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Swaption Portfolio Risk Management:

Optimal Model Selection in Different Interest Rate Regimes

Poh Ling Neo∗, Chyng Wen Tee†‡

Abstract

We formulate a risk-based swaption portfolio management framework for profit-and-loss (P&L) ex-

planation. We analyze the implication of using the right volatility backbone in the pricing model from

a hedging perspective, and demonstrate the importance of incorporating stability and robustness meas-

ure as part of the calibration process for optimal model selection. We also derive a displaced-diffusion

stochastic volatility (DDSV) model with a closed-form analytical expression to handle negative interest

rates. Finally, we show that our framework is able to identify the optimal pricing model, which leads to

superior P&L explanation and hedging performance.

Keywords: derivatives valuation, interest rate markets, swaptions, risk management, portfolio man-

agement, pricing and hedging, stochastic volatility models, SABR model.
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1 Introduction

What are the defining characteristics of an optimal model from a pricing and hedging standpoint? For

practitioners, a good model should:

1. match market dynamics by capturing the right risk factors

2. reproduce market prices of liquid instruments after calibration without any “fudge” factors

3. have robust and stable model parameters

4. have Greeks that can explain daily profit-and-loss (P&L) movements

In this paper, we show how to use these guidelines to select the optimal pricing model for the swaption

market, and demonstrate that the holistic approach of taking robustness, Greeks, and P&L explanation

as part of the calibration process can lead to superior hedging performance.

Swaptions are the main interest rate volatility instrument in the fixed income market, and are traded

in high volume between inter-dealers and institutional investors to hedge interest rate volatility exposure,

or to take on positions on yield curve movements. In addition to being the main instrument for interest

rate risk management, they also form the basis for all volatility-sensitive interest rate product valuations,

including Bermudan swaptions, callable swaps, constant maturity swap (CMS) payoffs, and yield-curve

spread options, to name a few. Therefore, efficient risk management of swaption portfolio plays a crucial

role across the whole spectrum of interest rate volatility products.

Standard market practice is to use the stochastic-alpha-beta-rho (SABR) model to risk manage swap-

tion portfolio. This paper highlights the importance of selecting the optimal pricing model, including

the right volatility backbone, for efficient risk management. We formulate an intuitive profit-and-loss

(P&L) explanation framework that decomposes daily portfolio value movement into hedgeable Greeks

components. In addition to fitting to market prices, we show that the stability of Greeks and sensitivity,

along with the economy of P&L explanation, can also be used to determine the optimal model. Using

the Eurozone (EUR-denominated) swaption market as a case study, we further demonstrate that using

SABR model to risk manage swaption portfolio could be problematic as swap rates or strikes become

negative. To resolve this problem, we formulate a displaced-diffusion stochastic volatility model for

swaption pricing that retains the analytical tractability and computational efficiency of the SABR model.

The displaced-diffusion dynamic for the swap rate process can handle negative rates or strikes without

any further ad hoc adjustment.

It has long been established that the swaption market follows neither normal or lognormal backbone,
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but a mixture of the two. Swaption portfolio managers heuristically select the value of the β parameter in

their SABR model based on subjective perception of the prevailing backbone behavior, and calibrate the

rest of the model parameters (α, ρ, and ν) to match the swaption prices observed in the market. In high

interest rate environments, portfolio managers tend to assume that rates are closer to being lognormally

distributed (β → 1), while in low interest rate environments, the rates are closer to being normally

distributed (β → 0). Fixing a constant beta, or equivalently making an assumption on the underlying

distribution, such as a normal or lognormal, cannot fully capture market risk.

As mentioned earlier, when determining the optimality of a pricing model, standard market practice is

to check how close can it fit observable market prices (or implied volatilities). However, as we will make

clear in this paper, SABR model is able to fit market prices very well. In general, it is possible to obtain

multiple sets of model parameters that fit the market with comparable goodness-of-fit. It is therefore

advantageous to incorporate P&L explanation performance as well as model stability and robustness

as part of the optimal model selection criteria. This extended model assessment framework will allow

portfolio managers to avoid ambiguity and uniquely determine the optimal model for pricing, hedging,

and risk management purposes. In other words, when multiple models are able to fit market prices well,

the model that can explain P&L movement over time in the most concise and economical manner is

superior.

Building on the insights and findings of Zhang and Fabozzi (2016), we further develop the concept

of optimal hedging performance. When the swaption market moves, how should one explain the realized

profit-and-loss (P&L) of one’s swaption portfolio? From a practitioner’s perspective, it is most insightful

to explain the changes of a portfolio value by attributing them to contributions from 1) movement in

rates (interest rate delta), 2) movement in at-the-money (ATM) implied volatility (interest rate vega),

3) movement in implied volatility skew (asymmetrical slope in implied volatility), and 4) movement

in implied volatility smile (symmetrical curvature in implied volatility). To this end, we formulate a

P&L explanation framework and use it as a basis to assess the robustness of the pricing models. We

also introduce the concept of optimal hedging performance, measured by the “concentration” of P&L

breakdown. We show that choosing the right volatility backbone yields the best hedging performance.

This paper is organized as follows: Section 2 provides a literature review of the published research in

this area. Section 3 introduces the data used in this study, and presents the empirical analyses performed

on the data set. To handle negative interest rate regime, a displaced-diffusion stochastic volatility model

is derived in Section 4. Next, a P&L explanation framework and hedging performance benchmark are

formulated in Section 5, followed by our results on the hedging performance comparison of the models.
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Finally, conclusions are drawn in Section 6.

2 Literature Review

A key question swaption portfolio managers face is whether the swap rates follow a “normal” or a

“lognormal” model. This is an important question, as the model dynamic also determines the back-

bone of the swaption implied volatility surface, which in turn affects how swaption prices change in

response to rate movements. Several recent studies have investigated this subject extensively. Levin

(2004) explores the swaption market and demonstrates that swaptions with low strikes are traded with

a close-to-normal volatility (β → 0), while swaptions with higher strikes are traded with a square root

volatility (β = 0.5). Deguillaume, Rebonato and Pogudin (2013) look at the dependence of the mag-

nitude of rate moves on the rate levels, and discover a universal relationship that holds across currencies

and over a very extended period of time (almost 50 years). Interestingly, they found that volatilities of

very low and very high rates behave in a lognormal fashion, while intermediate rates exhibit normal

behavior. More recently, Meucci and Loregian (2016) show that US Treasury (UST) yields and Japanese

Government Bond (JGP) yields are also neither normal nor lognormal. Using the “shadow rate” concept

introduced by Black (1995), they develop an “inverse-call” method to convert observable interest rates

into shadow rates. They then show that these shadow rates have superior quality from a risk management

perspective, in that the behavior is relatively more consistent whether rates are low or high.

In the fixed-income market, the stochastic alpha-beta-rho (SABR) model proposed by Hagan et al.

(2002) is the de facto model used for swaptions pricing. Compared to other stochastic volatility models

(say, for instance, the Heston (1993) model), the main advantage of SABR model lies in its ability to

express implied volatility as a closed-form analytical formula, allowing swaptions to be priced in a quick

and efficient manner. Being able to value swaption portfolio efficiently using analytical formula is vital,

as swaptions are used as the basis to price exotic volatility products. For instance, pricing CMS payoffs

involve computing a one-dimensional integral across a continuum of weighted swaptions (see Brigo

and Mercurio (2006) and Andersen and Piterbarg (2010) for more information). Having an analytical

expression for the swaption prices significantly speed up the pricing speed of exotic products.

The performance of SABR model has been investigated extensively in the literature. Wu (2012)

explore the application of SABR model to the interest rate cap market. The study concludes that SABR

model exhibits excellent pricing accuracy and captures the dynamics of the volatility smile over time

very well. Separately, Yang, Fabozzi and Bianchi (2015) apply SABR model to the foreign exchange

4



market. They use empirical methods to show that SABR model can fit market option prices and predict

volatility well. SABR mobel is also useful in analyses involving volatility risk premia. For example,

Duyvesteyn and de Zwart (2015) use SABR model to test and analyze the maturity effect in the volatility

risk premium in swaption markets by looking at the returns of two long-short straddle strategies.

