40* 0 0

Chevron 0 0 0 0 0 0 0.21* 0

Du Pont 0.19* 0 0 0 0 0 0.20* 0

Disney 0.07 −0.59* 0 0 0 −0.22 0.28* 0.55*

General

Electric

0.21* −0.47* 0.80* 0 −0.86* 0 0.28* 0.55*

Home

Depot

0.27* −0.18 0 0 0 0 0 0

Hewlett-

Packard

0.36* 0 −0.07* 0.07 0 0 0.13* 0

IBM 0.26* 0 −0.28 0 0.35* 0 0 0

Intel 0.30* 0 0 0.16 0 −0.18* 0.20* 0

Johnson &

Johnson

0 −0.32* −1.18* 0 1.17* 0 0.33* 0.34*

JPMorgan

Chase

0 −0.31* 0.41* 0.35* −0.44* −0.45* 0.54* 0.35*

Coca-Cola 0.28* −0.17 0 0 0 0 0.19* 0

McDonald 0 0 0 0.18 0 0 0.30* 0

3M 0.37* −0.23* −0.46* 0 0.52* −0.20 0 0.28*

Merck 0.34* 0 0 −0.18 0 0.21 0 0

Microsoft 0 0 0 0.12 0 −0.14 0.50* 0

Pifzer 0.29* −0.35* 0 0 0 0 0.11 0.36*

Procter &

Gamble

0 0 0 0 0 0.20* 0.34* −0.29*

AT& T −0.31* 0.20* 2.13* 0 −2.21* 0.40* 0.84* −0.27*

Travelers 0.41* −0.16 0 0.20 0 −0.32* 0 0.28*

United

Technolo-

gies

0.32* 0 −0.41* 0 0.41* 0 0 0

Verizon 0.36* 0 0.51 −0.32* −0.54 0.33* 0 0

Wal-Mart 0.17* 0.20 0 −0.12 0 0 0.20* 0

Exxon

Mobil

0.09 0 0 0 0 0 0.20* 0

∗ coefficients presented are significant at 5% level.
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