Given the wide-spread use of SABR model in the risk management of interest rate derivatives, Zhang

and Fabozzi (2016) investigate the importance of choosing the right volatility backbone under SABR

model, and how an optimal choice of the β parameter leads to superior hedging performance by minim-

izing pricing error. The key to the proposed method is that the option pricing model parameters not only

can be estimated by calibrating the model to the market implied volatility smile, but also can be estimated

by choosing the set of parameters that minimize the hedging error. The proposed method meets the no-

arbitrage condition, delivering better hedging performance than the existing fixed-beta style calibration

method.

It is important to note that the process in SABR model specified for the forward swap rate follows

a constant elasticity of variance (CEV) process introduced by Cox and Ross (1976) (see Section 4 and

Cox (1996) for further information). However, unless we are explicitly setting β = 0, the model cannot

support negative rates or strikes. Practitioners circumvent this problem by either using a normal SABR

model with β = 0, or a shifted SABR model that moves both the rates and the strikes up by a pre-

determined fixed positive amount. Apart from these ad hoc fixes, more sophisticated solutions have also

be recently proposed. Anthonov, Konikov and Spector (2015a) formulated a free boundary SABR model

by providing a structure to remove the negative rates boundary, making it flexible in terms of calibration

to market data. Anthonov, Konikov and Spector (2015b) also propose method to handle negative rates

by mixing zero-correlation free boundary SABR model with a normal SABR. However, these models

are more complex to evaluate, and could be challenging to calibrate.

A good alternative model to handle negative rates is to use the displaced-diffusion dynamic proposed

by Rubinstein (1983). This parameterization can be interpreted as a simple linearization of the CEV

dynamics around the initial value of the underlying. Similar to the CEV model, a displaced-diffusion

model implies that the forward rate behaves more like a normal distribution when rates are low, and vice

versa. Unlike CEV model, negative rates are admissible in a displaced-diffusion model. This coincides

with the recent observation that interest rates have not only been negative but distributed more like

a normal distribution. In fact, Marris (1999) shows that there exists a close correspondence between

the CEV and the displaced-diffusion dynamics, and that, once the two models are suitably calibrated,

the resulting interest rate option prices are virtually indistinguishable over a wide range of strikes and
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maturities. Joshi and Rebonato (2003) therefore use the displaced-diffusion setting, which, unlike the

CEV case, allow simple closed-form solutions for the realization of the forward rates after a finite period

of time, as a computationally simple and efficient substitute for the theoretically more pleasing CEV

framework, which does not allow negative forward rates. In fact, Svoboda-Greenwood (2009) posited

displaced-diffusion processes as suitable alternatives to a lognormal process in modelling the dynamics

of market variables such as stock prices and interest rates. The mathematical properties of a displaced-

diffusion model is rigorously investigated further in Lee and Wang (2012).

Observation in the recent negative interest rate regime in the Eurozone shows us that zero rate did

not become an absorbing barrier, contrary to the behavior of a CEV process with β ∈ (0, 1). On the

other hand, rates did become negative, but there appears to be a lower bound as to how negative it can

be, which is controlled by the European Central Bank (ECB) (see Siegel and Sexauer (2017) for further

discussions from the economic aspect). These rate behaviors are consistent with the characteristics of

a displaced-diffusion dynamics, as opposed to a normal model which does not have a theoretical lower

bound. Recent use cases of displaced-diffusion model include Chen, Hsieh and Huang (2018) to resolve

severe problems of the existing Libor Market Model (LMM) that has failed since 2008 crisis. In Section

4 we derive a displaced-diffusion stochastic volatility model with closed-form analytical expression for

swaption pricing, and show that it is also able to match market prices as well as SABR model, but does

not required any ad hoc fixes to handle negative rates.

3 Data and Empirical Analyses

The swaption data used in this study is acquired from IHS Markit. The swaptions are denominated in

EUR. IHS Markit collects market data quotes from all data vendors and subject the data to specifically

designed checks before cleaning and collating them into aggregated data in daily frequency. The data

used in this paper covers 5 full calendar years from 1-Oct-2012 through to 30-Sep-2017, with 1,305

trading days. The data on each day comprises of 20 expiries and 14 tenors, with 14 strikes available

for each swaption chain (expiry-tenor pair), defined by their respective moneyness (from at-the-money

(ATM) to ATM±300 basis points).

Table I provides a quick summary of the market data. Although a wide range of expiry-tenor pairs are

provided by IHS Markit, they have varying degree of liquidity. To ensure the relevance of our analysis,

we document and present our results for 4 highly liquid expiry-tenor pairs: 5y10y, 10y10y, 20y20y,

30y30y in the paper. However, the conclusions drawn in the paper are general, and are applicable across
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all expiry-tenor pairs.

Standard convention in the fixed-income market is to quote implied lognormal volatility based on the

Black (1976) model. However, as swap rates become lower, and eventually enter the negative regime,

swaptions with negative strikes and forward rates can no longer be quoted using the Black (1976) model,

which assumes that interest rates follow a lognormal distribution. As a workaround, IHS Markit also

provides implied “normal” volatility quotes based on a model assuming normal distribution, in which

negative rates and strikes are admissible. On the other hand, ICAP, a major interest rate derivatives

broker, continues showing implied lognormal volatility quotes, but started shifting the forward rates and

strikes up by a pre-determined fixed amount since December 2012. Today, the shift amount is 3% for

Euro (EUR) and 4% for Swiss Franc (CHF).

To provide a high level overview of rate levels over time, Figure 1 plots the par swap rates and forward

swap rates over the 5-year period included in our analysis. The top figure shows the spot starting Euro

OverNight Index Average (EONIA) 1-week overnight index swap (OIS), and the par swap rates of Euro

interest rate swaps (IRS) with increasing maturities of 1y, 2y, 5y, 10y, 20y, and 30y. The bottom figure

shows the forward swap rates, which are the relevant parameters used for swaption pricing. For economy

of presentation, only 4 liquid expiry-tenor pairs (5y10y, 10y10y, 20y20, and 30y30y) are plotted, though

the same trend and behavior are observed across the entire data set. The important economic landmark

events are also labeled in the figure. The European Central Bank (ECB) cuts EUR rates to negative in

June-2014, and swap rate levels started falling after that. Although short expiries swap rates only became

negative after March-2015, strikes of out-of-the-money receiver swaptions (low strikes swaptions) have

already become negative prior to that. From the figure, it is also obvious that the period included in

the study can be split into a “moderate” rate regime (prior to June-2014) and a “low” rate regime (post

June-2014).

We empirically measure forward swap rate volatility by plotting annualized standard deviation of

daily increments against the rate levels. We collect all daily rate increments and group them into 4 rate

levels – [0, 1%), [1, 2%), [2, 3%), [3, 4%), with each level corresponding to a specific range of rate level.

After the data is grouped, we calculate the standard deviation within each group, and then annualize

them (×10000 ×
√

252 in basis point unit). Figure 2 plots the standard deviation against forward swap

rate levels, along with the number of observations in each level. From the figure, it is clear that as the rate

levels increase, their standard deviations decrease (solid line and right axis). This observation is fully

consistent with standard swaption market practice, where portfolio managers use a SABR model with a

β parameter closer to 1 under high rate regime, but a β parameter closer to 0 under low rate regime. The
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bar charts (left axis) indicate the number of observation in each level. Again, for the sake of economy in

presentation, we only plot 4 liquid expiry-tenor pairs, namely 5y10y, 10y10y, 20y20y, and 30y30y, but

comparable result is obtained for all expiry-tenor pairs in our data set.

Apart from the standard deviation of daily swap rate movement, higher moments of the swap rate dis-

tribution such as skewness and kurtosis also have important implication on the swaption portfolio, since

they directly impact the shape of the implied volatility surface. To investigate the dependence of higher

moments on the rate levels, we calculate skewness to explore asymmetry in daily rate movement. The

forward swap rate levels are grouped into the same 4 rate levels, and Figure 3 plots the skewness of the

forward swap rate daily changes against forward swap rate levels (solid line and right axis), along with

the number of observations in each level (bar charts and left axis). Skewness is negative under low rate

regime, but becomes positive under high rate regime. This shows that the rates movement distribution

has a heavier right tail when rates are higher, but a heavier left tail when rates are lower. Note that this

statistical behavior also conforms to the observed volatility backbone property in the swaption market

— normal distribution has zero skewness, while a lognormal distribution exhibits positive skewness. We

also calculate the excess kurtosis of the daily swap rate movement. The forward swap rate levels are

again grouped into level, and Figure 4 plots the excess kurtosis against the forward swap rate level. The

excess kurtosis are all positive, highlighting the fact that the distributions of daily changes in rates have

heavier tails than normal distribution. However, the tails are relatively heavier under low rates regime,

and relatively lighter under high rates regime. In terms of implied volatility surface, this means that the

smile profile is more pronounced during low rates regimes.

To provide a simple empirical measure of the volatility backbone, we investigate the relationship

between at-the-money (ATM) implied volatilities and forward swap rates. A lognormal volatility back-

bone will imply the absence of any dependence between implied lognormal volatility on the rate levels,

while a normal volatility backbone implies the absence of any dependence between implied normal

volatility on the rat levels. Figure 5 plots the implied lognormal volatilities (top figure) and the implied

normal volatilities (bottom figure) against forward swap rates. In the upper figure, it is obvious that as

rates become lower, higher lognormal implied volatilities are required to match market prices. On the

other hand, when rates are higher, the lognormal implied volatilities required to match the market swap-

tion prices are lower. This inverse relationship between Black lognormal implied volatilities and forward

swap rates is a clear and visual indication that the backbone of the swaption market is not lognormal –

higher rates are associated with lower lognormal volatilities, and vice versa. Compared to the lognormal

volatilties, the normal implied volatilities in the bottom figure are relatively flatter. This shows that the
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volatility backbone of the swaption market is closer to the normal model. However, note that although

lower rates are associated with a relatively flat implied normal volatilities, for higher rates the normal

volatilities are moderately upward sloping. This indicates that the optimal volatility backbone is between

normal and lognormal.

Next, we use principal component analysis (PCA) to investigate the factor structures of daily changes

in implied volatility surface of the swaption chains. This analysis is inspired by Fan, Gupta and Ritchken

(2007), who also employ PCA to the swaption market to investigate the number of factors required for

yield curve models to ensure pricing accuracy. However, our analysis here focus directly on the implied

volatility surface, instead of the yield curve. The objective of this PCA-based statistical volatility shape

analysis is two-fold. First, we want to identify the main drivers of the shape variation in implied volatility

surface, and their relative importance. Second, the characteristics of the patterns in shape variation

can provide guidance to whether the pricing models has sufficient degree of freedom to capture the

dynamics of the implied volatility surface. PCA analyses are generally sensitive to the units in which the

underlying variables are measured. It is therefore customary to standardize variables to unit variances,

or equivalently to extract the eigenvalues and eigenvectors from the correlation matrix. Figure 6 plots

the first, second and third principal components before and after the negative rate regime for the 20y20y

swaptions. The same observation and result are obtained for other expiry-tenor pairs. To ensure that the

analysis can be run across the 5-year period included in this study, we use a 3% shifted implied lognormal

volatility. We ignore the ±300bps strikes as these quotes are absent in a small amount (≈ 5%) of the

dates in our dataset. We split our data into a “moderate” rate regime (Oct-2012 to Jun-2014) and a “low”

rate regime (Jul-2014 to Sep-2017). Similar to the common case of yield curve analysis, the first principal

component (PC) captures parallel implied volatility curve movement, the second PC captures the change

in volatility skew (asymmetric slope movement), while the third PC accounts for the variation in implied

volatility smile (symmetric curvature movement). The explanatory power of each PC is measured by

the magnitude of the eigenvalues. The ratio of explained variance of each PC is labeled in the figure.

Prior to the negative rate regime (until June-2014), the first PC alone accounts for more than 98% of

the implied volatility curve movement. After entering the negative rate regime (July-2014 onward),

slope and curvature play a relatively more prominent role, collectively account for ≈ 7% of the implied

volatility curve movement. Nevertheless, for the entire period included in our analysis, the first three PCs

together account for in excess of 99.65% of the variance. This is a strong indication that the dynamics of

the SABR model has sufficient degree of freedom to capture the shape variation of the implied volatility

surface, with α, ρ, and ν corresponding to level, slope, and curvature, respectively. In the lower figure,
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an abrupt drop in value is observed on the 3rd PC for the −200bp strike point, which might be attributed

to illiquid data point for very low (negative) strike swaptions during the negative rate regime.

Statistical decomposition of the implied volatility curve’s daily changes described above demon-

strates that there are three principal factors explaining the majority of the variation: level, slope, and

curvature. Next, we perform further empirical analysis to study the variation of these three factors over

time, as well as their dependence on the rate levels. We borrow the concept of proxy “empirical slope”

and “empirical curvature” from the yield curve literature to provide a model-free approach to quantify

skew (asymmetric) and smile (symmetric) in the implied volatilities as proxy measures of slope and

curvature. In general, the level of the curve can be considered to be anchored by the at-the-money

(ATM) volatility (as this is the most liquid swaption strike), the slope can be defined as the difference

between highest strike (+200bps) and lowest strike (−200bps) volatility, while the curvature can be

defined as the ATM volatility relative to an average of highest strike and lowest strike volatilities:

Empirical Level Proxy = σATM

Empirical Skew Proxy = σATM+200bps − σATM−200bps

Empirical Smile Proxy = −2× σATM + σATM−200bps + σATM+200bps Black Volatility

To provide a visual illustration of our empirical analysis, we present our estimates for each of the implied

volatility empirical proxies in Figure 7. We use 3%-shifted implied lognormal volatility quotes in this

figure. The 3 figures on the left column plot empirical level, skew, and smile against forward swap

rates, while the 3 figures on the right column plot the time series of the empirical measures. From

the left figures, it should be obvious that the dependence of empirical level, skew (slope), and smile

(curvature) of the implied volatility surface are all consistent with earlier observations (see Figure 2, 3,

and 4) computed based on rate movements. The time series plots on the right also show that the onset of

negative rate regime leads to higher volatility level and smile, while skew becomes negative.

4 Model

4.1 Volatility Backbone

Let Ft denote the forward swap rate for a given expiry and tenor at time t. Under a model following

normal distribution, the volatility of interest rate movements over time is independent of the interest rate
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level. This can be expressed as the following stochastic differential equation:

dFt = σndWt ⇒ Ft = F0 + σnWt,

where σn is the normal volatility of the swap rate, and Wt is a standard Brownian motion with the

distribution Wt ∼ N(0, t). In words, Ft behaves like a random walk. In contrast, under a model

following lognormal distribution, the volatility of interest rate movements over time is proportional to

the interest rate level, such that high rates are associated with high volatilities, and vice versa. This can

be expressed in the following stochastic differential equation:

dFt = σlnFtdWt ⇒ Ft = F0e
−σ

2
lnt

2
+σlnWt .

where σln is the lognormal volatility of the swap rate. In words, under lognormal dynamics, it is the

log rates that behave like a random walk. Whether forward rates follow a normal dynamic, a lognor-

mal dynamic, or a mixture of normal and lognormal dynamics, has important implication on the risk

management of swaption portfolio.

Here we present an intuitive explanation of the implication of choosing the right volatility backbone

on risk management of swaption portfolio. Consider the following processes:


Normal model : dFt = σndWt

Lognormal model : dFt = σlnFtdWt

CEV model : dFt = σcevF
βdWt

Suppose β = 1, market follows a lognormal volatility backbone, and any movement in the forward rates

will result in the same implied lognormal volatility. On the other hand, if β = 0, market follows a normal

backbone, and any movement in the forward rates will result in identical normal volatility. It should be

clear that for normal volatility to remain unchanged when rates move, the implied lognormal volatility

will have to decrease when rate moves up, and increase when rate moves down. A model between normal

and lognormal will imply that as rates increase, the implied volatility will decrease, but not to the extend

suggested by the normal model.

Figure 8 plots a series of implied volatility curves under different forward rates of 2%, 4%, 6%,

and 8%. For a given volatility backbone, changes in the forward rate Ft will result in changes in the

at-the-money implied volatility σATM. The curve traced out by the this ATM volatility as a function of
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the forward rate is referred to as the volatility backbone (solid black line). As we will elaborate later

in Section 5, choosing the right backbone plays an important role in guaranteeing the robustness of the

hedged portfolio. The top figure plots the case for a lognormal volatility backbone (β = 1) – it should be

obvious that the ATM implied Black volatility is invariant to the interest rate level in this case. However,

when the backbone is a mixture of normal and lognormal, the ATM implied volatility will be inversely

proportional to the rate level — as rates increase, the implied volatilities decrease. This is the case for

the lower figure, which plots the case with (β = 0.7).

We provide a numerical example to illustrate the importance of choosing the optimal backbone (β)

from a risk management perspective. Suppose the market backbone is given by βmkt = 0.7, and that

the implied volatilities in the market is plotted in Figure 9 (upper figure). A swaption portfolio manager

uses SABR model with the right backbone (β = βmkt) to calibrate to these quotes, and is able to match

observed swaption prices with a high degree of accuracy. Suppose another swaption portfolio manager is

using an incorrect backbone of β = 1. This portfolio manager will still be able to calibrate to the market

with a close match in prices, as denoted by the dashed red line in the figure. In other words, in terms of

daily mark-to-market, whether or not the right backbone (β) is used, portfolio managers will always be

able to match market prices closely as long as they recalibrate the model parameters frequently.

However, the disadvantage of choosing the wrong volatility backbone manifests when the portfolio

managers are also using the model for hedging and risk management, and to breakdown daily P&L in

terms of sensitivity and market movement. Suppose the swap rate increases from 3% to 3.5%, and that

the volatility market remains unchanged. For the portfolio manager using the right backbone value of

β = 0.7, no changes in the SABR parameters (α, ρ, and ν) is required to match the swaption prices after

the move – the P&L movement can be explained entirely by interest rate delta. On the other hand, the

portfolio manager using the incorrect backbone of β = 1 will have to recalibrate to the swaption market

to obtain a new set of SABR model parameters in order to match the market prices. Consequently, under

the wrong backbone, the same amount of P&L movement will now have to be explained by delta, vega,

and a combination of skew and smile sensitivity.

This scenario case study is summarized in Figure 9. In the upper plot, the solid lines denote the

market implied volatility before and after the rate move under the right backbone. Observe that even if

a portfolio manager incorrectly assumes the backbone to be β = 1, recalibrating the SABR model after

the rate move will still lead to a good fit to market prices, as denoted by the dashed lines in the upper

plot in Figure 9. The disadvantage of risk managing swaption portfolio using an incorrect backbone

will only manifest when one takes hedging and P&L explanation into consideration. Consider an out-
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of-the-money (OTM) receiver swaption struck at 1.5%, and an out-of-the-money payer payer struck at

4%. As we will develop fully in Section 5, the P&L of a swaption position can be explained via a

risk-based framework by attributing total movement to sensitivities (Greeks) to market data and model

parameters (rates, implied volatilities, and model parameters). As illustrated in the lower plots of Figure

9, the first column is the total price movement of the swaption position. For a given pricing model,

we can “explain” this price movement by decomposing and attributing it to interest rate delta (second

column) which measures sensitivity to rates movement, interest rate vega (third column) which measures

sensitivity to at-the-money volatility movement, and SABR model parameters sensitivities (fourth and

fifth columns) which measure the sensitivities of ρ and ν parameters to the shape of the implied volatility

surface. Suppose the swap rate moves up, without other changes in the volatility market, the portfolio

manager risk managing these OTM receiver (lower left figure) and payer (lower right figure) swaptions

with the right backbone of β = 0.7 will be able to explain the P&L of the position entirely by interest rate

delta, and no recalibration of the model parameters is necessary (lower figures, “Correct β” plots). On

the other hand, the portfolio manager using the incorrect backbone of β = 1 will first need to recalibrate

the model parameters to match market quotes, and then explain the same P&L movement via offsetting

components in interest rate delta, interest rate vega, and skew sensitivities (ρ and ν) due to the changes

in model parameters (lower figures, “Incorrect β” plots).

While this is a stylized example, it should be evident that SABR model will always able to match

market quotes well by frequent recalibration — the advantage of choosing the right volatility backbone

only becomes apparent when we assess the efficiency and performance of the model for risk management

and P&L explanation. This calls for a more holistic approach to model calibration by also taking Greeks

and P&L explanation into consideration as part of the model assessment framework. In fact, apart from

P&L explanation, the Greeks themselves are also sensitive to the choice of volatility backbone, as we

will explain in the next section.

4.2 Month-end Jumps and Model Sensitivity

We illustrate the sensitivity of swaption Greeks to jumps in SABR model parameters in this section.

Figure 10 plots the results of a longitudinal model calibration over a two-year period. The top two fig-

ures show the calibrated model parameters for the SABR ρ and ν parameters, which are used to fit the

implied volatility skew and smile profiles, respectively, for the 20y20y swaption. The dotted vertical

lines highlight each month-end date, which coincides with jumps in the SABR parameters. These jumps
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are due to the fact that interest rate trading desks typically recalibrate their model during month-end.

In addition to market data, interest rate trading desks also have access to IHS Markit Totem consensus

market prices, which is based on major active market participants in OTC interest rate derivatives mar-

ket. This leads to a noticeably change in the model parameters. The middle two figures illustrate the

sensitivities of at-the-money swaption Greeks to changes in SABR ρ and ν parameters (namely ∂V
∂ρ and

∂V
∂ν , where V denote the value of a swaption). Note that a sudden change in model parameters will result

in a corresponding change in model sensitivity. This has important implication on the risk management

of swaption portfolios, as Greeks are commonly used to calculated the value-at-risk (VaR) of interest rate

portfolios. Consequently, jumps in the model parameters over month-ends will result in corresponding

jumps in VaR, even if the model is able to fit prices well before and after each month-end by recalib-

ration, which is an undesirable characteristic for risk managers. The bottom two figures show the P&L

movement of at-the-money swaptions straddle (one payer and one receiver) over the two-year period.

Offsetting P&L explanation spikes are observed frequently over month-ends due jumps in SABR model

parameters. This is again an undesirable effect, as offsetting P&L explanation over consecutive days

makes risk management of swaption portfolio less efficient. The implication of model sensitivity to risk

management, along with the methodology used to compute P&L explanation, are further elaborated in

Section 5.

Apart from risk management, it is important to note that a sizeable change in model parameters can

also lead to drastic movement in certain volatility-sensitive interest rate products which are dependent

on the shape of the implied volatility smile. For instance, a Constant Maturity Swap (CMS) is sensitive

to the shape of the entire volatility smile, and convexity correction is required to get the exact value. The

standard practice in the market is to use the static-replication method to obtain the convexity correction.

As a result, jumps in model parameters will also lead to jumps in convexity correction.

4.3 Displaced-diffusion Stochastic Volatility Model

As mentioned earlier, prior to the negative interest rate regime, the swaption market’s convention is

to quote prices in terms of implied volatilities of the Black (1976) lognormal model. This convention

has since changed as negative rates are inadmissible under lognormal models. An ad hoc workaround to

handle negative rates is to shift the rates and strikes up by a predetermined amount. However, shifting the

rates will also cause changes the volatility backbone behavior. Another commonly adopted convention

is to use a normal model instead. Since a normal model for rate movement allows for negative rates,
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this model is able to provide consistent implied volatility quotes without having to ensure that the shift

amount is sufficient to guarantee positive forward rates and strikes.

In this section, we propose a displaced-diffusion stochastic volatility model for swaption pricing.

The displaced-diffusion model is also widely known in the industry as the shifted-lognormal model. The

key strength of the displaced-diffusion process lies in its ability to accommodate negative interest rates

without any further additional adjustment. We derive a closed-form analytical expression for swaption

pricing, and show that it can also match market prices with a high degree of accuracy.

Consider the displaced-diffusion forward swap rate process as follows

dFt = σ[βFt + (1− β)F0]dWt, (1)

where σ is the volatility, β is the displaced-diffusion model parameter, and Wt is a standard Brownian

motion with Wt ∼ N(0, t). For now, let us assume that σ is a deterministic constant. We will generalize

this to a stochastic volatility model in the later part of this section. The process can also be written as

d

(
Ft +

1− β
β

F0

)
= σβ

(
Ft +

1− β
β

F0

)
dWt.

Written in this way, it should be clear that with
(
Ft + 1−β

β F0

)
modeled as a geometric Brownian pro-

cess, it is strictly positive. Note that, as long as the β parameter is positive, the forward rate process Ft

is now allowed to take on negative values, since the process is well-defined as long as Ft + 1−β
β F0 > 0.

When F0 > 0, any choice of 0 < β < 1 will provide a negative value as the lowerbound to the forward

rate process. This will allow us to price swaptions with negative strikes when forward swap rates are still

positive. On the other hand, if F0 < 0, then we can choose β < 0, which corresponds to a super-normal

process. In this case, we can price swaptions with negative strikes and forward swap rates.

The characteristics of the implied volatility profile and its dependence on the β parameter in the

displaced-diffusion model can be intuitively understood by referring to Equation (1), where the evolution

of the swap rate can be interpreted as being driven by a weighted average between a lognormal process

(Ft) and a normal process (F0).

The β parameter in the displaced-diffusion model will allow us to fit the implied volatility skew. A

stochastic volatility model is required to calibrate to the smile. To this end, we propose a displaced-
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diffusion stochastic volatility model (DDSV) with the following dynamics
dFt = σt

[
β(Ft + θ) + (1− β)F0

]
dWt

dVt = νVtdZt

(2)

where Wt and Zt are independent Brownian motions (Wt ⊥ Zt), and σt =
√
Vt. We define the mean

integrated variance as

V̄ =
1

T

∫ T

0
Vt dt. (3)

Conditional on this mean integrated variance V̄ , we have the distribution

log

[
β(FT + θ) + (1− β)F0

F0 + βθ

]
∼ N

(
−β

2V̄ T

2
, V̄ T

)
.

Under the independence assumption, a closed-form valuation formula can be obtained for the DDSV

model as:

P (0) = A(0)

∫ ∞
0

DD(F0,K, V̄ , T, β) ψ(V̄ ) dV̄

= A(0)DD(F0,K, V̄ , T, β) +
A(0)

2

∂2DD(F0,K, V̄ , T, β)

∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+
A(0)

6

∂3DD(F0,K, V̄ , T, β)

∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]

(
E[V̄ 2]− E[V̄ ]2

)
− E[V̄ ]3

)
+ · · ·

(4)

where A(0) =
∑N

i=1 ∆i−1D(0, Ti) is the swap annuity, N is the total number of swap cashflows, ∆i−1

is the day count fraction for the period [Ti−1, Ti], and D(0, Ti) is a discount factor discounting cashflow

from Ti to 0, and

DD
(
F0, K, V̄ , T, β

)
= F ′0Φ

(
log

F ′0
K′ + V̄ ′T

2√
V̄ ′T

)
−K ′Φ

(
log

F ′0
K′ −

V̄ ′T
2√

V̄ ′T

)
(5)

with

K ′ = K +
1− β
β

F0 + θ, F ′0 =
F0

β
+ θ, V̄ ′ =

√
βV̄ .

The full derivation of this formula is presented in the Appendix section.

Figure 11 provides a comparison of SABR model and the DDSV model formulated in this paper.
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It is evident that both models are able to match observed swaption market quotes closely. For the sake

of comparison, two dates are shown in this figure: the left figure shows that during positive interest

rate regime, both modes fit the market implied lognormal volatility quotes well. However, the right

figure shows that as we enter negative interest rate regime, DDSV can still fit the market well without

any adjustment, while SABR model is no longer able to calibrate due to negative rates and strikes. As

mentioned earlier, practitioners get around this issue by shifting all rates and strikes up by 3% before

calibrating the SABR model. The ability to handle negative rates without any ad hoc adjustment is a key

advantage of using displaced-diffusion dynamic to model interest rate movement.

Figure 12 plots the volatility backbones of the DDSV model. The upper figure plots implied volatil-

ities with a lognormal volatility backbone with different forward swap rates, while the lower figure plots

implied volatilities with a volatility backbone between normal and lognormal with different forward

swap rates.

5 Model Selection for Optimal Risk Management

So far, we have shown that both SABR and DDSV models are able to reproduce market prices of calibra-

tion instruments. On top of that, we have also demonstrated that DDSV model is able to handle negative

rates and strikes without any additional “fudge” factor. Next, we will turn our attention to address the rest

of the criteria that constitute an optimal model for pricing and hedging — the robustness of calibration

and the economy of P&L explanation. This section provides an exposition on the hedging performance

of the pricing models in the risk management of swaption portfolio. First, we describe how common

measures of sensitivity to market movement (Greeks) are quantified for a given pricing model, and how

the daily P&L can be expressed in a risk-based P&L explanation framework.

SABR model provides a closed-form expression for the Black volatility as a function of market and

model parameters, i.e. σSABR

(
α(σATM), F, K, β, ρ, ν, T

)
. At-the-money swaptions are very liquid,

and must be repriced exactly. It is therefore common among practitioners for the α parameter to be fitted

on-the-fly via a root solver to match the ATM volatility, rather than merely assigning more weights to the

ATM swaption in the calibration process. Here, σATM is the at-the-money volatility, marked according to

a specific backbone (β parameter). The value of a swaption is valued as

V (F0,K, σSABR, T ) = A(0)

[
F0Φ

(
log F0

K +
σ2

SABRT
2

σSABR

√
T

)
−KΦ

(
log F0

K +
σ2

SABRT
2

σSABR

√
T

)]
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As explained in previous sections, once calibrated, both SABR and DDSV models are able to fit market

prices very well. Hence, from a risk management perspective, the stability of Greeks and the economy of

P&L explanation should be included as part of the selection criteria for the optimal model. If the optimal

model is chosen, the bulk of the daily P&L movement should be explained by interest rate delta, with

vega explaining the actual changes in the volatility market. Further, sensitivities to implied volatility

skew and smile are expected to have a smaller contribution in P&L explanation, as they should only

change when the shape of the market’s implied volatility surface changes. The sensitivities of the SABR

swaption prices are given by

IR Delta = ∆ =
dV

dF
=
∂V

∂F
+

∂V

∂σSABR

· ∂σSABR

∂F

IR Vega =
dV

σATM

=
∂V

∂σSABR

· ∂σSABR

∂α
· ∂α

∂σATM

IR Skew Sensitivity =
dV

dρ
=

∂V

∂σSABR

· ∂σSABR

∂ρ

IR Smile Sensitivity =
dV

dν
=

∂V

∂σSABR

· ∂σSABR

∂ν

Moving from one day (t − 1) to the next (t), suppose the SABR model parameters (α, ρ, and ν) are

calibrated on both days, the P&L of a swaption position over the period [t− 1, t] can be explained as

SABR P&L Explanation =
dV

dF
×
(
Ft − Ft−1

)
+

dV

dσATM

×
(
σATM,t − σATM,t−1

)
+
dV

dρ
×
(
ρt − ρt−1

)
+
dV

dν
×
(
νt − νt−1

) (6)

On the other hand, for the DDSV model, given that the pricing formula provides prices directly, the

derivatives (sensitivities) can be evaluated directly:

IR Delta = ∆ =
dV

dF

IR Vega =
dV

dσ

IR Skew Sensitivity =
dV

dβ

IR Smile Sensitivity =
dV

dν
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And the daily P&L can be explained as

DDSV P&L Explanation =
dV

dF
×
(
Ft − Ft−1

)
+
dV

dσ
×
(
σt − σt−1

)
+
dV

dβ
×
(
βt − βt−1

)
+
dV

dν
×
(
νt − νt−1

)
.

(7)

The actual P&L, which can be readily calculated as the price difference between the two days, is given

by

Vt = Vt−1 + P&L Explanationt + εt,

where εt is the residual difference that cannot be captured by the P&L explanation framework proposed

above, which is expected to be negligible, as long as the pricing model is recalibrated and can accurately

price the swaption over the period [t− 1, t]. Since the actual P&L is simply given by Vt − Vt−1, we can

readily obtain the percentage of explained P&L:

Explained P&Lt(%) =
P&L Explanationt

Actual P&Lt
.

This P&L performance metric is commonly used by practitioners to gauge the explanatory power of a

pricing model. In both Equations (6) and (7), the explanation is not expected to match exactly the actual

P&L. The residual (εt) is typically quantified as “unexplained” P&L, though an efficient model for

risk management should be able to provide an accurate P&L breakdown with negligible “unexplained”

component.

Figure 13 provides a comparison of hedging performance across different swaption pricing models

by running the daily P&L explanation framework over a 1-year period (Oct 2016 through to Sep 2017).

We have selected this period, which falls under the negative interest rate regime, to demonstrate the

advantage of the DDSV model in handling negative strikes without ad hoc adjustment. The same analysis

can be applied to other periods to obtain comparable results. We assume we hold a portfolio of one

swaption each across the strike chain (OTM receivers, ATM straddle, OTM payers). On each date,

we calibrate the SABR and DDSV models to the market and ensure convergence of the calibration

process. Then, we compute the P&L explanation based on our proposed framework. For the sake of

comparison, for SABR we use a 3%-shifted model, and we vary the β parameter from 0 (normal model)

to 1 (lognormal model) with a spacing of 0.1. For DDSV model, we use a β parameter calibrated

longitudinally for optimal hedging performance. The top figure shows the contributions of each risk to
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the overall P&L breakdown, calculated as the absolute sum of each category, defined as follows:

Abs. Delta P&L =
n∑
t=1

∣∣∣∣∂V∂F · (Ft − Ft−1)

∣∣∣∣
Abs. Vega P&L =

n∑
t=1

∣∣∣∣∂V∂σ · (σATM,t − σATM,t−1)

∣∣∣∣
Abs. Skew P&L =

n∑
t=1

∣∣∣∣∂V∂ρ · (γt − γt−1)

∣∣∣∣
Abs. Smile P&L =

n∑
t=1

∣∣∣∣∂V∂ν · (νt − νt−1)

∣∣∣∣

(8)

where γ is ρ for SABR model and β for DDSV model. We take the absolute value to provide a measure

of the economy of P&L explanation – the smaller the sum, the better the model. We argue that for a given

amount of P&L movement, the optimal model should be able to explain the P&L movement with the

smallest amount of offsetting components. As we have demonstrated in Figure 9 in the previous section,

a sub-optimal model with a wrong backbone choice will lead to offsetting risk-based P&L explanation,

in particular for IR Delta and IR Vega sensitivities. Although our PCA analysis has revealed that there

are some degree of overlap between skew and smile, our assumption is that when aggregated over a

period of time, the effect of IR Delta and IR Vega dominates. From the upper plot of Figure 13, it is also

evident that with the right choice of β, both SABR and DDSV models are able to yield minimal hedging

error and achieve economy of P&L explanation.

Based on the empirical observation that IR Delta risk dominates market movement when aggregated

over time—while IR Vega, Skew, and Smile are generally secondary risk components—we propose that

a stylized way to select the optimal model could be based on the “concentration” of P&L explanation.

The main rationale behind using “concentration” as the key metric to measure hedging performance is

that the optimal model should generate the least degree of overlap across different risk components, thus

reducing the “fragmentation” effect, and improving hedging efficiency. We point out that this is based

on the assumption that over time, one primary source of risk would dominate P&L explanation, which is

what our empirical analyses have revealed. To this end, measuring “concentration” will lead us to select

the most economical model in terms of P&L explanation.

In order to provide a metric to quantify the “concentration” (or “fragmentation”) of the hedging

performance of the swaption pricing model in terms of P&L explanation, we borrow the concept of

the Herfindahl-Hirschman index from the industrial organization literature. Originally designed as a

measure commonly used to measure market concentration, this metric has since been adapted in other
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fields for similar purposes. For instance, Madhavan (2012) uses a volume Herfindahl-Hirschman index

definition to measure market fragmentation across different US exchanges. Here, we define the hedging

performance Herfindahl-Hirschman index as a measure of concentration in P&L breakdown for a given

daily P&L movement:

Ht =

(∣∣∂V
∂F · (Ft − Ft−1)

∣∣
Total Abs P&Lt

)2

+

(∣∣∂V
∂σ · (σATM,t − σATM,t−1)

∣∣
Total Abs P&Lt

)2

+


∣∣∣∂V∂ρ · (ρt − ρt−1)

∣∣∣
Total Abs P&Lt

2

+

(∣∣∂V
∂ν · (νt − νt−1)

∣∣
Total Abs P&Lt

)2

where

Total Abs P&Lt =

∣∣∣∣∂V∂F · (Ft − Ft−1)

∣∣∣∣+

∣∣∣∣∂V∂σ · (σATM,t − σATM,t−1)

∣∣∣∣
+

∣∣∣∣∂V∂ρ · (ρt − ρt−1)

∣∣∣∣+

∣∣∣∣∂V∂ν · (νt − νt−1)

∣∣∣∣
Note that unlike common definition, in the context of P&L explanation it is necessary to take the absolute

value as P&L explanation could be either positive or negative. The Herfindahl-Hirschman index in our

definition ranges from 0 to 1, with higher figures indicating higher concentration (less fragmentation)

in P&L explanation, which is a more desirable characteristics. The lower plot of Figure 13 compares

the Herfindahl-Hirschman index across different swaption pricing models. Again, we use a 3% shifted

SABR model to handle negative rate regime, while no further adjustment is necessary for the DDSV

model. Given the right choice of β, our calculations reveal that both SABR and DDSV models are able

to provide optimal hedging performance with highest amount of concentration in P&L breakdown.

We point out that the rationale behind using Herfindahl-Hirschman index to measure hedging per-

formance is based on the assumption that when aggregated over a period of time, swap rate movements

(IR Delta) should be able to explain a large part of the swaption price P&L, followed by ATM volatility

movements (IR Vega). Changes in the skew and smile profile of the implied volatility curve should,

on average, contribute a smaller part to the overall P&L explanation, since movements in the implied

volatility skew and smile profiles are comparably more stable than the swap rate movements.

However, there are two main limitations practitioners need to be aware of when using this approach.

Firstly, this metric needs to be aggregated over a historical period. If investors are looking to measure

the hedging performance on a single day, this metric could potentially lead to a certain amount of bias

on days when IR Vega, Skew or Smile contributes significantly to P&L explanation due to extreme
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movement in the volatility market. Secondly, while the dominance of IR Delta risk is established in

the swaption market, further empirical analysis is required when practitioners wish to apply the same

framework to other derivative markets, where IR Vega, Skew and Smile could potentially play a more

significant role. Additional research is necessary to establish whether the same metric can be applied

widely across different derivative markets and instruments types.

To provide further information on the historical evolution of hedging performances over time, Fig-

ure 14 plots the Explained P&L (in percentages) over the same historical period (Oct 2016 through to

Sep 2017). In order to have a basis for comparison, we present the DDSV model along with a shifted

SABR model with a β parameter of 1, which in our analysis is a sub-optimal model due to the inappro-

priate choice of volatility backbone. The Explained P&L plot supports our argument by showing that a

frequently recalibrated model can generally match market well, leading to, on average, close to 100%

explained P&L in both models. Consequently, it is difficult to tell whether the optimal model has been

selected by looking at explained P&L alone. This observation lends support to the risk-based model se-

lection approach—we need to measure the concentration of hedging performance in order to distinguish

the hedging performance of different models. In other words, the optimal model should be the one that

enables us to explain the same amount of P&L movement by a smaller set of risks and sensitivities.

Our results reported in this section have important and insightful implication to all interest rate and

fixed-income portfolio managers with volatility exposure. Standard practice in the market is to heurist-

ically select a backbone parameter, and to calibrate the rest of the model parameters to match observed

market prices. Our research shows the advantage of taking a holistic approach to the calibration process

for optimal model selection. In addition to matching observed market prices, the stability and robustness

of model parameters, and the economy of the explanatory power of daily P&L movement, are part and

parcel of factors that determine an optimal pricing and hedging model.

6 Conclusions

The interest rate markets use swaptions as the main interest rate volatility instrument. In addition to

hedging fixed income portfolio, traders also use swaptions to gain interest rate risk exposure, or to

structure more exotics products such as CMS payoffs, Bermudan swaptions, and callable interest rate

exotics. Therefore, efficient risk management of swaptions portfolio impacts the whole spectrum of

interest rate volatility products.

The primary objective of this paper is to formulate a risk management framework with P&L explan-
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ation capability for optimal model selection. As a case study, we demonstrate the application of our

framework using the recent transition of interest rate regime in the Eurozone from moderate to negat-

ive, and the behavior of volatility of daily rate movement. We perform empirical analyses to explore

the relationship between interest rate level with the standard deviation, skewness, and kurtosis of daily

rate changes. Lower rate levels are associated with higher standard deviation and kurtosis of daily rate

changes, but more negative skewness. These empirical observations are fully consistent with standard

swaption trading desk notion of risk managing swaption portfolio using a SABR β parameter closer to

0 when rates are low, while using a β parameter closer to 1 when rates are moderate to high. We apply

Principal Component Analysis (PCA) to the daily changes in implied volatility surface. Our results show

that implied volatility level (first PC), slope (second PC), and curvature (third PC) collectively account

for more than 99.5% of the movement in implied volatility surface. This is a strong indication that mar-

ket’s practice of using SABR model to price and hedge swaption portfolio is well-informed, as apart

from the backbone parameter (β), the SABR model’s α, ρ, and ν parameters correspond to the level,

slope, and curvature of the implied volatility surface, respectively.

We also demonstrate that selecting an optimal backbone is vital to ensure the stability and robustness

of the calibrated model parameters. This is no trivial task, given that SABR model is able to fit swaption

market prices extremely well. To assess calibration stability, we investigate the sensitivity in Greeks and

P&L explanation for non-optimal choice of backbone, and show that this can lead to sizeable jumps when

market moves. The challenge of choosing the optimal backbone is further confounded by the negative

interest rate regime in the Eurozone, as it becomes necessary to shift the rate levels (and strikes) to price

swaptions using SABR model, since both the β parameter and the shift amount impact the backbone

behavior of the model.

We formulate a closed-form analytical swaption pricing model capable of handling negative rates

and strikes in a consistent manner is essential for swaption portfolio managers. Note that any alternative

swaption pricing model must retain the analytical tractability and computational speed of the SABR

model to be feasible for daily portfolio risk management purposes. In this paper, we derive a closed-

form pricing formula based on displaced-diffusion stochastic volatility model. The displaced-diffusion

dynamic is able to handle negative rates and strikes. We show that the model is able to fit the market

quotes as well as SABR model, and is able to calibrate well in the negative interest rate regime when

forward swap rates or strikes are negative without any further ad hoc adjustment.

Finally, building on the insights of Zhang and Fabozzi (2016), we set out a swaption portfolio risk

management framework that accounts for variation in forward rates, implied volatilities, as well as the
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shape of the implied volatility curve (skew and smile). Any adequate pricing model should at least to

be able to fit to market quotes well, as long as the model parameters are calibrated frequently. When

the right backbone is chosen, the bulk of the daily P&L should be explained by interest rate delta,

followed by interest rate vega. Changes in skew and smile are expected to be slowly varying compared

to rates movement. Nevertheless, if a sub-optimal backbone is chosen, daily calibration of the model

parameters will still ensure that we fit the market well, and are able to capture the daily P&L movement.

However, the P&L explanation will have offsetting contribution from Greeks and model sensitivities. We

demonstrate how one can select the optimal model via a holistic approach, by taking the robustness of

model parameters and the economy of P&L explanation into consideration during the calibration process.

Given the right choice of volatility backbone, we show that it is feasible for SABR and DDSV models

to obtain optimal P&L breakdown performance. Our results provide important insights for swaption

portfolio managers in choosing the optimal model for risk management.
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Appendices

A Derivation of the Displaced-Diffusion Stochastic Volatility

(DDSV) Model

The displaced-diffusion stochastic volatility (DDSV) model is defined by the following dynamics:
dFt = σt

[
β(Ft + θ) + (1− β)F0

]
dWt

dVt = νVtdZt

(A1)

whereWt and Zt are independent Brownian motions (Wt ⊥ Zt), and σt =
√
Vt. Under this formulation,

we model the stochastic variance as a lognormal process. Solving the displaced-diffusion process for Ft

in Equation (A1), we obtain

FT =
F0

β
exp

[
−β

2

2

∫ T

0
Vt dt+ β

∫ T

0

√
Vt dZt

]
− 1− β

β
F0 − θ,

For convenience of representation, we define the mean integrated variance (V̄ ) as

V̄ =
1

T

∫ T

0
Vt dt. (A2)

Conditional on this mean integrated variance V̄ , we have the following distribution for the forward rate

process

log

[
β(FT + θ) + (1− β)F0

F0 + βθ

]
∼ N

(
−β

2V̄ T

2
, V̄ T

)
.

Let f(FT , V̄ ) denote the joint probability density function of the forward swap rate and the mean in-

tegrated variance, and let P (0) denote the value of a payer swaption at time t = 0, we can value the

swaption as follows

P (0) = A(0)

∫ ∞
0

∫ ∞
0

(FT −K)+f(FT , V̄ ) dFT dV̄ ,
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where A(0) =
∑N

i=1 ∆i−1D(0, Ti) is the swap annuity, N is the total number of swap cashflows, ∆i−1

is the day count fraction for the period [Ti−1, Ti], andD(0, Ti) is the discount factor discounting cashflow

from Ti to 0. Under the assumptions that the forward rate movements are uncorrelated with the variance

process, the joint probability density f(FT , V̄ ) can be written as

f(FT , V̄ ) = ψ(V̄ )f(FT |V̄ ),

where ψ denote the probability density function of the mean integrated variance V̄ in Equation (A2). In

this case, we have

P (0) = A(0)

∫ ∞
0

∫ ∞
0

(FT −K)+f(FT |V̄ ) dFT ψ(V̄ ) dV̄ .

Now, the expected value of the sum of the swaption payoffs over all forward rates conditional on a fixed

mean integrated variance is equal to the displaced-diffusion formula, which has a closed-form expression

Displaced-Diffusion
(
F0, K, V̄ , T, β

)
=

1√
2π

∫ ∞
−∞

((
F0

β
+ θ

)
exp

[
−β

2V̄ T

2
+ β

√
V̄ Tx

]
− 1− β

β
F0 −K − θ

)+

e−
x2

2 dx

=
1√
2π

∫ ∞
−∞

(
F ′0e
− V̄
′T
2

+
√
V̄ ′Tx −K ′

)+
e−

x2

2 dx

= F ′0Φ

(
log

F ′0
K′ + V̄ ′T

2√
V̄ ′T

)
−K ′Φ

(
log

F ′0
K′ −

V̄ ′T
2√

V̄ ′T

)
(A3)

where

K ′ = K +
1− β
β

F0 + θ, F ′0 =
F0

β
+ θ, V̄ ′ =

√
βV̄ ,

and

Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du

is the cumulative distribution function for the standard normal distribution. In other words, since log
[
βFT−(1−β)F0

F0+βθ

]
conditional on V̄ is normally distributed with known mean and variance (under the assumption that Ft
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and Vt are uncorrelated), the inner integral becomes the closed-form displaced-diffusion formula. As

one can see in Equation A3, the displaced-diffusion payer swaption price can be evaluated using the

Black model as a closed-form formula by simply transforming the parameters (F ′, K ′ and V̄ ′). Let DD

denote the displaced-diffusion formula in Equation A3, we can write

P (0) = A(0)

∫ ∞
0

DD
(
F0, K, V̄ , T, β

)
ψ(V̄ ) dV̄

The DDSV option price is therefore the weighted sum over the displaced-diffusion formula for different

integrated variance. This intuitive and elegant result is often referred to as the “mixing” theorem, and is

first derived by Hull and White (1987).

Since V̄ is path-dependent, it is difficult to obtain an analytical form of the distribution for V̄ . How-

ever, as pointed out by Hull and White (1987), while the distribution of the integrated variance V̄ is

unknown, its moments can be readily evaluated. The first three moments are given by:

E
[
V̄
]

= V0, E
[
V̄ 2
]

=
2
(
eν

2T − ν2T − 1
)

ν4T 2
V 2

0 , E
[
V̄ 3
]

=
e3ν2T − 9eν

2T + 6ν2T + 8

3ν6T 3
V 3

0 .

Using Taylor expansion, we expand the DDSV pricing formula around its expected value to obtain

P (0) = A(0)

∫ ∞
0

DD(F0,K, V̄ , T, β) ψ(V̄ ) dV̄

= A(0)DD(F0,K, V̄ , T, β) +
A(0)

2

∂2DD(F0,K, V̄ , T, β)

∂V̄ 2

(
E[V̄ 2]− E[V̄ ]2

)
+
A(0)

6

∂3DD(F0,K, V̄ , T, β)

∂V̄ 3

(
E[V̄ 3]− 3E[V̄ ]

(
E[V̄ 2]− E[V̄ ]2

)
− E[V̄ ]3

)
+ · · ·

(A4)

For sufficiently small values of ν (volatility of volatility), the series converges quickly. Higher accuracy

can be attained by adding higher order corrections to the expansion series. Once calibrated to swaption

market quotes, Equation (A4) provides an alternative way for us to evaluate swaption prices using closed-

form expression. The main advantage of our proposed model over SABR model is that it can incorporate

negative rates without any further tweak or adjustment, allowing it to be used consistently in both positive

and negative interest rate regimes.
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Table I: Summary of Data Set

Expiries 20 1m, 2m, 3m, 6m, 9m, 1y, 18m, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y, 15y, 20y, 25y, 30y

Tenors 15 1y, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y, 15y, 20y, 25y, 30y

Moneyness 15 ATM, ±25bp, ±50bp, ±75bp, ±100bp, ±150bp, ±200bp, ±300bp
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Figure 1: Eurozone swap rates over the 5-year period studied in this paper. The top figure shows the spot starting par swap
rates of 1-week EONIA overnight index swap (OIS) and interest rate swaps (IRS) with increasing maturities. The bottom figure
shows the forward swap rates (solid lines), which are the relevant parameters used for swaption pricing, along with the strikes at
forward swap rates (ATM strike) ± 300 basis points (dashed lines). ECB cuts EONIA rate to negative in June 2014, but the low
strikes swaptions (OTM receivers) already have negative strikes much earlier.
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Figure 2: Standard deviations of forward swap rate daily changes plotted against the forward swap rate levels, grouped into 4
rate levels. As rates increase, the standard deviations (volatilities) decrease (solid line and right axis). This is consistent with the
observed volatility backbone behavior in the swaption market, and in line with standard practice of using a higher β parameter
during high rates regime, and lower β parameter during low rates regime. The bar charts (left axis) indicate the number of
observation in each group.
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Figure 3: Skewness of forward swap rate daily changes plotted against the forward swap rate levels. Our empirical results show
that as rates increase, the skewness increases (solid line and right axis) from being negative to positive. This statistical behavior
is also conforming with the observed volatility backbone in the swaption market, as normal distribution has 0 skewness, while a
lognormal distribution exhibits positive skewness. The bar charts (left axis) indicate the number of observation in each group.
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Figure 4: Excess kurtosis of forward swap rate daily changes plotted against the forward swap rate level. Our empirical results
show that as rates increase, the excess kurtosis decrease (solid line right axis). Note that the excess kurtosis are all positive,
implying that the distributions of daily rate changes have heavier tail than normal distribution. The bar charts (left axis) indicate
the number of observation in each group.
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Figure 5: Graphical illustration of the volatility backbone behavior in the swaption market. The upper figure plots the Black
implied lognormal volatilities against forward swap rates. As is obvious from the graph, lower rates are associated with higher
implied lognormal volatilities, while higher rates are associated with lower implied volatilities — this is a clear indication that
the volatility backbone is not lognormal. The lower figure plots the implied normal volatilities against forward swap rates. Note
that lower rates are associated with a relatively flat implied normal volatilities, while for higher rates the normal volatilities are
moderately upward sloping. This indicates that the volatility backbone is between normal and lognormal.
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Figure 6: Principal components of daily changes in shifted (3%) lognormal implied volatility of 20y20y swaption. We split
our data into a “moderate” rate regime (Oct-2012 to Jun-2014) and a “low” rate regime (Jul-2014 to Sep-2017). From the figure,
we see that the first three components correspond to the level, slope, and curvature of the implied volatility curves, respectively.
On aggregate, the first three components account for more than 99.6% of the shape movements. This is a clear indication that
the dynamics of the SABR model has sufficient degree of freedom to capture the shape variation of the implied volatility curves.
In the lower figure, an abrupt drop in value is observed on the 3rd PC for the −200bp strike point, which might be attributed to
illiquid data point for very low (negative) strike swaptions during the negative rate regime.
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Figure 7: Empirical implied lognormal volatility’s level, skew (slope), and smile (curvature) with a 3% shift. The left figures
are plotted against forward swap rates, and the right figures are plotted across time. The dependence of empirical level, slope and
curvature on rate levels are all consistent with earlier observation. The time series plots (right figures) also show that the onset of
negative rate regime leads to higher volatility level and smile, while skew becomes negative.
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Figure 8: Comparison of SABR model’s volatility backbones. The upper figure plots implied volatilities with a lognormal
volatility backbone (β = 1) with different forward swap rates. The defining characteristic of a lognormal backbone is that the
ATM implied volatility remains at the same level when forward swap rate moves. The lower figure plots implied volatilities with
a volatility backbone between normal and lognormal (β = 0.7) with different forward swap rates. In this case, the ATM implied
volatility decreases when forward swap rate increases, and vice versa. This behavior has important implication when it comes to
efficient risk management of swaption portfolio.
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swaption (left figure) and an OTM payer swaption (right figure) under the “correct” and “incorrect” volatility backbone β. When
rates increase, receiver swaption’s value decreases, while payer swaption’s value increases. Using the right backbone, the P&L
of swaption holding can be explained entirely by interest rate delta, and no recalibration of model parameters is required. If the
wrong backbone is used, the portfolio manager will need to recalibrate α, ρ, and ν to match market prices again. The same P&L
movement will also comprise of contribution from vega, ρ and ν sensitivity in additional to delta.
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Figure 10: Sensitivity of swaption portfolio to SABR model parameter. The top figures show the calibrated model parameters
for ρ (skew) and ν (smile) over a 2-year period. The dotted vertical lines highlight each month-end, when SABR parameters
frequently experience jumps. The middle figures show the sensitivity of ATM swaptions to changes in ρ and ν, i.e. (∂V∂ρ and ∂V

∂ν )
— a change in model parameters will also result in a corresponding change in model sensitivity. The bottom figures show the
P&L movement of ATM swaptions over time. The frequent jumps in model parameters over month-end lead to offsetting spikes
in P&L explanation as a consequence of model parameters recalibration.
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Figure 11: A comparison of SABR and DDSV models – both models are able to match observed swaption prices well once
calibrated. We compare the fitting capability on a random date chosen from positive rate regime (left panel) and negative rate
regime (right panel). SABR model can no longer be used once rates or strikes become negative. Market convention is to shift the
rates (and strikes) up by a fixed amount before calibration. On the other hand, negative rates are admissible in the DDSV model,
and it can be calibrated without any further tweaks or adjustments.
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Figure 12: Comparison of DDSV model’s volatility backbones. The upper figure plots implied volatilities with a lognormal
volatility backbone with different forward swap rates, while the lower figure plots implied volatilities with a volatility backbone
between normal and lognormal with different forward swap rates.
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Figure 13: Comparison of hedging performance of different swaption pricing models across a 1-year period (Oct 2016 through
to Sep 2017). We use a 3% shifted SABR model across different choice of β parameter to highlight the importance of choosing
the optimal model. The upper figure shows the sum of absolute P&L breakdown in Equation 8. With the right backbone, both
SABR and DDSV models are able to yield minimal hedging error and the economy of P&L explanation. The lower figure plots
the Hedging Herfindahl-Hirschman index of different models. The index measures the concentration of risk in P&L explanation,
and ranges from 0 to 1, with higher values indicating higher concentration in P&L explanation, which is a more desirable feature.
With the right backbone, both SABR and DDSV models are again able to exhibit superior hedging performance. This is based
on the assumption that over time, one major source of risk (IR Delta) would dominate, hence the economy of risk-based P&L
explanation can be used as a measure to select the optimal model.
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Figure 14: Explained P&L (in percentages) over a historical period (Oct 2016 through to Sep 2017). For comparison, we
present the DDSV model along with a shifted SABR model with a β parameter of 1, which in our analysis is a sub-optimal
model due to the inappropriate choice of volatility backbone. The Explained P&L (top figure) clearly shows that a frequently
recalibrated model will generally be able to match market well, leading to close to 100% explained P&L in both cases.
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